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On a Family of Hypersurfaces in C2 with Stability

Groups Determined by High Jet-Order

R. Travis Kowalski

Abstract: In this paper, we study the collection of all real-analytic hyper-
surfaces in C2 of the form M =

{
(z, w) : Im w = Re w θ(|z|2)}. We compute

all local automorphisms for such hypersurfaces, providing new examples
of hypersurfaces with stability groups determined by arbitrary jet-orders.
Moreover, we show that for such hypersurfaces, if the stability group is not
determined by 1-jets, then the hypersurface is “generically” spherical. That
is, such hypersurfaces are locally spherical at every point except those along
a specific complex curve.

1. Introduction

Two germs of real hypersurfaces (M, p) and (M ′, p′) in C2 are biholomor-
phically equivalent if there exists a local biholomorphism between them, i.e. a
holomorphic mapping H : C2 → C2, defined and invertible in a neighborhood of
p, that sends p to p′ and satisfies H(M) ⊆ M ′. A germ (M, p) is called spherical
if it is biholomorphically equivalent to a germ of the 3-dimensional sphere in C2.
For example, the Lewy hypersurface

L =
{
(z, w) ∈ C2 : Im w = |z|2} (1)

is spherical at 0, as seen by the local biholomorphism

(z, w) 7→
(

2z

w + i
,
w − i

w + i

)
.

A basic invariant related to biholomorphic equivalence is the stability group of
(M, p), defined to be the set Aut(M, p) of all local biholomorphisms sending the
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germ (M, p) to itself. We say that Aut(M, p) is determined by k-jets if for every
pair H1,H2 ∈ Aut(M, p), we have H1 ≡ H2 as power series at p whenever

∂|λ|H1

∂Zλ
(p) =

∂|λ|H2

∂Zλ
(p) ∀λ ∈ N2, 0 ≤ |λ| ≤ k.

There exists a large body of work concerning the jet-determinacy of stability
groups of hypersurfaces in C2. For example, Poincaré [10] proved that the stabil-
ity group of any spherical hypersurface is determined by 2-jets, but not by 1-jets.
Chern and Moser [3] proved that the stability group of any Levi-nondegenerate
hypersurface is determined by at most 2-jets and is at most 5-dimensional, while
Beloshapka [2] provided a converse of sorts, proving that unless such a hyper-
surface was spherical, then 1-jets suffice. These results have been extended more
recently to ever more general hypersurfaces. For example, Ebenfelt, Lamel, and
Zaitsev [5] proved the stability group of any Levi nonflat hypersurface (M, p) in
C2 is determined by k-jets for some finite number k; moreover, if M is of finite
type at p (i.e. contains no complex hypersurface passing through p), then 2-jets
will always suffice. We also cite the work of Kolǎr [6], which shows that the
stability group of any finite type hypersurface has dimension at most 5.

If the hypersurface is not of finite type, however, then 2-jets may be insufficient.
In [7], the author gave the first known example of a Levi nonflat hypersurface,
necessarily of infinite type, for which 2-jets were insufficient to determine the
stability group; in fact, 3-jets were required. In [8], the author extended this
example to the family of hypersurfaces

Mn :=



(z, w) ∈ C2 : Im w =

(Re w) Im
(
S

(|z|2)2/n
)

1 + Re
(
S

(|z|2)2/n
)



 (2)

where S(t) := i t + (1 − t2)1/2, n ≥ 2 is an integer, and the principle branch of
each complex root function is used. It is shown in that paper that Aut(Mn, 0) is
determined by (n + 1)-jets, but not by n-jets.

The example of [7] was independently generalized by Zaitsev in [11] to a second
family of hypersurfaces with stability groups determined by an arbitrary jet. In
that survey, Zaitsev noted that both his hypersurface examples and those pro-
vided in [8] shared a common property, which he referred to as being generically
spherical, which we state precisely as follows.
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Definition 1.1. A germ of a hypersurface (M, p) to be generically spherical if it
is spherical at every point outside a proper subvariety V ⊂ M containing p.

Zaitsev then poses the following question:

Question 1.2. Does there exist a germ of a Levi nonflat, real-analytic hypersur-
face (M, p) in C2 that is not generically spherical at p, but whose stability group
Aut(M, p) is not determined by 2-jets?

In this paper, we investigate these ideas for a family G of real-analytic hyper-
surfaces of infinite type. This family will not include each of the hypersurfaces
Mn defined by (2), but provides further evidence that the answer to Question
1.2 is “No.”

Specifically, we shall consider the set G of all germs of hypersurfaces (M, 0),
where M can be expressed in some holomorphic coordinates (z, w) as

M =
{
(z, w) ∈ C2 : Im w = (Re w)θ

(|z|2)}

for a nonzero, real-analytic function θ : R→ R satisfying θ(0) = 0.

To state the main result of the paper, let us indicate some notation we shall
use consistently throughout it. We shall let R∗ ⊂ R denote the set of nonzero real
numbers, and U ⊂ C denote the set of unimodular complex numbers. Moreover,
we shall always assume any complex power function ζ 7→ ζp denotes the principal
branch of that mapping whenever p is not an integer, unless another branch is
made explicit.

Our major result is the following.

Theorem 1.3. For any germ of a hypersurface (M, 0) ∈ G, there exists a 4-tuple
(a, b, c, d) ∈ R+ × R× R∗ × N and a subset P ⊆ U× R∗ × R× C, such that

Aut(M, 0) =
{

Ha,b,c,d
ε,ρ,σ,ν : (ε, ρ, σ, ν) ∈ P

}
,

where Ha,b,c,d
ε,ρ,σ,ν : (C2, 0) → (C2, 0) is the mapping

(
z

w

)
7→




ε(z + ν wa)
(
1− i 2c ν z wa − (σ + i c |ν|2) w2a

) 1
2d

(1−i b)

ρw
(
1− i 2c ν z wa − (σ + i c |ν|2) w2a

) 1
2a




.
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Moreover, if Aut(M, 0) is not determined by 1-jets, then (M, 0) is generically
spherical.

A few words are in order about the statement of this theorem. The reader will
note that if a is not an integer, then the mapping w 7→ wa is not holomorphic
at w = 0. Thus, if the parameter a is not a natural number, then in order for
the mapping Ha,b,c,d

ε,ρ,σ,ν to be holomorphic at (0, 0) it must follow that P is a subset
of U × R∗ × R × 0, so that the parameter ν is forced to be 0; in particular, the
automorphisms of M will take the form

Ha,b,c,d
ε,ρ,σ,0

(
z, w

)
=


 ε z

(
1− σ w2a

) 1
2d

(1−i b)
,

ρw
(
1− σ w2a

) 1
2a


 .

Further, should 2a not be a natural number, then we must similarly conclude
that P is a subset of U×R∗ × 0× 0, so that the parameter σ will also always be
0, and the automorphisms of M will take the trivial form of

Ha,b,c,d
ε,ρ,0,0

(
z, w

)
=

(
ε z, ρw

)
.

We shall revisit these observations later with Theorem 4.1, which gives a more
precise articulation of Theorem 1.3.

We conclude this section with some remarks concerning the consequences of
Theorem 1.3. In addition to supporting a negative answer to Question 1.2, the
final statement of the theorem may be viewed as the analog of Beloshapka’s result
applicable to the (infinite type) collection G: unless a hypersurface is generically
spherical, its stability group is determined by 1-jets. For the sake of completeness,
we note that the complementary question of those infinite type hypersurfaces with
very few automorphisms is addressed in the recent paper [4] by Ebenfelt, Lamel,
and Zaitsev.

One consequence of the proof of Theorem 1.3 will show that the hypersurfaces
Mn given by equation (2) are elements of G and are, in some sense, the only
hypersurfaces in G to have a maximal 5-dimensional stability group.

More generally, the proof of Theorem 1.3 will show that for any choice of a
4-tuple (ε, ρ, σ, ν) ∈ U × R∗ × R × C, there exists a natural number a and a
hypersurface M ∈ G such that Ha,0,1,1

ε,ρ,σ,ν ∈ Aut(M, 0), so this collection G provides
further explicit examples of hypersurfaces of infinite type with stability groups
determined by jets of arbitrary order.
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We conclude this introduction with an outline of the rest of the paper. In Sec-
tion 2, we introduce some basic notation and preliminary results concerning the
hypersurfaces in the family G and their stability groups. In Section 3, we specify
an important subset GS ⊆ G consisting of generically spherical hypersurfaces. In
Section 4 we prove that Theorem 1.3 is true for the elements of this subset GS .
Finally, in Section 5, we extend this proof to the whole of G.

2. Preliminaries and notation

In this section, we investigate the family G and the structure of its elements
and their stability groups. We begin with the following basic result.

Proposition 2.1. For the germ of a hypersurface (M, 0) in C2, the following are
equivalent.

• There exists a nonzero, real-analytic function θ defined on a neighborhood
of 0 ∈ R such that θ(0) = 0 and

M =
{
(z, w) ∈ C2 : Im w = (Re w) θ

(|z|2)} . (3)

• There exists a nonconstant, holomorphic function S defined on a neigh-
borhood of 0 ∈ C such that S(0) = 1, S(t) is unimodular for real values
of t, and

M =
{
(z, w) ∈ C2 : w = w S

(|z|2)} . (4)

Moreover, the functions θ and S are related the pair of equations

S(t) =
1 + i θ(t)
1− i θ(t)

, θ(t) = i
1− S(t)
1 + S(t)

, (5)

for all real t sufficiently close to 0.

We shall prove this proposition in a moment, but for the moment let us use it
to give a precise definition of the family G of hypersurfaces under consideration
in this paper.

Definition 2.2. A germ of a hypersurface (M, 0) in C2 is an element of G if there
exist holomorphic coordinates (z, w) under which M can be written in either of
the forms indicated by Proposition 2.1. As is traditional, we shall abuse notation
and simply write M ∈ G, rather than (M, 0) ∈ G.



658 R. Travis Kowalski

For a hypersurface M ∈ G, we shall use the phrase “M expressed with θ”
to mean M is written in form (3), and similarly, we shall use the phrase “M is
expressed with S” to mean that M is written in the form (4).

Since each hypersurface M ∈ G contains the complex line {w = 0}, it follows
that G consists of (germs of) hypersurfaces of infinite type. (More specifically,
each element of G is of 1-infinite type, in the language of Meylan [9].) We now
prove the proposition above.

Proof. Fix the germ of a hypersurface (M, 0) in C2.

First assume that M is expressed with θ. Replacing Re w and Im w with
(w + w)/2 and (w − w)/(2i) respectively, we can solve equation (3) for w to
rewrite it as

M =
{

(z, w) ∈ C2 : w = w

(
1 + i θ(|z|2)
1− i θ(|z|2)

)}
.

Define the complex curve q : R→ C by

q(t) :=
1 + i t

1− i t
.

It is a simple calculation to show that q(0) = 1 and |q(t)| ≡ 1, and so M is
expressed with S using S = q ◦ θ. Note that this also proves the first equation of
(5).

Conversely, suppose that M is expressed with S. Replacing w and w with
(Re w + i Im w) and (Re w − i Im w) respectively, we can solve equation (4) for
Im w to obtain

M =
{

(z, w) ∈ C2 : Im w = Re w

(
i(1− S(|z|2)
1 + S(|z|2)

)}
.

If it can be shown that the expression in parentheses above is real valued, this
will complete the proof. Multiplying the numerator and denominator of the
ratio above by the conjugated expression 1+S(|z|2) and using the unimodularity
assumption, it follows that this equation can be rewritten as

Im w = (Re w)
i(1− S(|z|2))(1 + S(|z|2))
(1 + S(|z|2))(1 + S(|z|2))

= (Re w)
i
(− 2i Im S(|z|2))

2 + 2 Re S(|z|2) .
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Hence, we find that M is expressed with θ, with

θ(t) =
i
(
1− S(t)

)

1 + S(t)
=

Im S(t)
1 + Re S(t)

.

Since θ(0) = 0, the proof is complete. ¤

As the main result of this paper deals with the structure of the local automor-
phisms of elements of G, let us establish some basic notation and results for such
automorphisms. Our investigation begins with the following preliminary result.

Proposition 2.3. Let M ∈ G, and suppose H ∈ Aut(M, 0), i.e. H is a local
biholomorphism of C2 sending (M, 0) to (M, 0). Then H takes the form

H(z, w) =
(
f(z, w), w g(z, w)

)
, (6)

where f, g : C2 → C are holomorphic functions satisfying

∂f

∂z
(0, 0) 6= 0, g(0, 0) 6= 0. (7)

Conversely, if M is expressed with S, then any mapping H of the form (6) sat-
isfying (7) is a local automorphism of (M, 0) if and only if it satisfies the power
series identity

S(zχ) g
(
z, τ S(zχ)

) ≡ g(χ, τ) S
(
f
(
z, τ S(zχ)

)
f(χ, τ)

)
, (8)

where (z, χ, τ) are indeterminates, and f and g denote the conjugated power series
to f and g respectively.

Proof. The first half of the proposition is proved as Lemma 9.4.4 in [1], Chapter
IX. As for establishing the converse statement, note the conditions (7) ensure that
any H of the form (6) is a locally invertible mapping of (C2, 0) into itself. Such
an H maps the hypersurface M into itself if and only if the complex functions f

and g satisfy the equation

w g(z, w) = w g(z, w) S
(
f(z, w) f(z, w)

)

= w g(z, w) S
(
f(z, w) f(z, w)

)

whenever w = w S(zz). If we make the substitutions z = χ, w = τ , and w =
τ S(zχ) in the equation above, we find that this is equivalent to identity (8). ¤

As a consequence of Proposition 2.3, we shall always assume any automorphism
of a hypersurface M ∈ G is written in the form (6). In our later computation
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of the stability groups of the hypersurfaces in G, we shall find it convenient to
further expand the functions f and g in the variable w as

f(z, w) =
∞∑

n=0

fn(z)
wn

n!
, g(z, w) =

∞∑

n=0

gn(z)
wn

n!
.

We shall also find it convenient to formally expand the conjugated functions f

and g as power series of the form

f(χ, τ) =
∞∑

m,n=0

λm
n

χm

m!
τn

n!
, g(χ, τ) =

∞∑

m,n=0

µm
n

χm

m!
τn

n!

Note that the coefficients of expansions of f and g are related to the coefficients
of the expansions of f and g (respectively) by the equations

f (m)
n (0) = λm

n , g(m)
n (0) = µm

n , m, n = 0, 1, 2, . . . .

As a result, it is possible to express the functions fn and gn as power series
involving the coefficients λm

n and µm
n .

What is perhaps more surprising is that we can express the functions fn and
gn as power series involving the the non-conjugated coefficients λ`

k and µ`
k. For

example:

Proposition 2.4. If M ∈ G and H ∈ Aut(M, 0), then λ1
0 a unimodular complex

number and µ0
0 is real and nonzero. Moreover

f0(z) =
1
λ1

0

z, g0(z) = µ0
0,

Proof. Since H ∈ Aut(M, 0), it satisfies identity (8). Setting τ = 0 yields

S(zχ)g0(z) ≡ g0(χ) S
(
f0(z)f0(χ)

)
. (9)

Setting χ = 0 in this identity and using the fact that S(0) = 1, we have g0(z) = µ0
0.

However, we also know g0(0) = µ0
0 by the definition of µ`

k, and g0(0) 6= 0 by
Proposition 2.3, whence µ0

0 is a nonzero real number, proving that g0 has the
desired form.

Now, if we replace g0(z) = g0(χ) = µ0
0, then identity (9) simplifies to

S(zχ) ≡ S
(
f0(z)f0(χ)

)
.

Since S is nonconstant, some derivative of S must not vanish at 0. Let k ≥ 1
be the smallest value such that S(k)(0) 6= 0. Differentiating the identity above k
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times in χ and setting χ = 0 yields

S(k)(0)zk ≡ S(k)(0)
(
λ1

0

)k
f0(z)k.

Taking k-th roots of this equation and solving for f0(z) implies

f0(z) = ξ
z

λ1
0

for some k-th root of unity ξ. Differentiating this once and evaluating at z = 0
yields

λ1
0 = f0

′(0) =
ξ

λ1
0

,

or ξ = |λ1
0|2. In particular, this implies that ξ is real and positive, whence ξ = 1.

This in turn implies that λ1
0 is unimodular, which gives the desired form for

f0. ¤

The method above can be generalized to obtain similar (albeit more compli-
cated) parameterizations of the functions fn and gn in terms of the coefficients
λ`

k and µ`
k, an explicit structure we shall find useful in Section 4. Specifically, we

have the following.

Proposition 2.5. Let M ∈ G, and assume M is expressed with θ. Let d ≥ 1
denote the smallest integer such that θ(d)(0) 6= 0, and let ∆ ∈ {0, 1} be defined to
be 1 if d = 1 and 0 otherwise.

Then for each n ∈ N, there exist holomorphic functions Rn, Tn : C5×C4(n−1) →
C satisfying Rn(ζ,0) ≡ Tn(ζ,0) = 0 such that

fn(z) = ∆
[
i 2n θ′(0)2 − θ′′(0)

θ′(0)(λ1
0)2

z2 − i µ1
n

2 θ′(0)µ0
0

]
+

(
nµ0

n

d λ1
0 µ0

0

− λ1
n

(λ1
0)2

)
z

+Rn

((
z,

1
λ1

0

,
1
µ0

0

, λ1
0, µ

0
0

)
,
(
λ0

k, λ
1
k, µ

0
k, µ

1
k

)n−1

k=1

)

gn(z) =
(

i 2 λ0
n µ0

0θ
′(0)

λ1
0

)
z + µ0

n

+ Tn

((
z,

1
λ1

0

,
1
µ0

0

, λ1
0, µ

0
0

)
,
(
λ0

k, λ
1
k, µ

0
k, µ

1
k

)n−1

k=1

)
.

for any H ∈ Aut(M, 0).

Note that if d > 1, then ∆ = 0, which simply means that we ignore the portion
in square brackets in the formula for fn. Proposition 2.5 is actually proved in
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greater generality as Proposition 5.2 in [8], and the interested reader is directed
there for further details.

We conclude this section with another result from [8] that provides a useful
criterion for uniquely identifying an automorphism of a hypersurface M ∈ G based
on a finite number of the coefficients λ`

k and µ`
k. To state this result precisely, we

need the following, rather technical definition.

Definition 2.6. Suppose M ∈ G is expressed with θ. For each integer n ≥ 0,
define the holomorphic mappings Υn : C2 → C4 by

Υn(z, χ) =
(

υn
1 (zχ), υn

2 (zχ), z υn
3 (zχ), χ υn

4 (zχ)
)

,

where each υn
j : C→ C is defined as

υn
1 (t) := t θ′(t)

[(
1 + i θ(t)
1− i θ(t)

)n

− 1
]

υn
2 (t) :=

(
1 + θ(t)2

)[(
1 + i θ(t)
1− i θ(t)

)n

− 1
]
− i 2n

d
t θ′(t)

υ3
n(t) := ∆

{
θ′(t)−

(
1 + i θ(t)
1− i θ(t)

)n

×
[
θ′(0)

(
1 + θ(t)2

)
+

θ′′(0)− i 2n θ′(0)2

θ′(0)
t θ′(t)

]}

υn
4 (t) := ∆

{
1 + θ(t)2 +

θ′(t)
θ′(0)

[
θ′′(0)− i 2n θ′(0)2

θ′(0)
t−

(
1 + i θ(t)
1− i θ(t)

)n]}
,

and d and ∆ are defined in Proposition 2.5. Note that if d > 1, then this simply
means υn

3 ≡ υn
4 ≡ 0.

For each n, consider the complex linear subspace Sn in C4 spanned by the set
of vectors {

∂k+`Υn

∂zk∂χ`
(0, 0) : k, ` = 0, 1, 2, · · ·

}
.

Note that the maximum dimension of the subspace Sn is 4, unless d > 1, in which
case Sn is at most 2-dimensional.

Finally, define U to be the set of integers n ≥ 0 such that Sn is not of maximal
dimension; that is, set

U :=
{
n ≥ 0 : dimC

(Sn
)

< 2 + 2∆
}

.

Note that 0 is always an element of U , since υ0
1 vanishes identically.
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A useful alternative characterization of U is the following: If d = 1, then n 6∈ U
means that the four complex functions

{
υn

1 (zχ), υn
2 (zχ), z υn

3 (zχ), χ υn
4 (zχ)

}

form a linearly independent set; if d > 1, then n 6∈ U means that the two complex
functions {

υn
1 (zχ), υn

2 (zχ)
}

are linearly independent.

The importance of the set U is detailed in the following result, with which we
conclude this section. As noted above, it is proved in [8] in greater generality as
Theorem 4.1.

Theorem 2.7. Let M ∈ G, and let U be as in Definition 2.6. Then any automor-
phism H ∈ Aut(M, 0) is uniquely determined by those coefficients

(
λ0

n, λ1
n, µ0

n, µ1
n

)

with n ∈ U . That is, if H and H̃ are two automorphisms of (M, 0), and
(
λ0

n, λ1
n, µ0

n, µ1
n

)
=

(
λ̃0

n, λ̃1
n, µ̃0

n, µ̃1
n

)
for n ∈ U ,

then H ≡ H̃ as germs of biholomorphisms.

3. The generically spherical hypersurfaces of G

In proving Theorem 1.3, it will be important to identify those elements of G
that are generically spherical. To do so, we begin with the following lemma.

Lemma 3.1. For the ordered pair (a, b) ∈ R2, consider the equation

S2a = 1 + 2i z Sa(1+i b) (10)

in the complex variables z and S. If a 6= 0, then this equation admits a unique
holomorphic solution S = Sa,b(z) satisfying Sa,b(0) = 1.

Moreover, this solution is given by

Sa,b(z) := exp
(

i
φb(z)

a

)
, (11)

where φb denotes the unique (local) holomorphic inverse to the mapping

z 7→ ebz sin(z)

satisfying φb(0) = 0.
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As we noted in the Introduction, we shall always assume that any mapping
S 7→ Sp denotes the principal branch unless explicitly indicated otherwise.

Proof. Note first that φb is well-defined by the Inverse Function Theorem, since

d

dz

(
ebz sin(z)

)∣∣∣∣
z=0

= 1 6= 0;

in fact, using standard power series techniques we may expand φb as

φb(z) = z − b z2 +
1
6
(1 + 9b2) z3 + O(z4).

As a result, the function Sa,b is well-defined and holomorphic, and using (11) we
can expand Sa,b as

Sa,b(z) = 1 +
i

a
z − 1 + i 2ab

2a2
z2 (12)

− i(1 + a + i 3ab)(1− a + i 3ab)
6a3

z3 + O(z4),

which we shall find useful in later calculations.

To complete the proof, we need only show that Sa,b solves equation (10), as
the uniqueness of such a solution follows immediately from the Implicit Function
Theorem. To begin, let us simplify the left- and right-hand sides of (10) using the
explicit formula for Sa,b given in equation (11). Applying (the complex) Euler’s
formula exp(i z) = cos(z) + i sin(z), we find the left-hand side of (10) simplifies
to

(
Sa,b(z)

)2a = exp
(

i
φb(z)

a

)2a

= exp(i 2φb(z))

= cos
(
2φb(z)

)
+ i sin

(
2φb(z)

)
,

while the right-hand side becomes

1 + 2i z
(
Sa,b(z)

)a(1+i b) = 1 + 2i z exp
(

i
φb(z)

a

)a(1+i b)

= 1 + 2i z exp
(
(i− b)φb(z)

)

=
(
1− 2z e−bφb(z) sin

(
φb(z)

))

+ i
(
2 z e−bφb(z) cos

(
φb(z)

))
.



On a Family of Hypersurfaces in C2 with Stability... 665

Thus, to show that Sa,b satisfies equation (10), it suffices to prove that φb satisfies
the following pair of equations:

cos
(
2φb(z)

)
= 1− 2z e−bφb(z) sin

(
φb(z)

)
, (13)

sin
(
2φb(z)

)
= 2 e−bφb(z) cos

(
φb(z)

)
. (14)

(Note that while equations (13) and (14) appear to be equating the real and
imaginary parts of equation (10), since φb is complex-valued neither of these
equations involve real numbers.)

Using the double angle formula for cosine, we can rewrite equation (13) as

1− 2 sin2
(
φb(z)

)
= 1− 2z e−bφb(z) sin

(
φb(z)

)
,

which holds identically if and only if

ebφb(z) sin
(
φb(z)

)
= z, (15)

and this is true by the definition of φb. Similarly, applying the double angle
formula for sine to (14), we obtain

2 sin
(
φb(z)

)
cos

(
φb(z)

)
= 2z e−bφb(z) cos

(
φb(z)

)
,

which is equivalent to equation (15) as well. ¤

Note that Sa,b is a holomorphic function that satisfies Sa,b(0) = 1. Moreover,
since ebt sin(t) is real-valued for any real t, the definition of φb given in Lemma 3.1
implies that it too is real whenever t is. As a consequence, Sa,b(t) = exp(i φb(t)/a)
is unimodular for any real value t. Thus, according to Proposition 2.1, the set

Ma,b,c,d :=
{

(z, w) ∈ C2 : w = w Sa,b

(
c|z|2d

)}
, (16)

defines a hypersurface in G for any choice of (a, b, c, d) ∈ R∗ × R× R∗ × N.

Definition 3.2. Define the subset GS ⊆ G as follows: the germ of a hypersurface
(M, 0) is an element of GS if there exist holomorphic coordinates (z, w) under
which M = Ma,b,c,d for some 4-tuple (a, b, c, d) ∈ R∗ × R × R∗ × N. As is
customary, we shall also write M ∈ GS to mean (M, 0) ∈ GS .

Proposition 3.3. Every element of GS is the germ of a generically spherical
hypersurface in C2.
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Proof. Let Ma,b,c,d ∈ GS . It useful to note first that

Ma,b,c,d = M−a,−b,−c,d for any (a, b, c, d). (17)

This follows immediately if it can be shown that Sa,b(t) = S−a,−b(−t) for real
values of t, but this is a straightforward calculation:

Sa,b(t) =
(
S−a,b(t)

)−1 =
1

S−a,b(t)
= S−a,b(t) = S−a,−b(−t),

where the bar denotes complex conjugation.

We now prove that Ma,b,c,d is spherical at any point (z, w) ∈ Ma,b,c,d off of the
plane {w = 0}; this will suffice to prove that the germ (Ma,b,c,d, 0) is generically
spherical. To this end, fix a point (z0, w0) ∈ Ma,b,c,d with w0 6= 0. Using equation
(17), we may without loss of generality assume c > 0, so define the mapping

(z, w) 7→ (Z, W ) =
(√

c zdwa(1+i b), w2a
)

,

where in this case we take a branch of w 7→ wλ that is analytic on a neighborhood
of w0. (Note that this will coincide with the principal branch whenever w0 is
not a negative real number.) Since the Jacobian of this mapping is well-defined
and nonsingular at (z0, w0), it defines a local biholomorphism of C2 near (z0, w0).
Moreover, we claim that if (z, w) ∈ Ma,b,c,d is sufficiently close to (z0, w0), then
(Z, W ) ∈ L, where L is the Lewy hypersurface defined by equation (1) in the
Introduction. Since L is itself spherical, this will complete the proof.

To prove the claim, consider a spherical neighborhood of (z0, w0) that does not
intersect the plane {w = 0}. If (z, w) ∈ Ma,b,c,d is in this neighborhood, then
we know w = w Sa,b(c|z|2d) and w 6= 0. To show that this point is mapped to
the Lewy hypersurface, we must show that Im W = (Re W )|Z|2, or, equivalently,
that W = W + i 2ZZ. Using the defining property of Sa,b, we compute that

W + i 2ZZ = w2a + i 2
(√

c zdwa(1+i b)
)(√

c zdwa(1+i b)
)

= w2a + i 2
(√

c zd
[
w Sa,b(c|z|2d)

]a(1+i b)
)(√

c zdwa(1−i b)
)

= w2a + i 2c zdzd Sa,b(c|z|2d)a(1+i b)wa(1+i b)wa(1−bi)

= w2a
[
1 + i 2c |z|2d Sa,b(c|z|2d)a(1+i b)

]

= w2a Sa,b(c|z|2d)2a =
(
w Sa,b(c|z|2d)

)2a = w2a = W,

as desired. ¤
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We conclude this section with the following observation. Although we shall
not need this explicit description for the present paper, it is instructive to note
that

Sa,0(z) =
(
i z + (1− z2)1/2

)1/a
.

In particular, this implies that the hypersurface Mn given in equation (2) in the
Introduction is the same as the hypersurface M

n
2

,0,1,1 in the set GS .

4. The stability groups in GS

Before proving Theorem 1.3 in general for the family G, in this section we first
prove that it applies to the subset GS of generically spherical elements of G.

To prepare for the proof, let us define for any 4-tuple (a, b, c, d) ∈ R4 with
ad 6= 0 and any 4-tuple (ε, ρ, σ, ν) ∈ C4 the mapping Ha,b,c,d

ε,ρ,σ,ν : C2 → C2 by the
formula

(
z

w

)
7→




ε(z + ν wa)
(
1− i 2c ν z wa − (σ + i c |ν|2) w2a

) 1
2d

(1−i b)

ρw
(
1− i 2c ν z wa − (σ + i c |ν|2) w2a

) 1
2a




,

where in each case we assume the principle branch of a complex power function
is being used. Observe that if a is a natural number, then Ha,b,c,d

ε,ρ,σ,ν defines a local
biholomorphism of C2 in a neighborhood of (z, w) = (0, 0).

However, as we noted in the Introduction, the mapping Ha,b,c,d
ε,ρ,σ,ν fails to be

holomorphic (or even continuous!) along the plane {w = 0} whenever a is not a
positive integer. Nevertheless, the mapping

Ha,b,c,d
ε,ρ,0,0(z, w) =

(
ε z, ρ w)

is a global biholomorphism for any value of a, whereas the mapping

Ha,b,c,d
ε,ρ,σ,0(z, w) =

(
ε z

(1− σ w2a)
1
2d

(1−i b)
,

ρw

(1− σ w2a)
1
2a

)

is a local biholomorphism of (C2, 0) whenever 2a is a positive integer.

We are now ready to prove the following result.
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Theorem 4.1. Let Ma,b,c,d ∈ GS, and assume that a > 0. Define

P :=





U× R∗ × R× C, if a ∈ N, b = 0, and d = 1,

U× R∗ × 0× 0, if 2a 6∈ N,

U× R∗ × R× 0, otherwise.

Then Aut
(
Ma,b,c,d, 0

)
=

{
Ha,b,c,d

ε,ρ,σ,ν : (ε, ρ, σ, ν) ∈ P
}
.

Recall that Equation (17) implies that any hypersurface Ma,b,c,d in GS can be
written with a > 0, so that Theorem 4.1 completely classifies the automorphism
group of any hypersurface in GS . Note too that the discussion preceding Theorem
4.1 implies that each mapping Ha,b,c,d

ε,ρ,σ,ν is (at least) a local biholomorphism of
(C2, 0) under the allowable set of parameters in P.

For the remainder of this section, let us fix a hypersurface Ma,b,c,d ∈ GS , and
assume a > 0. Define P as in the statement of Theorem 4.1. We shall prove the
result of the theorem by demonstrating that each set involved is a subset of the
other. We do this in a pair of lemmas.

Lemma 4.2.
{

Ha,b,c,d
ε,ρ,σ,ν : (ε, ρ, σ, ν) ∈ P

}
⊆ Aut

(
Ma,b,c,d, 0

)
.

Proof. Fix a 4-tuple (ε, ρ, σ, ν) ∈ P; we must show the mapping H := Ha,b,c,d
ε,ρ,σ,ν is a

local automorphism of (Ma,b,c,d, 0). We have already argued that (ε, ρ, σ, ν) ∈ P
ensures that the mapping H is a local biholomorphism of (C2, 0), so we need only
show that it maps Ma,b,c,d into itself.

Write H in the form H =
(
f, w g

)
. According to Proposition 2.3, we need only

prove that the identity

Sa,b(c zdχd) g
(
z, τ Sa,b(czdχd)

)

g(χ, τ)
≡ Sa,b

(
c f

(
z, τ Sa,b(c zdχd)

)d
f(χ, τ)d

)

is satisfied.

Observe that the right-hand side of this identity, more or less by the definition
given in Lemma 3.1, is the unique holomorphic solution S(z, χ, τ) to the complex
equation

S2a = 1 + i 2c f
(
z, τ Sa,b(c zdχd)

)d
f(χ, τ)d · Sa(1+i b) (18)

satisfying S(0, 0, 0) = 1. Hence, if it can be shown that the left-hand side of this
identity is also a solution, then the lemma is proved.
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To that end, define the holomorphic function

S(z, χ, τ) :=
Sa,b(c zdχd) g

(
z, τ Sa,b(czdχd)

)

g(χ, τ)
.

For convenience, write

Φc
σ,ν(Z, W ) := 1− i 2c ν Z W − (σ + i c |ν|2) W 2,

so that H may be more compactly expressed as

Ha,b,c,d
ε,ρ,σ,ν(z, w) :=

(
ε(z + ν wa)

Φc
σ,ν(zd, wa)

1
2d

(1−i b)
,

ρw

Φc
σ,ν(zd, wa)

1
2a

)
.

In particular, we can write S as

S(z, χ, τ) =
Sa,b(c zdχd)Φ−c

σ,ν(χ
d, τa)

1
2a

Φc
σ,ν

(
zd, τaSa,b(c zdχd)a

) 1
2a

.

Observe that

S(0, 0, 0) =
Sa,b(0)Φ−c

σ,ν(0, 0)
1
2a

Φc
σ,ν(0, 0)

1
2a

= 1,

so we need only prove it satisfies equation (18).

Note that the right-hand side of that identity evaluates to

1 +
i 2c

(
z + ν τaSa,b(c zdχd)a

)d(χ + ν τa)d Sa,b(c zdχd)a(1+i b)

Φc
σ,ν

(
zd, τaSa,b(c zdχd)

) .

We show this expression equals S(z, χ, τ)2a by examining two cases, depending
on the value of ν.

If ν = 0, this simplifies to

1 +
2i c zdχd Sa,b(c zdχd)a(1+i b)

1− σ τ2aSa,b(c zdχd)2a
.

Putting this on a common denominator and simplifying yields

Sa,b(c zdχd)2a − σ τ2aSa,b(c zdχd)2a

1− σ τ2aSa,b(c zdχd)2a

=
Sa,b(c zdχd)2a Φ−c

σ,0(χ
d, τa)

Φc
σ,0

(
zd, τaSa,b(c zdχd)2a

) = S(z, χ, τ)2a,

which proves (18) holds.
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On the other hand, if ν 6= 0, then the definition of P forces d = 1 and b = 0,
so that the right-hand side evaluates to

1 +
i 2c (z + ν τaSa,0(c zχ)a

)
(χ + ν τa)Sa,0(c zχ)a

1− i 2cν z τaSa,0(c zχ)a − (σ + i c|ν|2)τ2aSa,0(c zχ)2a

=

(
1 + i 2c zχSa,0(c zχ)a

)
+

(
i 2cν χ τa − (σ − i c|ν|2)τ2a

)
Sa,0(c zχ)2a

1− i 2cν z τaSa,0(c zχ)a − (σ + i c|ν|2)τ2aSa,0(c zχ)2a

=
Sa,0(c zχ)2a Φ−c

σ,ν(χ, τa)

Φc
σ,ν

(
z, τaSa,0(c zχ)a

) = S(z, χ, τ)2a,

which proves (18) holds once again. ¤

Lemma 4.3. Aut
(
Ma,b,c,d, 0

) ⊆
{

Ha,b,c,d
ε,ρ,σ,ν : (ε, ρ, σ, ν) ∈ P

}
.

Proof. Fix an automorphism H ∈ Aut(M, 0); we must prove that there exists a
4-tuple (ε, ρ, σ, ν) ∈ P such that H = Ha,b,c,d

ε,ρ,σ,ν .

To do this, we shall appeal to Theorem 2.7. Recall the definition of the numbers
λ`

k and µ`
k for the automorphism H given in Section 2. Similarly, for a mapping

Ha,b,c,d
ε,ρ,σ,ν with (ε, ρ, σ, ν) ∈ P, we can define the corresponding values λ̃`

k and µ̃`
k;

note that these values are themselves parameterized by (ε, ρ, σ, ν). If we can
choose a specific 4-tuple (ε, ρ, σ, ν) ∈ P such that

(
λ0

n, λ1
n, µ0

n, µ1
n

)
=

(
λ̃0

n, λ̃1
n, µ̃0

n, µ̃1
n

)
for n ∈ U , (19)

then Theorem 2.7 implies that H ≡ Ha,b,c,d
ε,ρ,σ,ν as mappings.

Recall from Proposition 2.1 that we may express Ma,b,c,d with θ using

θ(t) = i
1− Sa,b(c td)
1 + Sa,b(c td)

(20)

=
c

2a
td − bc2

2a
t2d +

(1 + 2a2 + 18a2b2)
24a3

t3d + O(t4d).

We complete the proof of Lemma 4.3 by examining two cases, depending on the
value of d.

4.1. Case 1: d = 1. To apply Proposition 2.7, we must first compute the set
U given in Definition 2.6. Given the expansion of θ above, we compute that the
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power series for υn
k given in that definition as

υn
1 (t) =

i c2 n

4a3

[
2a t2 + i c(n + 6abi) t3

]
+ O(t4)

υn
2 (z, χ) = −c2n

6a3

[
3a(n− i 2ab) t2

+ i c(n2 + 2a2 + 18a2b2 + i 6abn) t3
]
+ O(t4)

υn
3 (z, χ) = − c3

12a4
(n + a− i ab)(n− a− i ab)

× [
3a t2 + i 2c(n + i 5ab) t3

]
+ O(t4)

υ4
n(z, χ) =

c2

6a3
(n + a− i ab)(n− a− i ab)

× [
3a t2 + i c(n + i 10ab) t3

]
+ O(t4)

As a result, we find that

det
[

∂4Υn

∂z2∂χ2

∂6Υn

∂z3∂χ3

∂5Υn

∂z3∂χ2

∂5Υn

∂z2∂χ3

]∣∣∣∣
(z,χ)=(0,0)

= −108c10

a10
n2

(
n2 − (2a)2

)(
n2 − (a + i ab)2

)(
n2 − (a− i ab)2

)
,

where Υn is the holomorphic mapping given in Definition 2.6. This implies that
the four vectors{

∂4Υn

∂z2∂χ2
(0, 0),

∂6Υn

∂z3∂χ3
(0, 0),

∂5Υn

∂z3∂χ2
(0, 0),

∂5Υn

∂z2∂χ3
(0, 0)

}

are linearly independent in C4 except at those values n ∈ Z for which this deter-
minant is 0. It follows from this that U ⊆ {0, a± abi, 2a} ∩ Z. Note that exactly
one of the following is true:

• {0, a± i ab, 2a} ∩ Z = {0}.
• {0, a± i ab, 2a} ∩ Z = {0, 2a}.
• {0, a± i ab, 2a} ∩ Z = {0, a, 2a}.

We complete the proof of this case by examining each of these possibilities.

Subcase (a). Suppose {0, a ± i ab, 2a} ∩ Z = {0}. This implies U = {0}, so
we need only find a set of parameters in P that verify equation (19) for n = 0.
Moreover, this also implies that 2a 6∈ N, and a 6∈ N or b 6= 0, whence we are forced
by the definition of P to set σ = ν = 0. Computing the values of λ̃`

k and µ̃`
k from
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the explicit formula for Ha,b,c,d
ε,ρ,0,0, we determine that (19) equates to finding a value

of ε ∈ U and ρ ∈ R∗ such that the following four conditions are met:

λ0
0 = 0, λ1

0 = ε, µ0
0 = ρ, µ1

0 = 0. (21)

According to Proposition 2.4, the automorphism H must satisfy

λ0
0 = 0, λ1

0 ∈ U, µ0
0 ∈ R∗, µ1

0 = 0,

whence (21) is easily solved by setting

ε := λ1
0, ρ = µ0

0.

Subcase (b). Suppose that {0, a± i ab, 2a} ∩ Z = {0, 2a}. This implies that
U ⊆ {0, 2a}, so it suffices to a set of parameters in P that verify equation (19)
for the pair of values n = 0, 2a. This also implies that 2a ∈ N, but a 6∈ N or
b 6= 0, whence we are forced by the definition of P to set ν = 0. Computing the
values of λ̃`

k and µ̃`
k from the explicit formula for Ha,b,c,d

ε,ρ,σ,0, we determine that (19)
equates to finding a value of ε ∈ U, ρ ∈ R∗, and σ ∈ R such that the following
eight conditions are met:

λ0
0 = 0, λ1

0 = ε, (22)

µ0
0 = ρ, µ1

0 = 0,

λ0
2a = 0, λ1

2a =
(2a)!(1 + i b) ε σ

2
,

µ1
2a = 0, µ0

2a = (2a− 1)! ρ σ.

As above, using Proposition 2.4 implies that the first four conditions are satisfied
by setting

ε := λ1
0, ρ = µ0

0.

To prove the final four conditions can be met, let us compute the explicit forms
of the functions f2a and g2a for the automorphism H. Recall from Proposition
2.3 that fn and gn satisfy the power series identity (8). If we differentiate this
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identity n times in the variable τ and then set τ = 0, we obtain the identity

S(zχ)n+1gn(z) ≡ S(zχ)gn(χ) (23)

+ g0(χ) S′(zχ)
(

S(zχ)nf0(χ) fn(z) + f0(z) fn(χ)
)

+Qn

(
z, χ,

(
fk(z), gk(z), fk(z), gk(z)

)n−1

k=1

)
,

where Qn : C2×C4(n−1) → C is a holomorphic function satisfyingQn(z, χ,0) ≡ 0.

We claim first that fn = gn = 0 for 0 < n < 2a, which we prove by induction
on n. Suppose this holds for all fk and gk with k < n. This implies that the Qn

term in identity (23) vanishes, which means that the functions fn and gn must
satisfy the reduced identity

S(zχ)n+1gn(z) ≡ S(zχ)gn(χ)

+ µ0
0 S′(zχ)

(
S(zχ)n λ1

0 χfn(z) +
1
λ1

0

z fn(χ)
)

.

However, Proposition 2.5 asserts that fn and gn are uniquely determined from
this identity by the values (λ`

k, µ
`
k) = (0, 0) for ` ∈ {0, 1} and k < n. Since

fn(z) ≡ gn(z) ≡ 0 is a solution this identity, it must therefore be the only such
solution, completing the induction.

Given that fn and gn vanish for 1 < n < 2a, we can now compute f2a and g2a

using the expansion for θ given in (20) and the formulas given in Proposition 2.5.
We find

f2a(z) =
i 2c(1− i b)λ0

2a

(λ1
0)2

z2 +
(

2aµ0
2a

λ1
0 µ0

0

− λ1
2a

(λ1
0)2

)
z +

i a µ1
2a

c λ1
0 µ0

0

,

g2a(z) =
i c µ0

0 λ0
2a

aλ1
0

z + µ0
2a.

Armed with these explicit formulas for f2a and g2a, we may compute the coeffi-
cients λ`

2a and µ`
2a.

Note that g2a(0) = µ0
2a by the formula for g2a, but g2a(0) = µ0

2a by the defini-
tion of µ`

k, whence µ0
2a is real. If we set

σ :=
µ0

2a

(2a− 1)!µ0
0

∈ R,
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then it follows that µ0
2a = (2a− 1)!µ0

0 σ = (2a− 1)! ρ σ, which verifies the eighth
condition of (22).

To verify the remaining three conditions, first note that the functions f2a and
g2a are just polynomials, whence their conjugates have the finite series expansions

f2a(χ) = λ2
2a

χ2

2!
+ λ1

2a χ + λ0
2a, g2a(χ) = µ1

2a χ + µ0
2a.

Let us substitute these formulas for f2a, g2a, f2a, and g2a into (23) with n = 2a.
(Note that the Q2a term vanishes completely!) This results in a power series
equation in the indeterminates z and χ. If we equate the z2χ3 coefficients on
both sides of the identity, we find

λ0
2a = 0,

which satisfies the fifth condition of (22). Similarly, examining the z2χ3 coeffi-
cients yields

µ1
2a = 0,

leaving only the λ1
2a condition of (22) unverified. If we equate the z2χ2 coeffi-

cients, we find

λ1
2a =

a(1 + i b)λ1
0 µ0

2a

µ0
0

;

but given our choices for ε, ρ, and σ, that means

λ1
2a =

a(1 + i b)ε
ρ

· (2a− 1)!ρ σ =
(2a)!(1 + i b)ε σ

2
,

verifying all eight conditions of (22).

Subcase (c). Suppose that {0, a ± i ab, 2a} ∩ Z = {0, a, 2a}. This implies
U ⊆ {0, a, 2a}, so it suffices to find a set of parameters in P that verify equation
(19) for the three values n = 0, a, 2a. This also implies that a ∈ N and b = 0.
Computing the values of λ̃`

k and µ̃`
k from the explicit formula for Ha,b,c,d

ε,ρ,σ,ν , we
determine that (19) equates to finding a value of ε ∈ U, ρ ∈ R∗, σ ∈ R, and
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ν ∈ C such that the following twelve conditions are satisfied.

λ0
0 = 0, λ1

0 = ε, (24)

µ0
0 = ρ, µ1

0 = 0,

λ0
a = a! ε ν, λ1

a = 0,

µ0
a = 0, µ1

a = −i (a− 1)! c ρ ν̄,

λ0
2a = 0, λ1

2a =
(2a)! ε

(
σ − i 3c |ν|2)

2
,

µ1
2a = 0, µ0

2a = (2a− 1)! ρ
(
σ − i c |ν|2).

As above, using Proposition 2.4 implies that the first four conditions are satisfied
by setting

ε := λ1
0, ρ := µ0

0.

To prove the next four conditions can be met, we compute the explicit forms
of the functions fa and ga of the automorphism H. Arguing as in Subcase (b),
we find fn = gn = 0 for 0 < n < a, and

fa(z) =
i c λ0

a

(λ1
0)2

z2 +
(

aµ0
a

λ1
0 µ0

0

− λ1
a

(λ1
0)2

)
z +

i a µ1
a

c λ1
0 µ0

0

ga(z) =
i c µ0

0 λ0
a

aλ1
0

z + µ0
a

From this, we may compute the coefficients λ`
a and µ`

a.

Note that based on our choice of ε, the fifth condition of (24) is met by setting

ν :=
λ0

a

a!λ1
0

.

Moreover, if we note equate fa(0) = λ0
a (from the definition of λ`

k) with the value
of fa(0) from the formula above, we find

µ1
a = − i c λ1

0 µ0
0 λ0

a

a
.

However, given our choices of ε, ρ, and ν (and the fact that ε is unimodular),
this implies

µ1
a = − i c ε ρ a! ε ν

a
= −i (a− 1)! c |ε|2 ρ ν,

which verifies the eighth condition of (24).
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Just as in Subcase (b), to verify the remaining pair of conditions, we substi-
tute the formulas for fa and ga, as well as those corresponding to the conjugate
polynomials fa and ga, into identity (23) with n = a. As in the previous subcase,
the Qa term vanishes. If we equate the z2χ2 coefficients on either side of the
equation, we obtain

λ1
a = 0;

if we equate the z3χ3 coefficients, we find

µ0
a = 0.

To show the final four conditions of (24) hold, let us compute f2a and g2a. We
begin by noting that our work above allows us to rewrite fa and ga in the simpler
form of

fa(z) =
ci λ0

a

(λ1
0)2

z2 + λ0
a, ga(z) =

ci µ0
0 λ0

a

aλ1
0

z.

We next claim that fn = gn = 0 for all a < n < 2a. As proof, a careful inspec-
tion of Chain rule derivation of Qn in (23) shows that if n < 2a, then each term
of the power series Qn contains a factor from the set

{
fj , gj , fj , gj : 1 < j < a

}
.

The Qn term must therefore vanish for such n. A similar uniqueness argument
as that given in Subcase (b) completes the argument.

Finally, when n = 2a, a careful derivation using the chain rule shows that

Q2a

(
z, χ;

(
fk(z), gk(z), fk(z), gk(z)

)2a−1

k=1

)

=
(2a)!
(a!)2

{
µ0

0 S′(zχ) S(zχ)a fa(z) fa(χ)

+
1
2
µ0

0 S′′(zχ)
(

λ1
0 χS(zχ)nfa(z) +

z

λ1
0

fa(z)
)2

+ ga(χ) S′(zχ)
(

λ1
0 χS(zχ)nfa(z) +

z

λ1
0

fa(z)
)
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Substituting this back into into (23) with n = 2a and using the explicit formulas
given in Proposition 2.5 yield the following explicit formulas for f2a and g2a:

f2a(z) = −3(2a)! c2 (λ0
a)

2

2(a!)2(λ1
0)3

z3 +
i 2c λ0

2a

(λ1
0)2

z2

+
(

2aµ0
2a

λ1
0 µ0

0

− λ1
2a

(λ1
0)2

+
i (2a)! c |λ0

a|2
(a!)2 λ1

0

)
z +

i a µ1
2a

c λ1
0 µ0

0

g2a(z) = −(2a)!(1 + 2a) c2 µ0
0 (λ0

0)
2

2a2(a!)2(λ1
0)2

z2 +
i c µ0

0 λ0
2a

aλ1
0

z

+
(

µ0
2a +

i (2a)! c µ0
0|λ0

a|2
a(a!)2

)

If we equate g2a(0) with µ0
2a, we obtain

Im µ0
2a = −(2a− 1)! c µ0

0 |λ0
a|2

(a!)2
.

Note that if we set

σ :=
Re µ0

2a

(2a− 1)!µ0
0

,

then it follows that

µ0
2a = Re µ0

2a + i Im µ0
2a = (2a− 1)! ρ σ − i (2a− 1)! c ρ |ν|2

= (2a− 1)! ρ
(
σ − i c |ν|2),

verifying yet another condition of (24).

To tackle the last three, we once again substitute the formulas for fa, ga,
f2a, g2a, and their conjugates back into (23) with n = 2a and equate various
coefficients. If we equate the z3χ2 or z2χ3 coefficients, we find

λ0
2a = µ1

2a = 0.

Finally, if we equate the z2χ2 coefficients, we obtain

λ1
2a = λ1

0

(
aµ0

2a

µ0
0

− i (2a)!c |λ0
a|2

(a!)2

)
,
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which given our choices for ε, ρ, σ, and ν imply

λ1
2a = ε

(
a

ρ
(2a− 1)! ρ

(
σ − i c |ν|2)− i (2a)!c |ν|2

)

= ε

(
(2a)!

(
σ − i c |ν|2)

2
− i (2a)!c |ν|2

)

=
(2a)! ε

(
σ − i 3c |ν|2)

2
,

verifying all twelve conditions of (24).

4.2. Case 2: d > 1. The proof of this case is very similar to the d = 1 case,
although it is significantly easier, and so we simply give a sketch of it. In this
case, a similar determinant calculation shows that U ⊆ {0, 2a} ∩ Z. If U = {0},
the exact same argument as in Subcase (a) shows that H takes the form Ha,b,c,d

ε,ρ,0,0.

Hence, let us assume 2a ∈ N. Examining (19) in this case, we must satisfy the
eight conditions below:

λ0
0 = 0, λ1

0 = ε, (25)

µ0
0 = ρ, µ1

0 = 0,

λ0
2a = 0, λ1

2a =
(2a)!(1 + i b) ε σ

2d
,

µ1
2a = 0, µ0

2a = (2a− 1)! ρ σ.

The attack is very similar to that in Subcase (b) above.

We begin by computing f2a and g2a explicitly. Since d > 1, it follows that

S′(0) =
d

dt

∣∣∣∣
t=0

Sa,b(c td) = 0.

A similar argument using the mapping identity (23) and Proposition 2.5 implies
that

f2a(z) =
(

2aµ0
2a

d λ1
0 µ0

0

− λ1
2a

(λ1
0)2

)
z, g2a(z) = µ0

2a.

In particular, this implies λ0
2a = µ1

2a = 0. Moreover, substituting these formulas
and their conjugates into (23) and taking derivatives (as in Subcase (b) above)
yields

λ1
2a =

a(1 + i b)λ1
0 µ0

2a

dµ0
0
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whereas equating g2a(0) with µ0
2a proves that µ0

2a is real. The reader is invited
to show that setting

ε := λ1
0 ∈ U, ρ := µ0

0 ∈ R∗, σ :=
µ0

2a

(2a− 1)!µ0
0

∈ R, ν := 0

indeed satisfies the eight conditions of (25), which completes the proof of Case
2, and with it Lemma 4.3 and Theorem 4.1. ¤

5. The proof of Theorem 1.3

In this final section, we prove prove Theorem 1.3. Let us fix the germ of a
hypersurface (M, 0) ∈ G, and consider its stability group Aut(M, 0).

Assume first that Aut(M, 0) is determined by 1-jets. We claim that

Aut(M, 0) =
{

H1,0,0,1
ε,ρ,0,0 : ε ∈ U, ρ ∈ R∗

}
;

that is, we may take (a, b, c, d) = (1, 0, 0, 1) and P = U × R∗ × 0 × 0 in the
language of the Theorem. As proof, note that

H1,0,0,1
ε,ρ,0,0 (z, w) =

(
ε z, ρw

)

is a global automorphism of (M, 0) for any unimodular number ε and nonzero
real number ρ. Conversely, given an arbitrary H ∈ Aut(M, 0), Proposition 2.4
asserts H and H1,0,0,1

ε,ρ,0,0 both have the same 1-jet if

(ε, ρ, 0, 0) :=
(
λ1

0, µ
0
0, 0, 0

)
∈ P,

whence it follows they agree as mappings as well.

So let us assume instead that Aut(M, 0) is not determined by 1-jets. If we can
show that M ∈ GS , then this will complete the proof of Theorem 1.3, for not only
will this prove the theorem’s final statement, but Theorem 4.1 will show that M

has desired automorphism group.

To this end, assume M is expressed with θ, and expand θ about t = 0 as

θ(t) =
∞∑

k=d

θkt
k = θd td + θd+1 td+1 + θd+2 td+2 + · · · (26)

with θd 6= 0. Let U denote the set given in Definition 2.6.



680 R. Travis Kowalski

To prove that M ∈ GS , it suffices to find a 3-tuple (a, b, c) ∈ R∗ ×R×R∗ such
that M = Ma,b,c,d, where d is as above. We shall prove this result through a
sequence of five lemmas.

Lemma 5.1. The set U contains an integer n > 0.

Proof. We prove this by contrapositive. If U consisted of only the integer 0,
then Proposition 2.5 implies that any automorphism of M would be uniquely
determined by the values

λ0
0 = 0, λ1

0 ∈ U, µ0
0 ∈ R∗, µ1

0 = 0.

Since the only variable parameters λ1
0 and µ0

0 depend on first-order derivatives of
H, it follows that Aut(M, 0) is determined by 1-jets. ¤

Recall the definition of the functions υn
j given in Definition 2.6.

Lemma 5.2. At least one of the following is true:

(1) One of the functions υn
1 , υn

2 is a multiple of the other.
(2) d = 1 and υn

3 vanishes identically.
(3) d = 1 and υn

4 vanishes identically.

Proof. Let us first consider the case d = 1. Observe that the alternate, linear
independence characterization of U given in Definition 2.6 implies that there
exists a linear combination

A1 υn
1 (zχ) + A2 υn

2 (zχ) + A3 z υn
3 (zχ) + A4 χυn

4 (zχ) ≡ 0 (27)

with at least one of the coefficients Aj being nonzero.

If υn
4 ≡ 0, then condition (3) of the lemma holds and we’re done; otherwise,

there exists some derivative of υn
4 that does not vanish at 0, say the j-th derivative.

If we differentiate (27) j times in z, j + 1 times in χ, and set (z, χ) = (0, 0), we
obtain

A4(j + 1)!
(

dj

dtj
(
υn

4 (t)
)∣∣∣∣

t=0

)
= 0,

which forces A4 = 0.

Similar reasoning shows that either υn
3 ≡ 0 (and thus condition (2) holds) or

A3 = 0. In this latter case, we have the equation

A1 υn
1 (zχ) + A2 υn

2 (zχ) ≡ 0,
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with at least one of the Aj nonzero. It follows trivially that one of these functions
is a multiple of the other, proving condition (1) holds.

In the event that d > 1, Definition 2.6 implies that n ∈ U is equivalent to the
two functions υn

1 (zχ) and υn
2 (zχ) being linearly independent. But this just there

exists a dependence relation among υn
1 and υn

2 , and this is equivalent to condition
(1). ¤

Lemma 5.3. If condition (1) of Lemma 5.2 holds, then M = Ma,b,c,d with

a :=
n

2
, b := − θ2d

n θd
2 , c := n θd,

where the numbers θk are defined by the expansion of θ given in (26).

Proof. By Proposition 2.1, M is equivalently expressed with S, where S = q ◦ θ

and q : R→ C is defined by

q(t) :=
1 + i t

1− i t
.

Comparing this with the defining equation (16) for Ma,b,c,d, to prove this lemma
it suffices to prove that

Sn
2

,b

(
n θd td

) ≡ q
(
θ(t)

)

as power series in t. We do this by showing both these analytic functions solve
the same complex initial value problem, namely

t S′(t) =
2dS(t)

(
S(t)n − 1

)

n
(
(1− i b)S(t)n + (1 + i b)

) (28)

subject to the initial conditions

S(0) = 1,

S′(0) = S′′(0) = · · · = S(p−1)(0) = 0,

S(d)(0) = i 2d! θd.

Note that the initial conditions may be equivalently expressed as

S(t) = 1 + i 2 θd td + O(td+1). (29)

Of course, we must first establish that this initial value problem admits a unique
solution. To do so, suppose that S is a solution to the differential equation (28)
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satisfying the given initial conditions (29). Expand S as a power series

S(t) = 1 +
∞∑

k=d

sk tk,

where the sk are complex numbers and sd = i 2 θd. From this, it follows that

S(t)n = 1 +
∞∑

k=d

(
nsk +Q1

n,k(sd, . . . , sk−1)
)
tk,

2S(t)
(1− i b)S(t)n + (1 + i b)

= 1 +
∞∑

k=d

Q2
n,k(sd, . . . , sk)tk,

where each Qj
n,k is a complex polynomial that does not depend on S. Using these

to expand the left- and right-hand sides of the differential equation (28) as power
series, we obtain

∞∑

k=d

ksk tk =
d

n

( ∞∑

k=d

(
nsk +Q1

n,k(sd, . . . , sk−1)
)
tk

)

×
(

1 +
∞∑

k=d

Q2
n,k(sd, . . . , sk)tk

)
.

If we fix a power ` > d and compare the coefficients of the t` terms of both sides,
we obtain

` s` = d s` +
d

n
Q1

n,`(sd, . . . , s`−1)

+
d

n

`−1∑

k=d

(
nsk +Q1

n,k(sd, . . . , sk−1)
)Q2

n,`−k(sd, . . . , s`−k),

from which it follows that

s` =
d

n(`− d)
Rn,`(sd, · · · , s`−1),

where Rn,` is another polynomial that does not depend on S. In particular,
this shows inductively that if S is a solution to the initial value problem (28),
then each coefficient sk is parameterized (and hence uniquely determined) by the
initial condition sd. That is, solutions to this initial value problem are unique.

It is now straightforward to show that the function S(t) = Sn
2

,b(n θd td) solves
it. First, observe that power series expansion of Sa,b given in equation (12) shows
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that Sn
2

,b(z) = 1 + (i 2/n)z + O(z2), whence

S(t) = Sn
2

,b

(
n θd td

)
= 1 +

i 2
n

(
n θd td

)
+ O(t2d) = 1 + i 2 θd td + O(t2d),

which implies (29). Moreover, the defining property of Sn/2,b given in Lemma 3.1
implies that

S(t)n = 1 + i 2n θd td S(t)
n
2
(1+i b). (30)

Differentiating this equation with respect to t yields

nS(t)n−1S′(t)

= i 2dn θd td−1S(t)n(1+i b)/2 + i n2(1 + i b) θd td S(t)
n
2
(1+i b)−1S′(t).

Multiplying both sides of this equation by t S(t) and solving for t S′(t) yields

t S′(t) =
dS(t)

(
i 2n θd td Sn(1+i b)/2

)

n
(
S(t)n − i n θd(1 + i b)td Sn(1+i b)/2

)

Substituting in equation (30), this equation may be rewritten

t S′(t) =
dS(t)

(
S(t)n − 1

)

n

(
S(t)n − (1 + i )

S(t)n − 1
2

)

=
2dS(t)

(
S(t)n − 1

)

n
(
2S(t)n − (1 + i b)(S(t)n − 1)

)

=
2dS(t)

(
S(t)n − 1

)

n
(
(1− i b)S(t)n + (1 + i b)

)

proving that S(t) = Sn
2

,b

(
1
2n θd td

)
satisfies (28).

Finally, we must show that

S(t) = q
(
θ(t)

)
=

1 + i θ(t)
1− i θ(t)

also solves the same initial value problem. A straightforward power series calcu-
lation shows that

S(t) = 1 + i 2 θd td + O(td+1),

so the initial conditions (29) are met. Expanding further, we also find

S(t)n = 1 + i 2n

( 2d−1∑

j=d

θj tj
)

+ i 2n(θ2d + i n θd
2)t2d + O(t2d+1).
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Substituting this into the formulas for the υn
j given in Definition 2.6, we find

υn
1 (t) = i 2dn θd

2 t2d + O(t2d+1)

υn
2 (t) = −

2d−1∑

j=d+1

i 2(j − d)n
d

θj tj − 2n(n θd
2 + i θ2d) t2d + O(t2d+1)

Note that this implies that neither υn
1 nor υn

2 vanish identically, so the assumption
of the lemma asserts that

υn
2 (t) ≡ Aυn

1 (t) (31)

for some nonzero A. Moreover, examining the t2d terms of both power series, it
follows that

A =
−2n(n θd

2 + i θ2d)
i 2dn θd

2 =
i n θd

2 − θ2d

d θd
2 =

n

d
(i + b),

where the last equality follows from the definition of b in Lemma 5.3. Substitut-
ing this value of A together with the explicit formulas for the υn

j back into the
dependence relation (31) yields

n

d
(i + b) t θ′(t)

((
1 + i θ(t)
1− i θ(t)

)n

− 1
)

=
(
1 + θ(t)2

)((
1 + i θ(t)
1− i θ(t)

)n

− 1
)
− i 2n

d
t θ′(t).

Since S and θ are related by the two equations (5) in Proposition 2.1, we can
convert this into an equation involving only S as

n

d
(i + b) t

( −i 2 S′(t)
(1 + S(t))2

)(
S(t)n − 1

)

=
(

1− (1− S(t))2

(1 + S(t))2

)(
S(t)n − 1

)− i 2n

d
t

( −i S′(t)
(1 + S(t))2

)

Multiplying both sides of this equation by (1+S(t))2 and solving for S′(t) yields

S′(t) =
d
(
(1 + S(t))2 − (1− S(t))2

)(
S(t)n − 1

)

−i 2n t
(
i 2 + (i + b)

(
S(t)n − 1

))

=
4dS(t)

(
S(t)n − 1

)

2n t
(
(1− i b)S(t)n + (1 + i b)

)

which is equivalent to the differential equation (28), completing the proof of the
lemma.

¤
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Lemma 5.4. If condition (2) of Lemma 5.2 holds, then M = Mn,0,c,1 with
c = 2n θ1.

Proof. Recall that condition (2) states that both d = 1 and υn
3 ≡ 0. The proof

is similar to that of Lemma 5.3, with a few simplifications. As in the previous
lemma, it suffices to show that q

(
θ(t)

) ≡ Sn,0

(
2n θ1 t

)
, which we do by showing

both solve the complex initial value problem

S′(t) =
i 2 θ1 S(t)n+1

1 + i 2n θ1 t S(t)n
, S(0) = 1, (32)

(That this problem has a unique power series solution, is a straightforward cal-
culation left to the reader.)

On one hand, it is easy to show that the function S(t) = Sn,0

(
2n θ1 t

)
solves

equation (32). Lemma 3.1 implies that Sn,0(0) = 1 and

S(t)2n = 1 + i 4n θ1 t S(t)n. (33)

Differentiating this equation with respect to t yields

2nS(t)2n−1S′(t) = i 4n θ1 S(t)n + i 4n2 θ1 t S(t)n−1S′(t).

Multiplying both sides of this equation by 1
2nS(t) and solving for S′(t) yields

S′(t) =
i 2 θ1 S(t)n+1

S(t)2n − i 2n θ1 t S(t)n
(34)

Using equation (33), this equation may be rewritten

S′(t) =
i 2 θ1 S(t)n+1

(
1 + i 4n θ1 t S(t)n

)− i 2n θ1 t S(t)n
=

i 2 θ1 S(t)n+1

1 + i 2n θ1 t S(t)n
,

proving that S(t) = Sn,0

(
2nc1 t

)
satisfies the desired initial value problem (32).

On the other hand, to show that S(t) = q
(
θ(t)

)
is also a solution, we use the

assumption that υn
3 ≡ 0. Using the formula for υn

3 given in Definition 2.6, we find

0 =
d2

dt2
(
υn

3 (t)
)∣∣∣∣

t=0

= −2 θ1
3 − 4n2 θ1

3 − i 4n θ1 θ2 − 8 θ2
2

θ1
+ 6 θ3,

which implies

θ3 =
1

3 θ1

(
(1 + 2n2) θ1

4 + 4 θ2
2 − i 2n θ1

2 θ2

)
.
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Since θ(t) is real-valued for real t, it follows that θ3 must be real, whence θ2 = 0
necessarily. Making this substitution into υn

3 gives

0 = υn
3 (t) = θ′(t)−

(
1 + i θ(t)
1− iθ(t)

)n(
θ1(1 + θ(t)2)− i 2n θ1 t θ′(t)

)
.

As before, we use equations (5) to convert this into an equation involving S alone
to obtain

−i 2 S′(t)(
1 + S(t)

)2 = S(t)n

(
θ1

(
1− (1 + S(t))2

(1− S(t))2

)
− i 2n θ1 t

( −i 2 S′(t)(
1 + S(t)

)2

))
.

Multiplying both sides of this equation by (1+S(t))2 and solving for S′(t) yields

S′(t) =
θ1

(
(1 + S(t))2 − (1− S(t))2

)
S(t)n

−i 2
(
1 + i 2n θ1 t S(t)n

)

=
4 θ1 S(t)n+1

−i 2
(
1 + i 2n θ1 t S(t)n

) ,

which is equivalent to the differential equation (32), as desired. ¤

Lemma 5.5. If condition (3) of Lemma 5.2 holds, then M = Mn,0,c,1 with
c = 2n θ1.

Proof. The proof is remarkably similar to that of Lemma 5.4, so we simply give
a sketch of it. The lemma is proved if we show both q

(
θ(t)

)
and Sn,0

(
2n θ1 t

)
are

solutions to the complex initial value problem

S′(t) =
−2 θ1 S(t)

2n θ1 t + i S(t)n
, S(0) = 1. (35)

We have already established the function S(t) = Sn,0

(
2n θ1 t

)
satisfies the

differential equation (34), whence

S′(t) =
i S(t)n

(
2 θ1 S(t)

)

i S(t)n
(− i S(t)2n + 2n θ1 t

) =
−2 θ1 S(t)

2n θ1 t + i S(t)n
,

proving that S(t) = Sn,0

(
n θ1 t

)
satisfies the differential equation (35).

For the function S(t) = q
(
θ(t)

)
, the assumption that υn

4 ≡ 0 implies

0 =
d2

dt2
(
υn

4 (t)
)∣∣∣∣

t=0

= 2 θ1
2 + 4n2 θ1

2 − i 4n θ2 +
8 θ2

2

θ1
2 − 6 θ3

θ1
.
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The reality of θ once again forces θ2 = 0, which implies

0 ≡ υn
4 (t) = 1 + θ(t)2 +

θ′(t)
θ1

(
i 2n θ1 t− q

(
θ(t)

)n)
.

Converting this into S and solving for S′(t) yields

S′(t) =
θ1

(
(1 + S(t))2 − (1− S(t))2

)

−i 2
(
S(t)n − i 2n θ1 t

) =
4 θ1 S(t)

−2
(
2n θ1 t + i S(t)n

) ,

which is equivalent to (35). ¤

This completes the proof of Theorem 1.3.

Note that an unexpected consequence of Lemmas 5.4 and 5.5 is that when
d = 1, υn

3 ≡ 0 if and only if υn
4 ≡ 0, since both of these conditions is equivalent

to M being of the form Mn,0,c,1 for the same value of c. Thus, the last two
consequences of Lemma 5.2 are in fact equivalent. Based on Theorem 4.1, this
corresponds to the stability group involving both parameters σ and ν. Moreover,
if d = 1 and υn

4 ≡ υn
3 ≡ 0 for some n, then by Lemma 5.3 it follows that

υ2n
2 = Aυ2n

1 , so either of the last two consequences implies the first (though for
a different value of n).

Hence, if the stability group of a hypersurface M ∈ G is not determined by 1-
jets, then it is always true that υn

2 = Aυn
1 for some value of n, and this condition

corresponds to the stability group of M involving the parameter σ.
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