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On The Algebraic L-theory of A-sets

Andrew Ranicki and Michael Weiss

Abstract: The algebraic L-groups L.(A, X) are defined for an additive
category A with chain duality and a A-set X, and identified with the gener-
alized homology groups H,(X;Le(A)) of X with coefficients in the algebraic
L-spectrum L4(A). Previously such groups had only been defined for sim-
plicial complexes X.
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INTRODUCTION

A ‘A-set’ X in the sense of Rourke and Sanderson [9] is a simplicial set without
degeneracies. A simplicial complex is a A-set; conversely, the second barycentric
(aka derived) subdivision of a A-set is a simplicial complex, and the homotopy
theory of A-sets is the same as the homotopy theory of simplicial complexes.
However, A-sets are sometimes more convenient than simplicial complexes: they
are generally smaller, and the quotient of a A-set by a group action is again a
A-set. In this paper we extend the algebraic L-theory of simplicial complexes of
Ranicki [6] to A-sets.
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In the original formulation of Wall [10] the surgery obstruction theory of high-
dimensional manifolds involved the algebraic L-groups L.(R) of a ring with in-
volution R, which are the Witt groups of quadratic forms over R and their au-
tomorphisms. The subsequent development of the theory in [6] viewed L.(R)
as the cobordism groups of R-module chain complexes with quadratic Poincaré
duality, constructed a spectrum Lo (R) with homotopy groups L.(R), and also in-
troduced the algebraic L-groups L.(R, X) of a simplicial complex X. An element
of L,(R,X) is a cobordism class of directed systems over X of R-module chain
complexes with an n-dimensional quadratic Verdier-type duality. The groups
L.(R,X) were identified with the generalized homology groups H.(X;Le(R)),
and the algebraic L-theory assembly map A : L,(R,X) — L.(R[m(X)]) was

defined and extended to the algebraic surgery exact sequence

e L(R, X) <A Lo(RIm1 (X)]) —> Sn(R, X) —> Ly 1 (R, X) — -+

with S, (R, X) the cobordism groups of the R[mri(X)]-contractible directed sys-
tems. In particular, the 1-connective version gave an algebraic interpretation of
the exact sequence of the topological version of the Browder-Novikov-Sullivan-
Wall surgery theory: if the polyhedron || X|| of a finite simplicial complex X has
the homotopy type of a closed n-dimensional topological manifold then S,,4+1(Z, X)
is the structure set of closed n-dimensional topological manifolds M with a ho-
motopy equivalence M =~ || X]|.

The Verdier-type duality of [6] used the dual cells in the barycentric subdivi-
sion of a simplicial complex X to define the dual of a directed system over X of
R-modules to be a directed system over X of R-module chain complexes. The
A-set analogues of dual cells introduced by us in Ranicki and Weiss [8] are used
here to define a Verdier-type duality for directed systems of R-modules over a
A-set X, which is used to define the generalized homology groups L.(R,X) =
H,(X;Le(R)) and an algebraic surgery exact sequence as in the simplicial com-

plex case.

The algebraic L-theory of A-sets is used in Macko and Weiss [5], and its mul-
tiplicative properties are investigated in Laures and McClure [3].
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1. FUNCTOR CATEGORIES

In this section, X denotes a category with the following property. For every
object x, the set of morphisms to  (with unspecified source) is finite; moreover,
given morphisms f : y — x and g : z — z in X, there exists at most one morphism
h :y — z such that gh = f.

Let A be an additive category with zero object 0 € Ob(A).
Definition 1.1. (i) A function
M : Ob(X)— Ob(A); x— M(x)

is finite if M (x) = 0 for all but a finite number of objects = in A.

The direct sum > M (x) will be written as >, M(x).
2€0b(X) ceX
(ii) A functor F' : X — A is finite if the function F' : Ob(X) — Ob(A) is finite. O

Definition 1.2. (i) The contravariant functor category A.[X] is the additive
category of finite contravariant functors F' : X — A. The morphisms in A,[X]
are the natural transformations.

(ii) The covariant functor category A*[X] is the additive category of covariant
functors F': X — A. The morphisms in A*[X] are the natural transformations.
We write A% [X] for the full subcategory whose objects are the finite functors in
A*[X]. O

Remark 1.3. We use the terminology A*[X] for the covariant functor category
because it behaves contravariantly in the variable X. Indeed a functor g : X — Y
induces a functor A*[Y] — A*[X] by composition with g. Our reasons for using
the terminology A.[X] for the contravariant functor category are similar, but
more complicated. Below we introduce a variation denoted A, (X) which behaves
covariantly in X. Il

For the remainder of this section we shall only consider the contravariant func-
tor category A.[X], but every result also has a version for the covariant functor
category A*[X] (or A}[X] in some cases).

Definition 1.4. (i) A chain complex in an additive category A

c ... Crt1 d Chn d Cn-1 . (d® = 0)
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is finite if C,, = 0 for all but a finite number of n € Z.
(ii) Let B(A) be the additive category of finite chain complexes in A and chain
maps. ([

A finite chain complex C' in A,[X] is just an object in B(A).[X], and likewise
for chain maps, so that
B(AL[X]) = B(A).[X].

Definition 1.5. A chain map f: C'— D of chain complexes in A,[X] is a weak
equivalence if each

flx] : Clx] — Dlz| (z € X)

is a chain equivalence in A. O

A morphism f : C' — D in B(A.[X]) which is a chain equivalence is also a weak
equivalence, but in general a weak equivalence need not be a chain equivalence —
see 1.11 for a more detailed discussion.

Definition 1.6. Let x be an object in X.
(i) The under category x/ X is the category with objects the morphisms f:x — y
in X, and morphisms g : f — f’ the morphisms g : y — ¢’ in X such that gf = f’

T
v N
g
The open star of x is the set of objects in z/X
st(x) = Ob(z/X) = {z — y}.

Y

yl

(ii) The over category X/z is the category with morphisms f:y — z in X as its
objects, and so that morphisms ¢ : f — f’ are the morphisms g : y — ¢/ in X

such that f = f'g
y—g> /
Yy
N
x

The closure of x is the set of objects in X/x

cl(z) = Ob(X/z) = {y —z}.
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Because of our standing assumptions on X, the over category X/zx is isomorphic
to a finite poset. O

In the applications of the contravariant functor category A.[X] to topology we
shall be particularly concerned with the subcategory of functors satisfying the

following property.

Definition 1.7. A contravariant functor
F: X — A; z— Fla]

in A,[X] is induced if there exists a finite function  — F(z) € Ob(A) and a

natural isomorphism

Fla)= @ F(y) .

r—Yy
The sum ranges over st(x), and since the function x +— F'(x) is finite, F'[z] is only
a sum of a finite number of non-zero objects in A.

Similarly a covariant functor
F: X — A; x— Flx]

in A*[X] is induced if there exists a function z — F'(x) € Ob(A) and a natural

isomorphism

Fla) =@ Fy) .

y—z

The full subcategories of the functor categories A, [X], respectively A*[X], with
objects the induced functors F' : X — A are equivalent, as we shall prove below,

to the following categories.

Definition 1.8. Let A,(X) be the additive category whose objects are functions
x +— F(z) such that F'(x) = 0 for all but a finite number of objects z. A morphism
fi+E — Fin A,(X) is a collection of morphisms f(¢) : E(z) — F(y) in A, one
for each morphism ¢ : x — y in X. The composite of the morphisms

f={f@)}: M—>N,g={90)} : N=>P
is the morphism

gf = {9f)} - M —P
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with
gf(:z—2) = Y. 9O)f(9) + M(z) — P(2) .

¢:x—y,0:y—z,0p=1)

We can view an object F' of A,(X) as an object in A,[X] by writing
=P Fw)
r—Y

A morphism 0 : w — x in X induces a morphism F[x] — F[w] in A which maps
the summand F'(y) corresponding to some ¢ :  — y identically to the summand
F(y) corresponding to the composition ¢f : w — y.
Let A*(X) be the additive category whose objects are functions x — F(z). A
morphism f: E — F in A,(X) is a collection of morphisms f(¢) : E(y) — F(x)
in A, one for each morphism ¢ : + — y in X. Again we can view an object F' of
A*(X) as an object in A*[X] by writing

2] =P Fy)

y—a
Proposition 1.9. (i) For any object M in A.(X) and any object N in A,[X]
Homy, (x)(M,N) = > Homy(M(x), N[z]) .
rzeX
(ii) For any objects L, M in A.(X)
Homy, (x)(L, M) Z Homy (L(z), M (y)) .
T—Y

(iii) The additive category A.(X) is equivalent to the full subcategory of the con-
travariant functor category A.[X] with objects the induced functors.

Proof. (i) A morphism f : M — N in A,[X] is determined by the composite
morphisms in A

inclusion flz]

M (z) M|z Niz] (x € X)

(ii) By (i), a morphism f : L — M in A,[X] is determined by the composite

morphisms in A

inclusion flz]

L(z) —— Lfz] ———= M[z] = >} M(y) (x€ X).
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(iii) Every object M in A,(X) determines an induced contravariant functor
X —A;z— Mz] = ZM(y) ,
r—Y

i.e. an object in A,[X], and every induced functor is naturally equivalent to one
of this type. O

Proposition 1.10. The following conditions on a chain map f : C — D in
AL (X) are equivalent:

(a) f is a chain equivalence,

(b) each of the component chain maps in A
f(lz) = C(x) = D(z) (x € X)

s a chain equivalence,
(c) f:C — D is a weak equivalence in A.[X], that is, Clz] — Dlz] is a
chain equivalence for all x.

Proof. The proof given in Proposition 2.7 of Ranicki and Weiss [8] in the case
when A is the additive category of R-modules (for some ring R) works for an
arbitrary additive category. O

Remark 1.11. Every chain equivalence of chain complexes in A,[X] is a weak
equivalence. By 1.10 every weak equivalence of degreewise induced finite chain
complexes in A, [X] is a chain equivalence. See Ranicki and Weiss [8, 1.13] for an
explicit example of a weak equivalence of finite chain complexes in A,[X] which
is not a chain equivalence. It is proved in [8, 2.9] that every finite chain complex
C in A,[X] is weakly equivalent to one in A,(X). O

2. A-SETS

Let A be the category with objects the sets
] = {0,1,....n} (n>0)

and morphisms [m] — [n] order-preserving injections. Every such morphism has
a unique factorization as the composite of the order-preserving injections
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i
&« h—1—k;i—3 1T
j+1 ifj>i.

Definition 2.1. (Rourke and Sanderson [9]) A A-set is a contravariant functor
X : A — {sets and functions} ; [n] — X™ .

O

Equivalently, a A-set X can be regarded as a sequence X (%) (n > 0) of sets,
together with face maps

9 : XM — XD (0<i<n)
such that
8i8j = aj,lai for ¢ < 7 -

The elements z € X are the n-simplices of X.

Definition 2.2. (Rourke and Sanderson [9])
(i) The realization of a A-set X is the CW complex

o0

X = JT&X™ x A/~

n=0
with
A" = {(s0,81,...,80) ER"|0< 5; < 1, isi:1}7
O+ A"l s A" (80,81, 80-1) — (szoz,(jsl,...,si_l,o,siﬂ,_”’sn) ,
(z,0;8) ~ (Qiz,s) (x € XMW, s € |A"]) .

(ii) There is one n-cell z(A™) C | X || for each n-simplex z € X, with characteristic

map
x : A" = | X5 (0,815, 8n) — (2,(80,815---,8n)) -

The boundary x(OA™) C || X|| is the image of
OA" = |J 0;|A" !
=0

n
= {(s0,51,---,8n) ER"|0< s, <1, Y s5,=1, s; =0 for some 7}
i=0
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and the interior z(A™) C || X]|| is the image of

An= AMIA"

n
= {(s0,81,.--,8n) ER"|0<s; <1, Y. s5=1} CA™.
i=0

The characteristic map x : A™ — || X|| is injective on A™ C A™. O
Example 2.3. Let A™ be the A-set with
(A™)™) = {morphisms [m] — [n] in A} (0 < m < n) .

The realization ||A™|| is the geometric n-simplex A™ (as in the above definition).
It should be clear from the context whether A" refers to the A-set or the geometric

realization. O

We regard a A-set X as a category, whose objects are the simplices, writing
the dimension of an object z € X as |z|, i.e. |z| = m for € X(™). A morphism
f:x — y from an m-simplex z to an n-simplex y is a morphism f : [m] — [n] in
A such that

f) = zexm

In particular, for any € X with m > 1 there are defined m + 1 distinct

morphisms in X

0 + Oix— 1z (0<i<m).

Example 2.4. (i) Let X be a A-set. An object M of A,(X) is just an object M of
A with a direct sum decomposition M = @, x M(z). A morphism f: M — N
in A,(X) is a collection of morphisms fg, » : M(x) — N(y), one such for every
pair of simplices x,y and face operator A such that \*y = z.

We like to think of a morphism f : M — N in A,(X) as a morphism in A with
additional structure. Source and target of that morphism in A are M(X) =
P, M(xz) and N(X) = @, N(x), respectively. For simplices z and y, the zy-
component of the morphism M (X) — N(X) determined by f is

Z fxy,/\
A

where the sum runs over all A such that A\*y = .
(ii) If X is a simplicial complex then a morphism in A,(X) is just a morphism
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f: M — N in A between objects with finite direct sum decompositions
M= S M@, N = Y N
zeX yeX

such that the components f(z,y) : M(z) — N(y) are 0 unless = < y.

(iii) The description of A, (X) in (ii) also applies in the case of a A-set X where,
for any two simplices x and ¥, there is at most one morphism from z to y. In
particular it applies when X = Y is the barycentric subdivision of another A-set
Y, to be defined in the next section. O

Definition 2.5. Let X be a A-set, and let R be a ring.
(i) The R-coefficient simplicial chain complex of X is the free (left) R-module
chain complex A(X; R) with
d = (=)0 : AX;R), = RIX™] - A(X;R),1 = RIX"V],
i=0
The R-coefficient homology of X is the homology of A(X; R)

H.(X;R) = H.(AX;R)) = H.(|X];R),

noting that A(X; R) is the R-coefficient cellular chain complex of || X||.
(ii) Suppose that R is equipped with an involution

R—R;r—r

(e.g. the identity for a commutative ring), allowing the definition of the dual of
an R-module M to be the R-module

M* = Modr(M,R), Rx M* — M*; (r,f) — (x — f(x)F) .
The R-coefficient simplicial cochain complex of X
A(X;R)* = Homp(A(X;R), R)

is the R-module cochain complex with
n+1 ‘
d* =Y (-)0f « AXGR)" = RX™]" —» AX;R)™ = RXUI]r
i=0
The R-coefficient cohomology of X is the cohomology of A(X; R)*
H*(X;R) = H'(A(X;R)") = H'(|X|;R),

noting that A(X; R)* is the R-coefficient cellular cochain complex of || X|. O
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A simplicial complex X is ordered if the vertices in any simplex are ordered,
with faces having compatible orderings. From now on, in dealing with simplicial

complexes we shall always assume an ordering.

Example 2.6. A simplicial complex X can be regarded as a A-set, with X
the set of n-simplices and

0; x) _, x(n-1) i (Vo1 .+ Un) = (VUL . V1V - V)

There is one morphism x — y in X for each face inclusion z < y. The realization
| X of X regarded as a A-set is the polyhedron of the simplicial complex X,
with the characteristic maps = : Al*l — | X|| (z € X) injections. The simplicial
chain complex A(X; R) is just the usual R-coefficient simplicial chain complex of
X, and A(X; R)* is the R-coefficient simplicial cochain complex of X. O

Example 2.7. Let X be a A-set, and let z € X be a simplex.
(i) In general, the canonical map

Ob(z/X) = st(x) = Ob(X); (x —y) —y
is not injective. The simplices y € Ob(X)\im(st(x)) are the objects of a sub-
A-set X\im(st(z)) C X. If X is a simplicial complex then st(z) — Ob(X) is
injective, and X\st(z) C X is the subcomplex with simplices y € X such that

x L.
(ii) The over category X/z = {y — x} (1.6) is a A-set with

(X/2)™ = {y—>z|lye XM} (n>0).
It is isomorphic as a A-set to Al*l. The forgetful functor
Xjz—X; (y—a)—y

is a A-map, inducing the characteristic map Al*l — || X||. If X is a simplicial
complex then X/x — X is injective, and so is the induced characteristic map.
O

Example 2.8. (i) If a group G acts on a A-set X the quotient X/G is again a
A-set, with realization || X/G|| = || X||/G. However, if X is a simplicial complex
and G acts on X, then X/G is not in general a simplicial complex. See (ii) for
an example.

(ii) Suppose X = R, the A-set with



434 Andrew Ranicki and Michael Weiss

and let the infinite cyclic group G = Z = {t} act on X by tn = n + 1. The
quotient A-set S = R/Z is the circle, with one 0-simplex z¢ and one 1-simplex

)
(SHO = {zo}, (SHY = {a1}, do(z1) = (1) = w0 .
O

Example 2.9. For any space M use the standard n-simplices A™ and face in-
clusions 9; : A"~ < A" to define the singular A-set X = M*? by

XM = pMA" g X 5 X0 209, .

We shall say that a singular simplex = : A" — X is a face of a singular simplex

y: A" - Xifx=yo00;,0---0 for a given face inclusion

tm—n

. n m
8ilo...o i - A c_>A ,

writing © < y (and x < y if  # y). The simplicial chain complex A(X;R) =
S(M; R) is just the usual R-coefficient singular chain complex of M, so that

H (|| X[;R) = H«(X;R) = H.(M;R) .

Also A(X; R)* = S(M; R)* is the R-coefficient singular cochain complex of M,
and

H*(|X[; R) = H*(X;R) = H"(M;R) .

3. THE BARYCENTRIC SUBDIVISION

The A-set analogue of the barycentric subdivision X’ of a simplicial complex
X and the dual cells D(z, X) C X’ (x € X) makes use of the following standard

categorical construction.

Definition 3.1. (i) The nerve of a category C is the simplicial set with one

n-simplex for each string o — 1 — -+ — x,, of morphisms in C, with
Oi(rg = w1 — - —=wy) = (To— X1 =+ = Tio] = Tip] — - — Ty) .

(ii) An n-simplex xg — 1 — -+ — @, in the nerve is non-degenerate if none of
the morphisms x; — x;41 is the identity. O
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If the category C has the property that the composite of non-identity mor-
phisms is a non-identity, then the non-degenerate simplices in the nerve define a
A-set, which we shall also call the nerve and denote by C.

Definition 3.2. (Rourke and Sanderson [9, §4], Ranicki and Weiss [8, 1.6, 1.7])
Let X be a A-set.

(i) The barycentric subdivision of X is the A-set X’ defined by the nerve of the
category X.

(ii) The dual 2 of a simplex x € X is the nerve of the under category z/X (1.6).
An n-simplex in the A-set 2 is thus a sequence of morphisms in X

r— Xy —&T1 — - — Tp
such that x9 — 1 — -+ — x,, is non-degenerate. In particular
e p
(arL)(O) = {z > xo} = st(z).

(iii) The boundary of the dual Ox* is the sub-A-set of 2 consisting of the n-
simplices ¢ — 9 — 1 — - -+ — o, such that £ — z( is not the identity. O

The under category z/X has an initial object, so that the nerve x* is con-
tractible. The rule z — z=

a A-map y- — zt.

is contravariant, i.e. every morphism z — y induces

Lemma 3.3. The realizations || X||, || X'|| of a A-set X and its barycentric sub-
division X' are homeomorphic, via a homeomorphism || X'|| — || X|| sending the
vertex © € X = (X)) to the barycentre

1 1 1 °
T = ey cxz(A") C || X] .
T = ol g ) €2(AN C X

Proof. Tt suffices to consider the special case X = A", so that X and X’ are
simplicial complexes, and to define a homeomorphism || X'|| — || X|| by z — T
and extending linearly. (|

Definition 3.4. Let X be a A-set, and let x € X be a simplex.
(i) The open star space

Ist@)) = |J Al cx) = x|
yext\ozt
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is the subspace of the realization || X’|| of the barycentric subdivision X’ defined
by the union of the interiors of the simplices y € z\dzt, i.e.

y = (x—>x0— > 1) €X'

with x — x¢o = x the identity.
(ii) The homology of the open star is

Hi(st(z)) = Hi(A(st(z)))
with A(st(x)) the chain complex defined by

A(st(z)) = A(xL,ﬁxL)*_m.

Lemma 3.5. For any simplex x € X of a A-set X the characteristic A-map
i at =X (r—oag— o) = (g — e — Tp)
is injective on x-\Oxt. The images i(0xL),i(x1) C X' are sub-A-sets such that
i) NI @x ) = lst(2)] < 1X7]
and there are homology isomorphisms

H(st(z)) = H,_jp(at, dxt)

= H, g (i(zh),i(02T))
H(IX 1IX N\ st () [])
H.(IX], X1\ {Z}) -

1

I

Proof. The inclusion (|| X|, | X|\llst(z)|]) — (X, |X|\{Z}) is a deformation
retraction, and the open star subspace ||st(z)|| C || X || has an open regular neigh-
bourhood

st ()]l x A C |I1X]

with one-point compactification

(Ist(@)ll x Al = Jliz )1/ [li(@2 )| A Al oAk,
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so that

(XL IXINMED & L (XL 1IN st))
H(|[i(z )11/ 11i (02| A Al foAl)
Ho (i), i(9a b)) .

I

g

Example 3.6. Let X be a simplicial complex. The barycentric subdivision of
X is the ordered simplicial complex X’ with one n-simplex for each sequence
of proper face inclusions zg < z; < -+ < x,. By definition, the dual cell of a
simplex z € X is the subcomplex D(xz, X) C X’ consisting of all the simplices
o < xp < - < xp with < xg. The boundary of the dual cell is the subcomplex
OD(xz,X) C D(z,X) consisting of all the simplices xyg < 21 < -+ < x,, with
x < xo. The A-sets associated to X, X', D(z,X),0D(x,X) are just the A-
sets X, X', 21,0zt of 3.2, with the characteristic map i : 2+ = D(z, X) — X'
injective. Moreover, X \st(z) C X is a subcomplex such that

[X\st(2)[| = [ X[\[Ist ()]
and
A(st(z)) = A(D(z,X),0D(7, X))s—je = A(X, X\st(x)) .
O
Example 3.7. Let X be the A-set (2.8) with one 0-simplex xy and one 1-simplex
1, with non-identity morphisms

Zo 2T

and realization || X| = S'. The barycentric subdivision X’ is the A-set with 2

0-simplices and 2 1-simplices:

X0 = qzgmy}, X' = {@o—Za1}.

_

The duals and their boundaries are given by

xé = {®—=x0, o _Z 7 JU{T0o—>T0o _Z 11},
drg = {20 —Za1} = {0,1},

af = {71 —=x1}, 021 = 0.
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The characteristic map i : xOL — X' is surjective but not injective, and

Z ifn=1

(ot 00) = Hile) iCoat)) = | 0"
Iorn .
U

Example 3.8. Let X be the contractible A-set with one 0-simplex xg, one 1-

simplex x; and one 2-simplex x2, with non-identity morphisms

o T 11

Zo
/ xgx
Tl

rg —— > X

e —
Ty —= T2 , To —> T2
— e

The realization || X || is the dunce hat (Zeeman [14]). The barycentric subdivision
X' is the A-set with three O-simplices, eight 1-simplices and six 2-simplices:

X,(O) = {:L‘Oamla'l?}?

x'W = {zg ==z u{z —= 22 }U{T0 —= 22 }
X/(2) = {xoﬂazl ‘>a:2}
—_—
Zo

I x1

SN
N

] T

Zo x1 Zo
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The duals and their boundaries are given by

1 —_— -
Ty :{IEO‘>.’E07$0 $1,1}0‘>{L‘2}
UW{2o—>20 _Z 21, To—>T0—>2T2, To_2 T1—>T2}
e
U{ 2o — 20 _Z 21 —= T2 },

e R
Org = {20 —Z 71 , x0 —=22 }U{T0o —Z 21 —>T2 }, ||0zg| ~ StvSt,
g;f— = {.%'1‘>.%'1 , $1‘>1‘2}U{$1‘>1‘1‘>1‘2},

—_— —_—

—_—

Oz = { o1 —=22 }, ||9z7]| =~ {0,1,2},
zy = {®2—=x2}, 9y = 0.

The characteristic map ¢ : iL‘(J)‘ — X' is surjective but not injective, with
liteg) = {=}, [li(daq)|| ~ S'v s
and
Halat,00b) = Hali(ed),itond)) = 4 - 0F Hn=2
0 ifn#£2.

The characteristic map 7 : xf — X' is neither surjective nor injective, with

li(e)ll = STV St [i(@x1)] = {x}

and
7Z®7Z ifn=1
Ho(at,00t) = Ho(i(ad),i(oat)) = {200 17
0 ifn#1.
]

Definition 3.9. Given a ring R let Mod(R) be the additive category of left
R-modules. For R = Z write Mod(Z) = Ab, as usual. O

Definition 3.10. (Ranicki and Weiss [8, 1.9] for simplicial complexes)
(i) The R-coefficient simplicial chain complex A(X’; R) of the barycentric subdi-
vision X’ of a finite A-set X is the chain complex in Mod(R).(X) with

AX";R)(x) = Alzt, 025 R) , A(X;R)[z] = Azt R).
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Compare example 2.4 case (iii).

(ii) Let f : Y — X’ be a A-map from a finite A-set Y to the barycentric sub-
division X’ of a A-set X. The R-coefficient simplicial chain complex A(Y; R) is
the chain complex in Mod(R).(X) with

A(Y;R)(x) = Az/f,0(z/f);R) , A(Y;R)lz] = A(z/f; R) (z € X)
with x/f, O(xz/f) the A-sets defined to fit into strict pullback squares of A-sets

(z/f) z/f Y

Ll

Oxt xt D¢

4. THE TOTAL COMPLEX

For a finite chain complex C in A,[X], there is defined a chain complex in
A*(X), called the total complex of C.

Definition 4.1. The total complex Tot,C of a finite chain complex C in A,[X]
is the finite chain complex in A*(X) given by

(Tots C)(@)n = Cla] iy

with differential d = dgy) + Zlﬂo(—)”'“”'C(@ix — ). The construction is natu-
ral, defining a covariant functor
B(A).[X] — B(A)*(X) ; C— Tot,.C .
O

Remark 4.2. There is a forgetful functor B(A)}(X) — B(A) taking C'in B(A)*(X)
to
C(X)=Pc@) .
zeX
Compare example 2.4. The chain complex (Tot,C)(X) in A is the ‘realization’

(5 Ao, o)/~

zeX
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with ~ the equivalence relation generated by a ® \*b ~ A.a ® b for a morphism
Ay — zin X, with a € A(AW), b e C[2]. O

Example 4.3. The simplicial chain complex A(X) of a finite A-set X is (Tot,.C)(X)
for the chain complex C' in Ab,[X] defined by C[z] = Z for all x (a constant
functor). O

Remark 4.4. There are evident forgetful functors
B(A).(X) — B(A) ; C > C(X)
B(A)}(X) — B(A) 5 C > C(X) .
The diagram

A)L[X] 25 B(A)5(X)

A)(X) — B(
\ N /

commutes up to natural chain homotopy equivalence: for any finite chain complex
Cin Ay (X)

(Tot,O)(X)n = SN Cln ) = S (AX/y) @2 Cy)n

zeX Ty yeX
with X/y the A-set defined in 2.7, which is contractible. O

B(

Proposition 4.5. (i) For any objects M,N in A.(X) the abelian group
Homy, (x)(M, N) is naturally an object in Ab}(X), with

Hom,, x) (M, N)(z) = Homy (M(z), [N][z])
= > Homy(M(z),N(y)) (z € X) .

T—Y
If f :M'— M, g: N — N’ are morphisms in A.(X) there is induced a morphism
in Ab*(X)

Homy (x)(M, N) — Homy (x)(M',N') ; h ghf .

(ii) For any objects M, N in A;Z(X) the abelian group Homy« x)(M, N) is natu-
rally an object in Ab,(X), with

Hom,- () (M, N)(z) = Homy (M (x), [N][a])
= Y Homy(M(x), N(y)) (z € X) .

Yy—x
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Naturality as in (1).

Proof. Immediate from 1.9. (]

Example 4.6. (i) For a chain complex C' in Ab,(X) the total complex in Ab*(X)
of the corresponding chain complex [C] in Ab,[X] is given by

[CT«[X] = Homyy,, (x)(A(X)™,C) .

(ii) For a chain complex D in Ab*(X) the total complex in Ab,(X) of the corre-
sponding chain complex [D] in Ab*[X] is given by

[DI*[X] = Homap(x)(A(X), D) .

5. CHAIN DUALITY IN L-THEORY

In general, it is not possible to extend an involution 7" : A — A on an additive
category A to the functor category A, (X) for an arbitrary category X. An object
in A,(X) is an induced contravariant functor F' : X — A and the composite of

the contravariant functors

xoaLon

is a covariant functor, not a contravariant functor, let alone an induced con-
travariant functor. A ‘chain duality’ on A is essentially an involution on the
derived category of finite chain complexes and chain homotopy classes of chain
maps; an involution on A is an example of a chain duality. Given a chain duality
on A we shall now define a chain duality on the induced functor category A, (X),
for any A-set X, essentially in the same way as was carried out for a simplicial
complex X in [6].

Definition 5.1. (Ranicki [6, 1.1]) A chain duality (T, e) on an additive category
A is a contravariant additive functor

T : A - B(A)
together with a natural transformation

e: T2 =1 : A-B(A)
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such that for each object M in A

o

(1) e(T(M)) o T(e(M)) = 1: T(M) — TM) — T(M)
(ii) e(M) : T*(M) — M is a chain equivalence.

O

A chain duality (7, e) on A extends to a contravariant functor on the bounded
chain complex category

T : BA) — BA); C—T(C),
using the double complex construction with

T(C)n = Z T(Cplg s dr(cy = dpc,) +(=)'T(d: Cprr = Coyp)
p+gq=n

and e(C) : T?(C) — C a chain equivalence. For any objects M, N in an addi-
tive category A there is defined a Z-module Homy (M, N). Thus for any chain
complexes C, D in A there is defined a Z-module chain complex Homy(C, D),
with

HOIHA(C, D)n = Z HomA(CpaDq) ) dHomA(C,D)(f) = de+ (_)qde .

q—p=n

If (T, e) is a chain duality on A there is defined a Z-module chain map
Homy (T'C, D) — Homy (T'D,C) ; f— e(C)T(f)
which is a chain equivalence for finite C'.

Example 5.2. An involution (T, e) on A is a contravariant functor 7' : A — A
with a natural equivalence e : T? — 1 such that for each object M in A

e(T(M)) = T(e(M)™Y) : T3(M) — T(M) .

This is essentially the same as a chain duality (7,e) such that T (M) is a 0-
dimensional chain complex for each object M in A. O

Definition 5.3. A chain product (®,,b) on an additive category A is a natural
pairing

®p : Ob(A) x Ob(A) — {Z-module chain complexes} ; (M, N)+— M @ N
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together with a natural chain equivalence
b(M,N) : M@y N — Ny M

such that up to natural isomorphism

(MeM)YRy, N = (M@, N)® (M @4 N) ,

M@y (N®N') = (M®yN)D (M @y N')
and

bB(N,M)ob(M,N) ~ 1 : My N— M®®uN .
O

Remark 5.4. The notion of chain product is a linear version of an ‘SW-product’

in the sense of Weiss and Williams [12], where SW = Spanier-Whitehead.
O

Given an additive category A with a chain product (®4, b) and chain complexes
C,D in A let C ®4 D be the Z-module chain complex defined by

(C®uD)y = Y (Cp®aDy),
ptgt+r=n

dog,p = doyeuc, + (=) (1®adp + (=)lde @4 1) .

By the naturality of b there is defined a natural chain equivalence
b(C,D) : C®yD — D®yC .

Proposition 5.5. Let A be an additive category.
(i) A chain duality (T, e) on A determines a chain product (®Q4,b) on A by

M @y N = Homuy(TM,N) ,

b(M,N) : M@y N — N®u M ;

(f:TM — N) s (e(M)oT(f): TN — T?*M — M) .
(ii) If (®a,b) is a chain product on A such that
M @y N = Homp(TM,N) , b(M,N)(f) = e(M)oT(f)

for some contravariant additive functor T : A — B(A) and natural transformation
e:T? —1:A— B(A), then (T,e) is a chain duality on A.

Proof. Immediate from the definitions. O
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Example 5.6. Let R be a ring with an involution R — R;r — 7. Regard a (left)
R-module M as a right R-module by

MxR—M; (z,r) —Tx .
Thus for any R-modules M, N there is defined a Z-module
M®rN = M@z N)/{Fe®@y—zry|lze M,yeN,reR}
with a natural isomorphism
b(M,N) : MQrN - NQrM; 2Qy—yQx

defining a (0-dimensional) chain product (®g, b) on the R-module category Mod(R).
As in 2.5 use the involution on R to define the contravariant duality functor

T : Mod(R) — Mod(R) ; M +— M* =Homp(M, R)
with
RxM* = M*; (r,f) = (= f(2)r) .
The natural Z-module morphism defined for any R-modules M, N by

M ®r N — Homp(M*,N) ; 2@y — (f — f(z)y)

is an isomorphism for f.g. projective M. The R-module morphism defined for
any R-module M by

C(M) : M =M™ 2 (f — f(z)

is an isomorphism for f.g. projective M. Let Proj(R) C Mod(R) be the full
subcategory of f.g. projective R-modules. The natural isomorphisms

e(M) = (M) : M™* - M
define an involution (7', e) on Proj(R), corresponding to the restriction to Proj(R)

of the chain product (®g,b) on Mod(R). O

Proposition 5.7. (Ranicki [6, 5.1,5.9,7], Weiss [11, 1.5])
A chain duality (Ty,ep) on an additive category A extends to a chain duality
(Th, (x5 €n.(x)) on Au(X), for any A-set X

Thco © A(X) — ax] 22 Ba) () A B(a). (x)
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where Ty : B(A)}(X) — B(A)«(X) is the extension of the contravariant functor

Ty + AHX) > BA)(X); M = Y M(x)—Ta(M) = Y Ta(M(x)) .
reX zeX

More explicitly, the chain dual of a finite chain complex C in A,(X) is given
by

Ta.(x)(C) = Ta(Tot,C) ,

so that

Ta.x)(C)(x) = Ta(Clz]izje)

r—Y

Example 5.8. Let A = A(Z), the additive category of f.g. free abelian groups.
(i) For any finite chain complex C' in A, (X), which we also view as a (degreewise)
induced chain complex C' in A,(X), the total complex Tot,(C') is given by 4.6 to
be

Homy, (x)(A(X)™, C),
so that the chain dual of C' is given by

Ty, (x)(C) = Homy(Homy, x)(A(X)™",C),Z) .

(ii)) As in 3.10 regard the simplicial chain complex A(X’) of the barycentric
subdivision X’ of a finite A-set X as a chain complex in A,(X) or in A,[X] with

AXN(z) = Az, 02h) , AX)z] = A(h)
for x € X. The chain dual T(A(X’)) is the chain complex in A,(X) with
T(AX))(z) = A (z € X).
([

Remark 5.9. See Fimmel [2] and Woolf [13] for Verdier duality for local co-
efficient systems on simplicial sets and simplicial complexes. In particular, [13]
relates the chain duality of [6, Chapter 5] defined on Proj(R).(X) for a simplicial
complex X to the Verdier duality for sheaves of R-module chain complexes over
the polyhedron || X||. O
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For any additive category with chain duality A let Le(A) be the quadratic
L-theory Q-spectrum defined in Ranicki [6], with homotopy groups

Tn(Le(A)) = Ln(A) .

It was shown in [6, Chapter 13| that the covariant functor
{simplicial complexes} — {Q—spectra} ; X — Lq(B(AL(X)))

is an unreduced homology theory, i.e. a covariant functor which is homotopy

invariant, excisive and sends arbitrary disjoint unions to wedges. More generally :

Proposition 5.10. ([6, 13.7] for simplicial complexes)

(i) If A is an additive category with chain duality and X is a A-set then A (X)
1s an additive category with chain duality.

(ii) The functor

{A—sets} — {Q—spectra} ; X — L.(A, X) = Lo(B(A(X)))

is an unreduced homology theory, that is L.(A, X) = H.(X;Le(A).

(iii) Let R be a ring with involution, so that A = Proj(R) is an additive category
of f.g. projective R-modules with the duality involution. If X is a A-set and
D X > Xisa reqular cover with group of covering translations m (e.g. the
universal cover with m = 71(X)) the assembly functor

A : B(R).(X)— B(R[x]) ; C— C(X)
(C(X) = 3 Clpx)))

zeX

is a functor of additive categories with chain duality. The assembly maps A

induced in the L-groups fit into an exact sequence

e Hy (X La(R) 2 Ly (Rimy (X)) —= Su(R, X) — Hy 1 (X;La(R)) — -

with S, (R, X) the cobordism group of the R[m1(X)]-contractible (n—1)-dimensional

quadratic Poincaré complexes in A, (X).

Proof. Exactly as for the simplicial complex case, but using the A-set duals in-
stead of the dual cells! O
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Example 5.11. Let X = S! be the A-set of the circle (2.8, 3.7) with one 0-
simplex and one 1-simplex. Given a ring with involution R let the Laurent poly-
nomial extension ring R[z,27!] have the involution Z = 2~!. An n-dimensional
quadratic Poincaré complex in Proj(R).(S') is an n-dimensional fundamental
quadratic Poincaré cobordism over R, with assembly the union n-dimensional
quadratic Poincaré complex over R[z, z~!], and the assembly maps

A : Hp(S8%Le(R)) = Ln(R)@® Ly_1(R) — Ln(R[z,27'])

are isomorphisms modulo the usual K-theoretic decorations (Ranicki [7, Chapter
24]. O

Remark 5.12. Proposition 5.10 has an evident analogue for the symmetric L-
groups L*. O
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