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Abstract: This paper provides a full controlled version of algebraic
K-theory. There is a rich array of assembly maps; the controlled
assembly isomorphism theorem identifying the controlled group with
homology; and a statement of the stability theorem describing the
behavior of the inverse limit as the control parameter goes to 0. There
is also a careful treatment of spectral cosheaf homology and related
tools, including an “iterated homology identity” giving a spectrum-
level version of the Leray-Serre spectral sequence.
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1. Introduction

Controlled algebra was originally developed to encode obstructions in con-
trolled topology [Quinn 1, 2]. At that time attempts to develop controlled alge-
braic K-theory were unsuccessful, and the topological obstructions were instead
formulated using pseudoisotopy. For many applications this is satisfactory, cf.
[Quinn 2, 5, 7], [Hughes] but there are drawbacks: genuine K-theory is needed
for a full controlled version of surgery; and computations using the assembly map
structure are greatly enhanced by access to the full range of K-theory tools. For
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example the remarkable work of Farrell and Jones and their coworkers [Farrell-
Jones 1, 2] [Berklove-Farrell-Juan-Pineda-Pearson], [Davis-Lück], [Roushon],
[Aravinda-Farrell-Roushon] is done in the context of pseudoisotopies in order
to use the controlled pseudoisotopy theory developed in [Quinn 2]. From this
they deduce information about Whitehead and lower K groups of integral group
rings. Controlled algebraic K-theory is needed to extend these results to higher
K groups and other coefficient rings. Recently [Bartels-Reich] have also made a
start in this direction using continuously controlled K-theory. The continuous
theory describes the inverse limit of finite-ε sets, but it is missing the “stability”
theorem that describes how they approach this limit. The stability theorem is a
crucial ingredient of many applications, c.f. [Quinn 2, 8].

This paper provides a version of controlled K-theory with most of the fea-
tures that made the pseudoisotopy version successful so it should substitute for
pseudoisotopy in many of the proofs of Farrell–Jones et. al. It also makes purely
algebraic tools available. For example this theory and Dress induction [Dress]
are used in [Quinn 8] to show that virtually abelian groups satisfy a refinement
of the Farrell-Jones fibered isomorphism conjecture.

Most of the paper is detailed and self-contained, including even a description
of sign conventions in chain complexes. The reason is that some of the proofs
are quite delicate and don’t work with the standard versions of K-theory. It is
not a priori clear that modifications needed to get one thing to work won’t wreck
something else. For instance we use simplicial complexes of chain complexes.
Vertices are complexes, edges are chain maps, and higher simplices are diagrams
of chain maps. However requiring these diagrams to chain homotopy commute
makes the theory too rigid. A weaker requirement on diagonals gives a functional
theory but then it is not clear that it still gives K-theory. This is not a robust
argument: a sign error or partial-order mistake could wreck the whole thing. It
may be worth mentioning that it took the author 25 years to get it all to mesh
properly. In any case a detailed and explicit treatment is appropriate.

There are significant overlaps with other material, particularly the work of
[Igusa-Klein 1] and [Igusa 1] on higher Reidemeister torsion. Unfortunately there
are enough differences in detail and in setting up ε control that it is quicker and
safer to do it all from scratch.
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Section 2 contains statements of results, with sufficient explanation to make
them usable without extensive reference to the body of the paper. The primary
result in Part I is the Controlled assembly isomorphism theorem 2.2.1. A version
of stability is included as Statement 2.3.1.

The body of the paper begins in Section 3 with a version of uncontrolled K-
theory using chain complexes. Most of the section is occupied by the proof that
this agrees with the Quillen definition. Section 4 adds control to the definitions of
§3 and develops the elementary properties of the controlled K-space. In Section 5
deeper properties (those requiring spacial localization techniques) are developed.
In particular the homology axioms needed in the following section are verified.
Section 6 gives a development and axiomatic characterization of spectral cosheaf
homology and assembly maps. The Controlled Assembly Isomorphism theorem
follows from this because controlled K-theory satisfies the axioms.

2. Results

The central construction is a simplicial set of ε-controlled chain complexes over
a metric space, briefly described in 2.1. The first main result is the controlled
assembly isomorphism theorem of 2.2. This describes inverse limits of controlled
K-spaces as homology with spectral cosheaf coefficients. The stability theorem
of 2.3 asserts that the inverse system approaches the limit in a nice way.

2.1 Controlled K-theory spaces.

Our central object is a simplicial set Klf
1 (X; p,R, ε) defined given

(1) a locally compact metric space X,
(2) a map p : E → X,
(3) a ring R, and
(4) a real number ε > 0.

This space is defined in §4 using controlled geometric chain complexes. Very
roughly these are 2-complexes decorated with R data, mapping into E. The ver-
tices of the 2-complex correspond to R-modules, the edges are homomorphisms
between the modules, and 2-cells encode relations among the morphisms. These
are “finitely generated” in the sense that the map of the 2-complexes into X are
proper (thus locally finite), and “controlled” in the sense that each cell has size
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less than ε in X. Straightforward properties needed in formulating the results
are given in 2.1.1–2.1.3. Inverse limits are described in 2.1.4–2.1.5.

2.1.1 Naturality. A morphism between maps (E
p−→ X) → (F

q−→ Y ) is a
commutative diagram

E
f̂−−−−→ F

yp

yq

X
f−−−−→ Y

When d(x, y) < ε1 implies d(f(x), f(y)) < ε2 this induces a map

Klf
1 (X; p,R, ε1) −→ Klf

1 (Y ; q, R, ε2)

defined simply by applying f̂ to decorated 2-complexes mapping into E. These
maps compose nicely, so define a functor on an appropriate catgory.

2.1.2 Restriction. If U ⊂ X is open then there is a restriction map

Klf
1 (X; p,R, ε) → Klf

1 (U ; p|U,R, ε).

In terms of decorated 2-complexes in E this is given by restricting to the largest
subcomplex mapping into p−1(U). Getting this to make sense near the edge of
U requires a wrinkle in the definition that will be appreciated by experts, see
§4.1.7.

2.1.3 Other properties. We mention several other basic aspects that will be
explained in more detail when they are needed.

The first such aspect is that the path components of the space are essentially
the ε − K1 obstructions arising from controlled h-cobordisms in [Quinn 1, 2].
This gives the connection to topology and also motivates the notation for the
space.

Another basic topic is the use of control functions ε : X → (0,∞) rather than
just constant ε > 0. This only makes a difference when X is noncompact, but
is almost always required in topological applications with noncompact X. The
reasons we stick with constants here are: (1) details are simpler; (2) the function
case follows from a relative form of the compact constant case by patching; and
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(3) the constant-ε conclusions for noncompact X are stronger than the function-ε
version, and the difference should be useful in geometric applications.

Finally, the role of the space E is to specify “local fundamental groups” over
X. If E → E′ is a map of spaces over X that (roughly) is an isomorphism of
fundamental groups of inverse images of points in X, then the induced map of
K1 spaces is (roughly) an equivalence, see 4.3.4. This is a consequence of the
use of 2-complexes in the definition. This invariance property is very useful in
applications but plays a minor role here.

2.1.4 The inverse limit. Define

Klf
1 (X; p,R) = holimε→0K

lf
1 (X; p,R, ε).

The homotopy inverse limit is the space of paths to ∞ in the system. More pre-
cisely we define an inverse system indexed on positive integers, with the nth space
the inverval [n,∞) and maps the inclusions. Then the homotopy inverse limit
is the space of cofinal maps of inverse systems from this into the Klf

1 (X; p,R, ∗)
system.

The on-the-nose (i.e. not homotopy) inverse limit is the intersection

∩εK
lf
1 (X; p,R, ε) = Klf

1 (X; p,R, 0)

and is uninteresting. The homotopy version loosens this up by allowing elements
at different scales to be “homotopic” rather than equal. Behavior of the inverse
system as it approaches the limit is desribed in §2.4.

2.2 Controlled assembly. This theorem uses the “spectral cosheaf homology”
described in §8 of [Quinn 2] and in more detail in §6. The basic idea is that a
continuous spectrum-valued functor of spaces can be applied to point inverses of
a map E → X to get a “spectral cosheaf” over X. Homology with coefficients
in such a thing can be defined and satisfies appropriate versions of the usual
properties of homology. We think of homology as accessible, at least more so than
K-theory, so a homological description is good news. A version for compactly-
supported homology is given in 2.2.4.

2.2.1 Controlled assembly isomorphism theorem. Suppose X is a locally
compact metric space, p : E → X a map. Then

(1) (metric independence) up to homotopy Klf
1 (X, p,R) is independent of

the metric on X.
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(2) (spectrum structure) Klf
1 (X, p, R) has a natural Ω-spectrum structure.

Denote the first deloop of this structure by Klf (X; p,R).
(3) (coefficients) If E is a connected space with the homotopy type of a CW

complex then choice of basepoint ∗ ∈ E gives an equivalence of spectra
with the (nonconnective) algebraic K-theory spectrum

K(pt;E → pt, R) '−→ K(R[π1(E, ∗)]).

(4) (assembly isomorphism) If p is a stratified system of fibrations and X is
an ANR then the assembly map associated to the spectrum structure is
an equivalence of spectra,

Hlf (X;K(p,R)) '−→ Klf (X; p,R).

2.2.2 Notes.

(1) Stratified systems of fibrations are defined in [Quinn 2] and described
in 6.2.1. The homotopy stratified group actions developed in [Quinn 5]
naturally give rise to these in profusion.

(2) In (4) K(p,R) denotes the spectral cosheaf over X obtained by applying
K fiberwise to p : E → X. This process is described in detail in §6.7–6.8.

(3) Statement (3) identifies the fibers in this cosheaf with standard K-theory
of the fundamental group of the point inverses of p. The proof is unex-
pectedly delicate, and is given in §3.6–3.10.

(4) Statements (2)–(4) asserts that this functor is “self-computing” in the
sense that it supplies both the spectrum needed to define the homology
and the assembly map that makes the comparison. The isomorphism
statement (4) is proved by by verifying that Klf (X; p,R) satisfies axioms
that characterize homology. Stratified homology and the axioms are de-
veloped in §6. The elementary axioms are verified in §4, more difficult
ones in §5.

(5) Metric invariance (1) is included in the isomorphism statement (4) be-
cause homology has this property. It seems striking enough to deserve a
separate statement. Compare Rn with its standard metric to the metric
induced by a homeomorphism with the open unit ball. The first metric
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is complete so the typical K1 gadget is infinite, has δ-dense image, and
satisfies the relations everywhere. The second metric is not complete, and
in fact the complement of any open neighborhood of the metric frontier
(see 2.1.2) is compact. This means K1 gadgets are finite and there is a
big “ragged edge” near the metric frontier where structure relations fail.
Nonetheless in the limit the “ragged edge” shrinks away, and the map
from the complete metric to the incomplete one does not lose informa-
tion. Metric invariance is proved in §5.4.

2.2.3 Compactly supported homology. Ordinary homology can be obtained as
the direct limit of homology of finite complexes mapping into the space. Since
finite complexes are compact, “locally finite” and ordinary homology coincide,
so we define

K1(X; p,R) = holimh : Y→XKlf
1 (Y ;h∗p,R),

where the limit is over the system of finite complex Y → X, and h∗p : h∗E → Y

denotes the pullback (fiber product) of p along h. Morphisms in the inverse
system are maps of finite complexes commuting with the maps to X.

This version is defined for all X, p (no local compactness requirement) and is
functorial with respect to all morphisms. The locally finite theorem 2.2.1 gives,
by direct limits:

Theorem. Suppose X is a metric space and p : E → X is a stratified system of
fibrations. Then the limit K1(X; p,R) has a natural spectrum structure, and the
assembly map

H(X;K(p,R)) '−→ K(X; p,R).

is an equivalence of spectra.

2.3 Stability. The K-space Klf
1 (X; p,R) is defined to be the homotopy inverse

limit of spaces Klf
1 (X; p,R, ε), as ε → 0. “Stability” makes properties of the

limit available at finite-ε scales by showing the inverse system converges nicely.
The version given here is sufficient for most applications. Note, however, that a
proof is not included; see the discussion following the statement.

To get a non-compact statement we extend the definition of Klf
1 (X; p,R, ε) in

the evident way to permit ε to be a continuous function X → (0,∞). See 2.1.3
for a brief discussion of control functions.
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2.3.1 Statement. Suppose X is a finite dimensional locally compact metric
ANR, p : E → X is a stratified system of fibrations, and ε : X → (0,∞) is given.
Then there is δ : X → (0,∞) so that the relax-control map δ → ε homotopically
factors through the limit in the sense that there is a map S so that the diagram

Klf
1 (X; p,R, δ) //

S

((QQQQQQQQQQQQ
Klf

1 (X; p,R, ε)

Klf
1 (X; p,R)

OO

homotopy commutes.

This is a key result: applications that require it include the controlled h–
cobordism theorem [Quinn 1, 2]; the results of Farrell–Hsiang on K–theory of
Bieberbach groups, extended to virtually–abelian groups in [Quinn 8]; and the
asymptotic transfer of [Farrell–Jones 2]. Moreover this paper could be simplified
considerably if stability were not one of the goals: there are categorical formula-
tions of the inverse limit space, c.f. [Pedersen], that allow use of category–oriented
work of Quillen and many others. The proof of stability, in contrast, seems to
require careful and explicit work at the simplex level. This explicit work occupies
much of §5 and preparation for it occupies much of the earlier sections.

This paper does not include a proof of stability. The lemmas of §5 are designed
to plug in the proof of stability for pseudoisotopy in [Quinn 2], so a proof could
be obtained that way. This can be simplified, for instance by using ideas in the
proof of stability for surgery groups in [Pedersen-Yamasaki]. However stronger
results are needed: Farrell and Jones, for instance, needed a version with “foli-
ated control”, see [Bartels–Farrell–Jones–Reich]. The old proof can probably be
modified to provide some foliated control, but instead I am developing a different
approach that seems likely to be much simpler and may give significantly sharper
results. This will be described in a later paper.

3. Chain complexes and K1(R)

A space K1(R) is defined as a simplicial set whose simplices are diagrams of
chain complexes satisfying various conditions. The classical K1 group is π0 of
this space.
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As mentioned in §1 this material overlaps work of [Igusa] and [Igusa–Klein].
Myriad delicate differences in detail and their use of categorical techniques pre-
vents us from building directly on their work.

Chain notations, suspensions, and mapping cones are described in 3.1, Trian-
gular simplices are defined in 3.4. K1(R) is finally defined in 3.5. One of the
main technical tools, the cancellation of inverses, makes its first appearence in
3.6. In 3.7 we give the first application: a deformation retraction of the K1 space
to a subcomplex equivalent to the Volodin description of K-theory.

3.1 Chain complexes. This section mainly fixes notation and sign conventions.
Our sign conventions differ from some others, and this is explained in 3.1.5.

3.1.1 Notation. To simplify the formulae we use a uniform notation for the
boundary homomorphisms and chain maps in the structure. For example a chain
complex will have the form (C, c) where C are the chain groups and c : C → C

denotes the boundary homomorphism. Lower indices will be used to indicate
different complexes, and upper indices degrees in the complex. For instance Cj

i

indicates the degree-j group of the chain complex Ci.

3.1.2 Simplices of complexes. Elaborating on 3.1.1, an n-simplex of complexes
consists of chain complexes (Ci, ci) for i = 0, . . . , n and for i < j, chain maps
ci,j : Ci → Cj .

Note that this definition does not require any compatibility (e. g. homotopy
commutivity) for the chain maps. Compatibility conditions will be added later.

The face ∂i of a simplex is defined by omitting the ith vertex. An (n − 1)-
simplex is supposed to be indexed on the set of integers [0, n − 1], so more
precisely ∂i is obtained from the order-preserving injection [0, n − 1] → [0, n]
onto the complement of i.

More generally if J ⊂ [0, n] we define ∂J by composing with the order-
preserving injection [0, n − |J |] → [0, n] whose image is the complement of J .
If we denote the injection by α then

(∂J(C, c))i = Cα(i).

This degree of precision in the notation is rarely needed.
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3.1.3 Suspensions. The suspension of a Z-graded module C is denoted by
SC, and is the same module with grading shifted up by one. Explicitly, (SC)r =
Cr−1. Thus for instance the identity map SC → C has degree −1.

The suspension of an n-simplex of complexes (C, c) has graded module the
suspension SC and structure maps with signs according to the parity of their
degree. Boundaries have degree 1 and chain maps have degree 0 so

sci = (−1)ci

sci,j = (+1)ci,j

See 3.1.5 for comments on this choice of sign conventions.

3.1.4 Mapping cones. Mapping cones of chain isomorphisms will be used to
add trivial summands in K-theory.

Suppose f : C → C̄ is a chain map. Then the cone C̄ ⊕f SC is the complex

with graded modules C̄ ⊕ SC, and boundary homomorphisms
(

c̄ f

0 −c

)
.

Lemma. If f is an isomorphism then C̄ ⊕f SC is contractible with canonical

contraction
(

0 0

f−1 0

)

Contractibility of the cone requires only that f be a chain homotopy equiva-
lence, though in that case the contraction depends on the chain homotopies as
well as the map itself. However the isomorphism case is the one needed here.

3.1.5 Sign conventions. Sign adjustments are required in suspensions and
cones to get the various identities to work out. There are two standard choices.
The one used here has signs in the suspension structure: odd degree structure
morphisms (boundary homomorphisms and homotopies) pick up a −1 upon sus-
pension. Suspensions of chain maps are unchanged because they have degree
0. And if f : C → D is a degree-0 chain map, then the same homomorphism
is a degree-(−1) chain map SC → D. The different sign requirements for the
different degrees (see 3.1.3) comes from the signs in the suspension.

The other convention does not change signs in suspensions, but then signs
are required in morphisms. If f : C → D is a degree-0 chain map then to get a
degree-(−1) chain map SC → D one uses (−1)nfn on the degree-n summand of
SC. This is the convention used by Ranicki, for instance. The notation in this
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convention is more elaborate because it explicitly uses the grading in C rather
than the degree of the map.

Topologically these conventions correspond to different orders in a product. If
the suspension of ∆n is taken to be I×∆n then the usual product sign conventions
give the signed suspension used here. If the suspension is taken to be ∆n × I

then suspensions don’t get signs, but morphisms do.

3.2 Triangular morphisms and simplices. Diagonal, triangular and increas-
ing morphisms of based modules are defined in 3.2.1–3. In 3.3.4 diagonal mor-
phisms on infinitely generated modules are shown to be well-behaved if the partial
orders are “locally bounded”.

3.2.1 Based modules. As usual, a basis for a module is a set of generators as
a free module over the ring. In fact a basis renders the algebraic structure of
the module itself irrelevant, but for the time being we retain the language as a
comfortable context.

If C ⊃ D is a based submodule (i.e. generated by a subset of the basis)
then C ⊥ D is the perpendicular submodule, generated by the rest of the basis.
There is a canonical sum decomposition C = D ⊕ (C ⊥ D), and isomorphism
C ⊥ D ' C/D. In controlled situations quotient modules behave badly, and
perpendicular submodules will be used instead. Finally if f : C → C̄ is a homo-
morphism of based modules and C ⊃ D, C̄ ⊃ D̄ are based submodules, then
f induces homomorphisms D → D̄ and C ⊥ D → C̄ ⊥ D̄. If we represent f

as a matrix with respect to the bases then these induced homomorphisms are
obtained by taking appropriate submatrices. Algebraically they are described as
compositions with the canonical inclusions and projections associated to the sum
decomopositions.

3.2.2 Diagonal homomorphisms. Suppose C, D are free modules with specified
bases denoted by base(C), base(D) respectively. The support , supp(f), of a
homomorphism f : C → D is the subset of the basis of C on which f is nontrivial.
The homomorphism is diagonal if is induced by an injection base(f) : supp(f) →
base(D).

More generally, if U is a subset of R then f is U -diagonal if there is a diagonal
map base(f) so that for each basis element x ∈ base(C), f(x) is a multiple of
base(f)(x) by an element of the subset U . In these terms “diagonal” is the
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same as {1}-diagonal. Other useful cases are U = {±1}, and U the units of R.
In topology one often has a group ring R = Z[π], and U = ±π. Completely
arbitrary coefficients correspond to R-diagonal maps.

In the definition of “diagonal” we are extending the convention that the
free module with empty basis is 0. Namely, extend the basis function of f

to base(C) → base(D) ∪ {∅} by taking all elements not in the support of f to
the empty set. Then we take as a convention that the only possible multiple of
the empty basis element is 0. These conventions simplify the language in several
places. For example the composition of diagonal maps is diagonal, and with this
convention if the coefficients are units then the basis function of the composition
is the composition of basis functions.

Note that an R-diagonal homomorphism is an isomorphism if and only if the
underlying basis function is a bijection of bases, and the coefficient on each basis
element is a unit in the ring. In this case the inverse is evidently also diagonal,
with inverse base function.

3.2.3 Triangular homorphisms. Fix a subgroup U of the units of R. Suppose
f : C → D is a homomorphism of free based R-modules with partial orders
on the bases. f is U -triangular with respect to the partial orders if there is a
decomposition f = h + u where

(1) h is U -diagonal;
(2) base(h) : supp(h) → base(D) is order-preserving; and
(3) u is increasing with respect to h in the sense that for each basis element

x ∈ C, u(x) lies in the submodule of D generated by basis elements
strictly greater than base(h)(x) in the partial order.

With appropriate hypotheses (see 3.2.4) the decomposition is unique. In this
case the diagonal part is denoted by diag(f). We are using the convention that
base(h)(x) = ∅ if x is not in the support of h. In this case there are no greater
basis elements and so u(x) = 0. In other words the support of u is contained in
the support of h.

Note that the increasing condition in (3) only uses the partial order in base(D),
and in particular does not depend on the underlying base function of h being
order-preserving. Both conditions are needed to show that composition of trian-
gular functions is triangular.
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When the domain and range are the same there is a natural notion of “in-
creasing”: u(x) lies in the submodule generated by basis elements strictly larger
than x. In the terminology above this is the same as “increasing with respect to
the identity”, and is equivalent to requiring 1 + u to be triangular.

We explain why we use the term “increasing” instead of the more common
“upper triangular” or “lower triangular”. The usual practice is to refine the
partial order to a total order, and then write the morphism as a matrix. We
think of elements of the modules as column vectors, with morphisms acting as
matrices on the right. “Diagonal” entries then occur in blocks along the diagonal
(and can usually be arranged to be exactly on the diagonal). “Increasing” entries
lie below this (block) diagonal. There are two problems. First, we make extensive
use of matrix notations, but make no attempt to relate the implicit order in the
matrix to the structural partial orders. Thus the matrices often have entries on
both sides of the diagonal. Second it seems to invite confusion to try to use
“lower” as a synonym for “increasing”.

3.2.4 Locally bounded partial orders. This is a condition to ensure that tri-
angular morphisms of infinitely generated modules are well-behaved. It is auto-
matically satisfied for finitely-generated modules, and we use it here to simplify
definitions. In controlled situations definitions this condition may not hold and
we will have to explicitly assume some of its consequences in the definitions.

A partial order is locally bounded if there is no element that is the starting
point of arbitrarily long increasing chains. We say a module is locally bounded
if the partial order on the basis is locally bounded. The following is standard:

Lemma. Homomorphisms in the following are understood to be triangular ho-
momorphisms of modules with locally bounded partially ordered bases.

(1) the diagonal-plus-increasing decomposition is well-defined, and is denoted
by diag(f) + inc(f);

(2) the diagonal part is functorial: diag(fg) = diag(f)diag(g),
(3) if f −g is increasing with respect to the diagonal part of one of f , g, then

diag(f) = diag(g),
(4) A diagonal-plus-increasing homomorphism is an isomorphism if and only

if the diagonal part is an isomorphism. This is equivalent to the basis
function being bijective and the coefficients being units;
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(5) the inverse of a triangular isomorphism is triangular.
(6) there is a canonical (independent of the partial order) factorization f =

. . . (1 + αn) . . . (1 + α1)diag(f), locally finite, with αi increasing, and
αiαj = 0 if j ≤ i.

Proof. Suppose f : C → D is triangular. To see (1), define a decreasing filtra-
tion on the basis of D with nth subset the elements that are the smallest in an
increasing chain of length at least n. Let Dn be the submodule generated by the
nth subset. Then D0 = D, and ∩nDn = 0 by the locally bounded condition. The
increasing part of any triangular map must have image in D1, so f : C → D0/D1

is induced by an injection on part of the basis and takes the rest to 0. This de-
termines h on the part of the basis that does not map into D1, and thus also u on
this subset. Restrict to the complement, then we have f1 : E1 → D1 triangular.
The same argument determines the decomposition on the part of the basis that
does not map into D2. Continuing by induction shows the entire decomposition
is determined.

For statement (2) let f = h + u, g = j + v denote the decompositions. Then
fg = hj +(hv +uj +uv). hj is diagonal, and since h, j are order-preserving and
u, v are increasing, the other terms are increasing. This gives a diagonal-plus-
increasing decomposition of fg.

Statement (3) should be clear.
For (4) it is easy to see that if the diagonal part is not an isomorphism then

the whole homomorphism cannot be either. Conversely suppose the diagonal
part is an isomorphism. Denote the decomposition by h + u, then the inverse is
given by

(h + u)−1 = Σ∞i=0(−h−1u)ih−1.

The infinite sum is well-defined because it is finite when applied to any element
of D. This follows from the bounded hypothesis by essentially the argument
used to show (1). The form of the inverse gives (5). For the second statement
in (4) a diagonal morphism decomposes as a direct sum of a zero part, and a
sum of endomorphisms of R indexed by the underlying basis function. To be
an isomorphism the basis function must be a bijection, and each 1-dimensional
summand must be an isomorphism. The latter condition is that the coefficients
must be units in the ring.
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Finally for (6) we let d̂iagf denote (diagf) as a homomorphism from the span
of elements on which it is nonzero, to the span of the image of those elements.
This is invertible so the inverse is defined, and the support property mentioned
above implies that f = f(d̂iagf)−1diagf . The composition f(d̂iagf)−1 is of
the form p + u, with p a projection on a subset of the basis and u increasing.
p + u = (1 + u)p so it is sufficient to factor 1 + u.

We factor 1 + u using essentially the opposite of the argument for (1). Let
D0 ⊂ D1 ⊂ · · · be a maximal chain of based submodules so that D0 = 0 and
u(Di) ⊂ Di−1 for i > 0. Since u is increasing and the order is bounded this
sequence terminates locally. Restrict to a set where it terminates at level n. Let
pi denote the based projection D → Di. Inductively define αi by α0 = 0 and

αi = (u− Σi−1
j=0αj)pi.

It follows that αipi = αi (definition); αipj = 0 for j < i (induction); pi−1αi = αi

(definition of Di); and u = Σn
j=0αj (since Dn = D). From these it follows that

αiαj = 0 if j ≤ i. Thus

(1 + αn) · · · (1 + α2)(1 + α1) = 1 + Σn
j=0αj = 1 + u.

3.3 Contractions and cancellation. We use chain contractions to identify
parts of a complex that can safely be omitted. Lemma 3.3.2 shows this is the
inverse of the usual stabilization operation, but with more flexibility in how
the trivial summands are related to the chosen bases. An explanation of the
topological significance is given in 3.3.3.

3.3.1 Definition. Suppose C is a based complex with a partial order on the
basis in each degree, and ξ is a chain contraction for C. We say ξ cancels the
complement of a based subcomplex Ĉ ⊂ C if

(1) in each degree and when they are comparable, basis elements of C ⊥ Ĉ

preceed those of Ĉ in the partial order, and
(2) there is a based decomposition C ⊥ Ĉ = D ⊕ D̄ so that ξ has the form




ξ̂ u v
0 0 δ
0 0 0


 : Ĉ ⊕D ⊕ D̄ −→ Ĉ ⊕D ⊕ D̄

with δ a ±1-triangular isomorphism.
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This is a very rigid condition. If the partial order and ξ are fixed then (1)
implies that the based subcomplexes for which this works are linearly ordered by
inclusion, and the decomposition in (2) is unique when it exists. The following
is also clear:

3.3.2 Lemma. If ξ cancels the complement of Ĉ ⊂ C then it preserves Ĉ and
the restriction (ξ̂ in the matrix above) is a chain contraction of Ĉ. If B̂ ⊂ Ĉ ⊂ C

are based subcomplexes and ξ cancels the complements in C of both, then ξ|Ĉ
cancels the complement of B̂ in Ĉ.

3.3.3 Structure of the boundary.
If C = Ĉ⊕D⊕ D̄ is a cancellation decomposition as above then the boundary

homomorphism c : C → C has the form



ĉ x y
0 d z
0 δ−1 d̄


 .

The lower-left 0 entries reflect the hypothesis that Ĉ is a subcomplex. The δ−1

term comes from the hypothesis that ξ is a chain contraction.

3.3.4 Standardizing cancellations. The following lemma shows that cancella-
tions are equivalent to standard models. Versions of this are used to standardize
dimensions in 3.8 and in the local cancellation of inverses in §5.

Lemma. Suppose C = Ĉ ⊕D⊕ D̄ is a cancellation decomposition of C and use
the notation above for the matrix form of the boundary homomorphism. Then f

is a chain isomorphism to the same graded module with boundary homomorphism
b and contraction β where

f =




1 0 xδ
0 1 dδ
0 0 1


 , b =




ĉ 0 0
0 0 0
0 δ−1 0


 , and β =




ξ̂ u −ĉu
0 0 δ
0 0 0




Proof. The chain-map claim is that fb = cf , the contraction claim is that fβ =
ξf . Multiply out the matrices given, then this can be seen to follow from c2 = 0.
Alternatively, b, β are obtained by conjugating by f and f−1 is obtained by
multiplying the off-diagonal terms of f by −1. f is ±1 triangular with respect
to a suitable partial order because δ is.
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There are several useful remarks about this:

(1) The complement of Ĉ is also a subcomplex in this structure, so in par-
ticular the projection to Ĉ is a chain map.

(2) f is determined by Ĉ and ξ, and in particular is independent of a choice
of partial order. The submodule D is the image of ξ intersected with
the complement of Ĉ, so it’s complement D̄ is also determined. Let p

denote the based projection C → D̄, then f = (1−p)+ cpξ is a canonical
description.

(3) The contraction β can be further improved. The degree-2 homomorphism



0 0 u
0 0 0
0 0 0




gives a chain homotopy to one with 0 in the upper right corner.

3.4 Definition of K1(R). K1(R) is a simplicial set with simplices defined using
triangular simplices of chain complexes with contractions. The basic idea is that
a K1 simplex is a sum of a nondegenerate part, in which the chain maps are
isomorphisms, and a cancellable part in which they may not be. Genuine K-
theory activity takes place in the nondegenerate part, while the cancellations
organized by the contractions enable stabilization of dimension. Most of the
complexity of the theory comes from the cancellations: not from K-theory itself,
but from the structures needed to keep it from escaping during stabilization.

3.4.1 Simplices in K1(R). An n-simplex of K1(R) is a finitely generated based
chain n-simplex C together with chain contractions ξi for (Ci, ci), such that there
are partial orders on the bases in each degree so that for each i < j,

(1) ci,j is a ±1 triangular chain map Ci → Cj ;
(2) the elements in the image of the basis function of ci,j come after the

elements in the complement, in the partial order on each Cn
j ;

(3) if i < j < k then cj,kci,j has the same underlying basis function as ci,k;
(4) ξ cancels the complement of the image Cj ⊥ ci,j(Ci) ⊂ Cj , for all i.

Note that the partial orders are only required to exist and are not part of the
data. Diagrams of chain maps in the simplex, such as the triangle in (3), are
not required to commute. However condition (3) is a weak version of “commute
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up to increasing chain homotopy”. These conditions are delicately balanced in
being strong enough to capture K-theory but flexible enough to work in the
cancellation-of-inverses construction of the next section and various localizations
of it. The following shows the images are based subcomplexes, which is required
for condition (4) to make sense.

Lemma. The image of ci,j is the based subcomplex spanned by the image of the
underlying basis function, and if i < j < k then cj,kci,j has the same image as
ci,k.

The first part follows from the triangularity of ci,j and the order condition
(2). The second part follows from this and the basis-function hypothesis (3).

Faces of such simplices are defined in the evident way: the jth face omits the
complex Cj . Faces of K1 simplices are again in K1, so K1(R) is a simplicial
complex. More precisely this gives it the structure of a ∆-set (omit degeneracies
from the definition of simplicial set, [Rourke-Sanderson 1]). One can either work
with these as ∆-sets or introduce degeneracies by introducing duplicates of the
Ci. In any case we proceed without mention of degeneracies and leave the choice
of details to the reader.

3.4.2 The image partial order. We expand on the partial order condition (2)
in the definition of simplices in K1(R). Suppose (C, c, ξ) is an n-simplex. Let Ci,j

denote the image of ci,j in Cj , and for notational convenience we set Cj,j = Cj .
Recall that Cn

i+1,j ⊥ Cn
i,j denotes the based complement of the smaller image in

the larger, in degree n. Since in each degree the complement of Ci,j preceeds it
in the partial order we get

(Cn
j,j ⊥ Cn

j−1,j) < · · · < (Cn
i,j ⊥ Cn

i−1,j) < · · · < (Cn
1,j ⊥ Cn

0,j) < Cn
0,j .

We will refer to this as the “image partial order” on Cn
j . Any partial order

making (C, c, ξ) a K1 simplex must refine this partial order.

3.4.3 Morphisms. Morphisms of K1 simplices are dictated in a straightforward
way by the structure. The key property is that triangulation gives K1 simplices,
so morphisms can be used to construct simplicial homotopies. Composition of K1

morphisms is generally not a morphism, because the partial orders will usually
not be compatible.
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A morphism of K1 simplices f : (A,α) → (C, ξ) consists of chain maps fi,j : Ai →
Cj for i ≤ j such that there are choices of partial orders satisfying

(1) (A,α) and (C, ξ) are K1 simplices with respect to the partial orders;
(2) in each degree each fi,j is a ±1 triangular morphism whose image basis

elements follow those in the complement;
(3) if i ≤ j ≤ k then the morphisms cj,kfi,j , fi,k, and fj,kai,j all have the

same underlying set function; and
(4) ξj cancels the complement of the image of fi,j .

3.4.4 Triangulation. Suppose f : A → C is a morphism of K1 simplices.
We think of this as a diagram modeled on ∆n × I, and triangulate it into
(n + 1)-simplices corresponding to the canonical triangulation of the model.
Specifically we get n + 1 such simplices, the kth one of which has vertices
A0, . . . Ak, Ck, . . . , Cn, and chain maps the ai,j , ci,j and fi,j whose domain and
range are both vertices. ∂0 of the 0th simplex is C, ∂n+1 of the (n + 1)st is A,
and the kth and (k + 1)th have exactly one face in common.

The following is straightforward:

Lemma. Simplices in the triangulation of a K1 morphism are K1 simplices.

We describe how this is used to construct homotopies. Suppose X is a simpli-
cial complex, and A,C : X → K1(R) are simplicial maps. Suppose further that
there are morphisms fσ : A(σ) → C(σ) given for every σ ∈ X so that f∂iσ = ∂ifσ.
Then simplices in the triangulations of the fσ fit together to define a homotopy
from A to C.

3.5 Cancellation of inverses. Direct sum defines a simplicial monoid structure
K1×K1 → K1. “Simplicial” here means the product is defined on the simplicial
product in which the set of n–simplices is the product of the sets of n–simplices
of the factors. Alternatively this is a simplicial object in the category of monoids.
Beware that we do not know if the geometric realization of the simplicial product
is equivalent to the topological product of realizations. This would be the case if
K1 satisfied some version of the Kan condition, but this is far from true. In any
case the use we make of the monoid structure is to construct various simplicial
maps and homotopies that can be reliably realized.
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In this section we show the suspension is a homotopy inverse for the monoid
structure by constructing a nullhomotopy of the sum id ⊕ S : K1(R) → K1(R).
This nullhomotopy is described in detail because elaborations of it are the bases
for most of the results in the paper. The first application is in 3.7 to compress
complexes into two degrees.

The construction is canonical, so it is sufficient to describe the effect on an
arbitrary simplex of K1 and they will fit together to define a homotopy of the
entire space. The idea is that the chain contraction provides an isomorphism to
the cone on the identity: if (C, ξ) is an n-simplex then

(
1 −ξ

0 1

)
: C ⊕ SC

'−→ C ⊕1 SC.

The cone on the identity has an obvious global cancellation structure (D̄ = C,
D = SC) so 0 → C⊕1 SC is a morphism of K1 simplices. Subdividing these two
morphisms (see 3.4.4) gives a homotopy to 0. In detail:

3.5.1 Lemma. Suppose (C, c, ξ) is an n-simplex of K1(R).

(1) C ⊕ SC with contraction
(

ξ 0

0 −ξ

)
is a K1 simplex;

(2) the cone C ⊕1 SC with contraction
(

0 0

1 0

)
is a K1 simplex;

(3) fi,j =
(

1 −ξj

0 1

)(
ci,j 0

0 ci,j

)
for i ≤ j is a morphism between these simplices;

and
(4) the inclusion 0 → C ⊕1 SC is a K1 morphism.

Proof. The main thing to check is that there are appropriate partial orders in
which contractions cancel complements. Choose K1-simplex partial orders on
bases, and as in 3.4.2 denote the image of ci,j by Ci,j . Partial order the bases
in the modules C ⊕ SC using the given partial order in each summand and by
shuffling the image partial orders (3.4.2) in the two pieces, with SC terms before
C terms. More specifically the degree n module in Cj ⊕SCj is partially ordered
as follows (recall (SCj)n = Cn−1

j ):

(Cn−1
j,j ⊥ Cn−1

j−1,j) < (Cn
j,j ⊥ Cn

j−1,j) < · · ·
< (Cn−1

i,j ⊥ Cn−1
i−1,j) < (Cn

i,j ⊥ Cn
i−1,j) < · · · < Cn−1

0,j < Cn
0,j .

i → j maps In both the sum and the cone the i → j maps are
(

ci,j 0

0 ci,j

)
.

These are ±1 triangular injections because ci,j is. The images are the based
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subcomplexes Ci,j ⊕ SCi,j and satisfy the image order condition because the

ci,j do. The i → j map in the morphism is the composition of
(

ci,j 0

0 ci,j

)
and(

1 −ξ

0 1

)
. The first factor is ±1 triangular as before. The second is a ±1 triangular

isomorphism because ξ preserves images, by Lemma 3.4.1, and SC terms in the
image partial order preceed C terms. Specifically the summand (Cn−1

i,j ⊥ Cn−1
i−1,j)

is taken to Cn
i,j = ⊕k≤i(Cn

k,j ⊥ Cn
k−1,j), and all parts of this are greater in

the partial order. Thus the non-diagonal part of
(

1 −ξ

0 1

)
is increasing. Note

that since ξj preserves Ci,j , the morphism
(

1 −ξ

0 1

)(
ci,j 0

0 ci,j

)
has image a based

subcomplex satisfying the image order condition, namely Ci,j ⊕ SCi,j .
Finally all these chain maps have underlying basis functions the product of

basis functions on the summands. Since the original simplex has commutative
basis-function diagrams, so do the sums.

Cancellation conditions In the direct sum the contractions cancel complements
because they do in the summands. In the cone Cj ⊕1 SCj projection of the
contraction into the complement of a subcomplex of the form (Ci,j ⊕ SCi,j) has
a single nonzero entry, namely the identity from (Cj ⊥ Ci,j) to (SCj ⊥ SCi,j).
The chain maps in (3) have the same image subcomplexes as the i → j structure
maps in the cone, so the same cancellations work for them. This shows the fi,j

define a K1 morphism.
Finally (4) follows from the form of the contraction in the cone since it clearly

cancels the entire complex. This concludes the proof of the lemma.

As explained above this implies

3.5.2 Corollary. Triangulation of the canonical morphisms of 3.5.1 gives a
canonical homotopy of id⊕ S to 0.

3.6 Comparison with Volodin K-theory. Volodin [Volodin 1] developed a
version of K-theory using triangular matrices. This was shown to be the same
as Quillen K-theory by [Vasserstein] and [Wagoner], see also the short (or at
least highly compressed) proof by [Suslin]. Here we show there is a map from
Volodin’s space to K1(R) so that the induced map on loop spaces is a homo-
topy equivalence. This is the principal ingredient of the coefficient part of the
controlled assembly isomorphism theorem 2.2.1, where a spectrum constructed
from K1(R) is identified as the standard K-theory spectrum. The spectrum-level
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statement follows from the result here, the relatively formal facts that the map
is a map of spectra, and isomorphism of higher homotopy implies isomorphism
of lower homotopy by a suspension trick.

In this section we define Volodin’s space and the map, and outline the proof.

3.6.1 Definition of Vk(R). We use the description given by Suslin [S]. For each
k ≥ 0 define a simplicial set Vk(R) whose n-simplices are sequences gi, 0 ≤ i ≤ n,

(1) each gi is an isomorphism Rk → Rk

(2) there exists a partial order on the basis so that each gig
−1
j is 1-triangular

with respect to this order.

Recall that 1-triangular means triangular with diagonal entries 1. The face map
∂i is defined by omitting the i term in the sequence.

Next fix a standard countably generated free module R∞ and consider Rk as
the first k coordinates. Rk is then a based submodule of Rk+`, and isomorphisms
of Rk can be canonically extended to isomorphisms of Rk+` by the identity in
the other coordinates. This gives inclusions · · · ⊂ Vk(R) ⊂ Vk+1(R) ⊂ . . . . The
Volodin space is the limit of this sequence:

V (R) = lim
n→∞

Vk(R).

3.6.2 The map V (R) → KV
1 (R). Suppose (g∗) is an n-simplex of Vk(R). De-

fine an n-simplex of K1(R) by:

(1) chain complexes with modules Rk in degrees 1 and 0 and trivial otherwise,
with boundary gi : Rk → Rk and contraction g−1

i ; and
(2) chain maps

Rk 1−−−−→ Rk

ygi

ygj

Rk gjg−1
i−−−−→ Rk

Note the cancellation and image agreement conditions are automatically satisfied
because the chain maps are all isomorphisms. This construction defines a sim-
plicial inclusion. Further it clearly commutes with the stabilizations Vk ⊂ Vk+1,
so induces a map on the direct limit. The main result is:
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3.6.3 Theorem. The map V (R) → K1(R) induces a homotopy equivalence of
loop spaces.

Probably the most efficient way to prove this is to follow Suslin [S] by con-
structing a space with special π1, showing it is acyclic, and appealing to a char-
acterization theorem. We give a (rather elaborate) direct proof because some
parts of it are useful in other circumstances. In the remainder of this section we
set up notation and describe steps in this proof. Proofs of individual steps are
given in the next four sections.

The first step is “compressing into two degrees” in 3.7. Define KV
1 (R) to be

the subcomplex of K1(R) consisting of complexes zero except in degrees 0 and
1, then the result is that K1(R) deformation retracts to this. The map from the
Volodin space maps into this subspace.

The second step in the proof, “standardizing dimensions”, is given in 3.8.
Define KV

(≤k)(R) to be the subcomplex of KV
1 (R) consisting of simplices whose

chain modules have dimension ≤ k. Similarly KV
(=k)(R) is the subcomplex of

chain modules with dimension exactly k. We want to show these two subcom-
plexes are essentially the same. For convenience we work in the loop space. The
result is that the loop space ΩKV

(≤k)(R) deformation retracts to ΩKV
(=k)(R), and

the retraction homotopy commutes with loops on stabilization:

ΩKV
(≤k)(R) retract−−−−→ ΩKV

=k(R)
yinclude

y⊕( 1 )

ΩKV
(≤k+1)(R) retract−−−−→ ΩKV

(=k+1)(R)

homotopy commutes. The subspaces KV
(≤k)(R) form a direct system under inclu-

sion, and KV
1 (R) is the union. The result shows it is also the limit of KV

(=k)(R)
under stabilization. The map Vk(R) → KV (R) has image in KV

(=k)(R) and these
maps give a morphism of direct systems. Therefore to prove Theorem 3.6.3 it is
sufficient to prove the unstable analog: the map Vk(R) → KV

(=k)(R) induces a
homotopy equivalence of loop spaces.

The third step is “rolling out” in 3.9, and again takes place in loop spaces.
1-simplices of KV

(=k)(R) are triangular chain maps of complexes of length 2, so
correspond to changing boundary homomorphisms by composition on both the
right and left by triangular isomorphisms. The Volodin space is constructed
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using cosets, so uses composition only on one side. To fix this we consider a
loop KV

(=k)(R), which roughly corresponds to a sequence of 2-sided compositions
giving the identity. But then we can slide things past the identity to move them
all to one side. This deforms the loop space of KV

(=k)(R) to the loop space of
V ±

k (R), the subspace in which the degree-1 part of chain maps in 1-simplices are
identities.

The final step, “fixing signs” in 3.10, shows the loop space of V ±
k (R) defor-

mation retracts to the (image of) loop space of the Volodin space Vk(R). The
difference between the two spaces is that Vk(R) is defined using +1-triangular
morphisms, while ±1-triangular ones are allowed in V ±

k (R). The negative signs
are a consequence of using chain complexes, and cannot be avoided. However in
the loop space they can be removed essentially by taking absolute values on the
diagonal.

Together these steps prove the comparison Theorem 3.6.3.

3.7 Compressing into two degrees. Define KV
1 (R) to be the subcomplex of

K1(R) consisting of complexes that are trivial in all degrees except 0 and 1. In
the next section we analyse this subcomplex; here the objective is to show

3.7.1 Theorem. There is a canonical deformation retraction of K1(R) to KV
1 (R).

The proof uses “degree-wise localization” of the cancellation of inverses. “Lo-
calization” will refer to the use of the steps of 3.4 to cancel some part of a
complex but leave other parts alone. In later sections we use reference maps to a
space to determine which parts to cancel. Here we use degrees, roughly speaking
cancelling in positive degrees and leaving degree 0 alone.

The proof is a modification of the infinite swindle that contracts K1(R), but
goes through infinite complexes that are nontrivial in negative degrees. Recall
that the suspension SjC of a complex is defined (3.1.3) by shifting the grading by
j. Consider the map that takes C to infinite sum ⊕j≥0S

−jC. We write this sum
as · · ·⊕S−jC⊕· · ·⊕S−1C⊕C for later notational convenience. If we associate this
in pairs as · · ·⊕ (S−2i−1C⊕S−2i)⊕· · · then applying the cancellation homotopy
to the pairs gives a homotopy of the map to the constant 0 map. If we associate
as · · · ⊕ (S−2iC ⊕ S−2i+1)⊕ · · · ⊕ C and apply the cancellation homotopy then
all the nontrivial suspensions vanish and we get a homotopy to the identity map
C 7→ C. Putting these together gives a nullhomotopy of the inclusion into a space
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of infinite complexes. Note however that since we used negative suspensions the
nonnegative-degree parts of the intermediate complexes are finite. The plan is
roughly to get back into K1(R) by discarding everything in negative degrees. We
cannot literally do this because truncation does not “commute” with cancellation
of inverses. However we can limit the problems to degrees 0 and 1. The outcome
will be a homotopy that agrees with the swindle in degrees 2 and above, and
stays in finitely generated nonnegative complexes. The end of the homotopy is
no longer completely trivial, but is concentrated in degrees 0 and 1. Finally we
arrange that if a complex is already concentrated in degrees 0 and 1 then the
homotopy leaves it unchanged. This gives the deformation retraction promised
in the theorem.

To fill out this outline we must describe how the cancellations in the infinite
swindle are “localized” to positive degrees. To do this we write out low degree
groups in each step, and display chain maps, contractions, etc. explicitly as
matrices. We leave to the reader the verifications that these actually are chain
maps and the contractions cancel inverses. As in 3.5 the process is canonical, so
it is sufficient to describe the effect on a single simplex (C, ξ).

3.7.2 Stabilization. The first step is to stabilize by including C into the sum
with mapping cones of identity morphisms. The complexes involved are even
negative suspensions with negative degrees omitted: S−2i

0 C denotes the complex
with degree-j group Cj−2i if j−2i ≥ 0, and 0 otherwise. The mapping cone is the
sum of this with its suspension, which is the (−2i+1) suspension of C truncated
in degree 1. In the following diagram the group in a single degree is obtained
by summing a horizontal row, and arrows indicate nontrivial components of the
boundary homomorphisms:

... C2r+2

²²

C2r+1

²²zzuuuuuuuuu
... C4

²²

C3

²²zzuuuuuuuuuu C2

²²
... C2r+1

²²

C2r

zzuuuuuuuuu
... C3

²²

C2

zzuuuuuuuuuu C1

²²
... C2r ... C2 C0
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The boundary in this complex is




. . .
c 1

0 −c

c


 in degrees ≥ 2, and

(
. . .

c 1

c

)

on degree 1. The contraction is




. . .
0 0

1 0

ξ


 in degrees ≥ 1 and




. . .
0

1

c


 in

degree 0.

3.7.3 Reparameterization. The next step is to use, as much as possible, the
isomorphism of 3.5.1 from this to a complex with the same groups and a direct

sum boundary structure. The isomorphism in degrees ≥ 1 is




. . .
1 −ξ

0 1

1


,

and we use the identity in degree 0. Specifying the chain maps determines the
boundary structure in the range. This is ±c on the diagonal (as desired) in

degrees ≥ 2, and




. . .
ξc

c

c


 in degree 1. The contraction is ±ξ on the diagonal

in degrees ≥ 2. The contraction is




. . .
cξ 0

0 cξ

cξ


 in degree 1 and




. . .
ξcξ

ξc

ξ




in degree 0.

The second morphism goes from a complex with the same groups to this.
It is defined like the first morphism but with the association of terms shifted

over by one:




. . .
1 −ξ

0 1

1 −ξ

0 1


 in positive degrees, and the identity in degree 0.

We work out that the boundary homomorphism in the complex is a mapping

cone in degrees ≥ 2:




. . .
−c 0

1 c

−c 0

1 c


, and in degree 1 is




. . .
−ξcξ

c ξc

−ξcξ

c


.

Diagrammatically this is
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... C6

c

²²}}||
||

||
||

|
C5

−c

²²

C4

c

²²

1

}}||
||

||
||

C3

−c

²²

C2

c

²²

1

}}||
||

||
||

... C5

c

²²

C4

cξ

}}||
||

||
||

C3

c

²²−ξcξ
vvmmmmmmmmmmmmmmm C2

cξ

}}||
||

||
||

C1

c

²²−ξcξ
vvmmmmmmmmmmmmmmm

... C4 C2 C0

The contraction is the mapping cone contraction in degrees≥ 2, is




. . .
0 0

cξ 0

0 0

cξ 0




in degree 1, and




. . .
−ξcξ 0 ξ

−ξcξ 0 ξ


 in degree 0.

3.7.4 Cancellation. The final step is to note that the contractions allow us to
omit most of this. The residual subcomplex consists of the bottom two groups in
even-numbered summands, and inclusion into the whole thing is a K1 morphism.

The residual complex is concentrated in degrees 0 and 1. Explicitly it is:
in degree 0, ⊕∗evenC∗, in degree 1, ⊕∗oddC∗, the boundary is c − ξcξ, and the
contraction is ξcξ−cξc. We recognize this as a variant on the Whitehead formula
for the torsion of a contractible complex. The morphisms described above give
a homotopy from the identity of K1(R) to the map that takes C to the complex
given by this formula, so into the subcomplex KV

1 (R) as required. Finally note
that if C is already concentrated in degrees 0 and 1 then it is left unchanged by
all of this.

This completes the proof of the two-degree theorem.

3.8 Standardizing dimensions. In K1 simplices dimensions are allowed to
increase provided the contraction cancels the new part. Here we deform simplices
to ones where all dimensions are the same, roughly by using the cancellation
information to fill out the small ones. Define (as in 3.6) KV

(≤k)(R) to be the
subcomplex of KV

1 (R) consisting of simplices of complexes with dimension ≤ k

in each degree. KV
(=k)(R) is the subcomplex of complexes with dimension exactly

k in degrees 0 and 1.
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3.8.1 Proposition. The loop space ΩKV
(≤k)(R) deformation retracts to ΩKV

(=k)(R)
so that the retraction homotopy commutes with inclusion and suspension:

ΩKV
(≤k)(R) retract−−−−→ ΩKV

=k(R)
yinclude

y⊕( 1 )

ΩKV
(≤k+1)(R) retract−−−−→ ΩKV

(=k+1)(R)

3.8.2 Details on KV
1 (R). The definition of K1 simplices simplifies quite a bit

for complexes concentrated in two dimensions. An n-simplex consists of:

(1) (short contractible complexes) for 0 ≤ i ≤ n an isomorphism ci : C1
i →

C0
i ;

(2) (chain maps) for i < j, homomorphisms c∗i,j : C∗i → C∗j , where ∗ = 0, 1,
such that the diagram commutes:

C1
i

c1
i,j−−−−→ C1

jyci

ycj

C0
i

c0
i,j−−−−→ C0

j

(3) (partial orders) there exist partial orders on the bases of Ci in each degree
so that ci,j is ±1 triangular, and the image of the basis function of ci,j is
greater than its complement;

(4) (commutative basis functions) if i ≤ j ≤ k then cj,kci,j has the same
basis function as ci,k; and

(5) (cancellation condition) the restriction of cj to the based complements of
c∗i,j is ±1 triangular.

This relates to definition 3.4.1 as follows: a complex of length 2 is contractible
if and only if the boundary is an isomorphism, and in this case there is a unique
contraction (the inverse). Condition (1) thus encodes contractible complexes.
Condition (2) is equivalent to the c∗i,j defining chain maps. (3) encodes the
triangularity hypothesis and the image order condition. (4) is the same as in
3.4.1. (5) encodes the cancellation property of the contraction.

The next result is a version of the “standard coordinates” for cancellations
given in 3.3.2.
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3.8.3 Lemma. Suppose f : B → C is a KV
1 morphism (1-simplex) and φ : R` →

C1 gives a based isomorphism to the complement of the image f(B1). Then the
isomorphism f̂ given by [f1, φ] in degree 1 gives a KV

1 commutative diagram
(2-simplex)

B
f //

inclusion

##HHHHHHHHH C

B ⊕ 1R`

f̂

;;vvvvvvvvv

More precisely any partial orders on B, C making f a 1-simplex determines
one on the stabilization making the diagram a 2-simplex. In degree 0 f̂ is given
by [f0, cφ].

To see KV
1 structure we decompose C as the image of f plus a cancellation

part: C1 = C̄1 ⊕D and C0 = C̄0 ⊕ D̄. The chain map f̂ in these coordinates is:

B1 ⊕R`

(
f1 0

0 φ

)

//

(
b 0

0 1

)

²²

C̄1 ⊕D
( c̄ x

0 δ

)

²²
B0 ⊕R`

(
f0 xφ

0 δφ

)

// C̄0 ⊕ D̄

Since φ is a based isomorphism it is 1-triangular with respect to any partial
order. Use the partial order on B1 ⊕ R` that makes the basis map of f̂1 order-
preserving. This extends the partial order on B1 and makes f̂1 ±1 triangular
because f1 is. Further f̂0 is ±1 triangular because the basis of R` preceeds the
basis of B0 (by 3.8.2(3)) and f0, δ and φ are all ±1 triangular. This means f̂ is
a KV

1 morphism with respect to the given partial orders. Finally the diagram in
the lemma commutes, so by 3.2.3 in each degree the underlying basis functions
commute. This means the diagram is a 2-simplex in KV

1 .

3.8.4 Loop spaces. The model we use for the loop space uses triangulations of
∆n× I such that the projection to ∆n is simplicial. There is a standard minimal
such triangulation described in 3.4.3. All such triangulations have qualitative
structure similar to the standard one: there is a linear ordering of the (n + 1)-
simplices so adjacent ones share a face, and the projection of each one to ∆n

collapses a single edge.
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If K is a simplicial space define the loop space Ω(K, ∗) to be the simplicial
space with n-simplices simplicial maps of triangulations of ∆n×I as above, with
∆ × {0, 1} mapping to the basepoint. Boundaries of simplices are defined by
restricting maps to faces (∂i∆n)× [0, 1].

3.8.5 Proof of Proposition 3.8.1. Take the identity map 1: Rk → Rk as the
basepoint of both KV

≤k and KV
=k. We construct a retraction S : ΩKV

≤k → KV
=k and

a morphism s : id → S. The deformation of the lemma is obtained by subdividing
the morphism. The retraction and morphism are constructed by induction on
skeleta. More precisely we construct them on the vertices, then extend to the
1-simplices. Higher dimensional simplices are defined to be collections of 1-
simplices satisfying some coherence conditions, so no further constructions are
required, but coherence must be checked.

A vertex of ΩKV
(≤k) is a simplicial map of a triangulation of I into KV

(≤k),
with the ends going to 1Rk . Such a map is a sequence of objects C0, . . . Cn with
morphisms between adjacent ones: either Ci → Ci+1 or Ci ← Ci+1. Define
objects Ĉi by stabilizing the Ci to have dimension k: Ĉi = Ci ⊕ (1 : R` → R`),
where ` + dim(C1

i ) = k. We want to fill in the dotted arrows in the following
diagram so the squares are KV

1 morphisms (including coherent partial orders):

C0
//

=

²²

. . . // Ci

⊂
²²

Ci+1
oo //

⊂
²²

. . . Cn
oo

=

²²
Ĉ0

// . . . // Ĉi Ĉi+1
oo // . . . Ĉn

oo

Consider a square in which the morphism goes from Ci to Ci+1, and choose
appropriate partial orders. Partial order the bases in Ĉi+1 by putting the new
elements first, then the inclusion is a morphism and the composition (diagonal
in the following) is also a morphism.

Ci

⊂
²²

//

!!CC
CC

CC
CC

Ci+1

⊂
²²

Ĉi
// Ĉi+1

According to Lemma 3.8.3 a based isomorphism from the stabilization factor R`

in Ĉ1
i to the complement of the image in Ĉ1

i+1 determines a way to complete the
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lower triangle. There is such an isomorphism for dimension reasons; choose one
randomly and use that.

Squares in which the morphism goes from Ci+1 to Ci are filled in with the
mirror image of this argument.

Note the ends of the sequence already have dimension k so do not change.
This means the lower row in the diagram gives a sequence that begins and ends
with identities, so defines a vertex in ΩKV

(=k). The rest of the diagram defines a
morphism from the original vertex in ΩKV

(≤k) to this. This defines the retraction
S and morphism s on vertices.

Now consider a 1-simplex in ΩKV
(≤k). This is a map of a triangulation of

∆1 × I into KV
(≤k), so consists of two vertices as above and a sequence of 2-

simplices filling in between them. Denote the vertices by C∗ and D∗, then a
typical segment looks like

. . . // Ci

²² ""DD
DD

DD
DD

Ci+1
oo //

²²

Ci+2
oo

²²

//

{{www
ww

ww
ww

. . .

||zz
zz

zz
zz

z

. . . // Dj // Dj+1 // Dj+2 . . .oo

The retraction and morphism are already defined on vertices, so have sequences
Ĉ∗, D̂∗ and morphisms from the originals to these. To extend S to the 1-simplices
we need to fill in 2-simplices joining Ĉ∗ and D̂∗. We do this by working along the
loop coordinate. Note since loops begin at the identity the identity Ĉ0 = D̂0 fills
in the beginning of the diagram. Suppose by induction that we have extended
it up to a 2-simplex with one vertex on Ci, so have everything but the dotted
arrow in the following:

Ci

vvmmmmmmmmmmmmmmmmm

}}zz
zz

zz
zz

²²
Dj //

²²

Dj+1

²²

Ĉi

vvmmmmmmmmmmmmmmmmm

}}
D̂j

// D̂j+1

Again 3.8.3 can be used to fill this in. Compose Ci → Dj+1 → D̂j+1 to obtain
the setting of 3.8.3. Now however we use a particular basis-preserving isomor-
phism from the stabilization factor in Ĉi to the complement in degree 1 in D̂j+1.
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Namely, the composition Ĉi → D̂j+1 → D̂j+1 is a ±1 triangular isomorphism,
and the underlying basis function preserves images, etc. so gives a bijection. Ap-
plying 3.8.3 using this gives a dotted arrow so that the right square commutes
and basis functions commute. This fills in this triangle, and we move on to the
next. Triangles with two vertices on the C∗ are handled similarly.

Eventually this process reaches the end of ∆1 × I. There nothing happens
since the dimension is already k, so the diagram ends with identities. The Ĉ,
D̂ part of the diagram gives a 1-simplex in ΩKV

(=k) and we define this to be
the image of S. The morphisms going from the original to the new part give a
morphism from the original 1-simplex to the new one, and this is defined to be
s.

Finally consider an n-simplex of ΩKV
(≤k). The construction on 0- and 1-

simplices gives all the objects and maps required to define S and s on this simplex,
but we need to check ±1 triangularity with respect to coherent partial orders,
and commutativity of underlying basis functions. The ability to choose coherent
partial orders follows from the refinement noted after the statement of 3.8.3 that
any suitable partial orders on the input extends to ones on the output. To see the
underlying basis functions commute it is sufficient to check 2-simplices. There it
is easily seen to hold by the choice made in construction of 1-simplices.

This S maps to ΩKV
(=k). It is a retraction (identity on ΩKV

(=k)) because
nothing happens when dimensions are already k. This completes the proof of
the dimension-standardizing proposition.

3.9 Rolling out. Recall (§3.6) that V ±
k is defined like V but with ±1 triangular

automorphisms of Rk. It maps to KV
(=k), essentially to the subspace of short

chain complexes in which the degree-1 part of chain maps are base-preserving
isomorphisms. The basic difference between KV

(=k) and V ±
k is that in the former

the morphisms change objects by composition on both sides with triangular
matrices, whereas in the latter compositions are only on one side.

3.9.1 Proposition. The inclusion of loop spaces ΩV ±
k → ΩKV

(=k) is a homotopy
equivalence of realizations.

The plan of the proof is to define a filtration ΩV ±
k = X0 ⊂ X1 ⊂ . . . with

∪iX = ΩKV
(=k). We then construct a homotopy from the identity of KV

(=k) to
a map S so that S decreases filtration degrees (i.e. S(Xi) ⊂ Xi−1) and the
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homotopy increases degrees in a controlled manner (the image of the homotopy
on Xi is in X2i). The proposition follows routinely from this.

3.9.2 The filtration. An n-simplex of ΩKV
(=k) is a special triangulation of ∆n×

I and a simplicial map of this to KV
(=k) that takes the ends to the basepoint

id : Rk → Rk. For instance a vertex is a triangulation of I and a map to KV
(=k),

so a linear sequence of short chain complexes and maps. Since the maps are all
invertible, for notational convenience we can take them all to go in the direction
of the loop coordinate. Explicitly we have k-dimensional based modules and
isomorphisms:

Rk C1
0

t0 //

c0

²²

C1
1

c1

²²

t1 // . . . tn−1 // C1
n

cn

²²

Rk

Rk C0
0

t0 // C0
1

t1 // . . . tn−1 // C0
n Rk

The n + 1-simplices in these triangulations of ∆n × I have a linear order so
that adjacent ones share a face, the first has ∆n×{0} as a face, and the last has
∆n ×{0} as a face. We define a map from this triangulation into KV

(=k) to be in
the subspace Xr if all but the last r of these n + 1-simplices map into V ±

k .

3.9.3 The homotopy. This construction is canonical so it is sufficient to de-
scribe the effect on a simplex. In fact we only describe it on vertices. It is
straightforward to extend this description to 1-simplices, but the diagrams are
too complicated to be useful and are best drawn for oneself. The general case
follows from 1-simplices and easily-seen coherence of partial orders.

Begin with a simplex, which is a diagram as in 3.9.2. The first step in the
homotopy doubles the length of the diagram by alternating the given chain maps
with identities. The degree-1 terms of the chain maps are shifted one place to the
right by starting with an identity. There is a “morphism” (a 1-simplex) going
from this new vertex to the old one, giving the homotopy. In the diagram the
front row is the original vertex, the back row is the new one, and the morphisms
joining them give the homotopy. Identity maps are denoted by long equality
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signs.

C0

§§±±
±±
±±
±±
±±
±±
±±
±

²²

C0
t0 //

t0

»»0
00

00
00

00
00

00
00

²²

C1

±±
±±
±±
±±
±±
±±
±±
±

±±
±±
±±
±±
±±
±±
±±
±

²²

C1
t1 //

»»0
00

00
00

00
00

00
00

²²

C2

²²

±±
±±
±±
±±
±±
±±
±±
±

±±
±±
±±
±±
±±
±±
±±
±

C0
t0 //

§§±±
±±
±±
±±
±±
±±
±±
±

C1

00
00

00
00

00
00

00
0

00
00

00
00

00
00

00
0 C1

t1 //

±±
±±
±±
±±
±±
±±
±±
±

±±
±±
±±
±±
±±
±±
±±
±

C2

00
00

00
00

00
00

00
0

00
00

00
00

00
00

00
0 C2

±±
±±
±±
±±
±±
±±
±±
±

±±
±±
±±
±±
±±
±±
±±
±

C0
t0 //

²²

C1
t1 //

²²

C2

²²

//

C0
t0 // C1

t1 // C2
//

Note that the stretching takes vertices in the filtration Xr to X2r−1.

The next step is to apply the inverse of this move on the segment omitting the
first and last squares. The result is a sequence with length one more than the
starting sequence and with the degree-1 terms of the chain maps shifted right one
position. This sequence begins with a chain map that is the identity in degree 1,
and ends with one that is the identity in degree 0.

Repeat this sequence of moves. This takes us to a sequence of length greater
by 2, with the last two squares the identity in degree 0, explicitly the sequence
ends with

. . .
tn−3 // C1

n−2

tn−2 //

tn−1tn−2cn−2

²²

C1
n−1

tn−1cn−1

²²

tn−1 // C1
n

cn

²²
. . .

tn−1 // C0
n C0

n C0
n

This vertex is in the same filtration degree as the original one because the filtra-
tion is defined using the end of the degree-1 part of the chain maps, and this has
not changed.

The final step in the homotopy shortens this diagram by 1 by moving the end
degree-1 term down to degree 0. In the diagram the beginning sequence is in the
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back, the end in the front.

. . .
tn−3 // C1

n−2

tn−2 //

²²

­­
­­

­­
­­

­­
­­

­­
­­

­­
­­

­­
­­

­­
­­

­­
­­

C1
n−1

tn−1cn−1

²²

44
44

44
44

44
44

44
44

44
44

44
44

44
44

44
44

tn−1 // C1
n

cn

²²

b(tn−1)
−1

§§¯̄
¯̄
¯̄
¯̄
¯̄
¯̄
¯̄
¯̄

. . . // C0
n

®®
®®

®®
®®

®®
®®

®®
®®

®®
®®

®®
®®

®®
®®

®®
®®

C0
n

(cntn−1)
−1

¼¼4
44

44
44

44
44

44
44

4
C0

n

b(cntn−1)
−1

§§°°
°°
°°
°°
°°
°°
°°
°°

. . .
tn−3 // C1

n−2

tn−2 //

tn−1tn−2cn−2

²²

C1
n−1

. . .
tn−1 // C0

n

(tn−1cn−1)
−1

// C1
n−1

On the right-hand slanted arrows “b(∗)” denotes the underlying basis function
of the triangular map ∗. Note t∗ is triangular because it is part of a chain map
in a 1-simplex, and cn is a based isomorphism (in fact identified with id: Rk →
Rk). The diagrams all commute except for the triangles on the right which
are off by the triangular parts of the inverses of tn−1 and cntn−1 respectively.
Recall, however, that 2-simplices in KV

(=k) are not required to commute. The
requirements are that triangularity conditions should all hold with respect to
fixed choices of partial order, and the underlying basis functions should commute.
These conditions clearly do hold. The diagram therefore defines a 1-simplex. The
new vertex at the end of the simplex has one fewer non-basis-preserving map in
degree 1, so is in lower filtration degree than the original. This accomplishes the
objective of the construction.

As noted above it is straightforward to extend this to 1-simplices, but the
diagrams have twice as many terms so we will not attempt them here. Higher
simplices are defined by collections of 1-simplices satisfying coherence conditions
on partial orders and basis functions. Since the construction is canonical this
follows formally.

3.10 Fixing signs. This section gives the last step in the proof of Theorem
3.6.3:

3.10.1 Proposition. The loop space ΩV ±
k deformation retracts to ΩVk.

Recall that an n-simplex in V ±
k is a sequence of automorphisms of Rk (matri-

ces) (g0, . . . , gn) so that all products gjgi with j > i are all ±1 triangular with
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respect to some partial order of the basis of Rk. The next lemma asserts that
we can change the signs on the diagonal arbitrarily.

3.10.2 Lemma. Suppose (gi) is an n-simplex of V ±
k and (ε0, . . . , εn) are ±1

diagonal matrices. Then (εigi) is also an n-simplex and (gi) → (εigi) is a mor-
phism of simplices.

Here “morphism” of simplices should be interpreted using the images in KV .
More directly it means it gives a homotopy of the simplex defined on the standard
triangulation of ∆n×I, with n+1-simplices of the form (g0, . . . , gi−1, εigi, . . . , εngn).
To check these are simplices use a partial order that makes (gi) a simplex. The
products in one of these n + 1-simplices are of the form gjg

−1
i , εjgjg

−1
i , and

εjgjg
−1
i ε−1

i . These are all ±1 triangular because the gjg
−1
i are and the εj are ±1

triangular with respect to any partial order.

3.10.3 Proof of the Proposition. We begin by defining the map S and homo-
topy s on vertices. A vertex of ΩV ±

k is a sequence (g0, . . . gr) of k × k matrices
with g0 = id = gr and for each i there is a partial order in which gig

−1
i−1 is ±1

triangular. Inductively define εi by ε0 = id, and εi = diag(gig
−1
i−1ε

−1
i−1). The

matrix on the right is ±1 triangular with respect to some partial order, so the
diagonal part is a well-defined ±1 diagonal matrix (Lemma 3.2.4). Define S on
this path by

S(g∗) =
{

(ε0g0, . . . , εrgr) if εn = id
(ε0g0, . . . , εrgr, id) if not

According to the lemma this is a path in V ±
k , and there is a morphism (standard

homotopy) from the original path to the new one. (The second case requires
sticking on a trivial 2-simplex at the end of the path).

The choice of the εi implies the image path is actually in Vk, and is unchanged
if the original path were already in this subspace.

Lemma 3.10.2 implies that this map and homotopy extend to higher simplices
of ΩV ±

k . This is because the higher simplices are determined by their vertices, on
which the map is defined, and triangularity of products with respect to a single
partial order. The lemma asserts that this triangularity holds.

The extension to all simplices of ΩV ±
k gives a map into ΩVk that is the identity

on ΩVk, and a homotopy of this to the identity in ΩV ±
k . This is the conclusion

of Proposition 3.10.1.
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4. Controlled K-theory

In this section we give the definition and naturality properties that do not
require spacial localization. General definitions for controlled algebra are in §4.1,
and differ in many details from versions used earlier. These differences do not
change the final outcomes but make some arguments easier. The controlled
version of triangularity is described in 4.2. The controlled K1 space is defined in
§4.3, essentially by inserting many εs into the uncontrolled definition. Naturality
with respect to restriction and uniformly continuous functions are immediate
consequences of the definition. Dependence on the map E → X is also analysed
in this section. The inverse limit as ε → 0 is introduced in Section 4.4.

4.1 Controlled algebra. The definitions we use for controlled algebra are dif-
ferent from other versions, particularly in the systematic use of paths. An earlier
version of path-based definitions is in [Quinn 6], see also [Anderson-Munkholm].
Metric notations are given in §4.4.1, modules described in 4.1.2, and homomor-
phisms defined in §4.1.3.

4.1.1 Metric notions. Suppose X is a metric space with metric d. We say a
path γ : [0, 1] → X has radius < ε if d(γ(s), γ(t)) < ε for all s, t ∈ [0, 1].

Now suppose ε > 0 and Y ⊂ X. Define the “ε (path) enlargement” Y ε to be
all points that can be reached from Y by a path of radius < ε. Previously we have
used the notation Y ε to denote the points with distance less than ε from Y , but
the truth is that we don’t care how close a point is if you can’t get there by a small
path. There is a standard way to redefine the metric using paths so distances
encode path properties, and when this is done the two definitions coincide. We
prefer not to do this because it complicates consideration of subspaces.

In the opposite direction define the “ε (path) reduction” to be points that
cannot be reached from the complement of Y by a path of radius < ε. Note
Y −ε = X − (X − Y )ε.

The ambient space X is not displayed in this notation. It is usually clear from
the context but occasionally, as in the lemma below, will require comment. A
benefit of using path enlargements is that they are less dependent on the ambient
space than distance enlargements, as the following “excision” lemma shows:

Lemma. Suppose U is open in X. Then (X − U)ε ∩ U = (Ū − U)ε ∩ U , where
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Ū denotes the closure in X, the path enlargement on the left is taken in X, the
one on the right in Ū .

Proof. Since (Ū , Ū−U) ⊂ (X, X−U) the containment (X−U)ε∩U ⊃ (Ū−U)ε∩U

is clear. To show the other direction suppose x ∈ (X − U)ε ∩ U . This means
there is a path γ : [0, 1] → X of radius < ε starting at x and ending in X − U .
Let t0 be the minimum of {t | γ(t) /∈ U}. Since U is open γ(t0) /∈ U , but it is in
the closure. Thus γ|[0, t0] is a path of radius < ε in Ū starting at x and ending
in Ū − U . This shows x ∈ (Ū − U)ε, as required.

4.1.2 Metric frontiers. The metric frontier of a metric space is the complement
of X in its completion, and is denoted by Fr(X). Technically this is the set of
limit points of Cauchy sequences in X that do not converge in X itself. Note
that if X is complete (e.g. compact) then the metric frontier is empty.

We use the shorthand notation FrεX for X ∩ (Fr(X))ε, where the enlargement
(∗)ε is taken in the metric closure. FrεX can also be described as beginning
points of non-convergent Cauchy paths γ : [0, 1) → X of radius < ε + δ for some
positive δ.

These definitions can differ from casual expectations in spaces that are not
locally path–connected. For example if X is the sequence of real numbers { 1

n}
then the metric frontier of X is {0}. The path enlargement of {0} in { 1

n} ∪ {0}
is just {0}, so FrεX is empty. This is what we want, however, because geometric
algebra is defined using paths.

Lemma.

(1) If U ⊂ X is open then (FrεX ∪ (Ū − U)ε) ∩ U = FrεU .
(2) if f : X → Y is a map of metric spaces such that d(x, x′) < δ implies

d(f(x), f(x′)) < ε, then f(W δ) ⊂ (f(W ))ε.
(3) if f : X → Y is proper and uniformly continuous then it extends to a map

of completions with f̄(FrX) ⊂ FrY .

Note that if the hypotheses of both (2) and (3) hold then f(FrδX) ⊂ FrεY ).

Some of the notation in statement (1) is a bit ambiguous. Ū indicates the
closure in X. The effect of adding FrεX in is the Lemma of the previous section
applied in the metric closure of X.
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Statement (2) is clear because f takes paths of radius < δ to paths of radius
< ε.

In (3) uniform continuity implies Cauchy sequences in X are taken to Cauchy
sequences in Y , so the map extends to a map of completions. If the image of
a Cauchy sequence converges in Y then by properness the inverse image of the
closure is compact in X. But a Cauchy sequence in a compact space converges.
Thus if the original sequence does not converge in X, neither does the image,
and so completion points in X map to completion points in Y .

4.1.3 Geometric modules and morphisms. The setting is a “coefficient map”
p : E → X with X a metric space. Distances are measured in X, while E serves
to record fundamental group data.

A geometric R-module on p : E → X is a free module with basis S, and a
function s : S → E.

A morphism of geometric modules is a formal linear combination of paths in
E. Specifically f : R[S1] → R[S2] is of the form Σiriγi, where

(1) ri ∈ R;
(2) γi consists of points γi(0) ∈ S1, γi(1) ∈ S2, and a path γ : [0, 1] → E from

the image of γi(0) to the image of γi(1) such that
(3) only finitely many of the γi begin at any given element of S1.

We consider two morphisms to be the same if they differ by the operations

(1) omit a path with zero coefficient, or
(2) if a path occurs multiple times, replace with a single copy and add the

coefficients.

Note that a geometric morphism induces a homomorphism on the free mod-
ules generated by the basis sets. In some cases the geometric morphism can be
essentially reconstructed from the homomorphism, but even in these cases the
geometric version works better in constructions.

Geometric morphisms can be composed in the evident way: compose paths
when possible, and multiply coefficients. This composition can be made associa-
tive by interpreting “path” to mean a map of [0, t] for some t ≥ 0 rather than
restricting to [0, 1]. Composed paths are then defined on longer intervals, and do
not require reparameterization to get back to [0, 1].
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A geometric morphism is said to have radius less than ε if all paths with
nonzero coefficients have images in X of radius < ε.

Morphism radius is subadditive in compositions: if f : A → B has radius ≤ ε

and g : B → C has radius ≤ δ then gf has radius ≤ ε + δ. In particular ε

morphisms do not form a category because compositions are usually bigger than
ε.

If Y ⊂ X then the restriction f |Y consists of the paths of f that lie in
p−1(Y ). Restriction is functorial in the sense that composition of restrictions is
the restriction of the composition.

4.1.4 Homotopy of morphisms. A homotopy of a geometric morphism Σriγi

consists of homotopies (rel ends) of all the paths γi. A homotopy determines
another morphism by using the same coefficients and the paths at the end of the
homotopies. Two morphisms are homotopic if (after combinations and omission
of paths with zero coefficient) they can be related in this way.

A homotopy of geometric morphisms has radius less than ε if each of the
homotopies individually has radius less than ε. Generally a homotopy Y ×I → X

has radius less than ε if the restriction to each arc {y} × I has radius < ε.
Explicitly this means h : Y × I → X satisfies d(h(y, s), h(y, t)) < ε for all y ∈ Y ,
s, t ∈ I.

Note that a δ homotopy of an ε morphism gives a morphism of radius less
than ε + 2δ. Reversing an ε homotopy from f0 to f1 gives an ε homotopy from
f1 to f0. Homotopies can be composed, and radii add. The additivity means “ε
homotopy” is not an equivalence relation, and we cannot work with “homotopy
classes”. As with the failure to be a category this requires us to be more direct
and explicit in constructions.

The restriction of a homotopy to Y ⊂ X consists of all the individual path
homotopies that lie in Y . Restriction and homotopy do not play well together,
but homotopies of radius < ε give predictable results over the reduced set Y −ε.

4.1.5 Uncontrolled morphisms. Note that if no size conditions are imposed
then morphisms on E → X are a category, and homotopy does give an equiv-
alence relation. In this case X becomes irrelevant and choice of a basepoint
gives an equivalence between homotopy classes of R-morphisms and homomor-
phisms over the ring R[π1E] [Quinn 6]. Relaxing control therefore gives a map
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of controlled algebra into a classical algebraic setting.

4.1.6 Main example: geometric cellular chains. Let X be a CW complex with
skeleta X(n). We suppose X is slightly generic in the sense that attaching maps
for n + 1-cells Sn → X(n) are differentiable with invertible derivative at points
mapping to centers of n-cells. This means these points are isolated, and the sign
of the derivative associates ±1 to each one. An arbitrary CW complex can be
made generic by arbitrarily small perturbations of the attaching maps, so the
conclusions apply generally.

For each integer n ≥ 0 define a geometric Z-complex Cn by taking the basis
to be the centers of the n-cells.

Define a geometric morphism ∂ : Cn → Cn−1 by: the paths from the center
of an n-cell are rays to points on Sn−1 that map to centers of n− 1-cells under
the attaching map. The coefficient on a path is the sign of the determinant of
the derivative of the attaching map at the endpoint. The groups and homomor-
phisms obtained from these geometric objects are exactly the usual cellular chain
complex for X. However in the geometric version ∂2 is plainly not trivial.

Lemma. The composition ∂2 in this complex is homotopic to 0. If each cell has
radius < ε then ∂ has radius < ε and the nullhomotopy has radius < 2ε.

Indication of proof. (See [Quinn 6] for details.) Suppose σ is an n-cell and τ

an n − 2-cell. The usual geometric proof that algebraically ∂2 = 0 shows the
composed paths from center of σ to center of τ occur in pairs with opposite
signs. It also shows that these pairs are homotopic, by a homotopy that is very
close to the union of σ, τ , and the intermediate n − 1-cells. These homotopies
give a homotopy of ∂2 to a morphism with half as many paths, and coefficient
1 + (−1) on each one. We can omit all these to get the 0 geometric morphism.
The estimates follow from the locations of the paths and homotopies.

4.1.7 Controlled chain notions. The definition abstracts what we would get
by restricting the example above to an open set. Alternatively we “add control”
to the usual definitions following what will become a familiar pattern: modules
become geometric modules, homomorphism become geometric morphisms, iden-
tities (such as ∂2 = 0) become homotopies that are only assumed to exist, and
identities are allowed to fail near the metric frontier. In the following we fix
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p : E → X and ε > 0.

An ε chain complex over p consists of

(1) geometric modules Ci for i nonnegative integers;
(2) geometric R-morphisms c : Ci → Ci−1 with radius < ε; and
(3) there exist (for each i) a homotopy of radius < ε from c2 to a morphism

Ci → Ci−2 that is trivial on basis elements outside Fr3εX.

Similarly an ε chain map f : (C, c) → (D, d) consists of

(1) for each i a geometric morphism f : Ci → Di of radius < ε;
(2) for each i there exist homotopies of radius < ε from d f : Ci → Di−1 to

morphisms that agree with fc on basis elements outside FrεX.

Finally an ε chain contraction ξ for a complex (C, c) is

(1) geometric morphisms ξ : Ci → Ci+1 of radius < ε so that
(2) there exist ε homotopies starting with cξ + ξc : Ci → Ci and going to

morphisms that are the identity on basis elements not in Fr3ε.

4.1.8 ε isomorphisms. The definition here differs from the usual one by allow-
ing misbehavior near the metric frontier.

Suppose f : A → B is a geometric morphism over p : E → X. f is an ε

isomorphism if

(1) f has radius < ε;
(2) there is f− : B → A with radius < ε such that
(3) there are ε homotopies hA, hB starting with f−f and ff− respectively

and ending with morphisms that are identities when restricted to A|(X−
Fr3εX), B|(X − Fr3εX) respectively.

Lemma. Suppose f : A → B is an ε isomorphism over p : E → X, and U ⊂ X

is open. Then the restriction f |U : A|U → B|U is an ε isomorphism over U .

Previous versions of this lemma asserted that f |U is an “isomorphism over
U−3ε”. This however depends on the situation of Y in X while the lemma above
uses U − Fr3εU , which is intrinsic to U .

Let f−, hA, hB be data showing that f is an ε isomorphism on X. We claim
the restrictions to U give data showing f |U is an ε isomorphism on U . Fix a basis
element x ∈ A, then the first assertion is that f(x) = (f |U)(x) unless x ∈ FrεU .
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If the two morphisms differ on x then there is a path γ of f that starts at x and
intersects X −U . Let t0 be the minimum of {t | γ(t) /∈ U}. Since U is open this
point is in the closure of U but not in U itself. It thus gives a point in the metric
frontier. Since the path has radius < ε, x is in FrεU .

Similarly f−|U equals f− except within ε of the frontier. Composing we see
that (f−|U)(f |U) is equal to f−f on A|(U − Fr2εU).

Finally the same argument shows that the homotopy hA|U is equal to hA

on any path that does not intersect FrεU . Therefore on A|(U − Fr3εU) the
morphisms, composition, and homotopy are all unchanged. By hypothesis the
original homotopy ends with the identity over X − Fr3εX ⊃ (U − Fr3εU). This
gives the conclusion needed for the lemma.

4.2 Triangularity.

4.2.1 Diagonal and triangular morphisms. The main modification in the un-
controlled definition is to relax conditions near the metric frontier.

Suppose A,B are geometric modules over E → X and U is a subgroup of the
units of R ( in this paper {1} or {±1}).

A geometric morphism d : A → B is ε, U diagonal over X if there is at most
one path beginning on each basis element of A, there is such a path beginning
at x if x /∈ FrεX, the endpoints of these paths are distinct, the coefficients are
elements of the subgroup U , and the paths all have radius < ε.

Compositions of ε diagonal morphisms are 2ε diagonal. More generally the
composition of an ε and a δ diagonal morphism is ε + δ diagonal.

A geometric morphism is ε triangular if it is an ε morphism and also triangular
in the uncontrolled sense. It follows for instance that the composition of two ε

triangular morphisms is ε triangular. Additional leverage comes from hypotheses
on the partial order rather than modification of “triangularity.”

4.2.2 ε-bounded partial orders. Suppose X is a metric space and S → X is a
function. A partial order on S is ε bounded if for each s ∈ S there is n so that
any increasing chain starting with s has length bounded by n and its image in
X lies in the ε ball about the image of s.

The following is the analog of Lemma 3.2.4:

Lemma. Suppose f : A → B is ε triangular with respect to an ε bounded partial
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order on the base of B. Then

(1) the diagonal part of f is well-defined independently of the choice of such
a partial order;

(2) f has a 3ε triangular inverse;
(3) if U ⊂ X is open then the restriction to U is ε triangular over U ;
(4) if g : B → C is δ triangular with respect to the same partial order on B

then gf is ε + δ triangular;
(5) there is a factorization f = · · · (1+αn) · · · (1+α1)diag(f) with αi increas-

ing, αiαj = 0 if j ≤ i, and starting at any basis element the composition
is finite with paths of length < ε .

The proof is a straightforward extension of the proof of 3.2.4. For instance if
we write d + u = (1 + ud−1)d then the inverse of the first factor is

∑∞
i=0(−ud−1)

and the inverse for the composition is d
∑∞

i=0(−ud−1). Note the sum makes
sense because the partial order is locally bounded. The terms in the sum are
arbitrarily long compositions but have paths of radius < 3ε. This is because
they are compositions of paths of radius < ε joining points that lie within ε of
their starting point, since the partial order is ε bounded.

Similarly the factorization is obtained as in 3.2.4. Again we observe the partial
order condition shows the factorization exists, but the construction does not
depend on the partial order.

4.2.3 Examples. These illustrate the force of the ε hypothesis on the partial
order. Let X be the real line, and Ai,j the geometric module generated by the
integers i, . . . , j. Define u : Ai,j → Ai,j by: if i ≤ k < j then u(k) is the segment
from k to k + 1 with coefficient 1, and u(j) = 0. Then id + u is triangular with
respect to the standard linear order. It has radius < 1 + δ for any δ > 0. It is an
isomorphism. However the inverse has radius j − i.

By mapping this example into a space X we get examples of ε morphisms that
are isomorphisms and triangular in the uncontrolled sense, but whose inverse has
radius arbitrarily large up to the diameter of X.

Setting i = −∞, j = ∞ (so A is generated by all the integers, and u is
the upward shift) we get ε morphisms triangular in the uncontrolled sense and
for which d (= id) is an isomorphism, but d + u is not even an uncontrolled
isomorphism.
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4.2.4 Cancellation. Suppose C is an ε chain complex and ξ an ε chain contrac-
tion. As in as in 3.1.1 we say ξ cancels the complement of a based subcomplex
Ĉ if there is a based decomposition C ⊥ Ĉ = D ⊕ D̄ such that the C → C ⊥ Ĉ

component of the boundary homomorphism has the form


ξ̂ u v
0 0 δ
0 0 0


 : Ĉ ⊕D ⊕ D̄ −→ Ĉ ⊕D ⊕ D̄

with δ a ±1 ε triangular morphism.

4.3 Definition of Klf
1 (X; p,R, ε). In this section we define a space of ε con-

trolled complexes over p : E → X, essentially by adding “ε geometric” and a local
finiteness hypothesis to everything in definition 3.4.1. Basic naturality properties
(those not needing spacial localization) are also given in this section: restrictions
in 4.3.2, functional images in 4.3.3, and dependence on the reference map in 4.3.4.

4.3.1 Simplices in Klf
1 . Fix ε > 0. An n-simplex of Klf

1 (X; p,R, ε) consists
of:

(1) ε chain complexes Ci over p for 0 ≤ i ≤ n so that the basis elements have
no points of accumulation in the metric completion;

(2) contractions ξi for Ci so that (ξi)k has radius < ε for all k;
(3) for i < j an ε chain map ci,j : Ci → Cj ;
(4) there exist ε bounded partial orders on the bases of the Ci in each degree

so that
i) the chain maps ci,j are ε triangular isomorphisms onto their images

in each degree, and if i < j < k then the underlying basis functions
for ci,k and cj,kci,j are equal on elements not taken to 0 by either;

ii) in each degree, basis elements in Cj not in the image of ci,j and
outside FrεX preceed those in the image of ci,j ; and

iii) the contraction ξj cancels the complements of the images of ci,j .

As in 3.4 we define faces of K1 simplices by omitting one of the complexes.
The collection of all such simplices defines a simplicial complex (or a ∆-set), and
this (or its geometric realization) is defined to be Klf

1 (X; p,R, ε).

4.3.2 Restrictions. Suppose U ⊂ X is an open set. All the definitions have
been arranged so restrictions of ε objects to U give ε objects on U . Therefore we
have contrived:
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Lemma. If U ⊂ X is open then restriction defines a natural map

Klf
1 (X; p,R, ε) −→ Klf

1 (U ; p,R, ε)

This is an important part of the structure used to identify the limit as homol-
ogy.

4.3.3 Functional images. Suppose

E

p

²²

f̂ // F

q

²²
X

f // Y

is a commutative diagram with X, Y metric spaces. Applying (f, f̂) to geometric
gadgets over p gives geometric gadgets over q. A size estimate implies it takes
controlled gadgets to controlled gadgets:

Lemma. Suppose f : X → Y is a proper map, extends to a proper map of com-
pletions, and d(x, x′) < δ implies d(f(x), f(y)) < ε. Then composition induces a
natural map

Klf
1 (X; p,R, δ)

f∗−→ Klf
1 (Y ; q, R, ε)

The properness is needed to see that the frontier of X maps to that of Y , and
that images of bases do not acquire accumulation points in Y . Otherwise this
should be clear.

4.3.4 Dependence on the data. Definitions of geometric algebra over p : E → X

do not use very much of E and X. All the paths and homotopies essentially lie in
the 2-skeleton, so other data with similar 2-skeleta should have the same algebra
and K-theory. The next definition and lemma make this precise.

Definition. a commutative diagram

E −−−−→ F
y

y
X −−−−→ Y
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is (δ, 1)-connected if for every relative 2-complex (K, L) and commutative dia-
gram

L

²²

⊂ // K

²²

g

~~
E

f̂ // F

there is a map g (dotted arrow) so that the upper triangle commutes, the lower
triangle commutes up to δ, and on the 1-skeleton of K it δ homotopy commutes
(δ measured in X). Previous versions [Quinn 1, 2] did not include the 1-skeleton
homotopy condition and we had to reconstruct it using a (δ, 1)-connectedness hy-
pothesis on X itself. Putting the condition in this definition makes the following
easier and more general:

Lemma. Suppose ε, δ > 0 and f̂ : p → q is a (δ, 1)-connected map of spaces over
an embedding X ⊂ Y . Then there is a map f∗ as shown that makes the diagram
homotopy commute:

K(X; p,R, ε)
f∗ //

relax

²²

K(Y ; q, R, ε)

relax

²²

f∗

tthhhhhhhhhhhhhhhhhh

K(X; p,R, ε + 3δ)
f∗ // K(Y ; q, R, ε + 3δ),

where K is short for Klf
1 .

We have assumed X is a subspace (i.e. X → Y is an isometry) to avoid
having to spell out metric conditions on the map. Note that ε algebra only
uses an ε dense 2-skeleton of X. In the limit as ε → 0 all of X gets used, but
1-connectedness is still sufficient at the E level.

Proof. Begin with a geometric module A over q. Apply 1-connectedness with K

the basis of A and L empty. This gives a δ homotopy of the basis to the image
of a factorization through f̂ . Define f∗A to be a module over p obtained this
way, then the basis homotopy gives a basis-preserving isomorphism f̂∗f∗A → A

of radius < δ.

Now suppose c : A → B is a geometric morphism of modules over q with
radius < ε. Composing with the basis-preserving isomorphisms above gives a
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morphism f̂∗f∗A → f̂∗f∗B. Apply the 1-connectedness hypothesis again, this
time with K the paths in this morphism and L the bases of f∗A and f∗B. Use
the resulting paths in E and the coefficients in c to define f∗c : f∗A → f∗B. The
size constraint on the lift shows these paths have radius < ε + δ. The homotopy
part of 1-connectedness gives δ homotopies from the f̂ images of these paths to
the paths in the morphism, and we conclude that f̂∗f∗c is δ homotopic to c.
Moreover since there is a one-to-one correspondence between paths in the two
morphisms, f∗c is triangular if c is.

Finally we consider relations. We need that if the composition A
a−→ B

b−→ C is
ε homotopic to c : A → C then (f∗b)(f∗a) is ε + 3δ homotopic to f∗c. First note
we get an ε+2δ homotopy of images (f̂∗f∗b)(f̂∗f∗a) and f̂∗f∗c by composing the
homotopies from these to ba and c with the given homotopy from ga to c. Apply
1-connectedness with K the domain of these homotopies (a union of copies of
I × I) and L the boundaries. We conclude there are homotopies in E whose
images in F are within δ of the input data. The distance estimate shows these
homotopies have radius < ε + 3δ, as required. There is no conclusion about the
images of these lifts being homotopic to the input data, but we do not need it:
relations require only existence.

The fact that homotopy relations lift shows that if c is an ε isomorphism or
triangular isomorphism then f∗c is an ε + 3δ isomorphism or triangular isomor-
phism. similarly chain complexes lift to chain complexes, chain maps to chain
maps, etc. This shows f∗ defines Klf

1 (X; q, r, ε) → Klf
1 (X; q, r, ε+3δ) as required.

The basis-preserving maps f̂∗f ∗ A → A constructed in the first paragraph give
the homotopy making the lower triangle in the diagram in the lemma commute.
If B is geometric over p then a similar construction gives a basis-preserving iso-
morphism B → f∗f̂∗B, and this gives a homotopy making the upper triangle
commute.

This completes the proof of the lemma.

4.4 The limit Klf
1 (X; p,R). The main object of the paper is defined in 4.4.1 as

the inverse limit of the ε spaces of the previous section. Functoriality is described
in 4.4.2.

4.4.1 Definition of Klf
1 . If ε > δ > 0 then relaxing control gives an inclusion

Klf
1 (X; p,R, δ) ⊂ Klf

1 (X; p,R, ε). This defines an inverse system as ε → 0, and
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as indicated in 2.1.4 we define

Klf
1 (X; p,R) = holimε→0K

lf
1 (X; p,R, ε).

Homotopy inverse limits (the “holim” in the definition) are discussed in 2.1.4.
Using the path model for linearly ordered homotopy limits we can describe these
as maps (0, 1] → Klf

1 (X; p,R, γ), some γ, that “converge in X” in the limit
t → 0. More explicitly this means a triangulation of (0, 1] (usually infinite near
0) and a map so that for every ε > 0 there is δ > 0 so that on (0, δ] the image
lies in Klf

1 (X; p,R, ε).

The naturality of the ε versions passes to the limit:

4.4.2 Proposition. Klf
1 (X; p,R) has natural restrictions to open sets, and is

functorial with respect to morphisms (p : E → X) −→ (q : F → Y ) over proper
uniformly continuous X → Y . Finally if X = Y and E → F (δi, 1)-connected
over X for all δi > 0 then the induced map on Klf

1 is a homotopy equivalence.

Note the uniform continuity condition on naturality is too restrictive for the
characterization theorem. It is extended to naturality over all proper maps in
the next section.

5. Spacial localization and the axioms

Spacial localization refers to factorization of controlled activity, usually homo-
topies, into pieces constant over various pieces of the control space. For instance
the cancellation of inverses is a canonical nullhomotopy of the map that takes
a complex to the complex plus its suspension. In 5.1 the controlled version is
“localized” to a subset Y in the sense that the homotopy is described as the com-
position of two homotopies, one that keeps things constant over Y and cancels
away from Y , and another that finished the cancellation over Y . This depends on
special properties of triangular isomorphisms so is less formal than the properties
developed in §4. Section 5.2 extends this to a “skew inverse” version: a K1 mor-
phism B → A determines a cancellation of A⊕ SB. Again this can be localized
to a subset. Finally these are used in §5.3 to localize general homotopies.

The constructions of §§5.1–5.3 are used to verify the homology axioms of 6.1
for K-theory. The homotopy axiom is verified in 5.4 using the simplest case of



378 FRANK QUINN

cancellation. Localization of homotopies is used to verify the exactness axiom
in 5.4 and independence of the metric in 5.5. The stability theorem 2.3.1 is also
proved with these tools.

5.1 Standard inverses. The cancellation of inverses is a canonical nullhomo-
topy H : id⊕ S ∼ 0 as maps from K1 to itself, see §3.5. The objective here is to
show that the process preserves ε control in an appropriate sense, and to localize
it: factor it into a part that cancels the sum away from Y but doesn’t change it
over Y , and a part that finishes the cancellation over Y .

5.1.1 Proposition. Suppose X, p, R as usual, X ⊃ Y , and ε > 0 is fixed. Then
there are

(1) a canonical map T : Klf
1 (X; p,R, ε)(1) → Klf

1 (X; p,R, 7ε), where the su-
perscript (1) indicates the first derived subdivision;

(2) canonical homotopies H1 : id⊕ S ∼ T and H2 : T ∼ 0; and
(3) a canonical homotopy G : H1H2 ∼ H, where H is the standard cancella-

tion (i.e. H2 for the case Y empty).

These satisfy:

(1) restricted to Y , H1 is constant equal to the identity, H2 = H and G is
constant;

(2) restricted to X − Y 20ε, H1 = H, H2 is constant equal to 0, and G is
constant;

(3) If Y 50ε − Y −25ε ⊂ U and U is open in X then T, Hi and G are natural
with respect to restriction to (U, Y ∩ U); and

(4) on Klf
1 (X; p,R, δ) Hi and G have radius < 7δ.

The Y -dependent parts of the construction are actually determined by data
over Y 20ε − Y . A more generous region is used in (3) to avoid ambiguity with
a detail of the definition of K, namely that structural hypotheses on γ objects
are allowed to fail within 3γ of the metric frontier of the space. This means for
γ = 7ε on Y 50ε−Y −25ε there may be some question about what happens outside
Y 29ε − Y −4ε, but this is safely away from Y 20ε − Y .

5.1.2 Notation and outline of the proof. Fix X, p, R and shorten Klf
1 (X; p,R, ε)

to K1(ε). The constructions are canonical (after choice of Y and ε) so need only
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be described for a typical simplex of K1(ε). We write an n-simplex as 4-tuple
(C, c, ξ, ci,j), where C is a sequence of graded modules Ci for 0 ≤ i ≤ n, ci is
a boundary morphism for Ci, ξi is a contraction for the complex (Ci, ci), and
ci,j : Ci → Cj are chain maps, all in the controlled geometric senses defined in
Section 4.

In these terms the starting point, (id⊕ S)(C) is given by

(∗) (C ⊕ SC,
(

c 0

0 −c

)
,
(

ξ 0

0 −ξ

)
,
(

ci,j 0

0 ci,j

)
).

Recall that the negative signs in the SC component of the boundary and con-
traction come from the sign conventions of 3.1.3. Namely, the suspension functor
changes signs of maps by (−1)degree, and the boundary and contraction have de-
grees −1 and 1 respectively. There is no sign change in the chain map piece
because chain maps have degree 0.

The construction proceeds in three steps, each of which produces K1 mor-
phisms. The final homotopies are obtained by subdividing morphisms as de-
scribed in 3.4.4. The first two steps standardize structure of objects but do not
change underlying graded modules. The third step truncates modules. We show
how to factor each step, and assemble the three steps by arranging that factor-
izations of the pieces can be commuted. The first derived subdivision arises in
factoring the truncation step.

5.1.3 Morphism to cones. This is an elaboration of the fact that
(

1 −ξ

0 1

)
gives

a chain isomorphism from C ⊕ SC to the mapping cone of the identity.
Conjugating the starting data (∗) with

(
1 −ξ

0 1

)
gives a morphism to the sim-

plex with data

(C ⊕ SC,
(

c ξc+cξ

0 −c

)
,
(

ξ 2ξ2

0 −ξ

)
,
(

ci,j ci,jξi−ξjci,j

0 ci,j

)
).

There is a homotopy of this to

(∗∗) (C ⊕ SC,
(

c 1

0 −c

)
,
(

ξ 0

0 −ξ

)
,
(

ci,j 0

0 ci,j

)
)

in the following sense:

(1) By the hypothesis that ξ is a contraction there is an ε homotopy of
geometric morphisms ξc + cξ ∼ 1.
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(2) The degree-2 homomorphism
(

0 2ξ3

0 0

)
is a chain homotopy from

(
ξ 2ξ2

0 −ξ

)

to
(

ξ 0

0 −ξ

)
(after homotopy of geometric morphisms), and

(3)
(

0 ξjci,jξi

0 0

)
is a chain homotopy from

(
ci,j ξjci,j+ci,jξi

0 ci,j

)
to

(
ci,j 0

0 ci,j

)
,

again after homotopy of geometric morphisms.

If the original simplex has radius ≤ δ then all of these homotopies have radius
less than 5δ. The largest potential excursions come from using the contraction
identity to simplify the result of applying the boundary to the 2ξ3 term in the
homotopy of the contraction.

We claim the morphism
(

1 −ξ

0 1

)
gives a K1(7ε) morphism from the starting

data (∗) to (∗∗). The content of this assertion is that there are 7ε-bounded partial
orders in which the chain maps and morphism are triangular, and complements
of images cancel. These partial orders are obtained from partial orders assumed
to exist in the original simplex by a modification of “shuffling the image partial
orders”, see the proof of 3.5.1. In detail, the basis of Ci ⊕ SCi in degree k is the
union base(Ck

i )∪ base(Ck−1
i ). On each subset the partial order is the given one.

Suppose s ∈ base(Ck
i ) and t ∈ base(Ck−1

i ). If they are comparable then s > t.
Define them to be comparable if

(1) the distance between them is less than 5ε, and
(2) for every j < i, if t ∈ im(SCj) then s ∈ im(Cj).

An increasing chain in this partial order consists of a chain in SC followed by
a chain in C. The sub-chains have size bounded by ε and the beginning of the
second is within 5ε of the end of the first. Thus the maximum size is 7ε. The
total length is bounded because the lengths of the subchains are. This therefore
defines a 7ε bounded partial order.

(
1 −ξ

0 1

)
and the homotopies used to modify

the structure are all triangular in this partial order because the maps on the
individual summands are, they preserve images (see 3.3), and the inter-summand
maps have size < 5ε.

We now localize this. Let U1 be a subset of X (to be specified later in terms
of Y ). Denote by ρ the projection of a geometric module to the submodule
supported by U1. Denote projection to the complement of U1 by (1 − ρ). This
is a slight abuse of notation since (1 − ρ) technically defines a homomorphism
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homotopic to this projection. Factor the basic morphism by

(
1 −ξ

0 1

)
=

(
1 −ξ(1−ρ)

0 1

)(
1 −ξ(ρ)

0 1

)
.

We extend this to a factorization of the whole K1 morphism. Conjugating by
the first (right) factor takes the starting data to

(C ⊕ SC,
(

c ξρc+cξρ

0 −c

)
,
(

ξρ ξρξ+ξ2ρ

0 −ξ

)
,
(

ci,j ci,jξiρ−ξjρci,j

0 ci,j

)
).

Modify the contraction and chain maps by homotopies
(

0 2(ξ)3ρ

0 0

)
and

(
0 ξjci,jξiρ

0 0

)

respectively. Finally note that the ε homotopy of homomorphisms ξc + cξ ∼ 1
provides a homotopy of ξρc + cξρ to a morphism that is 1 over U−ε

1 and is con-
stant over X − U ε where ξρc + cξρ = 0. Putting these together gives a simplex
structure on the modules C ⊕ SC that agrees with the cone structure over U−5ε

1

and the sum structure over X − U5ε
1 . The homomorphism

(
1 −ξ(ρ)

0 1

)
provides a

K1 morphism from the sum structure to this, and is the identity over X − U5ε
1 .

This defines the first factor. The second factor is obtained similarly: consider(
1 −ξ(1−ρ)

0 1

)
as a map from the object just constructed to the object with struc-

ture obtained by conjugating. Modify this by the rest of the chain homotopies,
namely

(
0 2(ξ)3(1−ρ)

0 0

)
and

(
0 ξjci,jξi(1−ρ)

0 0

)
. The result is homotopic to the cone

structure. Note this construction gives the identity over U−5ε
1 .

5.1.4 Morphism to trivial complexes. This step is an elaboration of the fact
that

(
1 0

c 1

)
is a chain isomorphism of complexes

(C ⊕ SC,
(

c 1

0 −c

)
) → (C ⊕ SC,

(
0 1

0 0

)
).

This is also used in the trivialization of cancellable complexes in 3.3.3.
Conjugating the output of the first step, (∗∗), by

(
1 0

c 1

)
gives

(C ⊕ SC,
(

0 1

c2 0

)
,
(

ξ 0

cξ+ξc −ξ

)
,
(

ci,j 0

cci,j−ci,jc ci,j

)
).

This is homotopic to

(∗ ∗ ∗) (C ⊕ SC,
(

0 1

0 0

)
,
(

0 0

1 0

)
,
(

di,j 0

0 di,j

)
)
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where di,j is the diagonal part of ci,j . To see this first note the chain and
contraction identities and c2 ∼ 0 give geometric homotopies to

(C ⊕ SC,
(

0 1

0 0

)
,
(

ξ 0

1 −ξ

)
,
(

ci,j 0

0 ci,j

)
).

The degree 2 homomorphism
(

0 0

ξ 0

)
provides a homotopy from this contraction

to
(

0 0

1 0

)
. Finally if the diagonal-plus-increasing decomposition of ci,j is di,j +ui,j

then
(

0 0

−ui,j 0

)
gives a chain homotopy from the chain map to

(
di,j 0

0 di,j

)
.

This makes sense because the diagonal-plus-increasing decomposition is de-
termined by the given data, and in particular does not depend on a particular
partial order.

As in the previous step this defines a K1 morphism of K1 simplices. Again
appropriate partial orders are obtained by shuffling image partial orders and
making points comparable only if they are within 5ε, but this time SC comes
after C in each sub-piece to reflect the fact that

(
1 0

c 1

)
is lower triangular.

This morphism is factored in the same way as in the previous step. Let U2 be
a subset of X and let ρ denote projection to U2. Factor the morphism by

(
1 0

c 1

)
=

(
1 0

c(1−ρ) 1

)(
1 0

cρ 1

)
.

Write the homotopies of the contraction and chain maps as

(
0 0

ξ 0

)
=

(
0 0

ξ(1−ρ) 0

)
+

(
0 0

ξρ 0

)

(
0 0

−ui,j 0

)
=

(
0 0

−ui,j(1−ρ) 0

)
+

(
0 0

−ui,jρ 0

)

Define a K1 morphism from the cone structure by conjugating by the right factor,
changing the contraction by the right summand, and applying homomorphism
homotopies over U−3ε

2 . The image of this morphism has the cone structure over
X − U3ε

2 and the trivial structure over U3ε
2 .

Finally, again as in the previous step, the remainder of the morphism and
homotopy give the second factor in the localization.

5.1.5 Factoring trivial complexes. The contraction of a trivial complex (i.e.
of the form (∗ ∗ ∗)) clearly cancels the whole complex, so the inclusion of the 0
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complex is a morphism. The final step is to factor this using the fact that trivial
complexes have lots of subcomplexes whose complements cancel.

A single complex of the form (C ⊕ SC,
(

0 1

0 0

)
,
(

0 0

1 0

)
) is a large sum of 2-

dimensional subcompexes each located over a point. Thus if U3 is a subset of
X the restriction to U3 is a subcomplex of the same form and the contraction
cancels the complement so the inclusion into the whole complex is a morphism.
A complication arises with simplices of complexes. The chain maps in the form
(∗ ∗ ∗) are diagonal so they take one 2-dimensional summand to another, but
they may have nonzero radius. Thus the image of something in U3 may not lie
in U3. Restricting both the range and domain to U3 may give a chain map that
is not injective, so cannot be a K1 morphism. We deal with this by subdividing:
restrict both the range and domain of a chain map, but introduce a new vertex
between them. The new vertex will be the subcomplex of the range obtained by
adding the restriction of the range and the image of the restriction of the domain.
Both vertex restrictions restrictions inject into this.

The first derived subdivision of a simplicial complex is the complex with n-
simplices monotone sequences of length n + 1 of subsimpices of a simplex of the
original. Faces are defined by omission, and degeneracies by duplication of an
element in the sequence.

Regard an n-simplex (C, c, ξ, ci,j) of K1(ε) as the image of a map ∆n → K1(ε).
We describe how to get a map on the first derived subdivision. A vertex of the
subdivision is a subsimplex τ (monotone sequence of length 1). Take this to
(Ci, ci, ξi), where i is the largest vertex in τ . Edges should go to chain maps. If
(σ, τ) is a monotone sequence with largest vertices i, j then i ≤ j. Define the
chain map cσ,τ to be ci,j , where we understand this to be the identity if i = j.

We now define the restriction of the subdivision of a “trivial” simplex. Take a
vertex τ to the sum of the images in its largest vertex, of the restrictions to U3 of
all vertex complexes. Edges go to the evident restrictions and inclusions. Since
all the complexes are trivial, the contractions cancel complements of all images,
and this defines a simplicial map of (∆n)(1) → K1. Further, inclusions define a
K1 morphism of this to the unrestricted subdivision. This is our factorization of
the inclusion of 0 into the original trivial simplex. The inclusion is the identity
over U3 and 0 outside Uγ

3 , where γ is the radius of the trivial simplex. The trivial
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simplices produced by earlier constructions have radius < 4ε.

5.1.6 Proof of Proposition 5.1.1. Denote the morphisms described above by

(∗) F // (∗∗) G // (∗ ∗ ∗) 0.
Hoo

Let Y be the subset specified in the statement of the proposition, and let U1 =
Y 5ε. Then the construction of 5.1.3 factors F as F2F1 with F1 constant on Y

and F2 constant over X − Y 10ε. Next let U2 = Y 13ε. Then the construction of
5.1.4 factors G as G2G1 with G1 constant on Y 10ε and G2 constant on X−Y 16ε.
Finally let U3 = Y 16ε, then 5.1.5 factors H as H1H2 with H1 constant over Y 16ε

and zero outside Y 20ε.
Next we observe that two morphisms commute if one is constant where the

other is nontrivial. Thus we can rearrange the sequence of morphisms to

(∗) F1 // G1 // T
H1oo F2 // G2 // 0

H2oo

where T0 is the result of the first three operations.
All of these morphisms have size < 7ε (the limiting factor being the bound

on the partial orders in the first step). The intermediate functions therefore
define maps into K1(7ε). Subdividing the morphisms gives homotopies H1, H2

as required for the Proposition. Note that the difference between the composition
(in the concatenation sense) of these homotopies and the standard nullhomotopy
comes from rearranging commuting K1 morphisms. “Subdividing” the resulting
commutative diagrams of morphisms gives the canonical homotopy G between
these two homotopies.

The other assertions in the Proposition are supposed to be easily seen from
the form of the construction.

5.2 Skew inverses. In this section we use a K1-morphism f : B → A to give a
cancellation of A⊕SB. The standard cancellation of inverses corresponds to the
identity map A = A. As in the standard case this cancellation can be localized.

5.2.1 Proposition. Suppose X, p, R as usual, X ⊃ Y , and ε is fixed. Suppose
M is a simplicial set, A,B : M → Klf

1 (X; p,R, ε) are simplicial and f : B → A

is an ε K1 morphism (see 3.4.3). Then there are

(1) a canonical map T : M (1) → Klf
1 (X; p,R, 9ε), where the superscript (1)

indicates the first derived subdivision;
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(2) canonical homotopies H1 : A⊕ SB ∼ T and H2 : T ∼ 0; and
(3) a canonical homotopy G : H1H2 ∼ H, where H is the standard cancella-

tion (i.e. H2 for the case Y empty).

These satisfy:

(1) restricted to Y , H1 is constant equal to the identity, H2 = H, and G is
constant;

(2) restricted to X − Y 30ε, H1 = H, H2 is constant equal to 0, and G is
constant;

(3) T, Hi and G are natural with respect to simplicial maps of M and restric-
tion to U,U ∩ Y , provided Y 60ε − Y −40ε ⊂ U ; and

(4) if on a subcomplex W ⊂ M , A,B, f have radius < δ, then T , Hi, G have
radius < 9δ.

As in 5.1 a generous margin is used in (3) to avoid conflicts with details of the
definition. Conclusion (4) can be thought of as a naturality with respect to scale.
The original ε is used to choose subsets used in the construction, but otherwise
does not enter, so radius of the output depends only on radius of the input. In
fact the δ in (4) does not even have to be measured with the same metric, so (4)
gives a naturality with respect to metric.

Again we shorten the notation for K space to K1(ε), and restrict attention
to a single simplex of M because the construction is canonical. The image of
the simplex under A is denoted (Ai, ai, αi, ai,j) as usual, and simlarly for B. We
begin by describing the full construction A⊕ SB ∼ 0, then show how to localize
it. Finally most of the construction (including estimates) follows the standard
case, and we focus on new features.

5.2.2 Improvement of the image of f . Since fi : Bi → Ai is a K1 morphism
the contractions in A cancel the complement of the image. According to 3.3.4
there is a canonical triangular endomorphism hi of the graded module Ai that is
the identity on the image of f and conjugating by hi changes the boundary maps
so the result decomposes (as a chain complex) as the sum of the image of f and
its based complement. Moreover the contractions can be changed by homotopy,
without disturbing the cancellation properties, to also decompose as sums.

After this modification the chain maps can be improved too. Decomposing
Ai and Aj as image of f plus based complement, the fact that ai,j carries the
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image of fi into the image of fj means it has the form
( x y

0 z

)
. Since the boundary

homomorphisms in the two complexes are diagonal it follows that
(

x 0

0 z

)
(i.e. omit

the upper right term) is also a chain map. The order hypotheses on cancellations
implies the difference is increasing with respect to any admissible partial order.
Finally recall that diagrams of chain maps in K1 simplices are only required to
commute up to increasing homomorphisms. Putting these together shows that
omitting the off-diagonal terms from the ai,j gives another K1 simplex, and the
identity maps on the Ai from the original simplex to this one is a K1 morphism.

The first step in the main construction is the K1 morphism described above,
from A to the modification in which the image of B splits. We proceed assuming
this splitting condition.

Define pi : Ai → Bi to be the based projection of Ai to the image of f ,
composed with the inverse of f . Thus pf is the identity of B, and fp is the
projection of A to the image of f . After the modifications in the first step p is
a chain map, fpα = αfp, and fp ai,j = ai,jfp, where we have omitted evident
subscripts on f and p.

5.2.3 Morphism to cones. The sum A⊕SB has boundary maps, contractions
and chain maps

(∗) (A⊕ SB,
(

a 0

0 −b

)
,
(

α 0

0 −β

)
,
(

ai,j 0

0 bi,j

)
).

The graded endomorphism
(

1 −fβ

0 1

)
defines a chain map to the structure conju-

gated by the endomorphism, namely

(A⊕ SB,
(

a afβ+fβb

0 −b

)
,
(

α αfβ+fβ2

0 −β

)
,
(

ai,j ai,jfβ+fβbi,j

0 bi,j

)
).

Use the identity afβ + fβb ∼ f in the boundary homomorphism. The degree-2
map (

f(β − pαf)βp αfβ2

βp β2

)

gives a homotopy from the given contraction to
(

α(1−fp) 0

p 0

)
. This takes us to

(∗∗) (A⊕ SB,
(

a f

0 −b

)
,
(

α(1−fp) 0

p 0

)
,
(

ai,j ai,jfβ+fβbi,j

0 bi,j

)
).

At this point the contraction already gives a cancellation of the entire complex.
We elaborate on this to make it easier to localize.
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5.2.4 Morphism to trivial complexes. Apply the endomorphism
(

1 0

bp 1

)
to get

a morphism to a new simplex,

(∗ ∗ ∗) (A⊕ SB,
(

a(1−fp) f

0 0

)
,
(

α(1−fp) 0

p 0

)
,
( ∗ ∗

0 ∗
)
).

The triviality of the lower-left entry in the chain map is a consequence of the
first step, where it was arranged that ai,jf = fpai,jf . We will not need to track
the other entries explicitly.

The simplex (∗ ∗ ∗) is based isomorphic to one of the form

(4∗) (D ⊕ SD,
(

0 d

0 0

)
,
(

0 0

d−1 0

)
,
(
∗ 0

0 ∗

)
).

where d is a triangular endomorphism of the based graded module D. The 1−fp

summand of A has this structure by the first step. The fp summand of A, plus
SB, has this structure after the last step. Combining these gives the structure
for the whole complex.

We simplify this further. Conjugate by
(

d 0

0 1

)
to get a morphism to a complex

of the form

(5∗) (D ⊕ SD,
(

0 1

0 0

)
,
(

0 0

1 0

)
,
(

di,j 0

0 di,j

)
).

The final modification is to replace the di,j terms in the chain maps by their
diagonal maps. This is still a simplex, and the conjugation map from (4∗) to this
diagonalized version is still a K1 morphism because morphisms are only required
to commute modulo increasing homomorphisms.

Finally we complete the process A ⊕ SB ∼ 0 using the K1 morphism from 0
to the complex (5∗).

5.2.5 Localization. As explained in 5.1.6 it is sufficient to show how to factor
the morphisms. Morphisms of the form

(
1 ∗
0 1

)
or alternatively of the form 1 + u

with u2 = 0, can be factored over Y simply by decomposing u as a sum of a piece
0 over Y and one 0 over X−Y (see 5.1.3). Similarly modifications of contractions
by homotopy can be factored by decomposing the homotopy as a sum.

The end of the argument is also easy to localize. The final complex is (5∗),
after adjustment to have diagonal chain maps. This decomposes as a huge sum
of 2-dimensional complexes, and the cancellation is localized after subdivision as
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in 5.1.5. This explains how to localize all the steps except the morphism from
(∗ ∗ ∗) to (4∗) defined by

(
d 0

0 1

)
. This step does not arise in the standard-inverse

cancellation because in that case d = 1. In general we do this by factoring d as
d2d1 with d1 = 1 over Y and d2 = 1 over X − Y 4ε. It is sufficient to do this
when diag(d) = 1, so d = 1 + u with u increasing. Set d1 = 1 + u|Y , and d2 =
(1+u)(1+u|Y )−1. The inverse is 3ε triangular, and over Z = X−Y 3ε the inverse
of the restriction is the restriction of the inverse: (1 + u|Y )−1|Z = (1 + u)−1|Z.
Thus the composition defining d2 reduces to 1 over a slightly smaller set.

As in 5.1.6 factoring the morphisms into commuting pieces gives a homotopy
of the standard (unlocalized) homotopy to the composition of two partial homo-
topies with the properties claimed in Proposition 5.2.1.

5.3 Localizing homotopies. A homotopy into a K space is factored into two
homotopies, one that changes things away from Y and one that changes things
near Y . The thing appearing halfway through (between the two homotopies) is
a spliced version of the things at the beginning and end.

5.3.1 Lemma. Suppose M is a simplicial complex, A,B : M → Klf
1 (X; p,R, ε)

are simplicial, and H : A ∼ B is a homotopy. Then there are

(1) a subdivision M ′ and simpicial map C : M ′ → K1(9ε);
(2) homotopies H1 : A ∼ C whose restriction to Y is constant, and H2 : C ∼

B whose restriction to X − Y −60ε is constant; and
(3) a homotopy H1H2 ∼ H.

The map and homotopies constructed have the property that if W ⊂ M is a
subcomplex and the restrictions of A,B and H to W are in K1(δ) then the output
map and homotopies are in K1(9δ).

This is proved in §§5.3.2–5.3.4 by describing the homotopy A ∼ B as obtained
from a sequence of K1 morphisms, then changing them to a “zigzag” pattern to
which 5.2 applies.

The final conclusion holds even if the δ size condition uses a different metric
than the one used for the ε conditions; see the remark after 5.2. This is used
to show metric independence in §5.6, though it could be avoided with more
elaborate estimates in a single metric.

The final conclusion also shows that the construction passes to homotopy
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inverse limits, though it still depends on an initial choice of ε. Explicitly, we can
regard a map of M into the homotopy inverse limit as a map M × [n,∞) →
K1(1/n) that for k > n takes M × [k,∞) into K1(1/k). Applying the Lemma to
homotopies of such maps factors them into pieces that still have size going to 0
in the [1/n,∞) coordinate. This gives:

Corollary. Suppose H is a homotopy between maps A,B : M → Klf
1 (X; p,R),

Y ⊂ X and ε > 0. Then H is homotopic to a composition of H1 : A ∼ C and
H2 : C ∼ B with the restriction of H1 to Y constant, and the restriction of H2

to X − Y 60ε constant.

5.3.2 Zigzag homotopies. Suppose A ← B → C are K1 morphisms. The
“zigzag homotopy” from A to C is obtained by composing

(1) the homotopy from A to A⊕ SB ⊕C obtained by adding A to the skew
cancellation homotopy of 5.2 for SB⊕C using the second morphism, and

(2) the homotopy from A⊕ SB ⊕C to C obtained by adding C to the skew
cancellation homotopy for A⊕ SB.

The name comes from the picture:

A // A
))RRRRRR

0oo

SB
uullllll

55llllll

0 //

C

iiRRRRRR
C.oo

Variations on the following will be used in several places:

Lemma. Suppose A ← B → C are K1 morphisms. Then the homotopy from A

to C obtained by triangulating morphisms (see 3.4.4) is homotopic to the zigzag
homotopy described above.

Proof. First, it is sufficient to show this for A = B = C. The diagram

B

²²

B
= //=oo

²²

B

²²
A Boo // C
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gives a homotopy between the lower homotopy A ∼ C and the composition of
the upper (identity) homotopy B ∼ B with the edge homotopies A ∼ B and
B ∼ C. Further this diagram induces a diagram relating the morphisms used to
define the zigzag homotopies. This similarly relates the two zigzag homotopies.
Therefore a homotopy in the special case composes with these to give a homotopy
in the general case.

Next we describe an intermediate step in the special case. Define the “eye”
homotopy beginning the same way as the zigzag: by adding B to the cancellation
homtopy 0 ∼ SB ⊕ B. But then finish by canceling the same pair rather than
switching copies of B. The name comes from the picture:

B // B Boo

SB
uullllll

))RRRRRR

0 // 0oo

B

iiRRRRRR
55llllll

First note that this is homotopic to the triangulation homotopy (omit the eye):
introducing and then removing the SB ⊕ B pair in exactly the same way is the
composition of a homotopy 0 ∼ SB ⊕ B and its reverse, so is homotopic to the
constant homotopy. on the other hand there is a basis and structure preserving
isomorphism between the eye and the zigzag given by the identity on the left
half and the basis bijection that interchanges the B terms on the right half. This
isomorphism triangulates to give a homotopy between the zigzag and the eye.
Combining these observations gives a homotopy from the zigzag to the constant
homotopy. This completes the Lemma.

5.3.3 The bounded case of Lemma 5.3.1. Suppose that there is a subdivision
M ′ and a triangulation I ′ of [0, 1] so H is simpicial with respect to the standard
triangulation of the product M ′×I ′. This is essentially a boundedness hypothesis
on the number of vertices needed in the triangulation of I: in general for infinite
M there may not be such a bound, and we explain what to do about that in
5.3.4.

When H is simplicial on the product then restrictions to M ′ × {vi}, where vi

are vertices of I ′, gives a sequence of maps M ′ → K1(ε). The families of chain
maps associated to vertices in M ′ times edges in I ′ fit together to give morphisms
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between these maps. Triangulations of these morphisms gives a simpicial map
on the same triangulation as H. This is not quite H: in some simplices some
structure maps ai,j are replaced by compositions ak,jai,k, but the identity on
vertices defines a morphism between this new map and H. They are therefore
homotopic.

Denote the sequence of maps and morphisms by

A1 B1
f1oo g1 // A2 B2

f2oo g2 // · · · // An Bn
fnoo gn // An+1

where A1 is the subdivision of A and An+1 is the subdivision of B.

The next step is a variation on the zigzag homotopy of 5.3.2. First add to A1

the skew-inverse cancellations of pairs SBi⊕Ai+1 defined using the morphisms gi.
This gives a homotopy A1 ∼ A1⊕Σn

i=1(SBi⊕Ai+1). Next reassociate the sum to
Σn−1

i=1 (Ai⊕SBi)⊕An. Canceling the indicated pairs using the morphisms fi gives
a homotopy Σn

i=1(Ai ⊕ SBi) ⊕ An ∼ An. Joining these two homotopies gives a
zigzag homotopy A1 ∼ An. As in Lemma 5.3.2 this homotopy is homotopic to the
original. It has a lot more kinks than 5.3.2, but it can be seen as a composition
of a lot of simple zigzags or the proof of 5.3.2 can easily be generalized.

This zigzag homotopy can be localized to give the statement of Lemma 5.3.1.
Specifically the localized version of 5.2 splits the homotopy A1 ∼ A1⊕Σn

i=1(SBi⊕
Ai+1) into a homotopy constant over Y and one constant over X − Y −30ε. Sim-
ilarly split the homotopy Σn

i=1(Ai ⊕ SBi) ⊕An ∼ An into a piece constant over
Y 30ε and one constant over X − Y 60ε. The middle pieces in the composition
of these four homotopies commute (each is constant where the other is not).
Interchanging them gives the desired factorization.

5.3.4 The general case. By subdivision and straightforward manipulations we
can arrange M ′ to be a union of closed subcomplexes Ni with

(1) Ni ∩Nj is empty unless i, j are equal or differ by one;
(2) Ni ∩Ni+1 is collared in each larger complex (e.g. like the boundary of a

regular neighborhood);
(3) restricted to Ni × I, H is simplicial on the standard triangulation of N

times a triangulation Ii of I, and the triangulation Ii+1 is a subdivision
(i.e. obtained by adding vertices) of Ii.
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As in 5.4.2 the vertices of Ii give maps Ni → K1(ε), and the edges give morphisms
between these maps. On Ni ∩Ni+1 the longer sequence is obtained by inserting
identity morphisms into the shorter.

We can use the bounded-length construction to produce morphisms, homo-
topies etc. on each Ni. These are patched together using the method of the
zigzag homotopy lemma. We outline the argument.

Construct an intermediate object by modifying the i+1 procedure: introduce
the alternating sum as before, but then reassociate differently. On the terms in
the i sequence associate as in the i sequence. Leave the new (identity) terms
alone. Now cancel the paired terms to get a sequence of morphisms.

There is a basis and structure preserving isomorphism that matches up the
associations used in the original i + 1 and modified i cancellations. This extends
to a commutative diagram between the two output sequences of morphisms. This
gives a homotopy between the i + 1 sequence and the intermediate one.

On the other hand the intermediate sequence is the sum of the i sequence
and a lot of terms obtained by introducing and then canceling in the same way,
identity morphisms. On the homotopy level this corresponds to composing a
homotopy with its inverse, so the result is canonically homotopic to the constant
homotopy.

The conclusion is that there is a canonical homotopy between the homotopies
on Ni ∩ Ni+1 produced by the i and i + 1 constructions. Define maps on the
union by using this homotopy in a collar on one side.

5.4 The homotopy axiom. The homotopy axiom for controlled K-theory is
the assertion that that the inclusion X × {0} ⊂ X × I induces a homotopy
equivalence of Klf

1 spaces. We reduce this to the more primitive statement 5.4.1,
then prove that using cancellations. The proof is similar to that of 5.3, but here
we are producing homotopies rather than modifying them.

First note projection X × I → X also defines a map of K spaces, and the
composition X × {0} → X × I → X is the identity. Thus projection provides a
homotopy inverse if we can show the other composition induces a map homotopic
to the identity. The other map is the endomorphism of Klf

1 (X×I; p×I, R) defined
by projecting objects to X × {0}.

The second observation is that the K spaces involved here are homotopy
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inverse limits as ε → 0, of ε spaces (see 4.4). Thus it is sufficient to do an ε

version for each ε and show they are compatible up to homotopy. The statement
we need is:

5.4.1 Proposition. Suppose X, p, R are as usual and ε > 0, then there is a
standard homotopy between the relax-control inclusion

Klf
1 (X × I; p× I, R, ε) −→ Klf

1 (X × I; p× I, R, 8ε)

and the map induced by projection to X × {0}, followed by inclusion. If ε > δ

then there is a homotopy between the δ homotopy and the composition of K1(δ) →
K1(ε) and the ε homotopy.

The proof uses only the unlocalized standard-inverse version of cancellation.
The constructions are canonical so it is sufficient to describe the effect on a single
simplex (C, c, ξ, ci,j) of Klf

1 (X × I; p× I, R, ε).
Suppose ε = 1/n, and choose maps pi, 0 ≤ i ≤ n that push X × I toward the

0 end, so that

(1) pn is the identity;
(2) p0 is the projection to X × {1}; and
(3) the distance from pi to pi+1 is less than ε.

For instance pi(x, t) = (x, iεt). In these terms the object is to define a homotopy
from pn(C) to p0(C).

The first step is to use 5.1 to get a 7ε homotopy

pn(C) ∼ (
Σn−1

i=0 pi(C)⊕ S pi(C)
) ⊕ pn(C).

Reassociate this to

p0(C)⊕ (
Σn−1

i=0 S pi(C)⊕ pi+1(C)
)
.

Next use d(pi, pi+1) < ε to change the pi(C) terms to pi+1(C) terms. More
formally we can think of this as an ε morphism of K1 objects, so it subdivides to
give a homotopy. The final step uses 5.1 backwards to cancel the resulting pairs
S pi+1(C)⊕pi+1(C), leaving p0(C). This gives a “zigzag” homotopy in the sense
of 5.3 from pn(C) to p0(C).
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Note that on K1(δ) the cancellations gives 7δ homotopies, but moving pi to
pi+1 is still an ε move. The size of the final homotopy is therefore limited by the
number of intermediate pieces used, not the size of the input.

Now we must relate the homotopies obtained at different levels. Suppose
kδ = ε. The prescription for δ calls for k times as many shifted copies of C as for
ε, and we can think of the ε process as involving the copies with index a multiple
of k. This identifies the δ homotopy as obtained by putting extra zigzags in
the ε homotopy, and therefore homotopic by Lemma 5.3.2. We go through the
argument to clarify where the size estimates enter.

As an intermediate step in the comparison we introduce the additional copies
in the ε process as well, but then cancel them back out without rearranging
them. On the homotopy level this corresponds to composing a homotopy and its
inverse, so this modified process gives a homotopy homotopic to the ε homotopy.

The modified ε process starts out introducing the same p(C)⊕S p(C) pairs as
the δ process, but they are grouped differently for the second cancellation. The
differences separate into blocks of length k + 1. Expicitly, in a sequence

(pki(C)⊕ S pki(C))⊕ (pki+1(C)⊕ S pki+1(C)) · · · (pk(i+1)(C)⊕ S pk(i+1)(C))

the δ process reassociates linearly, while the ε process associates S pki(C) with
pk(i+1)(C) and leaves the terms in between as they are. Note there is a permuta-
tion of the S p∗(C) terms that takes the associate of each pj(C) in one association
to its associate in the other. We can think of this as giving a basis-preserving
endormorphism of the sum that preserves all K1 structure. The cancellation
construction is natural with respect to basis-preserving isomorphisms, so this
isomorphism extends to a commutative diagram of morphisms between the mor-
phisms used to define the cancellations. Triangulating this commutative diagram
gives a homotopy between the homotopies.

Finally since the permutation preserves the blocks of length k + 1 and the
shifted copies in such a block differ by less than ε, it follows that the based
isomorphisms and therefore the homotopies obtained from them do not increase
radius more than ε. This means the ε and δ homotopies are homotopic as maps
into Klf

1 (X × I; p× I, R, 8ε). This is the coherence claimed in 5.4.1, so the proof
is complete.
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5.5 The exactness axiom. The exactness axiom 6.1(3) for K-theory is the
assertion that given a morphism in the category, i.e. a commutative diagram

F //

q

²²

E

q

²²
Y

f // X

with f proper, the induced sequence

Klf
1 (Y×{1}; q, R) → Klf

1 (Y×I∪fX; q×I∪p,R) → Klf
1 (Y×I∪fX; q×[0, 1)∪p,R)

is a homotopy fibration. The notation Y ×I∪f X indicates the mapping cylinder,
with the Y × 0 end identified with its image in X.

In 5.5.1 we describe a homotopy lifting property that implies a sequence is a
homotopy fibration. Lemma 5.5.2 is a K1 statement that follows from the homo-
topy localization lemma 5.3.1, and that together with the homotopy invariance
proved in 5.4 shows that the lifting property is satisfied.

5.5.1 A homotopy lifting property. A sequence

F
r // E

p // B

with r and inclusion and pr = ∗ is a homotopy fibration if it has the following
property: given M → E and a homotopy pf ∼ ∗ then there are

(1) a map f̂ : M → F ;
(2) a homotopy ĥ : f ∼ rf̂ ; and
(3) a homotopy between h and pĥ

such that if W ⊂ M has f(W ) ⊂ r(F ) and h|W = ∗ then f̂ |W = f |W and the
homotopy of (3) is constant on W .

This is not a general definition, but it implies the general definition and fits
the need. Convert p into a Hurewicz fibration (e.g. using the path space con-
struction), then pr = ∗ defines a map from F to the fiber. The lifting property
applied with M the homotopy fiber gives a map in the other direction. The spe-
cial properties of the lift show it is a homotopy equivalence (in fact a deformation
retraction).

The next statement is an approximation to this lifting property for the spaces
of the axiom.



396 FRANK QUINN

5.5.2 Lemma. Suppose f : M → Klf
1 (Y × I ∪f X; q × I ∪ p,R) is a map, and

h : pf ∼ 0 is a homotopy, where p is the restriction to Klf
1 (Y × I ∪f X; q ×

[0, 1)∪ p,R). Then h is homotopic by a homotopy constant over the complement
of Y × [1/4, 3/4] to a composition h̄1h̄2 with h̄1 constant over Y × [3/4, 1] and
h̄2 constant over Y × [0, 1/4] ∪f X.

This follows from the homotopy localization lemma, more specifically from
the Corollary of 5.3.1, where the Y in the Corollary is replaced by Y × [3/4, 1]
and ε is chosen so 60ε < 1/2.

This Lemma implies the lifting property as follows: let f̄ be the result of the
homotopy h̄1. Since h̄2 is constant over Y ×[0, 1/4]∪f X and the end result is 0, f̄

is 0 over this space. Thus composing f̄ with the projection to Y ×{1} gives a map
f̂ : M → Klf

1 (Y × {1}; q, R). The homotopy axiom gives a homotopy between
the projection and the inclusion of Y × [0, 1/4]∪f X. Composing this homotopy
with f̄ gives a homotopy f̂ ∼ f̄ . Composing this with the homotopy h̄1 gives a
homotopy ĥ : f ∼ f̂ . Finally the homotopy h̄2 gives the homotopy-of-homotopies
(3) in the lifting property. Notice that none of this changes something that starts
out over Y × {1}, so f , h are unchanged on the subset W ⊂ M that maps into
Klf

1 (Y × {1}; q, R). This verifies the final condition in the lifting property, and
completes the proof that the sequence is a homotopy fibration.

5.6 Metric invariance. The last ingredient needed for the axioms of §6 is
independence of the metric. General principles (4.4.2) only give functorality
with respect to uniformly continuous maps of metric spaces, while the axioms
require functoriality with respect to all proper maps. We show:

5.6.1 Proposition. Suppose X is locally compact and d1 ≤ d2 are metrics on
X. Then the map

Klf
1 ((X, d2); p,R) → Klf

1 ((X, d1); p,R)

induced by the identity map is a homotopy equivalence.

Note the condition d1 ≤ d2 implies the identity is uniformly continuous, so it
does induce a map (in fact an inclusion) of K spaces. Also this is not a version
of the stability theorem 2.3.1: here we get different control by rearranging the
data at hand; there we get better control.
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This relates to general functoriality as follows: suppose there is a morphism
(including reference spaces) over a proper map f : X → Y of metric spaces.
Define a new metric on X by d2(x, y) = max

(
dX(x, y), dY (f(x), f(y))

)
. The

maps

(X, dX) (X, d2)
idoo f // (Y, dY )

are then uniformly continuous and so induce maps on controlled K. According to
the Proposition the first map induces a homotopy equivalence, and the “metric
independent” induced map is supposed to be the composition of the second with
a homotopy inverse. But since homotopy inverses are not well-defined these
“induced map” are not well-defined, let alone functorial.

The technical fix for this is to change the definition. Define “ε control” with
respect to functions ε : X → (0,∞) (see 2.1.3 and [Quinn 2]), and define Klf

1 to
be the homotopy inverse limit over all such functions, not just the constants. This
inverse system is much larger, so for instance the path model for the homotopy
inverse limit does not apply. However the result is metric-independent and fully
functorial.

In this context a version of Proposition 5.6.1 asserts that the map of the
constant-control version into the function-control version is a homotopy equiv-
alence. This means the only need for the function-control version is to provide
full functoriality: all of the real mathematics (axiom verifications, etc.) can be
done in the constant-control version. Accordingly we have focused on constant
control in this paper.

The following is a single-metric statement in which non-constant control is
obtained from constant control. Constant control with respect to a second metric
follows easily from non-constant control with respect to the first. To keep the
notation consistent with 5.6.1 the single metric is denoted “d2”.

5.6.2 Lemma. Suppose Yi i ≥ 1 are increasing compact subspaces of a metric
space X as above, δj is a positive decreasing sequence, and Y 60δi

i ⊂ Yi+1. Suppose
f : M × [m,∞) → Klf

1 (X; p,R, δ1) is a map so that the restriction to M × [k,∞)
maps into K1(1/k). Then there is a homotopy H : f ∼ f̂ in K1(9δ1) so that

(1) H maps M × [k,∞)× I into K1(9/k);
(2) images of f̂(M × [k,∞)) have radius < 9δi+k over X − Yi; and
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(3) if d1 is another metric on X and W ⊂ M has images of f(W × [k,∞))
of d1 radius < ρ then images of H(W × [k,∞)× I) have d1 radius < 9ρ.

5.6.3 Proof of 5.6.1 from Lemma 5.6.2. Suppose Yi ⊂ X an increasing se-
quence of compact subspaces with X = ∪Yi. Then compactness implies that
there are numbers δi,n > 0 so that for any n and x, y ∈ X, if x, y /∈ Yi implies
d2(x, y) < δi,n (all i) then d1(x, y) < 1

n . Take δk = min{δi,j | i + j = k}/9, and
reduce further if necessary so the conditions of the lemma are also satisfied: it is
monotone decreasing and Y 60δi

i ⊂ Yi+1.

Use the path model for the homotopy inverse limit to identify Klf
1 ((X, d2); p,R)

as a space of maps [1,∞) → Klf
1 ((X, d2); p,R, ε) so that the radius of the image

of [k,∞) goes to 0 as k goes to∞. Let M be the subset that satisfies the estimate
of the lemma: radius < 1/k on M × [k,∞), and similarly M9 is the subset with
radius < 9/k on the same subset. It is easily seen that the inclusion of M and M9

into the whole path space are homotopy equivalences. Let W be the subspace of
M on which the d1 radii also go to 0, and W9 the corresponding subset of M9.
Then W , W9 are homotopy equivalent to Klf

1 ((X, d1); p,R). The objective is to
show that the inclusion W ⊂ M is a homotopy equivalence.

Let H be a homotopy as provided by the lemma, applied to the “evaluation
map” M × [m,∞) → Klf

1 (X; p,R, δ1). Conclusion (1) of the lemma shows this
defines a homotopy in M9 beginning with the inclusion M ⊂ M9 and ending
with a map f̂ . Conclusion (2) and the choice of Yi, δi,j shows that f̂ has image
lying in W . Finally conclusion (3) shows that points in W stay inside W9 during
the homotopy. These together with the facts that M ⊂ M9 and W ⊂ W9 are
homotopy equivalences show that f̂ gives a homotopy inverse for the inclusion.

5.6.4 Proof of Lemma 5.6.2. The starting data is

f : M × [m,∞) → Klf
1 (X; p,R, δ1)

so that the restriction to M × [k,∞) maps into K1(1/k). Choose ni so that
1/ni < δi. Denote by fi the restriction of f to M × {i}.

The objective is to define a homotopy H : M × [m,∞)× [0, 1] → K1(9δ1). We
first describe H on slices M × {k} × [0, 1], then describe how to fill in between
these slices.
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Suppose H is defined on M × {k} × [0, 1 − 1
r ], and on M × {k} × {1 − 1

r}
the restriction over X − Yr is equal to fnk+r

. f on M × [nk+r, nk+r+1] gives a
homotopy of radius < 1

nk+r
< δr from fnk+r

to fnk+r+1 . Use 5.3 to factor this
into a homotopy G1 constant over Yr and G2 constant over X − Y 60δr

r . G1 also
extends by the constant homotopy over Yr to define a homotopy starting with
H|M ×{k}×{1− 1

r}. Use this modified version of G1 to define H on M ×{k}×
[1− 1

r , 1− 1
r+1 ]. Doing this for all r defines H on the open interval M×{k}×[0, 1).

This extends continuously to a map on the closed interval since it is eventually
constant when restricted to any compact set. Specifically the restriction to Yr is
constant (as a function of the last coordinate) on M × {k} × [1− 1

r+1 , 1)].
This defines H on slices M × {k} × [0, 1]. We check estimates for the final

map, on M ×{k}×{1}. Over Yr+1−Yr this is a “splicing” of fnk+r
and fnk+r+1 ,

obtained as the result of the first piece of a factoring of the homotopy between
them (G1 above). It therefore has radius bounded by 9 times the radius of the
homotopy, 1

nk+r
in this instance. Since these estimates decrease with r we see

that over X − Yr the radius is bounded by 9
nk+r

as required for the lemma.
With this description of H on slices it should be clear how to fill in between

them. We describe it explicitly at the rth stage of the construction, i.e. how to
define H on M × [k, k + 1] × {1 − 1

r}. Over X − Yr the k end is fnk+r
and the

k + 1 end is fnk+r+1 , and we join them with f |[nk+r, nk+r+1]. If s ≤ r then
over Ys − Ys−1 the k end is the result of the first factor G1 in a localization
factorization G1G2 of the homotopy f |[nk+s−1, nk+s]. The k+1 end is the result
of a similar factorization G′1G

′
2 of f |[nk+s, nk+s+1]. We fill in between these with

G2G
′
1. These descriptions over Ys − Ys−1 fit together to define a homotopy over

all of X. This defines H on intervals M × [k, k + 1]× {1− 1
r}, and therefore on

boundaries of rectangles M × [k, k + 1]× [1− 1
r , 1− 1

r+1 ]. But the two paths on
this boundary from the k, 1− 1

r corner to the k + 1, 1− 1
r+1 corner are the same,

so the rectangle is easily filled in.
This completes the construction of the homotopy H. The size estimate is

verified during the proof. Other properties follow from properties of homotopy
localization 5.3.

6. Homology

This section gives the Characterization Theorem 6.1 needed for the controlled
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assembly isomorphism theorem 2.2.1. This is a sharpened version of Theorem
8.5 of [Quinn 2], and more details are given. Some of the terms used in the
statement are defined and developed in 6.2. Section 6.3 combines restriction and
induced maps in a single functor structure. 6.4 derives the traditional form of
excision. The spectrum structure on J is defined in 6.5, and spectral cosheaves
constructed in 6.6. Homology with coefficients in these is defined in 6.7, and
assembly maps constructed in 6.8. The theorem is proved in 6.9. Finally 6.11
provides an “iterated homology identity” that gives a Leray-Serre type spectral
sequence for homology of the domain of a morphism.

6.1 Characterization theorem. Suppose C is a category of maps over locally
compact spaces and proper morphisms, and suppose J : C → (pointed CW) is a
functor satisfying the following axioms (see notes for explanations):

(1) (Homotopy) if (X, p) is an object then the inclusion-induced map

J(X × {1}, p) → J(X × I, p× id)

is a homotopy equivalence;
(2) (Restriction) if (X, p) is a object and U ⊂ X is open then there is a

natural restriction map J(X; p) → J(U, p|U) that takes J(X −U ; p|(X −
U)) to the basepoint;

(3) (Exactness) if f : (Y, q) → (X, p) is a morphism in C then

J(Y ×{1}, q) incl−−→ J(Y × [0, 1]∪f X, q× id∪ p) rest−−→ J(Y × [0, 1)∪f X, q× id∪ p)

is a homotopy fibration sequence;
(4) (Unions) if X is a disjoint union of open sets Uα then the product of the

restrictions
J(X, p) −→

∏
α

J(Uα, p|Uα)

is a homotopy equivalence.

Then J has a natural (possibly non-connective) Ω-spectrum structure denoted J.
If p : E → X is an object of C with X a locally compact ANR and p a stratified
system of fibrations then there is a spectral cosheaf J(p) → X defined by applying
J “fiberwise”, and the assembly map

Hlf (X; J(p)) −→ J(X, p)
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is an equivalence of spectra.

6.1.1 Notes.

(1) In the application here the category C has objects E → X with X lo-
cally compact and metric, and morphisms are commutative diagrams
with maps on the locally compact spaces required to be proper.

In other applications if it is hard to get naturality on this category
a smaller one might be used. What we need of C is that it is closed
under mapping cylinders, passing to open subsets of the target space,
and taking products with finite CW complexes, and that it contains the
maps with X a locally compact CW complex and E a stratified system
of fibrations over a filtration of X by subcomplexes.

(2) The space Y × [0, 1] ∪f X in (3) is the mapping cylinder of f defined by
the relation (y, 0) ∼ f(y) on the disjoint union. The maps are obtained
by including and then deleting the outer end of the mapping cylinder.

(3) In (1) note that X× I is the mapping cylinder of the identity map. Thus
if (3) holds, (1) is equivalent to “J(X× [0, 1), p) is contractible”. However
(1) as stated seems to be more basic and slightly easier to verify in the
application.

(4) The union axiom (4) gives new information only in the infinite case, since
finite unions follow from the other axioms. Note the map is to the product
with the product topology, so in the infinite case homotopy groups are
products, not sums, of homotopy of the factors.

6.2 Extended naturality. Restriction and naturality with respect to proper
maps can conveniently be combined into a single structure. Let C+ denote the
category of maps p : E → X of pointed spaces with X compact and restriction
to the complement of the basepoint gives an object in C. Denote the basepoint
by “∞”, then explicitly this means p−1(X −∞) → (X −∞) is an object in C.

There is a functor C → C+, taking E → X to E+ → X+ where X+ is the
1-point compactification and E+ is E ∪ ∞ with neighborhoods of ∞ given by
inverse images of complements of compact sets in X.

6.2.1 Lemma. the functor J extends to C+

J is defined on objects simply by applying the original functor to the comple-
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ment of the basepoint. For morphisms note that if f : X → Y is a basepoint-
preserving map of compact spaces then we get

X −∞ open subset←−−−−−−− f−1(Y −∞)
proper−−−−→ Y −∞

and similarly for reference maps over these. The restriction and induced maps
give

J(X; p) −→ J(f−1Y ; p|f−1Y ) −→ J(Y ; q)

and the composition of these is the desired induced map.

6.2.2 Caution. One-point compactification does not make wild behavior of
X at infinity go away, but just packs it into a neighborhood of the basepoint.
Consequently the basepoint must be treated with care.

For example if we begin with X a locally compact CW complex with filtration
by skeleta and 1-point compactify it, the result is almost never a CW complex;
the inclusion of the basepoint is not a cofibration; and filtering X+ by adding
the basepoint as a new stratum does not give a filtration even dominated by a
CW filtration. Compactification is a useful trick in simplifying naturality, and
useful in defining locally finite homology in 6.7.3, but does not avoid any of the
real work needed to deal with noncompact spaces.

6.3 Excision. Excision relates locally finite homology of a closed subspace to
homology of its complement. However this is only expected for cofibered sub-
spaces, even for ordinary homology.

6.3.1 Cofibrations. We recall that a subspace Y ⊂ X is a cofibration if Y ×I∪
X ×{0} is a retract of X × I. Explicitly this is a map X × I → Y × I ∪X ×{0}
that is the identity on the subspace. To say it gives a cofibration in a category
of maps, as below, means there should be a retraction that lifts to a retraction
of of reference maps. This is a more categorical version of the older term “p-
neighborhood deformation retract” [Quinn 2].

6.3.2 Lemma. If (Y, q) → (X, p) is a cofibration in C then the sequence

J(Y, q) −→ J(X, p) −→ J(X − Y, p)

is a homotopy fibration.
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The first map in the sequence is induced by the inclusion, the second by
restriction to the complement. The definition of cofibration provides a morphism
X × I → X ×{0}∪Y × I extending the identity. Such a map can be spread over
two variables to give a homotopy of itself to the identity. Thus X × {0} ∪ Y × I

is a deformation retract of X × I in the category.

Consider the diagram, in which reference maps are suppressed:

J(Y × {1}) // J(X × {1})

²²

// J((X − Y )× {1})

²²
J(Y × {1}) // J(X × I) // J(X × I − Y × {1})

J(Y × {1}) // J(X × {0} ∪ Y × I)

OO

// J(X × {0} ∪ Y × [0, 1))

OO

The bottom row is a homotopy fibration according to the exactness axiom. The
top row is the excision sequence. The lemma will therefore follow if we show the
vertical maps are equivalences.

The left verticals are identities, so equivalences. The upper middle is an
equivalence by the homotopy axiom. The lower middle is an equivalence because
it is induced by an inclusion that is a deformation retract in the category (the
cofibration hypothesis). Showing the right verticals are equivalences is simplified
by using extended functoriality. Taking 1-point compactifications and dividing
out Y × {1} shows the lower right to induced by the inclusion

(X+ × {0} ∪ Y + × I)/(∞× I ∪ Y × {1}) ⊂ X+ × I/(∞× I ∪ Y × {1}).

But the deformation retraction of X × I passes to the quotient to give a defor-
mation retraction for this inclusion, so it induces an equivalence. Finally for the
upper right, the standard deformation retraction of X × I to X ×{1} gives a de-
formation retraction of X+×I/(∞×I∪Y ×{1}) to X+×{1}/(∞×I∪Y ×{1}).
Therefore this also is an equivalence.

6.4 Spectrum structure. According to excision (6.3.2) the sequence

J(X × {0}, p) −→ J(X × [0, 1), p) −→ J(X × (0, 1))
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is a homotopy fibration sequence. But it follows from the homotopy axiom that
the middle space is contractible. The homotopy fiber of the point map is the loop
space, so we get a homotopy equivalence Ω(J(X×R)) → J(X). This equivalence
is natural up to essentially canonical homotopy.

Recall that an Ω-spectrum is a sequence of spaces Jn with homotopy equiva-
lences ΩJn → Jn+1. We therefore make J(X, p) into a spectrum with Jn(X, p) =
J(X × Rn, p) if n ≥ 0, and for negative n Jn(X, p) = Ω−nJ(X, p). Denote this
spectrum by J(X, p).

Lemma. This construction extends J to a functor J : C+ → Ω spectra.

There are minor homotopy issues with the structure maps not quite being
canonical. Fixes for this do not illuminate anything so are not included.

6.5 Homotopy stratified maps. These are slightly more general than “strat-
ified systems of fibrations”. They occur frequently in applications and come up
in the next section.

6.5.1 Definition. A map p : E → X is homotopy stratified if there is a closed
filtration X0 ⊂ · · · ⊂ Xn ⊂ . . . so that

(1) the restriction to each stratum, p−1(Xj −Xj−1) → (Xj −Xj−1), is an
approximate fibration, and

(2) the inclusions Xj → X are approximate cofibrations in the category of
maps.

An approximate fibration is a map with an approximate lifting property, see
[Quinn 1]. An approximate cofibration is defined by reversing the maps. For
the purposes here the following characterization could be used as a definition of
approximate fibration:

6.5.2 Lemma. A map is homotopy stratified if and only if the stratified homo-
topy link in the mapping cylinder is a stratified system of fibrations.

Let cyl(p) denote the mapping cylinder of p : E → F . The stratified homotopy
link is the space of maps [0, 1] → cyl(p) so that 0 maps to X, (0, 1] maps into the
complement of X in the inverse image of the stratum containing the image of
0. The proof in the unstratified case is given in [Quinn 5, §2.7], and the general
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case follows directly from this. For stratified homotopy links see also [Hughes, 1]
and [Quinn 8].

Evaluation gives a canonical “approximate morphism” holink(cyl(p))×(0, 1] →
E that is in the approximate sense a fiber homotopy equivalence. In these terms
an approximate fibration is canonically approximately fiber homotopic to a gen-
uine fibration, (the homotopy link) and we systematically use this to avoid work-
ing on the homotopy level with approximate things.

6.6 Functorial approximation. When working with cohomology one con-
structs a sheaf easily with no hypotheses: take an open set U to J(U), and
inclusions to restriction morphisms. The cosheaf construction involves applying
J to point inverses rather than open sets. Locating appropriate “point inverses”
seems to require the stratification hypotheses and some work. In this section we
show that the coefficient maps we work with can be approximated by realizations
of functors. This will make the passage to spectra easy: compose with the functor
and realize. §6.6.1 describes stratified maps obtained by realizing functors. 6.6.2
gives a functor version of pullbacks over simplicial complexes, and 6.6.3 gives
approximations of locally compact ANR filtered sets by simplicial complexes.

6.6.1 Realization of space-valued functors. Suppose K is a simplicial complex,
and consider K as a category with objects the simplices and morphisms the
inclusions ji : ∂iσ → σ. Realization gives CW complex |K|.

Realization of complexes extends in a standard way to functors. Let Ê : K →
[spaces] be a contravariant functor. This means we get a space Ê(σ) for every
simplex σ ∈ K, and if τ ⊂ σ then a map Ê(σ) → Ê(τ). The realization is:

|Ê| =
∐
n

(∐
σn

Ê(σ)×∆n
)
/ ∼

where ∼ is given by: if t ∈ ∂i∆n then (x, ji(t)) ∈ Ê(σ) × ∆n is identified with
(Ê(ji)(x), t) ∈ Ê(∂iσ)×∆n−1.

In these terms |K| is the realization of the functor taking each simplex to
a point. The natural transformation from an arbitrary functor Ê to the point
functor gives a map of realizations |Ê| → |K|. The following lemma describes
when this gives a homotopy stratified map:
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Lemma. Suppose K is a simplicial set and Ê is a functor from K to spaces.
The map of realizations |Ê| → |K| is homotopy stratified over a filtration of |K|
by subcomplexes if for any simplices τ ⊂ σ both in the same stratum of K the
map Ê(σ) → Ê(τ) is a homotopy equivalence.

We often improve the output to be a stratified system of fibrations by applying
stratified homotopy links, 6.5.2.

The point to be verified is that the restriction to a stratum is an approximate
fibration. We can describe |Ê| as built up of iterated mapping cylinders, and the
projection to K is projection to iterated mapping cylinders of point maps. The
structure on K corresponds to describing a simplices ∆n as the mapping cylinder
of a map Sn−1 → ∂∆n union the mapping cylinder of Sn−1 to a point. The
lemma now follows from the fact that iterated mapping cylinders of homotopy
equivalences give approximate fibrations, c.f. [Hatcher 1].

The next result shows stratified systems of fibrations over simplicial sets are
equivalent in a suitable sense to realizations.

6.6.2 Lemma (Functorialization). Suppose p : E → |K| is a stratified system
of fibrations over a filtration of |K| by subcomplexes. Then there is a functor
Ê : K → spaces so that the realization is homotopy stratified over the given fil-
tration and there is a fiber homotopy equivalence of stratified systems of fibrations

holink(cyl(|Ê| → K), |K|) //

²²

E

p

²²
K |K|.

Recall that the homotopy link is the stratified system of fibrations canonically
associated to the realization, which itself is only homotopy stratified.

Proof. We want a contravariant functor, and to get contravariance we use open
stars. The open star of a simplex τ is the union of interiors of all simplices that
contain τ . Inclusions give this the structure of a contravariant functor of τ : if
τ ⊂ σ then openstar(τ) ⊃ openstar(σ). Define Ê(σ) to be the restriction of E

to openstar(σ). This inherits a contravariant functor structure from the stars.
The natural transformation to the point functor gives |Ê| → |K| as above. The
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inverse image of a point x is the total space of the pullback of E over the open
star of the simplex τ that contains x in its interior.

There is a natural inclusion E ⊂ |Ê| defined by taking a point e over t ∈ int(σ)
to ({σ}, e, t) ∈ {σ}× (E|openstar(σ))×∆n. This is a fiber map in the sense that
it commutes with projections to |K|. Next we verify it is homotopy equivalences
on fibers. Over a point x in the interior of τ the map of fibers is the inclusion
E|x ⊂ E|openstar(τ). There is a (radial) deformation retraction of the open
star to x that preserves simplices, and therefore the stratification, until the last
moment. Since E is a fibration over strata this is covered by a deformation
retraction of E|openstar(τ) to E|x. This is a homotopy inverse for the inclusion,
so the inclusion is a homotopy equivalence.

Now restrict to a stratum in the filtration of K. Over this E is a fibration.
The equivalence of point inverses just above and Lemma 6.6.1 show that |Ê| is an
approximate fibration over this stratum. Thus the map E → |Ê| is an approx-
imate fiber homotopy equivalence. Applying the homotopy link construction to
the approximate fibration turns it into a genuine fibration. A stratified homotopy
equivalence of stratified systems of fibrations has a fiber homotopy inverse, and
this provides the map of the lemma.

The final result of the section provides a bridge to the previous lemma from
the general case.

6.6.3 Lemma (Simplicial approximation). Suppose p : E → X is a stratified
system of fibrations over a locally compact metric ANR. Then for every ε > 0
there is a locally compact polyhedron K, a stratified systems of fibrations q : F →
K with simplicial stratification and a commutative diagram

F −−−−→ E −−−−→ F
yq

yp

yq

K
f−−−−→ X

g−−−−→ K

so that

(1) f is proper and stratum-preserving and the fiber map over it induces
homotopy equivalence of fibers;

(2) g is filtration-preserving, and
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(3) the composition gf taking p to itself is filtration-preserving fiber homo-
topic to the identity, by a homotopy of radius < ε.

Note g and the homotopy are not stratum-preserving. This can be arranged if
X is homotopy stratified, [Quinn 5]. The construction is sketched since it differs
from previous versions only in that X is not assumed finite dimensional, and the
only application of this is to shorten theorem statements by two words.

Choose neighborhoods of the spaces Xn in the filtration of X for which there
are almost-strict deformation retractions to Xn covered by homotopies of p, as
specified in the definition of stratified system of fibrations. Let I∞ denote the
(compact) Hilbert cube, and choose a proper embedding X → [0,∞) × IP∞.
Since X is an ANR there is a neighborhood that retracts to X, r : U → X, and
this is proper. We can choose U and neighborhoods Un of Xn so that

(1) there is a non-decreasing sequence kj so that U and each Un inter-
sected with [0, j] × IP∞ is of the form V × I∞−kj where V is a closed
codimension-0 submanifold of [0, j]× Ikj ;

(2) r takes Un into the neighborhood that deforms to Xn, and U − Un into
X −Xn; and

(3) all the deformations, etc. are small compared to ε.

Define a stratified system of fibrations over U with filtration Un by pulling back
p. Applying the neighborhood deformations in X gives a small homotopy of r to
a stratum-preserving map covered by a map of systems of fibrations. This is the
map f of the Lemma. The composition of f with the inclusion of X is no longer
the identity, but it has a small filtration-preserving homotopy to the identity.

The last step is to omit I factors from U to get a locally finite complex. Choose
a monotone nonnegative sequence ij and consider the space W = ∪n(U ∩ [j, j +
1]×Ikj+ij ). W and each W ∩Un are unions of compact smooth manifolds so can
be triangulated, giving W the structure of a locally compact polyhedron with
PL filtration. The restriction r : W → X is still proper, stratum-preserving,
etc. There is an essentially canonical homotopy of U into W that is nearly
the identity on W . In particular this homotopy takes the inclusion X → U

to a map q : X → W . The retraction to X and this homotopy combine to
give a homotopy of the composition rq : X → X to the identity. Since the
Xn are contained in the interiors of the Un, if the homotopy is small enough this



CONTROLLED K-THEORY I: BASIC THEORY 409

continues to be true during the homotopy. In other words q and the homotopy are
filtration-preserving. To complete the construction we observe that by choosing
the sequence ij large enough we can arrange the homotopy of U into W to be
arbitrarily small.

6.7 Spectral cosheaves and homology. In this section we review spaces and
spectra over a space X, and homology of these. The discussion is the same as
that in §8 of [Quinn 2] with a bit more detail and basepoints.

6.7.1 Spectra over X. A space over a space with basepoint (X, ∗) is a map
p : E → X so that p−1(∗) is a single point (by definition the basepoint of E). A
morphism over a map X → Y is a commutative diagram

E −−−−→ F
y

y
X −−−−→ Y

The map is required to preserve basepoints, but not complements of basepoints.
The usual notions of topology extend to spaces over other spaces, the only

modifications being occasionally dividing out inverse images of basepoints [James
1]. A based space over X is a space over X with a section: X

s−→ E
p−→ X. If

(W,w0) is a space with basepoint (not over anything) and E is based over X then
the smash product over X, E ∧X W , is E ×W/ ∼ where ∼ is the equivalence
relation (e, w0) ∼ (sp(e), w) for any e ∈ E, w ∈ W , and (∗, w) ∼ ∗. This defines
another based space over X. For instance E ∧X S1 → X has point inverses
suspensions of point inverses of E → X. A spectrum over X is a sequence of
based spaces En over X and based morphisms En∧XS1 → En+1 over the identity
of X.

The simplest example of a spectrum over X is the product of X and an
ordinary spectrum. The ones we work with are elaborations of this:

6.7.2 Lemma. Suppose K is a simplicial set and E : K → spectra is a con-
travariant functor. Then realizations of the component spaces and maps of E
define a spectrum over |K|.

In each degree n E has a space-with-basepoint valued functor En defined on
K. Realizations of these provide a sequence of spaces over |K|. Structure maps
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in E provide natural transformations En ∧S1 → En+1. These induce morphisms
of realizations |En| ∧|K| S1 → |En+1|. These objects and morphisms constitute a
spectrum over |K|.

6.7.3 Definition. A spectrum E → X is a spectral cosheaf over X if there is
a filtration so that each En → X is a stratified system of fibrations over this
filtration.

Most of the cosheaves we work with come from functors and a sharpened form
of Lemma 6.7.2. In practice we mostly use 6.7.2, go directly to homology, and
use properties of functors rather than properties of cosheaves. The exception is
the iterated homology identity in 6.10, where a spectral cosheaf is part of the
input data.

6.7.4 Lemma. Suppose K is a simplicial set with a filtration by subcomplexes,
E : K → spectra is a contravariant functor, and if σ ⊂ τ are in the same stratum
then E(τ) → E(σ) is an equivalence of spectra. Then realizations of the com-
ponent spaces and maps of E give an “approximate” spectral cosheaf over |K|.
Applying stratified homotopy links to mapping cylinders gives a spectral cosheaf.

Here “approximate” means the En → K are homotopy stratified (approximate
fibrations over strata). This follows from Lemma 6.6.1, and the improvement
using homotopy links comes from 6.5.2.

6.7.5 Homology. Suppose X is a space with basepoint and E is a spectrum
over X. The homology is the space defined by the direct limit

H(X, ∗;E) = lim
n→∞

Ωn(En/X).

Some details: En/X is the space obtained by dividing out the image of the
“basepoint” section X → En. Dividing by the section in a smash product over
X gives the ordinary smash product, so the structure map of the spectrum gives

(En/X) ∧ S1 −→ En+1/X

which is just the structure of an ordinary spectrum (i.e. over a point). We now
turn this into an Ω-spectrum in the stantard manner: take the adjoint of the
structure map and apply Ωn to get

Ωn(En/X) −→ Ωn+1(En+1/X).
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Finally take the direct limit of this system.
The homology space is in a natural way an Ω-spectrum, denoted H(X;E).

Explicitly the kth space in the spectrum structure is obtained by changing the
number of applications of Ω in the direct system:

H(X, ∗;E)k = lim
n→∞

Ωn−k(En/X).

The homology groups are the homotopy groups of this spectrum: Hj(X, ∗;E) =
πjH(X, ∗;E). Note that the homology and spectrum indexings go in opposite
directions: πj(H(X, ∗;E)k) = πj−k(H(X, ∗;E)0) = Hj−k(X, ∗;E).

6.7.6 Locally finite homology. Locally finite homology is simply reduced ho-
mology of the 1-point compactification. If E → X is a spectrum over a locally
compact space then define a spectrum E+ over X+ simply by adding a point to
each En over ∞ and defining neighborhoods of the point to be inverse images of
complements of compact sets in X. We then define

Hlf (X;E) = H(X+,∞;E+).

See, however, the caution about 1-point compactifications in 6.3.2.

6.8 Functors and assembly. Suppose J is a functor satisfying the hypotheses
of the Characterization theorem, and let J : C+ → spectra be the spectrum-valued
enhancement described in 6.5. In this section we construct the assembly map
used in the theorem.

6.8.1 J homology. First suppose K is a simplicial complex and Ê : K →
spaces is a contravariant functor. Think of a space as a map from the space
to a point, and compose this J to get a functor K → spectra. More explicitly
this means the functor σ 7→ J(pt,Ê(σ) → pt). Realization defines a spectrum
over |K|. Denote this |K|-spectrum by J(p̂), where p̂ is the projection |Ê| → |K|,
or by J(p̂−1(#)), where # indicates this is to be thought of as a function of points
in |K|. Neither notation is completely successful, so we usually spell out what
they are supposed to mean in each context.

Homology spectra of these spectra are denoted H(|K|; J(p)). In the locally
compact case Hlf (|K|; J(p)) = H(|K|+, ∗; J(p)+). Finally, homology of general
homotopy stratified E → X is defined to be the direct limit of homology of
functor pullbacks over complexes (6.6.2), locally compact mapping properly to
X in the locally finite case.
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6.8.2 Proposition. Suppose J is a homotopy-invariant functor from spaces to
spectra. Then the locally finite homology functor J(p : E → X) = Hlf (X; J(p))
satisfies the homology axioms 6.1(1)–(4).

Note we are not using the full structure of J of 6.1, but just the “trivial base”
case E → pt thought of as a functor of the space E. We will not give the proof
here because it is long and technical and differs from the standard development of
generalized homology [Whitehead 1] only in predictable ways. Perhaps the most
subtle point is the union axiom (4) and the use of the full product topology.
This is where the topology of the 1-point compactification enters crucially. If
something is an infinite union then in the 1-point compactification most of the
pieces are very close to the basepoint. This makes it possible for something
compact (e.g. a sphere) to map nontrivially into all of them at once.

6.8.3 Assembly. In this section we assume J satisfies the hypotheses of the
Characterization Theorem and from this construct the comparison map used in
the theorem:

Lemma. There is a functorial map of spectra

Hlf (X; J(p)) AX−−→ J(X; p)

defined for p : E → X homotopically stratified over a locally compact ANR, and
AX is the identity when X is a point.

The “identity” in the last part of the statement refers to the equivalence

H(pt, J(E → pt)) ' J(E → pt).

We go through a series of reductions to get to the core construction. First it is
sufficient to consider the realization of a functor over a locally compact complex,
p : |Ê| → |K| because the homology is the direct limit of homologies of these.

Second, homology is defined using loop spaces of quotients Ωn(Jn(p)+/|K|),
so it is sufficient to define maps on the quotients Jn(p)+/|K| → Jn(|K|, p) and
then take loops on these. Equivalently we define maps Jn(p) → Jn(|K|, p) that
preserve “basepoints” in the sense that |K| is taken to the basepoint of Jn(|K|, p).

Finally, Jn(p) is defined by realizing a functor and the right side is natural so
it is sufficient to construct maps on pieces of the realization that fit together. For
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this we use the dual cones of the triangulation of K. Recall the dual cone Cσ of
a simplex σ is the union of closed simplices in the first barycentric subdivision
that intersect σ but not ∂σ. Cσ intersects σ in the barycenter; it is the cone,
with the barycenter as cone point, on the link of σ. Note Cσ is contained in the
open star of σ. To describe the data used in the construction of A we need some
notation.

Denote the projection by q : Jn(p) → |K|. Over a cone Cσ

q−1(Cσ) = ∪α∈Cσ
Jn(E|openstar(ᾱ))× α/ ' .

The union is over simplices in the subdivision lying in the cone, and if α is
such a simplex then ᾱ denotes the smallest simplex in the original triangulation
containing α. We have also used the abbreviated notation Jn(E|openstar(τ))
for Jn(E|openstar(τ) → pt). Since all the ᾱ in the union contain σ there are
inclusions openstar(ᾱ) ⊂ openstar(σ). Projecting q−1(Cσ) to the Jn factors and
composing with the inclusion defines a map q−1(Cσ) → Jn(E|openstar(σ)).

Denote the projection by p̂ : |E| → |K|. The inverse image of a cone is a
quotient of a union of products E|openstar(ᾱ) × α as above. Projecting to the
E factor gives a commutative diagram

p̂−1(Cσ) −−−−→ E|openstar(σ)
y

y
Cσ −−−−→ pt

Applying Jn gives a morphism Jn(p̂−1(Cσ) → Cσ) −→ Jn(E|openstar(σ)).
In these terms the fragments of the assembly map are maps Aσ and homotopies

giving a homotopy-commutative diagram

q−1(Cσ)
Aσ //

((PPPPPPPPPPPP
Jn(p̂−1(Cσ) → Cσ)

uukkkkkkkkkkkkkkk

Jn(E|openstar(σ))

and these should be natural with respect to inclusions of cones.
These maps are constructed by induction on the dimension of the cone (so

downward with respect to dimension of simplices, starting with maximal sim-
plices). 0-dimensional cones have A the identity. Suppose these are defined for
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cones of dimension < k and let σ be a simplex with Cσ of dimension k. The
data for the cones in ∂Cσ fit together to give a map A and a homotopy of the
compositions into the lower right of the diagram

q−1(∂Cσ) A //

²²

Jn(p̂−1(∂Cσ) → ∂Cσ)

²²
Jn(E|openstar(σ)) // Jn(p̂−1(Cσ) → Cσ) // Jn(E|openstar(σ))

On the bottom row the first map includes E|openstar(σ) → pt over the cone
point, and the second map is induced by the projection of p̂−1(Cσ) to E|openstar(σ).
Both of these lower maps are homotopy equivalences by the homotopy axiom and
the fact that the radial deformation retraction of the cone to the cone point is
covered by a deformation of p̂−1(Cσ). Thus the homotopy of compositions into
the lower right space lifts to a homotopy of compostions into Jn(p̂−1(Cσ) → Cσ).
Now observe that q−1(Cσ) is the mapping cylinder of the left vertical map. The
lifted homotopy defines a map on this mapping cylinder. This map is Aσ, and
the homotopy in the lower right space gives the homotopy needed to complete
the data.

In this fashion A can be defined on all the k-dimensional cones, and by in-
duction on the whole spectral functor realization. Note this A is not completely
canonical: there are choices in lifting the homotopy in the last step. However
any two lifts are homotopic, any two homotopies between lifts are themselves ho-
motopic, etc. This means for any practical purpose it can be considered natural
and canonical.

6.9 Proof of the Characterization Theorem. This follows the traditional
(Eilenberg-Steenrod) proof of uniqueness for ordinary homology, working up from
points using excision and homotopy invariance.

Step 1. Theorem 6.1 holds for projections F ×Rn → Rn.

Let Rn
+ denote the upper half space and p the projection F ×Rn

+ → Rn
+. The

inclusion Rn−1 ⊂ Rn
+ gives excision sequences and a homotopy commutative
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diagram

H(Rn−1, J(p)) −−−−→ H(Rn
+, J(p)) −−−−→ H(Rn

+ −Rn−1, J(p))
yA

yA

yA

J(Rn−1; p) −−−−→ J(Rn
+; p) −−−−→ J(Rn

+ −Rn−1; p)

By excision the rows are homotopy fibrations. Thus if any two of the vertical
maps are equivalences the third is also. The one-point compactification of the
half space is contractible, so by homotopy invariance both functors applied to it
give contractible spectra. Thus the center vertical map is trivially an equivalence.
The space on the right, Rn

+ − Rn−1, is homeomorphic to Rn. By construction
the assembly map is an equivalence for a projection to a point (= R0), and this
is the left vertical when n = 1. The fibration property implies the right vertical,
over R1, is an equivalence. This argument shows inductively that assembly is an
equivalence for all n.

Step 2. Theorem 6.1 holds for p homotopy stratified over a finite complex
filtered by subcomplexes.

Suppose K is such a finite complex and let Ki denote the i-skeleton. Then
the inclusions Ki ⊂ Ki+1 give excision fibration sequences

H(Ki; (p)) −→ H(Ki+1; (p)) −→ Hlf (Ki+1 −Ki; (p))

and similarly for J. Ki+1 −Ki is a (finite) union of copies of Ri+1 over which p

is constant, so Step 1 shows the assembly map is an equivalence for these terms.
This applies to the right-hand term in all the fibration sequences, and the left-
hand term when i = 0. We can now proceed by induction as above. In a finite
number of steps i reaches the dimension of the complex so we conclude 6.1 holds
for K.

Step 3. Theorem 6.1 holds for locally finite complexes and p homotopy strat-
ified over a filteration by subcomplexes.

For this we decompose a locally finite |K| in a nice way. Define the closed star
of V ⊂ |K| to be the union of all closed simplices that intersect V . Note that if
V is closed then it is contained in the interior of its closed star.

Let V0 consist of a vertex in each component of |K|, and inductively define Vn

to be the closed star of Vn−1. Define A to be the union over n of the closures of
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V2n − V2n−1. Define B similarly as the union of closures of V2n+1 − V2n. Note
each of these pieces is a finite complex, and the unions are disjoint unions. We
get:

(1) |K| = A ∪B;
(2) the components of A and B are finite subcomplexes of |K|

Since the theorem is true for finite complexes it is true for disjoint unions of finite
complexes by the union axiom (for both J and homology). Thus it is true for A,
B, and A∩B. Use excision twice, first with A∩B ⊂ B to conclude the theorem
holds for B−A∩B = A∪B−A, and then with A ⊂ A∪B to conclude it holds
for A ∪B.

Step 4. Theorem 6.1 holds in general.
Suppose p : E → X is homotopy stratified over the locally compact ANR X.

According to the simplicial approximation and functor pullback lemmas 6.6.3
and 6.6.2 p is a proper retract of the realization of a functor over the realization
of a (locally finite) simplicial complex mapping properly to X. Since retracts
of isomorphisms are isomorphisms the ANR case follows from the locally finite
complex case.

This completes the proof of the Characterization Theorem.

6.10 The iterated homology identity. This is an equivalence of spectra so
that application of the Atiyah-Hirzebruch type spectral sequence to its homotopy
groups gives a Leray-Serre type spectral sequence for homology of a map.

This can be seen as a push–forward operation in the category of “spectra over
spaces”, see [May–Sigurdsson]. Given a spectrum over X and a map X → Y

define the push-forward to be the spectrum over Y which over a point is the
homology spectrum of the point-inverse in X. The homology of X itself is then
just the push–forward to a point. In these terms the iterated homology identity
is functoriality of the push-forward. Given maps X → Y → pt and a spectrum
over X, pushing forward first to Y and then to the point gives the same result as
pushing forward directly to the point. This point of view leads to a much faster
proof, but at the expense of an excursion into spectra over spaces and relating
these to the functor–oriented constructions used here.

The compact-support version is stated in 6.10.1, the stratification hypothesis
and its locally compact analog are discussed in 6.10.2, and the locally compact
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version of the theorem is given as 6.10.3. The remainder of the section contains
proofs.

6.10.1 Theorem. (Iterated homology identity) Suppose E p−→ X
f−→ Y satisfy:

(1) X and Y are filtered ANRs;
(2) f is an “approximate stratified system of stratified fibrations” (see below)

over the filtration of Y ;
(3) p is a spectral cosheaf over the filtration of X.

Then applying H(−;E) to point inverses in X gives a spectral cosheaf H(f ;E)) →
Y , and there is a natural equivalence of spectra

H(Y,H(f ;E))) '−→ H(X;E).

We discuss the stratification hypothesis.

6.10.2 Definition. A stratified fibration is a map U → V with a filtration on
the total space that satisfies a stratum-preserving version of the lifting property
for fibrations, see [Hughes 1, 2]. It follows that on each stratum the restriction
(Ui − Ui−1) → V is a fibration, and in the case at hand this is nearly sufficient.
We now extend this over strata in the base: f : X → Y is a stratified system
of stratified fibrations if the restriction of the filtration of X to the inverse of
each stratum in Y , f−1(Yi − Yi−1) → (Yi − Yi−1) is a stratified fibration, and f

satisfies a stratified version of the cofibration condition for the filtration of Y .

This is a lot of data. However it often will come naturally from the setting or
can be arranged by general principles. Examples are:

(1) If X and Y are homotopy stratified sets then the projection X × Y → Y

is a stratified system of stratified fibrations.
(2) Suppose a finite group G acts in a homotopy stratified way on a mani-

fold M , suppose H ⊂ G is a subgroup, and let M (H) denote the set of
points fixed by some conjugate of H. M (H)/G is a homotopy stratified
space with the orbit type filtration [Quinn 5]. The other strata of M/G

generally will contain M (H)/G in their closure. The stratified homotopy
link [Hughes 1, 2] provides a model for these strata in a neighborhood.
It is a stratified system of stratified fibrations over M (H)/G.
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(3) More generally if Y ⊂ X is a pure subset (closed union of components of
strata) in a homotopy stratified space then the stratified homotopy link
is a stratified system of stratified fibrations over Y .

(4) If K → L is a proper PL map of polyhedra then there is a subdivison and
a filtration of K by subcomplexes so that K → L becomes a stratified
system of stratified fibrations over the filtration of L by skeleta.

(5) Generic smooth proper maps are stratified systems of fibrations with
filtrations defined by stratifications of jet bundles and coincidence condi-
tions.

We note that the map f in the theorem is only assumed to be an approximate
stratified system of stratified fibrations. This is important in geometric applica-
tions because the ones encountered are almost never genuine. The approximate
versions of these definitions are spelled out in [Hughes 1, 2], but we can dodge the
issue by using the characterization: a map is an approximate stratified system
of stratified fibrations if the stratified homotopy link in the mapping cylinder is
a genuine stratified system of stratified fibrations.

6.10.3 Locally finite iterated homology. The same result holds for locally finite
homology if the map is proper:

Proposition. Suppose E → X → Y are as in 6.10.1, X, Y are locally compact
and f is proper. Then there is an equivalence

Hlf (Y,H(f ;E))) '−→ Hlf (X;E).

Note the point inverses of f are compact so we do not have to specify locally
finite or compact supports for the homology used in the cosheaf H(f ;E). There
is also a version for nonproper maps and locally finite homology in the cosheaf.
This requires a stratified proper homotopy local triviality hypothesis on the fibers
of f over strata in Y .

6.10.4 The map of spectra. We begin with the structure map of the spectrum
over X:

Sk ∧X En −→ En+k.

A space over X with a section has a partial quotient that gives a space over Y

with a section: given X → F → X define F/' by identifying each of the images
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f−1(y) → F to a point. Taking y to this point defines the section Y → F/'.
Applying this to the structure map gives spaces over Y :

Sk ∧Y (En/') = (Sk ∧X En)/' −→ En+k/'.

This map is adjoint to a map to the loop space over Y :

En/' −→ Ωk
Y (En+k/').

Take the (homotopy) direct limit k → ∞ and the right side becomes homology,
by definition. This gives a map of spectra over Y

En/' −→ H(f ;E)n,

To get the associated map of homology divide out Y and apply Ωn:

Ωn(En/X) = Ωn(En/'/Y ) −→ Ωn(H(f ;E)n/Y )

Taking the limit n → ∞ gives H(X;E) on the left and H(Y ;H(f ;E)n/Y )) on
the right. This is the map.

We see that the theorem amounts to rearranging the direct limits in taking
homology.

6.10.5 The proof. First note that the classical (constant-coefficient) case fol-
lows from the Characterization Theorem. Suppose E is a spectrum. Define a
functor on maps U → Y by taking the 0th space of the homology of U and
ignoring Y : H(U ;E)0. This satisfies the axioms. The theorem reconstructs the
spectrum structure and when U → Y is homotopy stratified provides an assembly
equivalence

H(Y ;H(p−1(#);E)) '−→ H(U ;E).

We now sketch the proof in the general case. First, by comparing excision
fibrations and using the cofibration condition on the filtration of Y , reduce to
the case where Y has one stratum and X → Y is a stratified fibration.

Next by using ANR and compact support properties reduce to the case Y a
finite complex.

Again by comparing excision fibrations and working by induction on the num-
ber of cells we reduce to the relative case Y = (Dk, Sk−1). Over a disk a strat-
ified fibration is stratified homotopy equivalent to a product, so the disk case is
a product E×Dn → W ×Dn → Dn, where E→ W is a spectral cosheaf.

Further excisions reduce this to the case n = 0 where the equivalence is trivial.
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