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The Atiyah Conjecture and Artinian Rings

Peter A. Linnell and Thomas Schick

Abstract: Let G be a group such that its finite subgroups have bounded
order, let d denote the lowest common multiple of the orders of the finite
subgroups of G, and let K be a subfield of C that is closed under complex
conjugation. Let U(G) denote the algebra of unbounded operators affiliated
to the group von Neumann algebra N (G), and let D(KG,U(G)) denote the
division closure of KG in U(G); thus D(KG,U(G)) is the smallest subring
of U(G) containing KG that is closed under taking inverses. Suppose n is a
positive integer, and α ∈ Mn(KG). Then α induces a bounded linear map
α : `2(G)n → `2(G)n, and kerα has a well-defined von Neumann dimension
dimN (G)(kerα). This is a nonnegative real number, and one version of the
Atiyah conjecture states that d dimN (G)(kerα) ∈ Z. Assuming this conjec-
ture, we shall prove that if G has no nontrivial finite normal subgroup, then
D(KG,U(G)) is a d×d matrix ring over a skew field. We shall also consider
the case when G has a nontrivial finite normal subgroup, and other subrings
of U(G) that contain KG.
Keywords: Atiyah conjecture, group von Neumann algebra.

1. Introduction

In this paper N will denote the positive integers {1, 2, . . . }, all rings will have
a 1, subrings will have the same 1, and if n ∈ N, then Mn(R) will indicate the
n × n matrices over the ring R and GLn(R) the invertible matrices in Mn(R).
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Let G be a group, let `2(G) denote the Hilbert space with orthonormal basis the
elements of G, and let B(`2(G)) denote the bounded linear operators on `2(G).
Thus we can write elements a ∈ `2(G) in the form

∑
g∈G agg, where ag ∈ C

and
∑

g∈G |ag|2 < ∞. Then CG acts faithfully on the left of `2(G) as bounded
linear operators via the left regular representation, so we may consider CG as a
subalgebra of B(`2(G)). The weak closure of CG in B(`2(G)) is the group von
Neumann algebra N (G) of G. Also if n ∈ N, then Mn(CG) acts as bounded
linear operators on `2(G)n and the weak closure of this ring in B(`2(G)n) is
Mn(N (G)). Let 1 indicate the element of `2(G) which is 1 at the identity of G

and zero elsewhere. Then the map θ 7→ θ1: N (G) → `2(G) is an injection, so
we may regard N (G) as a subspace of `2(G). We can now define tr : N (G) → C
by tr(a) = a1. For α ∈ Mn(N (G)), we can extend this definition by setting
tr(α) =

∑n
i=1 tr(αii), where αij are the entries of α. A useful property is that

if α is a positive operator, then tr(α) ≥ 0. Also we can use tr to give any
right N (G)-module M a well defined dimension dimN (G) M , which in general is
a non-negative real number or ∞ [10, §6.1]. If e is a projection in Mn(N (G)),
then dimN (G) eMn(N (G)) = tr(e). Furthermore if α ∈ Mn(N (G)), so α is a
Hilbert space map `2(G)n → `2(G)n, then since `2(G)n is a right N (G)-module,
dimN (G) kerα is well defined and is equal to dimN (G){β ∈ N (G)n | αβ = 0}.
Finally N (G) has an involution which sends an operator to its adjoint; if a =∑

g∈G agg, then a∗ =
∑

g∈G agg
−1, where the bar indicates complex conjugation.

A ring R is called regular, or sometimes von Neumann regular, if for every
x ∈ R, there exists an idempotent e ∈ R with xR = eR [5, Theorem 1.1]. It is
called finite, or directly finite, if xy = 1 implies yx = 1 for all x, y ∈ R. Finally
a ∗-regular ring R is a regular ring with an involution ∗ with the property that
x ∈ R and x∗x = 0 implies x = 0. In a ∗-regular ring, given x ∈ R, there is a
unique projection e such that xR = eR; so e = e∗ = e2.

Let U(G) denote the algebra of unbounded operators on `2(G) affiliated to
N (G) [10, §8]. Then the involution on N (G) extends to an involution on U(G),
and U(G) is a finite ∗-regular algebra. Also if M is a right N (G)-module, then
dimN (G) M = dimN (G) M ⊗N (G) U(G); in particular dimN (G) eU(G) = tr(e).

For any subring R of the ring S, we let D(R, S) denote the division closure
of R in S; that is the smallest subring of S containing R that is closed under
taking inverses. In the case G is a group and K is a subfield of C, we shall set
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D(KG) = D(KG,U(G)). For any group G, let lcm(G) indicate the least common
multiple of the orders of the finite subgroups of G, and adopt the convention that
lcm(G) = ∞ if the orders of the finite subgroups of G are unbounded. One version
of the strong Atiyah conjecture states that if G is a group with lcm(G) < ∞, then
the L2-Betti numbers of every closed manifold with fundamental group G lie in
the abelian group 1

lcm(G)Z. This is equivalent to the conjecture that if n ∈ N,
A ∈ Mn(QG) and α : `2(G)n → `2(G)n is the map induced by left multiplication
by A, then lcm(G) dimN (G) kerα ∈ Z [9, Lemma 2.2]. In this paper, we shall
consider more generally the case when the coefficient ring is a subfield of C.

Definition 1.1. Let G be a group with lcm(G) < ∞, and let K be a subfield of
C. We say that the strong Atiyah conjecture holds for G over K if

lcm(G) dimN (G) kerα ∈ Z for all α ∈ Mn(KG).

This is equivalent to the conjecture that if M is a finitely presented KG-
module, then lcm(G) dimN (G) M ⊗KG N (G) ∈ Z [10, Lemma 10.7]. Obviously if
G satisfies the strong Atiyah conjecture over C, then G satisfies the strong Atiyah
conjecture over K for all subfields K of C. The strong Atiyah conjecture over C
is known for large classes of groups; for example [6, Theorem 1.5] tells us that it is
true if G has a normal free subgroup F such that G/F is an elementary amenable
group. If K is the algebraic closure of Q in C, it is known for even larger classes of
groups, for example [4, Theorem 1.4] for groups which are residually torsion-free
elementary amenable. The following result is well known; see for example [13,
Lemma 3].

Proposition 1.2. Let G be a torsion-free group (i.e. lcm(G) = 1) and let K be
a subfield of C. Then G satisfies the strong Atiyah conjecture over K if and only
if D(KG) is a skew field.

The purpose of this paper is to generalize Proposition 1.2. We will denote the
finite conjugate subgroup of the group G by ∆(G), and the torsion subgroup of
∆(G) by ∆+(G) (this is a subgroup, compare [12, Lemma 19.3]). We shall prove

Theorem 1.3. Let G be a group with d := lcm(G) < ∞ and ∆+(G) = 1, and let
K be a subfield of C that is closed under complex conjugation. Then G satisfies
the strong Atiyah conjecture over K if and only if D(KG) is a d× d matrix ring
over a skew field.
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It seems plausible that if K is a subfield of C which is closed under complex
conjugation and G is a group with lcm(G) < ∞ which satisfies the strong Atiyah
conjecture over K, then D(KG) is a semisimple Artinian ring. However we cannot
prove this, though we are able to prove a slightly weaker result, and to state this
we require the following definition.

Definition 1.4. Let R be a subring of the ring S. The extended division closure,
E(R, S), of R in S is the smallest subring of S containing R with the properties

(a) If x ∈ E(R, S) and x−1 ∈ S, then x ∈ E(R, S).
(b) If x ∈ E(R, S) and xS = eS where e is a central idempotent of S, then

e ∈ E(R, S).

Obviously E(R, S) ⊇ D(R, S). Note that if {Ri} is a collection of subrings of
S satisfying 1.4(a) and 1.4(b) above, then

⋂
i Ri is also a subring of S satisfying

1.4(a) and 1.4(b), consequently E(R, S) is a well defined subring of S containing
R. Also if G is a group and K is a subfield of C, then we write E(KG) for
E(KG,U(G)). Observe that, if G is torsion free and if the strong Atiyah conjec-
ture holds for G over K, then D(KG) is a division ring, hence xD(KG) = D(KG)
for every 0 6= x ∈ D(KG) and consequently E(KG) = D(KG) in this case. We
are tempted to conjecture that this is always the case. We hope to show in a later
paper that this should follow from a suitable version of the Atiyah conjecture.

We shall prove

Theorem 1.5. Let G be a group with lcm(G) < ∞, and let K be a subfield of
C that is closed under complex conjugation. Suppose that G satisfies the strong
Atiyah conjecture over K. Then E(KG) is a semisimple Artinian ring.

Theorem 1.5 follows immediately from the more general Theorem 2.7 in Sec-
tion 2. Thus in particular if K is a subfield of C that is closed under complex
conjugation and G is a group with lcm(G) < ∞ which satisfies the strong Atiyah
conjecture over K, then KG can be embedded in a semisimple Artinian ring. In
fact we can remove the hypothesis that K is closed under complex conjugation
to obtain

Corollary 1.6. Let G be a group with lcm(G) < ∞ and let K be a subfield of C.
Suppose that G satisfies the strong Atiyah conjecture over K. Then KG can be
embedded in a semisimple Artinian ring.
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In Section 3 we will show, somewhat unrelated to the rest of the paper, that
KG can be embedded in a least subring of U(G) that is ∗-regular.

2. Proofs

Let R be a subring of the ring S and let C = {e ∈ S | e is a central idempotent
of S and eS = rS for some r ∈ R}. Then we define

C(R, S) =
∑

e∈C

eR,

a subring of S. In the case S = U(G), we write C(R) for C(R,U(G)). For each
ordinal α, define Eα(R, S) as follows:

• E0(R, S) = R;
• Eα+1(R, S) = D(C(Eα(R, S), S), S);
• Eα(R, S) =

⋃
β<α Eβ(R, S) if α is a limit ordinal.

Then E(R, S) =
⋃

α Eα(R, S). Also in the case R = KG where G is a group and
K is a subfield of C, we shall write Eα(KG) for Eα(KG,U(G)). If A ⊆ R, then
〈A〉 will indicate the additive subgroup of R generated by A.

Lemma 2.1. Let G be a group, let R be a subring of U(G), let n ∈ N, and let
x ∈ R. Suppose that xU(G) = eU(G) where e is a central idempotent of U(G).
Then 〈dimN (G) βU(G)n | β ∈ Mn(R)〉 = 〈dimN (G) αU(G)n | α ∈ Mn(R + eR)〉.

Proof. Set E = eIn, the diagonal matrix in Mn(R + eR) that has e’s on the main
diagonal and zeros elsewhere. Then E is a central idempotent in Mn(U(G)).
Obviously

〈dimN (G) βU(G)n | β ∈ Mn(R)〉 ⊆ 〈dimN (G) αU(G)n | α ∈ Mn(R + eR)〉,
so we need to prove the reverse inclusion. Let α ∈ Mn(R + eR) and write
α = β + Eγ where β, γ ∈ Mn(R). Then we have

dimN (G) αU(G)n = dimN (G)(β + γ)EU(G)n + dimN (G) β(1− E)U(G)n.

Since dimN (G) β(1−E)U(G)n = dimN (G) βU(G)n−dimN (G) βEU(G)n, it suffices
to prove that

dimN (G) EβU(G)n ∈ 〈dimN (G) δU(G)n | δ ∈ Mn(R)〉
for all β ∈ Mn(R). But EβU(G)n = β(xIn)U(G)n and the result follows. ¤



318 Peter A. Linnell and Thomas Schick

Lemma 2.1 immediately gives the following corollary.

Corollary 2.2. Let G be a group, let R be a subring of U(G), and let n ∈ N.
Then 〈dimN (G) αU(G)n | α ∈ Mn(R)〉 = 〈dimN (G) αU(G)n | α ∈ Mn(C(R))〉.

Proof. Let e1, . . . , em be central idempotents of U(G) such that for each i, there
exists αi ∈ R with eiU(G) = αiU(G). Then by induction on m, Lemma 2.1 tells
us that the result is true if α ∈ Mn(R + e1R + · · ·+ emR). Since Mn(C(R)) is the
union of Mn(R + e1R + · · ·+ emR), the result is proven. ¤

Lemma 2.3. Let R be a subring of the ring S, let n ∈ N, and let A ∈ Mn(D(R, S)).
Then there exist 0 ≤ m ∈ Z and X, Y ∈ GLm+n(S) such that X diag(A, Im)Y ∈
Mm+n(R).

Proof. This follows from [3, Proposition 7.1.3 and Exercise 7.1.4] and [7, Propo-
sition 3.4]. ¤

Lemma 2.4. Let G be a group and let K be a subfield of C. Then

〈dimN (G) xU(G)n | x ∈ Mn(KG), n ∈ N〉
= 〈dimN (G) xU(G)n | x ∈ Mn(E(KG)), n ∈ N〉.

Proof. Obviously

〈dimN (G) xU(G)n | x ∈ Mn(KG), n ∈ N〉
⊆ 〈dimN (G) xU(G)n | x ∈ Mn(E(KG)), n ∈ N〉.

We shall prove the reverse inclusion by transfinite induction. So let n ∈ N
and x ∈ Mn(E(KG)). Then we may choose the least ordinal α such that x ∈
Mn(Eα(KG)). Clearly α is not a limit ordinal, and the result is true if α = 0, so
we may write α = β+1 for some ordinal β and assume that the result is true for all
y ∈ Mn(Eβ(KG)). By Corollary 2.2 the result is true for all y ∈ Mn(C(Eβ(KG)))
and now the result follows from Lemma 2.3. ¤

The following result from [8] will be crucial for our work here. Because of this,
and because we use a slightly different formulation, we state it here.



The Atiyah Conjecture 319

Lemma 2.5. [8, Lemma 2] Let G be a group, let n ∈ N, and let α1, . . . , αn ∈
U(G). Then (

∑n
j=1 αjα

∗
j )U(G) ⊇ α1U(G). It then also follows that

(2.6)




n∑

j=1

αjα
∗
j


U(G) =

n∑

j=1

αjα
∗
jU(G) =

n∑

j=1

αjU(G).

Proof. The case n = 2 in the first statement is [8, Lemma 2]; the proof there can
easily be modified to give the case for general n. Alternatively we can argue as
follows: given α, β ∈ U(G), there exists γ ∈ U(G) such that αα∗+ββ∗ = γγ∗, by
[2, Proposition 3 of Section 53 on p. 239 and Remark 1 of Section 55 on p. 249],
because N (G) is an AW ∗-algebra. Also it is obvious that αU(G) ⊇ αα∗U(G)
and hence αU(G) = αα∗U(G). Using these facts and induction on n, we obtain
the first statement of the lemma. Replacing 1 with j in the right hand side, we
see that

αjU(G) = αjα
∗
jU(G) ⊆




n∑

j=1

αjα
∗
j


U(G),

and equality (2.6) follows. ¤

Theorem 2.7. Let G be a group and let K be a subfield of C which is closed under
complex conjugation. Suppose there is an ` ∈ N such that `dimN (G) αU(G)n ∈ Z
for all α ∈ Mn(KG) and for all n ∈ N. Then E(KG) is a semisimple Artinian
ring.

Proof. First observe that Lemma 2.4 tells us that

(2.8) `dimN (G) αU(G) ∈ Z for all α ∈ E(KG).

Next note that the hypothesis tells us that E(KG) has at most ` primitive cen-
tral idempotents. Indeed if e1, . . . , e`+1 are (nonzero distinct) primitive central
idempotents, then eiej = 0 for i 6= j and we see that the sum

⊕`+1
i=1 eiU(G) is

direct. But

dimN (G)

`+1⊕

i=1

eiU(G) =
`+1∑

i=1

dimN (G) eiU(G) ≥ (` + 1)/` > 1

by (2.8), and we have a contradiction. Thus E(KG) has n primitive central
idempotents e1, . . . , en for some n ∈ N, n ≤ `. For each i, 1 ≤ i ≤ n, choose
0 6= αi ∈ eiE(KG) such that dimN (G) αiU(G) is minimal.
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Fix m ∈ {1, 2, . . . , n}. Since `dimN (G) αU(G) ∈ Z for all α ∈ E(KG) by (2.8),
we may choose g1, . . . , gr ∈ G with dimN (G)(

∑r
i=1 giαmα∗mg−1

i )U(G) maximal.
Note that if gr+1 ∈ G, then

(
r+1∑

i=1

giαmα∗mg−1
i )U(G) ⊇

r∑

i=1

giαmU(G) ⊇ (
r∑

i=1

giαmα∗mg−1
i )U(G)

by Lemma 2.5, hence

dimN (G)(
r+1∑

i=1

giαmα∗mg−1
i )U(G) ≥ dimN (G)(

r∑

i=1

giαmα∗mg−1
i )U(G)

and by maximality of dimN (G)(
∑r

i=1 giαmα∗mg−1
i )U(G), we see that

dimN (G)(
r+1∑

i=1

giαmα∗mg−1
i )U(G) = dimN (G)(

r∑

i=1

giαmα∗mg−1
i )U(G).

It follows that

(
r+1∑

i=1

giαmα∗mg−1
i )U(G) = (

r∑

i=1

giαmα∗mg−1
i )U(G)

and we deduce from Lemma 2.5 that gαmU(G) ⊆ (
∑r

i=1 giαmα∗mg−1
i )U(G) for all

g ∈ G. Let f ∈ U(G) be the unique projection such that

fU(G) =
r∑

i=1

giαmα∗mg−1
i U(G).

Then gfU(G) =
∑

ggiαmα∗mg−1
i U(G) ⊆ ∑

ggiαmU(G) ⊆ fU(G) for all g ∈ G,
thus gfU(G) = fU(G) and we deduce that gfg−1U(G) = fU(G) for all g ∈ G.
Also gfg−1 is also a projection, thus gfg−1 = f for all g ∈ G and we conclude
that f is a central projection in E(KG). Since f 6= 0, fU(G) ⊆ emU(G) and em is
primitive, we conclude that f = em and consequently

∑r
i=1 giαmU(G) = emU(G).

By omitting some of the terms in this sum if necessary, we may assume that

(2.9)
∑

1≤i≤r, i 6=s

giαmU(G) 6= emU(G)

for all s such that 1 ≤ s ≤ r. We make the following observation:

(2.10) If 0 6= x ∈ gsαmE(KG), then xU(G) = gsαmU(G),

where 1 ≤ s ≤ r. This is because 0 6= xU(G) ⊆ gsαmU(G) and by minimal-
ity of dimN (G) αmU(G), we see that dimN (G) xU(G) = dimN (G) gsαmU(G) and
consequently xU(G) = gsαmU(G).
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We claim that emE(KG) =
⊕r

i=1 giαmE(KG). Set σ = (
∑r

i=1 giαmα∗mg−1
i ).

Since σU(G) = emU(G), we see that

(σ +(1− em))U(G) ⊇ σU(G)+ (1− em)U(G) = emU(G)+ (1− em)U(G) = U(G).

Therefore, σ + 1− em is invertible in U(G) and hence σ + 1− em is invertible in
E(KG). Thus

emσE(KG) = em(σ + 1− em)E(KG) = emE(KG).

Moreover, σE(KG) ⊆ emE(KG) and therefore emσE(KG) = σE(KG), hence

emE(KG) = σE(KG) =
r∑

i=1

giαmE(KG).

If this sum is not direct, then for some s with 1 ≤ s ≤ r, we have gsαmE(KG) ∩∑
i6=s giαmE(KG) 6= 0, and without loss of generality we may assume that s = 1.

So let 0 6= x ∈ g1αmE(KG)∩∑r
i=2 giαmE(KG). Then 0 6= xU(G) ⊆ g1αmU(G)

and (2.10) shows that xU(G) = g1αmU(G). It follows that
g1αmU(G) ⊆ ∑r

i=2 giαmU(G), consequently
r∑

i=2

giαmU(G) = emU(G),

which contradicts (2.9) and our claim is established.

Now we show that g1αmE(KG) is an irreducible E(KG)-module. Suppose
0 6= x ∈ g1αmE(KG). Then xU(G) = g1αmU(G) by (2.10) and using Lemma 2.5,
we see as before that xx∗+

∑r
i=2 giαiα

∗
i g
−1
i +1− em is a unit in U(G) and hence

is also a unit in E(KG). This proves that xE(KG) = g1αmE(KG) and we deduce
that E(KG) is a finite direct sum of irreducible E(KG)-modules. It follows that
E(KG) is a semisimple Artinian ring. ¤

Proof of Corollary 1.6. Set k = K∩R, the maximal real subfield of K. If k = K,
then the result is obvious from Theorem 1.5, so we may assume that k 6= K. In
this case the degree of K over k will be 2 and we may write K = k(α) where
α2 ∈ k. Clearly G satisfies the strong Atiyah over k, so we may embed kG into
a semisimple Artinian ring A by Theorem 1.5. Now we may embed KG into
M2(kG) in the standard way, which we now describe. Let F denote the free right
kG-module with basis {e, f}. Then if w ∈ KG, we may write w = u + αv where
u, v ∈ kG, and we define a right kG-module map of F by we = eu + fv and
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wf = eα2v + fu. It is easily checked that KG acts on the left of F by right
kG-modules maps, and it follows that we have embedded KG into M2(kG). We
deduce that KG embeds into M2(A). Since A is semisimple Artinian, this matrix
ring is also semisimple Artinian [11, Proposition 3.5.10 on p. 85], and the result
follows. ¤

Proposition 2.11. Let G be a group with ∆(G) finite and let K be a subfield
of C which is closed under complex conjugation and contains all |∆(G)|-th roots
of unity, e.g. K = C or K is the algebraic closure of Q in C. Then E(KG) =
D(KG).

Proof. If e is a central idempotent in U(G), then e ∈ N (∆(G)), in particular
e ∈ CG, and by our assumption on K even e ∈ KG. The result follows. ¤

The following result is well known, but we include a proof.

Lemma 2.12. Let G be a group, let e be a projection in N (G), and let α ∈ N (G).
Then tr(eαα∗e) ≤ tr(αα∗).

Proof. Since tr(xy) = tr(yx) for all x, y ∈ N (G), we see that tr(eαα∗(1 − e)) =
tr((1−e)αα∗e) = 0. Therefore tr(αα∗) = tr(eαα∗e)+tr((1−e)αα∗(1−e)). Since
tr((1− e)αα∗(1− e)) ≥ 0, the result follows. ¤

Lemma 2.13. Let G be a group, and let (αn) be a sequence in N (G) converging
strongly to α. Suppose that kerα = 0. Then dimN (G)(kerαn) converges to 0.

Proof. By the principle of uniform boundedness, ‖αn‖ is bounded. Also by mul-
tiplying everything by a unitary operator if necessary, we may assume that α is
positive. Then αn − α converges strongly to 0 and (αn − α)∗ is bounded, hence
(αn − α)∗(αn − α) converges strongly to 0 and in particular limn→∞ tr((αn −
α)∗(αn − α)) = 0. Let en ∈ N (G) denote the projection of `2(G) onto kerαn.
Then enα∗n = αnen = 0 and using Lemma 2.12, we obtain

tr((αn − α)∗(αn − α)) ≥ tr(en(αn − α)∗(αn − α)en)

= tr(enα∗αen) ≥ 0.

Thus limn→∞ tr(enα∗αen) = 0. Suppose by way of contradiction that
limn→∞ dimN (G)(kerαn) 6= 0. Then by taking a subsequence if necessary, we
may assume that dimN (G)(kerαn) > ε for some ε > 0, for all n ∈ N. By
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considering the spectral family associated to α∗α [10, Definition 1.68], there
is a closed α∗α-invariant N (G)-submodule X of `2(G) and a δ > 0 such that
dimN (G)(X) > 1 − ε/2 and α∗α > δ on X. Because dimN (G)(X) > 1 − ε/2 and
dimN (G)(kerαn) > ε, we find that dimN (G)(X ∩ kerαn) > ε/2 (use [10, Theorem
6.7]). Let fn denote the projection of `2(G) onto X∩kerαn, so tr fn > ε/2. Since
α∗α > δ on X∩kerαn, fnα∗αfn ≥ δfn, and because of positivity of tr we see that
tr(fnα∗αfn) ≥ tr(δfn) > δε/2. Therefore tr(enα∗αen) > εδ/2 by Lemma 2.12,
which shows that tr(enα∗αen) does not converge to 0, and the result follows. ¤

Proposition 2.14. Let G be a group with ∆+(G) = 1 and let K be a subfield of
C that is closed under complex conjugation. Assume that lcm(G) = d ∈ N and
that G satisfies the strong Atiyah conjecture over K. Then D(KG) is a d × d

matrix ring over a skew field.

Proof. Let p be a prime, let q be the largest power of p that divides d, and let
H ≤ G with |H| = q (so H is a “Sylow” p-subgroup of G). Set e = 1

q

∑
h∈H h, a

projection in QH. We shall use the center valued von Neumann dimension dimu,
as defined in [10, Definition 9.12]. Since ∆+(G) = 1, we see that dimu(eU(G)) =
1/q and dimu((1− e)U(G)) = (q − 1)/q. Therefore by [10, Theorem 9.13(1)],

(1− e)U(G) ∼= eU(G)q−1

and we deduce that there exist orthogonal projections e = e1, e2, . . . , eq ∈ U(G)
(so eiej = 0 for i 6= j) such that

∑q
i=1 ei = 1 and eiU(G) ∼= eU(G) for all i. By

[2, Exercise 13.15A, p. 76], there exist similarities (that is self adjoint unitaries)
ui ∈ U(G) with u1 = 1 such that ei = uieui. There is a countable subgroup F of
G such that ui ∈ N (F ) for all i. By the Kaplansky density theorem [1, Corollary,
p. 8] for each i (1 ≤ i ≤ q) there exists a sequence uij ∈ KF such that uij → ui

as j → ∞ in the strong operator topology in N (F ) with u1j = 1 for all j. Set
vj =

∑q
i=1 uijeuij . Then vj →

∑q
i=1 ei = 1 strongly, hence for 1 ≤ i ≤ q,

lim
j→∞

dimN (F )(vjU(F )) = lim
j→∞

dimN (F )(uijU(F )) = 1

by Lemma 2.13. Now dimN (F )(xU(F )) = dimN (G)(xU(G)) for all x ∈ U(F ),
consequently

lim
j→∞

dimN (G) vjU(G) = lim
j→∞

dimN (G)(uijU(G)) = 1 for 1 ≤ i ≤ q,

and since by assumption G satisfies the strong Atiyah conjecture over K, there
exists n ∈ N such that dimN (G) vjU(G) = dimN (G)(uijU(G)) = 1 for 1 ≤ i ≤ q
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for all j ≥ n, in particular dimN (G)(vnU(G)) = dimN (G)(uinU(G)) = 1 and we
conclude that vn and uin (1 ≤ i ≤ q) are units in U(G). Therefore vn and uin

(1 ≤ i ≤ q) are units in D(KG) and we deduce that
∑q

i=1 uineD(KG) = D(KG),
because

D(KG) = vnD(KG) =
q∑

i=1

(uineuin)D(KG) ⊆
q∑

i=1

uineD(KG) ⊆ D(KG).

Since dimN (G) eU(G) = 1/q, we see that
⊕q

i=1 uineU(G) = U(G), a direct sum,
and we deduce that

(2.15)
q⊕

i=1

uineD(KG) = D(KG),

also a direct sum.

Now suppose that ε is a central idempotent in C(D(KG)). We want to prove
that ε = 0 or 1, so assume otherwise. Now εuineU(G) ∼= εeU(G) for all i, which
implies that dimN (G)(εU(G)) = q dimN (G)(εeU(G)). Moreover, because of the
Atiyah conjecture, d dimN (G)(εeU(G)) ∈ Z. These two observations together im-
ply that d dimN (G)(εU(G)) ∈ qZ. Since this is true for all primes p, it follows that
dimN (G) εU(G) ∈ Z, so 0 and 1 are the only central idempotents of C(D(KG)).

Summing up, we have shown that C(D(KG)) contains no nontrivial central
idempotents. Using Theorem 2.7, we see that D(KG) is a semisimple Artinian
ring with no nontrivial central idempotents. Thus D(KG) is an l× l matrix ring
over a division ring for some l ∈ N. In particular, D(KG) is the direct sum of
l mutually isomorphic D(KG)-submodules, so if f is a primitive idempotent in
D(KG), we see that dimN (G)(fU(G)) = 1/l. Furthermore Lemma 2.3 (or Lemma
2.4) show that l|d. On the other hand (2.15) shows that q|l, for all primes p, so
d|l and the result follows. ¤

Proof of Theorem 1.3. If G satisfies the strong Atiyah conjecture over K, then
D(KG) is a d× d matrix ring over a skew field by Proposition 2.14. Conversely
suppose D(KG) is a d×d matrix ring over a skew field F . We need to show that
if M is a finitely presented KG-module, then lcm(G) dimN (G) M ⊗KG U(G) ∈ Z.
However

M ⊗KG U(G) ∼= M ⊗KG Md(F )⊗Md(F ) ⊗U(G),

consequently (M ⊗KG U(G))d is a finitely generated free U(G)-module and we
conclude that lcm(G) dimN (G) M ⊗KG U(G) ∈ Z as required. ¤
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3. Embeddings in ∗-regular rings

There are other closures of group rings KG in U(G) which may be useful,
especially when lcm(G) = ∞. In general the intersection of regular subrings of a
von Neumann regular ring is not regular [5, Example 1.10], however we do have
the following result.

Proposition 3.1. Let G be a group and let {Ri | i ∈ I} be a collection of
∗-regular subrings of U(G). Then

⋂
i∈I Ri is also a ∗-regular subring of U(G).

Proof. Set S =
⋂

i∈I Ri. Obviously S is a ∗-subring of U(G); we need to show
that S is ∗-regular, that is given s ∈ S, there is a projection e ∈ S such that
sS = eS. We note that D(Ri,U(G)) = Ri for all i. Indeed if x ∈ Ri and x is
invertible in U(G), then xRi = eRi where e is a projection in Ri, consequently
xU(G) = eU(G) and since x is invertible in U(G), we must have e = 1 and we
deduce that xRi = Ri. Similarly Rix = Ri and thus x is invertible in Ri, so
D(Ri,U(G)) = Ri as asserted. Since Ri is ∗-regular, for each i ∈ I, there is a
projection ei ∈ Ri such that eiRi = sRi. We now have eiU(G) = ejU(G) for all
i, j and we deduce that ei = ej for all i, j ∈ I, so there exists f ∈ S such that
f = ei for all i. Since fU(G) = sU(G), we see that fs = s, so s ∈ fS and hence
sS ⊆ fS. Thus the result will be proven if we can show that ss∗S ⊇ fS. By
Lemma 2.5,

(ss∗ + (1− f))U(G) ⊇ (1− f)U(G) + sU(G) = (1− f)U(G) + fU(G) = U(G)

and we see that ss∗ + 1 − f is a unit in U(G). Let t ∈ U(G) be the inverse of
ss∗ + 1− f , so

(3.2) (ss∗ + 1− f)t = 1.

Since D(Ri,U(G)) = Ri for all i, we deduce that t ∈ Ri for all i and hence t ∈ S.
Moreover fs = s and f(1 − f) = 0, so if we multiply (3.2) on the left by f , we
obtain ss∗t = f and the result is proven. ¤

Thus if K is a subfield of C that is closed under complex conjugation and G is
any group, then there is a least subring of U(G) containing KG that is ∗-regular.
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