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1 Introduction

This paper applies techniques from noncommutative geometry, in particular, Re-
nault’s groupoid C∗-algebras [43], to study various aspects of the local geometry
of ultrametric spaces. Since the geometry of infinite trees at infinity and the local
geometry of ultrametric spaces are related by the end space functor, results about
the large-scale geometry of infinite trees are also obtained.

There are two main motivating examples for this paper. First, Connes [14]
used the space of Penrose tilings as an illustration of a noncommutative space.
We observe here that the space of Penrose tiles can be interpreted as a certain
compact ultrametric space modulo local isometry type. We then address the
problem of finding other compact ultrametric spaces for which the noncommu-
tative geometric point of view can be used to study local isometry types. To
solve this problem, locally rigid ultrametric spaces are introduced. The results
are described in Section 1.1 below.

In addition to the equivalence relation of local isometry type, we also analyze
a closely related equivalence relation on the points of a locally rigid ultrametric
space, namely local similarity type. Those results are summarized in Section 1.2.

The second main motivating example is Birget’s faithful unitary representa-
tion of Thompson’s group V into the Cuntz algebra O2 [7], also obtained inde-
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pendently by Nekrashevych [37]. In this paper we derive such a representation
from a more general result establishing a faithful unitary representation of any
countable group Γ acting locally rigidly by local similarities on a compact ultra-
metric space X into the C∗-algebra of a groupoid associated to the action of Γ
on X. See Section 1.3 for more details.

The concept of a rigid tree appears in the Bass-Lubotzky theory of tree lat-
tices. In Section 12.2 it is observed that this condition is equivalent to the end
space of the tree being a locally rigid, ultrametric space.

1.1 Local isometries

The first main motivating example for this paper is the description by Connes
[14] of the space of Penrose tilings. Consider the space X of infinite sequences of
0’s and 1’s, where any 1 must be followed by 0; the topology on X comes from
considering X as a subspace of the countable product of the discrete space {0, 1}:

X =

{
(x0, x1, x2, . . . ) ∈

∞∏

0

{0, 1} | xi = 1 implies xi+1 = 0

}
.

It is known that the set of Penrose tilings is parametrized as a quotient space of
X with respect to the equivalence relation R of tail equivalence (where x = (xi)∞i=0

and y = (yi)∞i=0 are tail equivalent if and only if there exists N ≥ 0 such that
xi = yi for all i ≥ N) (see Grünbaum and Shephard [23]). The problem is
that X/R is not Hausdorff and, hence, cannot be studied by ordinary topological
methods. Nevertheless, Connes shows how to associate to X/R a natural non-
commutative C∗-algebra; that is to say, X/R can be viewed as a noncommutative
topological space (whereas the Gelfand-Naimark Theorem shows that commuta-
tive C∗-algebras correspond to locally compact Hausdorff spaces). In fact, the
C∗-algebra constructed by Connes for X/R is AF (that is, approximately finite,
or the norm closure of a direct limit of finite dimensional matrix algebras over
C).

We call (X, d) the Fibonacci space because it is the end space of the Fibonacci
tree (see Figure 1) as will be explained below.
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Figure 1: The Fibonacci tree

The point of view of this paper begins with the simple observation that the
equivalence relation R on X has a geometric interpretation when X is endowed
with the natural metric d(x, y) = e−n, where n = inf{i ≥ 0 | xi 6= yi}. Namely,
xRy if and only if X has the same local isometry type at x and y (that is, there
exists ε > 0 and an isometry h : B(x, ε) → B(y, ε) with hx = y).

One may then ask, what is a natural class of metric spaces whose local isom-
etry types are able to be studied by noncommutative geometric methods? It is
this question that we seek to answer in the first part of this paper.

A key feature of the metric d on X is that it is an ultrametric; that is, d satisfies
the strong triangle inequality d(x, y) ≤ max{d(x, z), d(z, y)} for all x, y, z ∈ X.

A important geometric property of the Fibonacci space X is that it is rigid;
that is, X has no isometries other than the identity. In particular, local isometry
types in X are not reflected by global symmetries in X. Furthermore, the rigidity
property of X is inherited by balls, so that, in particular, X is locally rigid.

In general, we find that it is compact ultrametric spaces satisfying the local
rigidity property whose local isometry types can be studied using noncommuta-
tive geometric methods. The entry into these methods is through the theory of
groupoids and their C∗-algebras.

The equivalence relation R on X is an example of a groupoid. In general,
one can define a groupoid GLI(X) of local isometries on a metric space X. If
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the groupoid is sufficiently well-behaved, Renault [43] showed how to define the
C∗-algebra of the groupoid (generalizing the C∗-algebra of a group). We show
that compact, locally rigid, ultrametric spaces have groupoids of local isometries
to which Renault’s theory can be applied.

The results we are able to obtain in this general situation are summarized in
the following theorem.

Theorem 1.1 If X is a compact, locally rigid, ultrametric space and GLI(X) is
the groupoid of local isometries on X, then

1. GLI(X) is a locally compact, Hausdorff, second countable, étale groupoid;

2. the groupoid C∗-algebra C∗GLI(X) is a unital AF C∗-algebra;

3. the topological groupoid GLI(X), the unital groupoid C∗-algebra C∗GLI(X),
and the unital, partially ordered abelian group K0C

∗GLI(X) are each in-
variants of X up to micro-scale equivalence of X;

4. there exists a Bratteli diagram B(X) such that GLI(X) is the path groupoid
of B(X);

5. K0C
∗GLI(X) as a unital partially ordered abelian group is isomorphic to the

symmetry at infinity group Sym∞(T, v) of any rooted, geodesically complete,
locally finite simplicial tree (T, v) whose end space is isometric to X.

To measure local isometry types in X, it might seem more natural to focus
on the group LI(X) of local isometries from X to itself, rather than the groupoid
GLI(X). One of the main purposes of this paper is to show that the groupoid
approach can be used to study local isometries on a compact, locally rigid ul-
trametric space. In this case, the groupoid GLI(X) is an effective replacement
of the quotient space X/LI(X), which, in general, need not be Hausdorff. This
is quite different from what happens for the isometry group Isom(X), in which
case X/Isom(X) is a perfectly well-behaved space.

As with the Fibonacci space and tree, there is in general a well-known re-
lationship between ultrametric spaces and trees. In fact, compact ultrametric
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spaces are exactly the end spaces of rooted, proper R-trees. Under this corre-
spondence, local isometries of the end space come from uniform isometries at
infinity of the rooted tree. These are isometries between complements of open
balls in the tree centered at the root. It follows that Theorem 1.1 provides an
invariant of rooted, geodesically complete, proper R-trees, with locally rigid end
spaces, up to uniform isometry at infinity. See Corollary 10.16 for more details.

Elliott [18] proved that a unital AF C∗-algebra is determined up to isomor-
phism by its K0 group (as a unital partially ordered abelian group). Conse-
quently, in light of Theorem 1.1(2), knowing K0C

∗GLI(X) becomes important.
For any geodesically complete, locally finite simplicial tree T with root v, a group
Sym∞(T, v) is introduced in Section 9, called the group of symmetries at infinity
of T . It is a unital partially ordered abelian group, constructed as a direct limit
of a sequence of finitely generated free abelian groups. The direct sequence is
elementary to construct from a diagram of the tree. Item (5) in Theorem 1.1 is
established by showing that Sym∞(T, v) is isomorphic to K0C

∗GLI(end(T, v)) as
a unital partially ordered abelian group.

Theorem 1.1 only applies in the locally rigid case; however, there are many
compact ultrametric spaces that are not locally rigid. An important example is
the end space of the Cantor tree in Figure 2 (see Example 5.7).
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Figure 2: The Cantor tree

To a certain extent noncommutative geometric methods can still be applied



228 Bruce Hughes

to such spaces, and this is discussed in Section 1.3 below. But first we turn to
the second main result of this paper.

1.2 Local similarities

In addition to studying local isometry types in compact ultrametric spaces, one
may relax this relation and instead study local similarity types. When considering
end spaces of rooted trees, just as local isometries of the end space correspond
to uniform isometries at infinity of the rooted tree, local similarities of the end
space correspond to (not necessarily uniform) isometries at infinity of the rooted
tree. These are isometries between complements of the interiors of finite subtrees
of the tree containing the root.

In the case that X is the Fibonacci space, then x, y ∈ X are tail equivalent
with lag (i.e., there exists m,n ≥ 0 such that xm+j = yn+j for all j ≥ 0) if and
only if X has the same local similarity type at x and y (i.e., there exist ε, λ > 0
and a λ-similarity h : B(x, ε) → B(y, λε) with hx = y) (see [26]).

In analogy with the groupoid of local isometries, one can define a groupoid
GLS(X) of local similarities on a metric space X. We show that compact, locally
rigid, ultrametric spaces have groupoids of local similarities to which Renault’s
theory can be applied. The results in this general situation are summarized in
the following theorem.

Theorem 1.2 If X is a compact, locally rigid, ultrametric space and GLS(X) is
the groupoid of local similarities on X, then

1. GLS(X) is a locally compact, Hausdorff, second countable, étale groupoid,
and

2. GLS(X) is invariant up to local similarity of X.

The contrast between local isometry types (Theorem 1.1) and local similar-
ity types (Theorem 1.2) is already foreshadowed in the C∗-algebra literature.
For example, Mingo [34] studied C∗-algebras of spaces of sequences modulo tail
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equivalence (generalizing Connes [14]). On the other hand, Kumjian, Pask, Rae-
burn and Renault [31] studied Cuntz-Krieger C∗-algebras of spaces of sequences
modulo tail equivalence with lag. Roughly, tail equivalence corresponds to local
isometry type, whereas tail equivalence with lag corresponds to local similarity
type. For the end space of the Fibonacci tree (and some other trees), the analogy
is exact.

1.3 Faithful unitary representations

The second main motivating example for this paper is Birget’s faithful unitary
representation of Thompson’s group V into the Cuntz algebra O2 [7]. Such a
representation was obtained independently by Nekrashevych [37]. This is related
to this paper in the following two ways:

1. Thompson’s group V is a subgroup of the group of local similarities on
the end space Y of the Cantor tree. (References for this are given in Sec-
tion 12.3.)

2. Renault [43] defined a groupoid O2, called the Cuntz groupoid, and showed
that the C∗-algebra of O2 is the Cuntz algebra O2. The groupoid O2 is
easily seen to be a groupoid of local similarities on the end space of the
Cantor tree.

However, as pointed out above, the end space of the Cantor tree is not locally
rigid; therefore, the point of view as developed in Theorems 1.1 and 1.2 does not
apply directly.

The key observation needed to overcome the lack of local rigidity is that
in items (1) and (2) above, not all local similarities of the end space Y of the
Cantor tree are needed—just those that locally preserve the natural total order.
The group Γ of local similarities of Y that are locally order preserving has an
important property: it acts locally rigidly on Y . (See Section 6.2 for the definition
and Section 12.3 for the fact that this action is locally rigid.) This is the key
property shared with the full group LS(X) of all local similarities on a compact,
locally rigid ultrametric space X.
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Thus, we are led to consider subgroups Γ of the group LS(X) of local sim-
ilarities of an arbitrary compact ultrametric space X that act locally rigidly on
X.

In analogy with the groupoids of local isometries and local similarities, one
can define a subgroupoid GΓ(X) of GLS(X) whenever Γ is a subgroup of the
group of local similarities on a metric space X. In the case that X is a compact
ultrametric space and the action of Γ on X is locally rigid, we show that Renault’s
theory can be applied. The results in this general situation are summarized in
the following theorem.

Theorem 1.3 If X is a compact, ultrametric space and Γ is a countable group
acting locally rigidly on X by local similarities, then

1. the germ groupoid GΓ(X) of Γ on X is a locally compact, Hausdorff, second
countable, étale groupoid;

2. if h ∈ LS(X), then h−1Γh also acts locally rigidly on X by local similarities
and GΓ(X) and Gh−1Γh(X) are isomorphic topological groupoids;

3. there is a faithful unitary representation of Γ into C∗GΓ(X).

Example 1.4 If Y is the end space of the Cantor tree and Γ is the subgroup
of LS(Y ) consisting of locally order preserving local similarities, then Γ = V ,
Thompson’s group, and Γ acts locally rigidly on Y . In this case, GΓ(Y ) = O2,
the Cuntz groupoid. Since C∗GΓ(Y ) = O2, the Cuntz algebra by Renault [43], the
representation of Birget [7] and Nekrashevych [37] is a special case of Theorem 1.3.

More generally, Birget and Nekrashevych obtained faithful unitary represen-
tations of the Higman–Thompson groups Gn,1 into the Cuntz algebra On for
all n ≥ 2 (G2,1 = V ). Such representations also follow from the results in this
paper—see Section 12.3.

If X is a compact, locally rigid ultrametric space, then Γ = LI(X) acts
locally rigidly on X and GLI(X) = GΓ(X). Thus, Theorems 1.1 and 1.3 imply
the following result.
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Corollary 1.5 The local isometry group LI(X) of a compact, locally rigid ul-
trametric space X has a faithful unitary representation into the AF C∗-algebra
C∗GLI(X).

It should be mentioned that Berestovskii [5] proved that the isometry group of
any compact ultrametric space has a faithful representation into the orthogonal
group of a separable, real Hilbert space.

1.4 Guide

We indicate where the proofs of the theorems in the Introduction may be found
in the body of the paper. The proof of Theorem 1.1 can be found as follows.
Item (1) is proved in Section 6.1; item (2) is proved in Section 7; items (3) and
(4) are proved in Section 10; item (5) is given by Corollary 9.3.

The proof of Theorem 1.2 can be found as follows. Item (1) is given by
Corollary 6.12. Item (2) is in Section 3.

The proof of Theorem 1.3 can be found as follows. Item (1) is given in
Section 6 (see Theorem 6.21). Item (2) is proved in Section 3 (Proposition 3.15)
and Section 6 (Proposition 6.23). Item (3) is in Section 11.

For the theory of C∗-algebras of groupoids, see Muhly [36], Paterson [42], and
Renault [43]. For some general background on ultrametric spaces, see Khrennikov
[29] and Robert [44]. In addition to other references in the body of the paper,
see Nikolaev [41] for an exposition of AF C∗-algebras and their K-theory.

Throughout this paper we use the notation N = {1, 2, 3, . . . } for the natural
numbers, Z for the integers, Z+ for the nonnegative integers, R for the real
numbers, and C for the complex numbers.

Acknowledgements. I have benefited from conversations with Berndt Brenken,
Jon Brown, Alex Kumjian, Igor Nikolaev, Mark Sapir, Jack Spielberg, Andreas
Thom, and Guoliang Yu.
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2 Local isometry and local similarity groups

If (X, d) is a metric space, x ∈ X and ε > 0, then we use the notation B(x, ε) =
{y ∈ X | d(x, y) < ε} for the open ball about x of radius ε, and B̄(x, ε) = {y ∈
X | d(x, y) ≤ ε} for the closed ball about x of radius ε.

Definition 2.1 Let (X, dX) and (Y, dY ) be metric spaces. A homeomorphism
h : X → Y is

1. an isometry if dY (hx, hy) = dX(x, y) for all x, y ∈ X.

2. a similarity if there exists λ > 0 such that dY (hx, hy) = λdX(x, y) for all
x, y ∈ X. In this case, h is a λ-similarity, λ is the similarity modulus of h,
and we write sim(h) = λ.

3. a local isometry if for every x ∈ X there exists ε > 0 such that h restricts
to an isometry h| : B(x, ε) → B(hx, ε).

4. a local similarity if for every x ∈ X there exist ε > 0 and λ > 0 such that
h restricts to a λ-similarity h| : B(x, ε) → B(hx, λε). In this case, λ is the
similarity modulus of h at x and we write sim(h, x) = λ.

5. a uniform local similarity if there exist ε > 0 and λ > 0 such that for every
x ∈ X the restriction h| : B(x, ε) → B(hx, λε) is a λ-similarity. In this case,
sim(h, x) = λ for all x ∈ X.

An important point of this definition is that each of these maps is surjective.1

For a local similarity h, the similarity modulus sim(h, x) is uniquely deter-
mined by h and x, except in the case x is an isolated point of X. In that case,
we will always take sim(h, x) = 1.

For a metric space X (with a given metric), Homeo(X) is the group of home-
omorphisms from X to X, Isom(X) is the group of isometries from X to X,
LI(X) is the group of local isometries from X to X, and LS(X) is the group of
local similarities from X to X.

1The terminology conflicts slightly with [26], where similarity, local similarity, and uniform

local similarity were modified by equivalence to indicate that they were homeomorphisms.
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Note that there are inclusions of subgroups

Isom(X) ≤ LI(X) ≤ LS(X) ≤ Homeo(X).

These groups are given the compact-open topology unless otherwise specified.

If X is a compact metric space and h : X → X is a similarity (respectively,
a uniform local similarity), then h is an isometry (respectively, a local isometry)
(for the second of these statements, see [26]).

3 Local isometry and local similarity groupoids

In this section we define the topological groupoids of local similarities and local
isometries of a metric space. Unfortunately, these groupoids are rarely Hausdorff
or second countable (see Examples 3.13 and 3.14)—two conditions needed for
Renault’s machinery [43] to work.2 We will eventually overcome this problem
in Section 6 by either restricting to second countable, locally rigid ultrametric
spaces or to certain subgroupoids.

An alternative treatment of local isometry groupoids is in Bridson and Hae-
fliger [10, Part III, Chapter G]; however, beyond the basic definitions, their point
of view is quite a bit different from the present paper (in particular, they do not
discuss C∗-algebras).

Let (X, d) be a metric space.

Definition 3.1 Let x1, x2 ∈ X. A local similarity germ from x1 to x2 in X is an
equivalence class [g, x1] represented by a λ-similarity g : B(x1, ε) → B(x2, λε) for
some ε > 0 and λ > 0 such that gx1 = x2. Another such similarity g′ : B(x1, ε

′) →
B(x2, λ

′ε′) is equivalent to g if g|B(x1, ε
′′) = g′|B(x1, ε

′′) for some ε′′ > 0 with
ε′′ ≤ min{ε, ε′}.

If [g, x] is a local similarity germ, then the modulus sim(g, x) is independent
of the choice of representative for the equivalence class.

2The Hausdorff condition is relaxed a bit in Paterson’s approach [42].
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Definition 3.2 The local similarity groupoid GLS(X) of X is the set of all local
similarity germs between pairs of points in X.

The groupoid structures on GLS(X) are the obvious ones. Thus, the unit space
is X and the domain d : GLS(X) → X and range r : GLS(X) → X maps are given
by d([g, x]) = x and r([g, x]) = gx. If [g1, x1] and [g2, x2] are local similarity germs
from x1 to x2 and from x2 to x3, respectively, then the composition [g2, x2][g1, x1]
is the local similarity germ from x1 to x3 defined by composing g1 and g2 after
suitably restricting their domains: [g2, x2][g1, x1] = [g2g1, x1]. The inverse is
[g, x]−1 = [g−1, gx].

The topology on GLS(X) is determined as follows.

Definition 3.3 For every germ [g, x] represented by a λ-similarity g : B(x, ε) →
B(gx, λε) and every y ∈ B(x, ε), there is a λ-similarity g| : B(y, δ) → B(gy, λδ)
where δ = ε− d(x, y) representing a germ [g, y]. Let

U(g, x, ε) = {[g, y] | y ∈ B(x, ε)} ⊆ GLS(X).

The collection of all such U(g, x, ε) for [g, x] ∈ GLS(X) forms a basis for a topology
on GLS(X) called the germ topology.

Note that U(g1, x1, ε1) ∩ U(g2, x2, ε2) =

⋃
{U(g, x, ε) | B(x, ε) ⊆ B(x1, ε1) ∩B(x2, ε2) and g = g1|B(x, ε) = g2|B(x, ε)}.

Throughout the rest of this paper, GLS(X) will always be given the germ
topology.

The following result gives a proof of Theorem 1.2(2) in the Introduction.

Proposition 3.4 A local similarity h : X → Y of metric spaces induces an iso-
morphism h∗ : GLS(X) → GLS(Y ) of topological groupoids.

Proof. Let [g, x] ∈ GLS(X) be a local similarity germ. We may assume that g

is defined on B(x, ε) with ε > 0 sufficiently small that there exists λ1 > 0 such
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that h| : B(x, ε) → B(hx, λ1ε) is a λ1-similarity and there exists λ2 > 0 such that
h| : B(gx, ε) → B(hgx, λ1ε) is a λ2-similarity. Then h∗[g, x] : = [hgh−1, hx] can
be seen to define an isomorphism of topological groupoids. ¤

Lemma 3.5 GLS(X) is an étale groupoid. That is, r : GLS(X) → X is a local
homeomorphism. In fact, the collection GLS(X)op of open subsets A of GLS(X)
such that d|A and r|A are homeomorphisms onto open subsets of X forms a basis
for the germ topology 3 on GLS(X).

Proof. It suffices to observe that for each λ-similarity g : B(x, ε) → B(gx, λε),
d| : U(g, x, ε) → B(x, ε) and r| : U(g, x, ε) → B(gx, λε) are homeomorphisms. It
is clear that these are bijections; that they are homeomorphisms follows from the
fact that U(g, y, δ) ⊆ U(g, x, ε) whenever y ∈ B(x, ε) and 0 < δ ≤ ε− d(x, y). ¤

Lemma 3.6 If X is locally compact, then GLS(X) is locally compact.

Proof. From the proof of Lemma 3.5, GLS(X) has a basis of open sets homeo-
morphic to open balls of X. ¤

Example 3.7 If (X, d) is a discrete metric space, then GLS(X) and X × X

are isomorphic as topological groupoids when X ×X is given the pair groupoid
structure (e.g. see [48, page 747]).

Definition 3.8 An open subgroupoid of GLS(X) is a subset G of GLS(X) such
that

1. G is open in GLS(X) (as topological spaces),

2. G is closed under composition,

3. G contains the unit space X.

3Some authors take this as the definition of étale; others refer to it as r-discreteness. Note

that we are not insisting that our groupoids are locally compact, Hausdorff or second countable.
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Definition 3.9 The local isometry groupoid GLI(X) of X is the groupoid of all
local isometry germs between pairs of points of X; that is,

GLI(X) = {[g, x] ∈ GLS(X) | sim(g, x) = 1}.

Definition 3.10 For a subgroup Γ ≤ LS(X), the germ groupoid GΓ(X) of Γ on
X is the subgroupoid of GLS(X) given by

GΓ(X) = {[g, x] ∈ GLS(X) | g ∈ Γ}.

Remark 3.11 It is clear that both GLI(X) and GΓ(X) are open subgroupoids
of GLS(X). In fact, if g : B(x, ε) → B(gx, ε) represents a [g, x] ∈ GLI(X), then
[g, x] ∈ U(g, x, ε) ⊆ GLI(X). Likewise, if g ∈ Γ, x ∈ X and ε > 0, then [g, x] ∈
U(g, x, ε) ⊆ GΓ(X).

Remark 3.12 The unit space is naturally an open subspace of GLS(X) via the
map α : X → GLS(X), x 7→ [id, x], where id : B(x, ε) → B(x, ε) is the identity for
some ε > 0. Obviously, α is injective. To see that it is continuous, let U(g, y, ε) be
a basis element of GLS(X) and suppose α(x) ∈ U(g, y, ε). Then [id, x] ∈ U(g, y, ε),
so x ∈ B(y, ε) and g = id near x. It follows that if z is close enough to x, then
α(z) ∈ U(g, y, ε), thereby verifying continuity of α. To see that α is an open
map, note that α(B(x, ε)) = ∪{[id, y] | y ∈ B(x, ε)} = U(id, x, ε). In particular,
α(X) is an open subset of GLS(X). It need not be the case that α(X) is closed
in GLI(X), but see Remark 6.4 for an instance when it is.

Example 3.13 If X is the end space of the Cantor tree C, then GLI(X) is not
Hausdorff. On the other hand, if Y is the end space of the Fibonacci tree F , then
GLI(Y ) is Hausdorff. See Theorem 6.3 and Example 6.5.

Example 3.14 If X = {x ∈ R2 | ||x|| ≤ 1}, the closed unit ball in R2 with
the usual metric, then GLI(X) is not second countable. To see this, for each
0 ≤ θ < 2π, let gθ : X → X be counterclockwise rotation through angle θ. Then
for every x ∈ X and θ1 6= θ2, [gθ1 , x] 6= [gθ2 , x]. It follows that if 0 is the origin in
R2, {U(gθ,0, 1) | 0 ≤ θ < 2π} is an uncountable collection of mutually disjoint,
nonempty open subsets of GLI(X). Hence, GLI(X) is not second countable.
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Proposition 3.15 If X is a metric space with a subgroup Γ ≤ LS(X) and h ∈
LS(X), then GΓ(X) and Gh−1Γh(X) are isomorphic topological groupoids.

Proof. According to Proposition 3.4, (h−1)∗ : GLS(X) → GLS(X), [g, x] 7→
[h−1gh, h−1x], is an isomorphism of topological groups. Clearly, (h−1)∗ takes
the open subgroupoid GΓ(X) onto Gh−1Γh(X). ¤

4 Ultrametric spaces

In this section we recall the definition of ultrametric spaces and some of their well-
known properties. We then establish some elementary properties which have not
appeared previously in the literature. These properties will be useful in studying
local isometry and similarity groups and groupoids of ultrametric spaces.

Definition 4.1 If (X, d) is a metric space and d(x, y) ≤ max{d(x, z), d(z, y)} for
all x, y, z ∈ X, then d is an ultrametric and (X, d) is an ultrametric space.

The following proposition lists some well-known properties of ultrametric
spaces. They are readily verified.

Proposition 4.2 (Elementary properties of ultrametric spaces) The fol-
lowing properties hold in any ultrametric space (X, d).

1. If two open balls (or two closed balls) in X intersect, then one contains the
other.

2. (Egocentricity) Every point in an open (or closed) ball is a center of the
ball.

3. Every open ball is closed, and every closed ball is open.

4. (ISB) Every triangle in X is isosceles with a short base. That is, if
x1, x2, x3 ∈ X, then there exists an i such that d(xj , xk) ≤ d(xi, xj) =
d(xi, xk) whenever j 6= i 6= k. ¤
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Lemma 4.3 (Isometry Extension) Suppose X is an ultrametric space, x ∈ X

and ε > 0. If h : B(x, ε) → B(x, ε) is an isometry, then h̃ : X → X defined by

h̃ =

{
h on B(x, ε)
inclusion on X \B(x, ε)

is also an isometry.

Proof. First observe that for all y, z ∈ X, y, z ∈ B(x, ε) implies d(y, z) < ε,
and y ∈ B(x, ε), z /∈ B(x, ε) implies d(y, z) ≥ ε. [The first implication follows
immediately from the ultrametric inequality. The second follows because ε ≤
d(x, z) ≤ max{d(x, y), d(y, z)}, and d(x, y) < ε; thus, ε ≤ d(y, z).] Now to show
that h̃ is an isometry, it suffices to let x1 ∈ B(x, ε), x2 /∈ B(x, ε) and show
d(x1, x2) = d(hx1, x2). For this note that on one hand,

d(x1, x2) ≤ max{d(x1, hx1), d(hx1, x2)} = d(hx1, x2).

And on the other hand,

d(hx1, x2) ≤ max{d(hx1, x1), d(x1, x2)} = d(x1, x2). ¤

Remark 4.4 Lemma 4.3 need not hold for isometries h : B(x, ε) → B(y, ε). For
example, the end space of the Fibonacci tree is rigid, but there are some local
isometries (see [26], Prop. 9.5).

Lemma 4.5 (Circular Equidistance) If (X, d) is an ultrametric space with
points w, x, y, z in X such that d(x,w) 6= d(x, y) = d(x, z), then d(w, y) = d(w, z).
That is, if there exists a point x ∈ X an equidistance ` to two points y, z then
every other point w whose distance from x is different from ` is equidistant to y

and z. In yet other words, let ` > 0, x ∈ X and consider the “circle” C = {y ∈
X | d(x, y) = `}. Then any point not on the circle C is equidistant to any two
points on the circle C.

Proof. Let ` = d(x, y) = d(x, z) and let r = d(x,w). If r < `, then by the
ISB property (Proposition 4.2), since d(x, y) > d(x,w), it must be the case that
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d(y, w) = d(y, x). Likewise d(z, w) = d(z, x). Hence, d(z, w) = d(y, w) = `. If
r > `, then by the ISB property, since d(w, x) > d(y, x), it must be the case that
d(w, y) = d(y, x). Likewise, d(z, w) = d(z, x). Hence, d(z, w) = d(y, w) = r ¤

Lemma 4.6 (Modification of Local Isometry) If (X, d) is an ultrametric
space, x ∈ X, ε > 0 and g : B(x, ε) → B(x, ε) is an isometry such that g(x) = x

and g is non-trivial arbitrarily close to x (that is, for every δ > 0, δ ≤ ε,
there exists y ∈ B(x, δ) such that g(y) 6= y), then there exists an isometry
g̃ : B(x, ε) → B(x, ε) such that g̃(x) = x, g̃ is non-trivial arbitrarily close to
x, and for every δ > 0, δ ≤ ε, there exists y ∈ B(x, δ) and µ > 0 such that
g̃| : B(y, µ) → B(y, µ) is the identity.

Proof. Choose a sequence {xi}∞i=1 of distinct points in B(x, ε) converging to x

such that

1. for every i ∈ N, g(xi) 6= xi, and

2. d(x, x1) > d(x, x2) > d(x, x3) > · · · .

For each i ∈ N let Ci = {y ∈ X | d(x, y) = d(x, xi)} and note that g(Ci) = Ci.
Define

g̃(x) =

{
g(x) if x ∈ ∪∞i=1C2i

x if x /∈ ∪∞i=1C2i.

Note that the Circular Equidistance Lemma 4.5 implies that g̃ : B(x, ε) → B(x, ε)
is an isometry. The rest of the properties are straightforward to verify. ¤

Lemma 4.7 (Local Isometry Extension) If (X, d) is an ultrametric space,
then GLI(X) = GΓ(X), where Γ = LI(X).

Proof. Clearly GΓ(X) ⊆ GLI(X). Now let g : B(x, ε) → B(gx, ε) be an isometry
representing [g, x] ∈ GLI(X). Define g̃ : X → X by

g̃ =





g on B(x, ε)
g−1 on B(gx, ε) \B(x, ε)
inclusion on X \ (B(x, ε) ∪B(gx, ε))
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It is easy to verify that g̃ is a local isometry (recall that open balls are closed and
B(x, ε) = B(gx, ε) or B(x, ε) ∩B(gx, ε) = ∅). Thus, [g, x] = [g̃, x] ∈ GΓ(X). ¤

A similar result does not hold for local similarities as the next example shows.

Example 4.8 Let X = {z∞, z0, z1, z2, . . . } with ultrametric d given by

d(zi, zj) = e−min{i,j} if i 6= j.

Thus, X is the end space of the Sturmian tree—see Example 5.9. Define g : X →
X by gz∞ = z∞ and gzi = zi+1 for i = 0, 1, 2, . . . . Then g| : B(z∞, 1) →
B(z∞, e−1) is an e−1-similarity representing [g, z∞] ∈ GLI(X). However, there is
no local similarity h : X → X with [h, z∞] = [g, z∞]. Hence, GΓ(X) $ GLS(X),
where Γ = LS(X).

The groupoids associated to a compact ultrametric space X studied in this
paper are of two types. First, there is the full groupoid GLS(X) of local similarity
germs on X. Second, there are the groupoids of the form GΓ(X) where Γ is a
subgroup of LS(X). By Lemma 4.7, this second type includes GLI(X). Moreover,
by Remark 3.11, the groupoids GΓ(X) are open subgroupoids of GLS(X).

5 Recollections on trees and their ends

The material in this section is well-known; we collect it here for the convenience
of the reader. For more background on R-trees, see Bestvina [6], Chiswell [13],
and Morgan and Shalen [35]. For more information and references on end spaces
of R-trees, see Hughes [26] and Mart́ınez-Pérez and Morón [33].

5.1 Trees

An R-tree is a metric space (T, d) that is uniquely arcwise connected, and for any
two points x, y ∈ T the unique arc from x to y, denoted [x, y], is isometric to the
subinterval [0, d(x, y)] of R.

An R-tree is proper if every closed metric ball in T is compact.
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As an example, let T be a locally finite simplicial tree; that is, T is the
(geometric realization of) a locally finite, one-dimensional, simply connected,
simplicial complex. There is a natural unique metric d on T such that (T, d) is
an R-tree, every edge is isometric to the closed unit interval [0, 1], and the distance
between distinct vertices v1, v2 is the minimum number of edges in a sequence of
edges e0, e1, . . . , en with v1 ∈ e0, v2 ∈ en and ei ∩ ei+1 6= ∅ for 0 ≤ i ≤ n − 1. It
follows that (T, d) is a proper R-tree.

Whenever we refer to a locally finite simplicial tree T , the metric d on T will
be understood to be the natural one just described.

Choose a root (i.e., a base vertex) v ∈ T . The rooted tree (T, v) is geodesically
complete if for every isometric embedding x : [0, t] → T , t > 0, with x(0) = v,
extends to an isometric embedding x̃ : [0,∞) → T . Such a map f̃ is a geodesic
ray in T beginning at v. In other words, T is geodesically complete if every vertex
of T , except possibly the root, lies in at least two edges.

5.2 Ends of trees

The end space of a rooted R-tree (T, v) is given by

end(T, v) = {x : [0,∞) → T | x(0) = v and x is an isometric embedding}.

For x, y ∈ end(T, v), define

de(x, y) =

{
0 if x = y

1/et0 if x 6= y and t0 = sup{t ≥ 0 | x(t) = y(t)}.

It follows that (end(T, v), de) is a complete ultrametric space of diameter ≤ 1.
The elements of end(T, v) are called ends of (T, v).

Proposition 5.1 Let (T, v) be a geodesically complete, rooted R-tree. Then T is
proper if and only if end(T, v) is compact.

Proof. First, assume T is proper and show that end(T, v) is totally bounded.
Let ε > 0 be given; to show that end(T, v) can be covered by a finite number of
closed ε-balls, we may assume ε < 1. Let r = − ln ε. Since B(v, r) is compact,
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so is ∂B(v, r) = {t ∈ T | d(t, v) = r}. We claim that ∂B(v, r) is finite. On the
contrary assume that there is an infinite set {ti}∞i=1 of distinct points in ∂B(v, r).
Choose {xi}∞i=1 ⊆ end(T, v) such that xi(r) = ti for all i ≥ 1. Then the sets
xi([r, r + 1]), i ≥ 1, are mutually disjoint. Hence, d(xi(r + 1), xj(r + 1)) ≥ 2 if
i 6= j. This contradicts the compactness of ∂B(v, r + 1).

Therefore, write ∂B(v, r) = {ti}N
i=1 and choose {xi}N

i=1 ⊆ end(T, v) as above
(so that xi(r) = ti). Clearly, end(T, v) = ∪N

i=1B(xi, ε).

Conversely, assume that end(T, v) is compact, let r > 0 be given, and show
that B(v, r) is compact in T by showing every sequence in B(v, r) has a convergent
subsequence. Let {ti}∞i=1 be a sequence in B(v, r) and choose {xi}∞i=1 ⊆ end(T, v)
such that ti = xi(d(v, ti)) for all i ≥ 1. By passing to a subsequence, we may
assume there exists x0 ∈ end(T, v) such that xi → x0 in end(T, v) as i → ∞.
Hence, there exists N such that de(x0, xi) ≤ e−r for all i ≥ N . That is, x0(t) =
xi(t) if 0 ≤ t ≤ r and i ≥ N . In particular, ti = x0(d(v, ti)) for all i ≥ N . So ti

is in the compact subset x0([0, r]) of B(v, r) for all i ≥ N . Thus, {ti}∞i=1 has a
convergent subsequence. ¤

Corollary 5.2 Let (T, v) be a geodesically complete, rooted R-tree. T is a locally
finite simplicial tree if and only if end(T, v) is compact and has distance set

{t ∈ R | there exists x, y ∈ end(T, v) such that de(x, y) = t}
contained in {0} ∪ {e−i | i = 0, 1, 2, . . . }.

Proof. Necessity follows from Proposition 5.1 and obvious facts about the metric
de when T is simplicial. Conversely, given the distance set condition, declare
all points of T of the form x(n) with x ∈ end(T, v) and n ∈ {0, 1, 2, . . . } to be
vertices; likewise, sets of the form x([n, n + 1]) are edges. It is easily seen that
this makes T into a simplicial tree. Compactness of end(T, v) guarantees local
finiteness. ¤

Remark 5.3 Let (T, v) be a rooted, geodesically complete, locally finite sim-
plicial tree. The ends of (T, v) are in one-to-one correspondence with infinite
sequences of distinct edges e0, e1, e2, . . . such that v ∈ e0 and for i ≥ 1, ei−1 ∩ ei

consists of exactly one vertex, say vi, and the vertices v, v1, v2, . . . are distinct.
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Remark 5.4 One can verify that proper R-trees are equivalent to the R-trees
called simplicial in [6] that are additionaly required to be locally finite.

We include the following definition from [26].

Definition 5.5 A cut set C for a geodesically complete, rooted R-tree (T, v) is a
subset C of T such that v /∈ C and for every isometric embedding α : [0,∞) → T

with α(0) = v there exists a unique t0 > 0 such that α(t0) ∈ C. For v 6= c ∈ T , let
Tc denote the subtree of (T, v) descending from c; that is, Tc = {x ∈ T | c ∈ [v, x]}.
An isometry at infinity between geodesically complete, rooted R-trees (T, v) and
(S,w) is a triple (f, CT , CS) where CT and CS are cut sets of T and S, respectively,
and f : ∪ {Tc | c ∈ CT } → ∪{Sc | c ∈ CS} is a homeomorphism such that

1. f(CT ) = CS , and

2. for every c ∈ CT , f | : Tc → Sf(c) is an isometry.

An isometry at infinity (f, CT , CS) : (T, v) → (S,w) is a uniform isometry at
infinity provided there exist ε, δ > 0 such that CT = ∂B(v, ε) and CS = ∂B(w, δ).

The end space functor. Let U1 be the category whose objects are compact
ultrametric spaces of diameter less than or equal to 1 and whose morphisms are

isometries. Let

{
U2

U3

}
be the category whose objects are compact ultrametric

spaces and whose morphisms are

{
uniform local similarities

local similarities

}
. Let





T1

T2

T3





be

the category whose objects are proper, rooted, geodesically complete R-trees and
whose morphisms are





rooted isometries
equivalence classes of uniform isometries at infinity

equivalence classes of isometries at infinity





.

The equivalence classes just referred to are germs-at-infinity (see [26] for precise
definitions). The following result follows from Proposition 5.1 and [26].
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Proposition 5.6 The end space functor E restricts to equivalences of categories
E : Ti → Ui for i = 1, 2, 3.

Balls in the ends of simplicial trees. It will be convenient to have the
following description of the metric balls in end(T, v), where (T, v) is a rooted,
geodesically complete, locally finite simplicial tree. For each x ∈ end(T, v) and
0 < ε ≤ 1,

B(x, ε) = {y ∈ end(T, v) | de(x, y) < ε} = {y ∈ end(T, v) | − ln ε < t0}

and

B(x, ε) = {y ∈ end(T, v) | de(x, y) ≤ ε} = {y ∈ end(T, v) | − ln ε ≤ t0},

where t0 = sup{t ≥ 0 | x(t) = y(t)}. Let d− ln εe be the smallest positive integer
greater than or equal to − ln ε. Then x(d− ln εe) is a vertex of T that we denote
by v{x,ε}. Let T{x,ε} denote the subtree of T descending from v{x,ε}; i.e.,

T{x,ε} =
⋃
{y(t) | y ∈ end(T, v), y(d− ln εe) = v{x,ε}, and t ≥ d− ln εe}.

Then (T{x,ε}, v{x,ε}) is itself a rooted, geodesically complete, locally finite simpli-
cial tree. We make the identification

B(x, ε) = end(T{x,ε}, v{x,ε}),

where y ∈ B(x, ε) is identified with ỹ ∈ end(T{x,ε}, v{x,ε}) defined by ỹ(t) =
y(t + d− ln εe) for t ≥ 0. Conversely, of course, ỹ ∈ end(T{x,ε}, v{x,ε}) is identified
with y ∈ B(x, ε) defined by

y(t) =

{
x(t) for 0 ≤ t ≤ d− ln εe
ỹ(t− d− ln εe) for t ≥ d− ln εe.

Likewise, let dd− ln εee be the smallest positive integer greater than − ln ε.
Thus, d− ln εe ≤ dd− ln εee, with equality if and only if − ln ε is an integer. Then
x(dd− ln εee) is a vertex of T that we denote by v〈x,ε〉. Let T〈x,ε〉 denote the
subtree of T descending from v〈x,ε〉; i.e.,

T〈x,ε〉 =
⋃
{y(t) | y ∈ end(T, v), y(dd− ln εee) = v〈x,ε〉, and t ≥ dd− ln εee}.
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Then (T〈x,ε〉, v〈x,ε〉) is itself a rooted, geodesically complete, simplicial tree. We
make the identification

B(x, ε) = end(T〈x,ε〉, v〈x,ε〉),

5.3 Examples

In this section we give examples of a few trees and their end spaces. These
examples appear again in Section 9.

Example 5.7 The Cantor tree C. The Cantor tree C, also called the infinite
binary tree, is a locally finite simplicial tree. It has a root v of valency two (i.e.,
there exists exactly two edges containing v) and every other vertex is of valency
three. If w is a vertex different from v, then the two edges that contain w and
are separated from v by w are not labelled identically. Each edge is labelled 0 or
1 so that for every vertex w, at least one edge containing w is labelled 0 and at
least one is labelled 1.

Let end(C) = end(C, v) since the root v is understood. An element of end(C),
being an infinite sequence of successively adjacent edges in C beginning at v, can
be labelled uniquely by an infinite sequence of 0’s and 1’s. Thus,

end(C) = {(x0, x1, x2, . . . ) | xi ∈ {0, 1} for each i}

and

de((xi), (yi)) =

{
0 if (xi) = (yi)
1/en if (xi) 6= (yi) and n = inf{i ≥ 0 | xi 6= yi} .

Example 5.8 The Fibonacci tree F . The Fibonacci tree F is a subtree of
C with the same root v and labelling scheme. In F , only edges labelled 0 are
allowed to follow edges labelled 1 as one moves away from the root. Thus,

end(F ) = {(x0, x1, x2, . . . ) ∈ end(C) | xi = 1 implies xi+1 = 0} .

See [26] for some compaisons of the Cantor and Fibonacci trees.
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Example 5.9 The Sturmian tree S. The Sturmian tree S is also a subtree
of C with the same root v and labelling scheme. In S, only edges labelled 1 are
allowed to follow edges labelled 1 as one moves away from the root. Thus,

end(S) = {(x0, x1, x2, . . . ) ∈ end(C) | xi = 1 implies xi+1 = 1}.

In particular, end(S) is countably infinite: end(S) = {z∞, z0, z1, z2, . . . }, where
z∞ = (0, 0, 0, . . . ), z0 = (1, 1, 1, . . . ), z1 = (0, 1, 1, 1, . . . ), z2 = (0, 0, 1, 1, . . . ), . . . .
The metric is given by d(zi, zj) = e−min{i,j} if i 6= j.
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Figure 3: The Sturmian tree

Example 5.10 The n-regular tree Rn. For n = 1, 2, 3, . . . , the n-regular
tree Rn is the simplicial tree such that every vertex has valency n + 1. It is
homogeneous so that a root can be chosen arbitrarily. It is geodesically complete
and locally finite. The edges can be labelled by the integers 0, 1, . . . , n so that for
each vertex each label appears on exactly one edge containing the vertex. Thus,

end(Rn) = {(x0, x1, x2, . . . ) | xi ∈ {0, 1, . . . , n} and xi+1 6= xi for each i}.

Example 5.11 The infinite n-ary tree An. For n = 1, 2, 3, . . . , the infinite
n-ary tree An is the rooted, geodesically complete, locally finite simplicial tree
such that every vertex except the root has valency n+1 , and the root has valency
n. For example, A2 is the Cantor tree.
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Example 5.12 The n-ended tree En. For n = 1, 2, 3, . . . , (En, v) is the sim-
plicial tree such that the root v has valency n and all other vertices have valency
2. Thus, end(En) consists of n points, each a distance 1 from any other.

Example 5.13 The irrational tree Tα. Let α be positive irrational number
and α = [a0, a1, a2, . . . ] its continued fraction expansion. Thus, {ai}∞i=0 is a
sequence of non-negative integers such that ai ≥ 1 if i ≥ 1 and

α = a0 +
1

a1 +
1

a2 +
1
. . .

Consider the compact metric space

Xα =

{
(x0, x1, x2, . . . ) ∈

∞∏

0

Z+ | 0 ≤ xi ≤ ai and xi = ai implies xi+1 = 0

}

with ultrametric

de((xi), (yi)) =

{
0 if (xi) = (yi)
1/en if (xi) 6= (yi) and n = inf{i ≥ 0 | xi 6= yi} .

Let (Tα, v) be the rooted, geodesically complete, locally finite simplicial tree
such that end(Tα, v) is isometric to Xα. For example, the golden mean 1+

√
5

2 =
[1, 1, 1, . . . ] and T 1+

√
5

2

= F , the Fibonacci tree. The spaces Xα appear in Mingo

[34].

6 Local rigidity, locally rigid actions, and Hausdorff-

ness

6.1 Locally rigid ultrametric spaces

The main goal of this section is to characterize when the groupoid of local isome-
tries on an ultrametric space is Hausdorff. The answer is in terms of a local
rigidity condition on the ultrametric space. We also discuss the second count-
ability of the local isometry groupoid of locally rigid ultrametric spaces.
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Definition 6.1 A metric space (X, d) is locally rigid if for every x ∈ X there
exists εx > 0 such that any isometry h : B(x, εx) → B(x, εx) is the identity.

Lemma 6.2 An ultrametric space X is locally rigid if and only if for every x ∈ X

there exists εx > 0 such that for any 0 < ε ≤ εx, every isometry h : B(x, ε) →
B(x, ε) is the identity.

Proof. This follows immediately from Lemma 4.3. ¤

Theorem 6.3 For an ultrametric space (X, d) the following are equivalent.

1. For every x ∈ X, ε > 0 and isometry g : B(x, ε) → B(x, ε) such that
g(x) = x there exists δ = δ(ε, x, g) > 0 such that g| : B(x, δ) → B(x, δ) is
the identity.

2. For every x ∈ X there exists εx > 0 such that if g : B(x, εx) → B(x, εx) is
an isometry with g(x) = x, then g is the identity.

3. X is locally rigid.

4. GLI(X) is Hausdorff.

Proof. (1) implies (2). Suppose on the contrary that X satisfies (1) but not
(2). Then there is a sequence of “circles” Ci (in the sense of Lemma 4.5), i ∈ N,
about some x ∈ X of decreasing diameter and non-trivial isometries gi : Ci → Ci.
These can be pieced together to give a non-trivial isometry g : B(x, ε) → B(x, ε)
which is non-trivial on each ball about x.

(2) implies (3). Suppose on the contrary that there exists x ∈ X without the
property in Definition 6.1. Property (2) implies that there exists ε0 > 0 such that
if 0 < ε ≤ ε0 and g : B(x, ε) → B(x, ε) is an isometry with gx = x, then g is the
identity (this uses Lemma 4.3 in a manner similar to how it is used in Lemma 6.2).
Choose 0 < ε2 < ε1 < ε0 so that for i = 1, 2 there exists an isometry hi : X → X

such that hiB(x, εi) = B(x, εi), hi|(X \B(x, εi)) = inclusion (this uses Lemma 4.3
again) and hi is not the identity. It follows that hix 6= x for i = 1, 2. By choosing
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ε1 and h1 before ε2 and h2, we may assume that ε2 < d(x, h1x). Consider the
composition

g : B(h1x, ε2)
h−1
1−→ B(x, ε2)

h2−→ B(x, ε2)
h1|−→ B(h1x, ε2).

This isometry can be extended (by Lemma 4.3) to an isometry g̃ : X → X such
that g̃|(X \ B(h1x, ε2)) is the inclusion. Now g̃B(x, ε1) = B(x, ε1) and g̃x = x

(because x /∈ B(h1x, ε2). Thus, g̃ is the identity. Since g̃h1x = h1h2x we have
h1x = h1h2x and x = h2x, a contradiction.

(3) implies (4). Let [g1, x1] 6= [g2, x2] in GLI(X). If d(x1, x2) = ε > 0, then
U(g1, x1, ε) ∩ U(g2, x2, ε) = ∅.

If d(g1x1, g2x2) = ε > 0, then choose εi > 0 such that giB(xi, εi) ⊆ B(gixi, ε)
for i = 1, 2 and observe that U(g1, x1, ε1) ∩ U(g2, x2, ε2) = ∅. Finally suppose
x1 = x2 and g1x1 = g2x2. Choose ε > 0 so that gi is defined on B(xi, ε) for
i = 1, 2 and so that ε ≤ εx where εx > 0 comes from Lemma 6.2. Then h =
g−1
2 g1 : B(x1, ε) → B(x1, ε) is an isometry so h is the identity. Hence [g1, x1] =

[g2, x2].

(4) implies (1). Let x ∈ X, ε > 0 and g : B(x, ε) → B(x, ε) be an isometry
such that gx = x. Suppose on the contrary that g does not equal the identity on
a sufficiently small ball about x. Lemma 4.6 gives another isometry g̃ : B(x, ε) →
B(x, ε) such that g̃x = x, g̃ is non-trivial arbitrarily close to x and there exist
points y arbitrarily close to x such that g̃ is the identity on sufficiently small
balls about y. It follows that U(g̃, x, ε1) ∩ U(id, x, ε2) 6= ∅ for all ε1, ε2 > 0,
contradicting the Hausdorff property of GLI(X). ¤

Remark 6.4 If X is a locally rigid ultrametric space, then X is an open and
closed subset of GLI(X). To see this, recall that the embedding α : X → GLI(X)
is given by α(x) = [id, x]. If [g, x] ∈ GLI(X) is not in the image of α, then
[g, x] 6= [id, x]. Local rigidity, in particular Theorem 6.3 (2), implies that gx 6= x.
If 0 < ε < 1

2d(x, gx), then U(g, x, ε) ∩ α(X) = ∅. This shows that α(X) is closed
in GLI(X). It is open by Remark 3.12.

Example 6.5 1. The end spaces of the following trees are not locally rigid:
the Cantor tree C, the n regular tree Rn (n ≥ 2), and the n-ary tree An
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(n ≥ 2).

2. The end spaces of the following trees are locally rigid: the Fibonacci tree
F and the Sturmian tree S.

3. The end space of the irrational tree Tα is locally rigid if and only if α

is equivalent to the golden mean 1+
√

5
2 under the action of SL(2,Z) by

fractional linear transformations (because this condition is equivalent to
the continued fraction expansion of α eventually ending in all 1’s).

Lemma 6.6 If X is a compact ultrametric space, then X is locally rigid if and
only if there exists εX > 0 such that for any 0 < ε ≤ εX and x ∈ X, every
isometry h : B(x, ε) → B(x, ε) is the identity.

Proof. Assume X is locally rigid. For each x ∈ X let εx > 0 be given by
Definition 6.1 and let εX be a Lebesgue number for {B(x, εx) | x ∈ X}. Then
if 0 < ε ≤ εX and x ∈ X, there exists y ∈ X such that B(x, ε) ⊆ B(x, εX) ⊆
B(y, εy). Thus, ε ≤ εy and B(x, ε) = B(y, ε), so any isometry h : B(x, ε) →
B(x, ε) is the identity.

The converse is obvious. ¤

Proposition 6.7 If X is a second countable, locally rigid ultrametric space, then
GLI(X) is second countable.

Proof. Let {xi}∞i=1 be a countable dense subset of X. For each i, choose the
least positive integer i0 such that if j ≥ i0 and g : B(xi, 1/j) → B(xi, 1/j) is an
isometry, then g = idB(xi,1/j). Now suppose j ≥ i0 and g, h : B(xi, 1/j) → X are
two different isometric embeddings. Then B(gxi, 1/j) 6= B(hxi, 1/j) (for other-
wise g−1h : B(xi, 1/j) → B(xi, 1/j) would be a nontrivial isometry) and, hence,
B(gxi, 1/j)∩B(hxi, 1/j) = ∅. It follows that for each i and each j ≥ i0 there are at
most countably many distinct isometric embeddings, say g(i,j,k) : B(xi, 1/j) → X,
1 ≤ k < N(i,j), where N(i,j) is either a positive integer or ∞. The proof will be
complete once we show that

B = {U(g(i,j,k), xi, 1/j) | 1 ≤ i < ∞, i0 ≤ j < ∞, 1 ≤ k < N(i,j)}



Trees, Ultrametrics, and Noncommutative Geometry 251

is a countable basis for GLI(X). Given U(g, x, ε), we show that U(g, x, ε) is a
union of elements of B. If y ∈ B(x, ε), let 0 < 1/n ≤ ε be chosen such that
any self-isometry of B(y, 1/n) is the identity. Then there exists xi ∈ B(y, 1/n).
Thus, B(xi, 1/n) = B(y, 1/n) and by the choice of i0, i0 ≤ n. It follows that
U(g, xi, 1/n) ∈ B and [g, y] ∈ U(g, xi, 1/n) ⊆ U(g, x, ε). Finally, note that
if U(g(i,j,k), xi, 1/j), U(g(i′,j′,k′), xi′ , 1/j′) ∈ B, j′ ≥ j and their intersection is
nonempty, then B(xi′ , 1/j′) ⊆ B(xi, 1/j) and g(i′,j′,k′) = g(i,j,k)|B(xi′ , 1/j′) (be-
cause they must agree somewhere, hence, they agree everywhere on their common
domain). Hence, the intersection is U(g(i′,j′,k′), xi′ , 1/j′). ¤

The following two corollaries follow from Theorem 6.3, Proposition 6.7, Lem-
mas 3.5 and 3.6, and Remark 3.11.

Corollary 6.8 If X is a locally compact, second countable, locally rigid ultra-
metric space, then GLI(X) is a locally compact, second countable, Hausdorff étale
groupoid.

Corollary 6.9 If X is a compact, locally rigid ultrametric space, then GLI(X)
is a locally compact, second countable, Hausdorff étale groupoid.

Finally, we establish the following two results that complete the proof of
Theorem 1.2(1) of the Introduction.

Lemma 6.10 If X is a compact, locally rigid ultrametric space, then GLS(X) is
second countable.

Proof. Use the first part of the proof of Proposition 6.7 to find a countable basis
{Bi}∞i=1 of X by open balls, each of which admits only countably many distinct
isometric embeddings into X. Assume that for every ε > 0, there are only finitely
many i’s with diam(Bi) > ε. Because the distance set of X is countable (see [5]
and the proof of Proposition 10.7), there exists a sequence {λj}∞j=1 of positive
numbers such that if g : Bi → g(Bi) is a similarity onto some open ball in X and
x ∈ Bi, then sim(g, x) = λj for some j; i.e., g is a λj-similarity (the λj ’s are all
ratios of distances in X).
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Now if g : Bi → g(Bi) and h : Bi → h(Bi) are two λj-similarities such that
g(Bi)∩ h(Bi) 6= ∅, then g(Bi) = h(Bi) and h−1g : Bi → Bi is an isometry. If the
radius of Bi is sufficiently small, then local rigidity implies g = h. Hence, there
exist only countably many distinct similarities of Bi onto open balls of X, say
gi,k, where 1 ≤ k < N(i) and N(i) ≤ ∞.

Choose xi ∈ Bi for all i. The proof will be complete once we show that

B = {U(g(i,k), xi, diam(Bi)) | 1 ≤ i < ∞, 1 ≤ k < N(i)}

is a countable basis for GLS(X). Given a basis element U(g, x, ε) of GLS(X),
B(x, ε) can be written as a union of Bi’s. If Bi ⊆ B(x, ε), then g|Bi = gi,k for
some k. It follows that U(g, x, ε) is a union of elements of B. ¤

Lemma 6.11 If X is a compact, locally rigid ultrametric space, then GLS(X) is
Hausdorff.

Proof. This is very similar to the proof of Theorem 6.3 above and Theorem 6.15
below. Let [g1, x1] 6= [g2, x2] in GLS(X). It is easy to reduce to the case that
x1 = x2 and g1x1 = g2x2. If sim(g1, x1) = sim(g2, x2), then g−1

2 g1 : B(x1, ε) →
B(x1, ε) is an isometry for some ε > 0. Local rigidity implies that g−1

2 g1 is the
identity; hence, [g1, x1] = [g2, x2]. If sim(g1, x1) 6= sim(g2, x2), then U(g1, x1, ε)∩
U(g2, x2, ε) = ∅ for some sufficiently small ε > 0. ¤

Corollary 6.12 If X is a compact, locally rigid ultrametric space, then GLS(X)
is a locally compact, Hausdorff, second countable, étale groupoid.

Proof. This follows from Lemmas 3.5, 3.6, 6.10, and 6.11. ¤

6.2 Locally rigid actions

Definition 6.13 Let X be a metric space with a subgroup Γ ≤ LS(X). The
action of Γ on X is locally rigid if for every x ∈ X and for every g ∈ Γx such that
sim(g, x) = 1, there exists ε > 0 such that g ∈ Γy for all y ∈ B(x, ε).
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Note that if Γ acts locally rigidly on X and H is a subgroup of Γ, then H

also acts locally rigidly on X.

Lemma 6.14 Let X be a metric space with a subgroup Γ ≤ LS(X). The follow-
ing are equivalent:

1. The action of Γ on X is locally rigid.

2. For every x ∈ X and for every g, h ∈ Γx such that sim(g, x) = sim(h, x),
there exists ε > 0 such that gy = hy for every y ∈ B(x, ε).

3. For every x ∈ X and for every g, h ∈ Γ such that gx = hx and sim(g, x) =
sim(h, x), there exists ε > 0 such that gy = hy for every y ∈ B(x, ε).

Proof. (1) implies (2): Let x ∈ X and g, h ∈ Γx such that sim(g, x) = sim(h, x)
be given. Then h−1g ∈ Γx and sim(h−1g, x) = 1. Since the action of Γ on X

is assumed to be locally rigid, there exists ε > 0 such that h−1g ∈ Γy for all
y ∈ B(x, ε); i.e., gy = hy for all y ∈ B(x, ε).

(2) implies (3): Let x ∈ X and g, h ∈ Γ such that gx = hx and sim(g, x) =
sim(h, x) be given. Then h−1g ∈ Γx and sim(h−1g, x) = 1 = sim(idX , x). Hence,
there exists ε > 0 such that h−1gy = y for all y ∈ B(x, ε); i.e., gy = hy for all
y ∈ B(x, ε).

(3) implies (1): Let x ∈ X and g ∈ Γx such that sim(g, x) = 1 be given. Since
sim(g, x) = sim(idX , x), the result is obvious. ¤

Theorem 6.15 Let X be an ultrametric space.

1. GLS(X) is Hausdorff if and only if for every x ∈ X and for every [g, x], [h, x] ∈
GLS(X) such that gx = hx and sim(g, x) = sim(h, x), it follows that
[g, x] = [h, x].

2. If Γ ≤ LS(X) and Γ acts locally rigidly on X, then GΓ(X) is Hausdorff.

Proof. (1) Assume first that GLS(X) is Hausdorff, and let x ∈ X and [g, x], [h, x] ∈
GLS(X) such that gx = hx and sim(g, x) = sim(h, x) be given. Suppose on the
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contrary that [g, x] 6= [h, x]. Choose ε > 0 so that h−1g is an isometry on B(x, ε).
Since [h−1g, x] 6= [idX , x], h−1g is non-trivial arbitrarily close. Hence, Lemma 4.6
implies that there exists an isometry g̃ : B(x, ε) → B(x, ε) such that g̃(x) ∈ Γx,
g̃ is non-trivial arbitrarily close to x, and for every δ > 0, δ ≤ ε, there exists
y ∈ B(x, δ) and µ > 0 such that g̃| : B(y, µ) → B(y, µ) is the identity. It follows
that [g̃, x] and idX , x] can not be separated by open sets in GLS(X).

Conversely, let [g, x], [h, y] ∈ GLS(X) be given. If x 6= y, choose ε > 0 with
ε ≤ d(x, y); it is easy to see that U(gx, ε)∩U(h, y, ε) = ∅. If gx 6= hy, choose ε > 0
such that g(B(x, ε))∩h(B(y, ε)) = ∅; it is easy to see that U(gx, ε)∩U(h, y, ε) = ∅.
If sim(g, x) 6= sim(h, y) choose ε > 0 such that sim(g, z) = sim(g, x) for all
z ∈ B(x, ε) and sim(h, z) = sim(h, y) for all z ∈ B(y, ε); it is easy to see that
U(gx, ε)∩U(h, y, ε) = ∅. [In each of these three cases, ε must be chosen so small
that the germs are represented on ε-balls.] Thus, we are left with the case that
x = y, gx = hx and sim(g, x) = sim(h, x). Since the assumption in this case is
that [g, x] = [h, x], there is nothing to separate.

(2) Let [g, x], [h, y] ∈ GΓ(X) be given. As in the proof just given, it is easy
to reduce to the case that x = y, gx = hx and sim(g, x) = sim(h, x). The
assumption that Γ is acting locally rigidly implies h−1g = id near x; that is,
[g, x] = [h, x]. ¤

The converse of Theorem 6.15(2) need not hold as the next example shows.

Example 6.16 Let X = {x∞, xa0, xa1, xa2, . . . | a ∈ {0, 1}} with ultrametric
d given by d(xai, xaj) = e−min{i,j} if i 6= j and a ∈ {0, 1}, and d(x∞, x0i) =
d(x∞, x1i) = d(x0i, x1i) = e−i for i = 0, 1, 2, . . . . The space X is the end space
of the tree in Figure 4. Define g : X → X by gx∞ = x∞ and gxai = x|a−1|i for
i = 0, 1, 2, . . . and a ∈ {0, 1}. Let Γ be the subgroup of LS(X) generated by g

(thus, Γ is cyclic of order 2). Note that Γ does not act locally rigidly on X even
though GΓ(X) is Hausdorff. This example also shows that finite subgroups need
not act locally rigidly.

Theorem 6.17 If X is an ultrametric space, then the following are equivalent:

1. X is locally rigid.
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Figure 4: A finite subgroup of LS(X) not acting locally rigidly. See Example 6.16

2. LS(X) acts locally rigidly on X.

3. Every subgroup Γ of LS(X) acts locally rigidly on X.

4. LI(X) acts locally rigidly on X.

5. There exists a group Γ such that Isom(X) ≤ Γ ≤ LS(X) and Γ acts locally
rigidly on X.

6. Isom(X) acts locally rigidly on X.

7. GLI(X) is Hausdorff.

Proof. (1) implies (2): Let x ∈ X and g ∈ LS(X) such that gx = x and
sim(g, x) = 1. Since X is locally rigid, there exists εx > 0 such that if 0 < ε ≤ εx

and h : B(x, ε) → B(x, ε) is an isometry, then h = id. Now choose ε > 0 such that
ε ≤ εx and g| : B(x, ε) → B(x, ε) is an isometry. Thus, g ∈ Γy for all y ∈ B(x, ε).

That (2) implies (3) implies (4) implies (5) implies (6) is obvious from the
comment made above that subgroups of groups acting locally rigidly also act
locally rigidly.



256 Bruce Hughes

(6) implies (1): Suppose on the contrary that X is not locally rigid. Using
Theorem 6.3 (2), there exist x ∈ X and a sequence ε1 > ε2 > ε3 · · · > 0 such
that limi→∞ εi = 0 together with isometries hi : B(x, εi) → B(x, εi) and yi ∈
B(x, εi) \B(x, εi+1) such that hiyi 6= yi. Define h : X → X by

h(z) =

{
z if z = x or z /∈ B(x, ε1)
hiz if z ∈ B(x, εi) \B(x, εi+1)

Then h ∈ Isom(X), hx = x and h is non-trivial arbitrarily close to x, contra-
dicting the assumption that Isom(X) acts locally rigidly.

Finally, (1) and (7) are equivalent by Theorem 6.3. ¤

We now discuss countability properties of the germ groupoid.

Lemma 6.18 If X is a second countable ultrametric space with a countable sub-
group Γ ≤ LS(X), then the groupoid GΓ(X) is second countable.

Proof. Let Γ = {gi}∞i=1 and let {xj}∞j=1 be a countable dense subset of X. It
follows that {U(gi, xj , 1/k) | i, j, k ∈ {1, 2, 3, . . . }} is a countable basis for GΓ(X).
For given any basis element U(h, x, ε) with h ∈ Γ, x ∈ X and ε > 0, and any
germ [h, y] ∈ U(h, x, ε), simply choose i, j, k such that gi = h, 1/k < ε and
xj ∈ B(y, 1/k). Then [h, y] ∈ U(gi, xj , 1/k) ⊆ U(h, x, ε). ¤

Example 6.19 There exists a compact ultrametric space X and an uncount-
able subgroup Γ of Isom(X) such that Γ acts locally rigidly on X and GΓ(X)
is not second countable. Let X be the end space of the Cantor tree (see Ex-
ample 5.7). For s ∈ {0, 1}, let s̄ = |s − 1|. For x = (x1, x2, x3, . . . ) ∈ X, let
x = (x1, x2, x3, . . . ). For x = (x1, x2, x3, . . . ) ∈ X, define αx : X → X as follows.
First, αx(x) = x̄. Second, if x 6= y = (y1, y2, y3, . . . ) ∈ X, let n = min{i | xi 6= yi}
and αx(y) = (y1, y2, . . . , yn, yn+1, yn+2, . . . ).

We show now that each αx is an isometry. For suppose y, z ∈ X with y 6= z 6=
x 6= y and let ` = min{i | xi 6= yi},m = min{i | xi 6= zi}, and n = min{i | yi 6= zi}.
We may write

y = (x1, . . . , x`−1, x`, y`+1, y`+2, . . . )
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and

αx(y) = (x1, . . . , x`−1, x`, y`+1, y`+2, . . . ).

It follows that d(x, y) = d(αx(x), αx(y)). To see that d(y, z) = d(αx(y), αx(z)),
assume without loss of generality that ` ≤ m. We may write

z = (x1, . . . , xm−1, xm, zm+1, zm+2, . . . )

and

αx(z) = (x1, . . . , xm−1, xm, zm+1, zm+2, . . . ).

It follows that n ≥ `. If n = `, then

z = (x1, . . . , x`−1, x`, . . . , xm−1, xm, zm+1, zm+2, . . . )

and

αx(z) = (x1, . . . , x`, . . . xm−1, xm, zm+1, zm+2, . . . )

from which it follows that d(y, z) = d(αx(y), αx(z)). If n > `, then m = ` (from
the ultrametric property) and we may write

z = (x1, . . . , x`−1, x`, y`+1, . . . , yn−1, yn, zn+1, zn+2, . . . )

and

αx(z) = (x1, . . . , x` − 1, x`, y`+1, . . . , yn−1, yn, zn+1, zn+2, . . . )

from which it follows that d(y, z) = d(αx(y), αx(z)). Finally, to see that αx is
bijective, note that the inverse of αx is given by α−1

x = αx.

Let Γ be the subgroup of Isom(X) generated by {αx | x ∈ X}. Clearly, Γ is
uncountable.

We will now show that Γ acts locally rigidly on X. Let x ∈ X and α ∈ Γ
be given. Write α = αk ◦ · · ·α1, where for each 1 ≤ j ≤ k there exists xj ∈ X

such that αj = αxj . Let a0 = x and aj = αj ◦ · · ·α1(x) for 1 ≤ j ≤ k. Let
J = {j ∈ {1, . . . , k} | xj 6= aj−1} and J ′ = {j ∈ {1, . . . , k} | j /∈ J}. For each
1 ≤ j ≤ k, let

Pj =

{
min{i | xj

i 6= aj−1
i } if j ∈ J

∞ if j ∈ J ′.
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Let

P =

{
max{Pj | j ∈ J} if J 6= ∅
1 if J = ∅.

Now let y ∈ X be any point such that y 6= x and such that if

N = max{i | xi 6= yi},

then N > P . Suppose α(x) = x. We will prove that Γ acts locally rigidly by
showing α(y) = y. We may write

y = (x1, . . . , xN−1, xN , yN+1, yN+2, . . . ).

Let b0 = y and bj = αj ◦ · · · ◦ α1(y) for 1 ≤ j ≤ k. Since Γ acts by isometries on
X, we have aj

i = bj
i , for 1 ≤ i ≤ N − 1, and aj

N 6= bj
N , whenever 0 ≤ j ≤ k. In

particular, (αy)i = yi for 1 ≤ i ≤ N . We will therefore be done once we establish
the

Claim 6.20 For each j ∈ {0, . . . , k}, bj
i = yi for i ≥ N + 1.

Proof. This is true for j = 0, so we proceed by induction, assuming j > 0 and
bj−1
i = yi for i ≥ N + 1.

Case 1. j ∈ J . Recall Pj = min{i | xj
i 6= aj−1

i } ≤ N − 1. We may write

bj−1 = (aj−1
1 , . . . , aj−1

N−1, a
j−1
N , yN+1, yN+2, yN+3, . . . )

= (xj
1, . . . , x

j
Pj−1, x

j
Pj

, aj−1
Pj+1, . . . , a

j−1
N−1, a

j−1
N , yN+1, yN+2, yN+3, . . . ).

Thus,

bj = αj(bj−1) = (xj
1, . . . , x

j
Pj−1, x

j
Pj

, aj−1
Pj+1, . . . , a

j−1
N−1, a

j−1
N , yN+1, yN+2, yN+3, . . . ),

and there is agreement where claimed.

Case 2. j ∈ J ′. In this case xj = aj−1 and we may write

bj−1 = (aj−1
1 , . . . , aj−1

N−1, a
j−1
N , yN+1, yN+2, yN+3, . . . )

= (xj
1, . . . , x

j
N−1, x

j
N , yN+1, yN+2, yN+3, . . . ).
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Thus,

bj = αj(bj−1) = (xj
1, . . . , x

j
N−1, x

j
N , yN+1, yN+2, yN+3, . . . ),

and there is agreement where claimed.

This completes the proof of the claim and also the assertion that Γ acts locally
rigidly on X. ¤

We now show that GΓ(X) is not second countable. Note that {U(αx, x, 1) | x ∈
X} is an uncountable collection of open subsets of GΓ(X) and the germ [αx, x] ∈
U(αx, x, 1) for every x ∈ X. However, if x 6= y ∈ X, then αy(y) = y while
αx(y) 6= y. Thus, [αy, y] /∈ U(αx, x, 1). This implies that GΓ(X) has no countable
basis.

Finally, note that Γ does not act freely on X. For example, let
x1 = (1, 0, 1, 0, 1, 0, . . . ), x2 = (1, 1, 0, 0, 0, 0, . . . ), x3 = (1, 0, 0, 0, 0, 0, . . . ) and
p = (0, 0, 0, 0, . . . ). Then α = α2

x3 ◦ αx2 ◦ αx1 ∈ Γ, α(p) = p and α(x1) 6= x1.
Hence, α 6= 1 but it fixes the point p.

This completes the discussion of the example.

Finally, we give a proof of Theorem 1.3(1) from the Introduction.

Theorem 6.21 If X is a compact ultrametric space with a countable subgroup
Γ ≤ LS(X) acting locally rigidly on X, then GΓ(X) is a locally compact, Haus-
dorff, second countable, étale groupoid.

Proof. This follows from Lemma 3.5, Lemma 3.6, Remark 3.11, Theorem 6.15(2),
and Lemma 6.18. ¤

Remark 6.22 If in the hypothesis of Theorem 6.21, “compact” is replaced by
“locally compact and second countable,” then the conculsion still holds with the
same proof.

Proposition 6.23 If X is a metric space with a subgroup Γ ≤ LS(X) acting
locally rigidly on X and h ∈ LS(X), then h−1Γh also acts locally rigidly on X.
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Proof. Let x ∈ X and g ∈ (h−1Γh)x such that sim(g, x) = 1 be given. We need
to show that there exists ε > 0 such that g| : B(x, ε) → X is the inclusion. Note
that hgh−1 ∈ Γhx. To see that sim(hgh−1, hx) = 1, choose δ > 0 and λ > 0 such
that h| : B(x, δ) → B(hx, λδ) is a λ-similarity. Then h−1| : B(hx, λδ) → B(x, δ)
is a λ−1-similarity. Assume that δ is small enough that g| : B(x, δ) → B(x, δ) is
a 1-similarity. Then hgh−1| : B(hx, λδ) → B(hx, λδ) is a 1-similarity.

Since hgh−1 ∈ Γ, it follows that there exists ε > 0 such that hgh−1| : B(hx, ε) →
X is the inclusion, from which it follows that g| : B(x, ε) → X is the inclusion.
¤

7 The approximating groupoids

This section contains a proof that GLI(X) is an AF groupoid if X is a compact,
locally rigid ultrametric space.

Throughout this section, let (X, d) denote an ultrametric space.

Definition 7.1 The pseudogroup PLI(X) of local isometries on X is the set of
all isometries between open subsets of X. That is, an element of PLI(X) consists
of open subsets U, V of X and an isometry g : U → V . 4

Definition 7.2 Let ε > 0. The ε−local isometry groupoid Gε
LI(X) of X is the

subset of PLI(X)×X given by

Gε
LI(X) = {(g, x) ∈ PLI(X)×X | g : B(x, ε) → B(gx, ε)}.

Thus, (g, x) ∈ Gε
LI(X) means g is an isometry from B(x, ε) onto B(gx, ε).

The groupoid structures on Gε
LI(X) are the obvious ones. Thus, the unit

space is X; the domain d : Gε
LI(X) → X and range r : Gε

LI(X) → X maps are
given by d(g, x) = x and r(g, x) = gx. If (g1, x1) and (g2, x2) are in Gε

LI(X), then
the composition is defined by (g2, x2)(g1, x1) = (g2g1, x1) provided x2 = g1x1.5

The inverse is (g, x)−1 = (g−1, gx).
4Of course, PLI(X) has the structure of a pseudogroup, but we do not explicitly use it.
5Thus, [Gε

LI(X)]2 = {((g2, x2), (g1, x1)) ∈ Gε
LI(X)× Gε

LI(X) | x2 = g1x1}.
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A basis for a topology on Gε
LI(X) consists of all sets Uδ(g, x) where (g, x) ∈

Gε
LI(X), 0 < δ ≤ ε and

Uδ(g, x) = {(h, y) ∈ Gε
LI(X) | d(x, y) < δ and d(gz, hz) < δ for all z ∈ B(x, ε)}.

Proposition 7.3 If X is an ultrametric space and ε > 0, then Gε
LI(X) is a

Hausdorff topological groupoid. Moreover, the domain and range maps are open.

Proof. To see that the collection of all Uδ(g, x) forms a basis, first note that the
collection certainly covers Gε

LI(X). And if (g, x) ∈ Uδ1(g1, x1) ∩ Uδ2(g2, x2), let
δ = min{δ1, δ2} and observe that Uδ(g, x) ⊆ Uδ1(g1, x1) ∩ Uδ2(g2, x2).

To see that the resulting topology is Hausdorff, let (g1, x1) 6= (g2, x2) in
Gε

LI(X) and choose 0 < δ ≤ ε such that

δ <

{
d(x1, x2) if x1 6= x2

sup{d(g1z, g2z) | z ∈ B(x, ε)} if x1 = x2

and observe that Uδ(g1, x1) ∩ Uδ(g2, x2) = ∅.
To see that d, r : Gε

LI(X) → X are continuous, let x ∈ X and 0 < δ ≤ ε. Then
one can check that d−1(B(x, δ)) = ∪{Uδ(h, y) | d(x, y) < δ} and

r−1(B(x, δ)) = ∪{Uδ(h, h−1y) | d(x, y) < δ}.

To see that d, r are open, let (h, y) ∈ Gε
LI(X) and 0 < δ ≤ ε. Then one can

check that d(Uδ(h, y)) = B(y, δ) and r(Uδ(h, y)) = B(hy, δ).

That multiplication m : [Gε
LI(X)]2 → Gε

LI(X) is continuous follows from the
following fact: if (h, y) ∈ Uδ(g, x) and m((hk−1, ky), (k, y)) = (h, y), then

[Uδ(hk−1, ky)× Uδ(k, y)] ∩ [Gε
LI(X)]2 ⊆ m−1(Uδ(g, x)).

Finally, inversion is continuous because [Uδ(g, x)]−1 = Uδ(g−1, gx). ¤

Theorem 7.4 If X is a compact, locally rigid ultrametric space, then there exists
εX > 0 such that for every 0 < ε ≤ εX :
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1. Gε
LI(X) is a Hausdorff, locally compact, étale groupoid,

2. Gε
LI(X) is an elementary groupoid in the sense of Renault [43].

Proof. Let εX be given by Lemma 6.6.

(1) For 0 < ε ≤ εX , we already know that Gε
LI(X) is Hausdorff (Proposi-

tion 7.3). To say that it is étale means r : Gε
LI(X) → X is a local homeomorphism.

To verify this it suffices to let (g, x) ∈ Gε
LI(X) and show that r| : Uδ(g, x) →

B(gx, δ) is injective whenever 0 < δ ≤ ε (because the proof of Proposition 7.3
shows r| is continuous, open and surjective). To this end let (hi, yi) ∈ Uδ(g, x)
for i = 1, 2 such that r(h1, y1) = h1y1 = h2y2 = r(h2, y2). Then hi : B(yi, ε) →
B(hiyi, ε) is an isometry for i = 1, 2. Hence, h = h−1

2 h1 : B(y1, ε) → B(y2, ε) =
B(y1, ε) is an isometry. The choice of εX implies h is the identity, so h1 = h2

from which it also follows that y1 = y2. Finally, note that this also implies that
Gε

LI(X) is locally compact, being locally homeomorphic to the compact space X.

(2) Let 0 < ε ≤ εX . According to Renault [43, page 123] we need to show that
Gε

LI(X) is the disjoint union of a sequence of elementary groupoids Gi of type ni

(the definitions will be recalled below). In fact, we will show that the sequence is
finite, say 1 ≤ i ≤ iε. Let Bε be the collection of all open ε-balls in X. Since X is
compact ultrametric, Bε is a finite collection and any two distinct members of Bε

are disjoint. By the choice of εX , if B1, B2 ∈ Bε then either there exists a unique
isometry B1 → B2 or, B1 and B2 are not isometric. Thus, we may express Bε as
a finite disjoint union ∪iε

i=1Bi such that if 1 ≤ i, j ≤ iε, B1 ∈ Bi, B2 ∈ Bj , then
B1 and B2 are isometric if and only if i = j; moreover, if i = j, then there exists
a unique isometry B1 → B2.

For 1 ≤ i ≤ iε, let Gi = {(g, x) ∈ Gε
LI(X) | B(x, ε) ∈ Bi} and let ni equal the

cardinality of Bi. Clearly, Gε
LI(X) = ∪iε

i=1Gi and the Gi’s are mutually disjoint
subgroupoids of Gε

LI(X). It remains to show that each Gi is elementary of type ni.
Given i choose xi ∈ X such that B(xi, ε) ∈ Bi. Let Ĝi = {gxi | (g, xi) ∈ Gi} ⊆ X.
Note that if (g, xi), (h, xi) ∈ Gi and gxi = hxi, then g = h.

Now Ĝi × Ĝi has a natural groupoid structure with set of composable pairs
[Ĝi × Ĝi]2 = {((g1xi, g2xi), (g3xi, g4xi)) ∈ Ĝi × Ĝi × Ĝi × Ĝi | g2xi = g3xi}, unit
space (Ĝi × Ĝi)0 = Ĝi ⊆ X, d : Ĝi × Ĝi → Ĝi and r : Ĝi × Ĝi → Ĝi given by
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d(gxi, hxi) = hxi and r(gxi, hxi) = gxi and multiplication

(g1xi, g2xi) · (g2xi, g3xi) = (g1xi, g3xi).

Clearly, (r, d) : Ĝi × Ĝi → Ĝi × Ĝi is bijective (in fact, it is the identity). This is
what it means to be a transitive principal groupoid on ni elements [43, page 6].

Now give B(xi, ε) the trivial groupoid structure (that is, B(xi, ε) is the unit
space and (x, y) is composable if and only if x = y). Since X is compact, B(xi, ε)
is a second countable metric space. Note that Gi is isomorphic to the product
B(xi, ε) × (Ĝi × Ĝi) via Gi → B(xi, ε) × (Ĝi × Ĝi); (g, x) 7→ (h−1x, ghxi, hxi),
where h : B(xi, ε) → B(x, ε) is the unique isometry. This means that Gi is an
elementary groupoid of type ni. ¤

Remark 7.5 Under the hypothesis and notation of Theorem 7.4, note that the
topology of Gε

LI(X) is second countable, being a finite union ∪iε
i=1Gi and each Gi

is homeomorphic to a product of B(xi, ε) and a finite set. In particular, Gε
LI(X)

is compact. In fact, since B(xi, ε) is closed in X, hence compact, Gε
LI(X) has

a countable basis of compact open sets. In fact, there is a countable basis of
compact open Gε

LI(X)-sets in the sense of Renault [43, page 10]. To see this,
let g : B(xi, ε) → B(gxi, ε) and h : B(xi, ε) → B(hxi, ε) be isometries, and let
A(g, h) = {(gh−1, hy) | y ∈ B(xi, ε)}. These sets correspond to the images of
B(xi, ε) under the constructions giving a basis of compact open sets for Gε

LI(X).
Since d(gh−1, hy) = hy and r(gh−1, hy) = gy, d, r restricted to A(g, h) are injec-
tive as required. This property of Gε

LI(X) is important when applying Renault’s
results on AF groupoids and AF algebras (see [43, page 130]).

Theorem 7.6 If X is a compact, locally rigid ultrametric space, then:

1. GLI(X) is an AF groupoid in the sense of Renault [43],

2. The groupoid C∗-algebra C∗GLI(X) is a unital AF C∗-algebra.

Proof. (1) First note that the unit space X of GLI(X) is totally disconnected
(since it is ultrametric). Thus, we only need to show that GLI(X) is the inductive
limit of a sequence of elementary groupoids (see [43, pages 122–123]). For this
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choose a sequence εX > ε1 > ε2 > · · · such that limi→∞ εi = 0 where εX is given
by Lemma 6.6. We will observe that

GLI(X) = lim→ Gεi
LI(X).

First note that Gεi
LI(X) is an open subgroupoid of GLI(X) via the embedding

(g, x) 7→ [g, x]. For 0 < δ ≤ εi, the embedding takes Uδ(g, x) onto U(g, x, εi).
Likewise, Gεi

LI(X) is an open subgroupoid of Gεi+1

LI (X) via the embedding (g, x) 7→
(g|B(x, εi+1), x). Finally observe that GLI(X) = ∪∞i=1Gεi

LI(X).

(2) That the groupoid C∗-algebra is AF follows from (1) and Renault [43,
1.15, page 134]. It is unital because X is compact. ¤

It should be mentioned that Renault proved that every AF C∗-algebra is the
C∗-algebra of an AF groupoid and the groupoid is unique up to isomorphism [43,
1.15, page 134].

8 Trees, Bratteli diagrams and path groupoids

Let (T, v) be a rooted, geodesically complete, locally finite simplicial tree. The
purpose of this section is to define a Bratteli diagram B(T, v) associated with
(T, v) and to prove that GLI(X) is isomorphic to the path groupoid of B(T, v),
provided X = end(T, v) is locally rigid.

8.1 Recollections on Bratteli diagrams

The material in this section is well-known. See Blackadar [8], Bratteli [9], David-
son [15], Effros [16], Elliott [18], Exel and Renault [20], Giordano, Putnam, and
Skau [21], and Herman, Putnam and Skau [24] for more details. In particular,
the discussion below relies heavily on the expositions in [21] and [24].

We begin with the definition of a Bratteli diagram, which, for us, comes
equipped with a distinguished initial vertex.

Definition 8.1 A directed graph D = (V, E) with vertex set V, edge set E , initial
map s : E → V, and terminal map r : E → V is a Bratteli diagram if
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1. V is given as the union V =
⋃∞

n=0 Vn of mutually disjoint, finite, nonempty
sets Vn,

2. for each edge e ∈ E , if the initial vertex s(e) ∈ Vn, then the terminal vertex
r(e) ∈ Vn+1,

3. for each vertex v ∈ V there are at most finitely many edges e ∈ E with
s(e) = v,

4. V0 consists of a single vertex v0,

5. every vertex is the initial vertex of some edge,

6. every vertex except v0 is the terminal vertex of some edge.

For example, let (T, v) be a rooted, geodesically complete, locally finite, sim-
plicial tree. By specifying the root, T is naturally a directed graph (edges are
directed away from the root). Thus, T is a Bratteli diagram, where Vn consists
of those vertices a distance n from v (with respect to the metric discussed in
Section 5).

We now recall the construction of two invariants associated to a Bratteli
diagram D = (V, E), namely, the unital dimension group (G(D), G+(D), [1]) and
the unital AF C∗-algebra AF (D). Both of these invariants depend on a sequence
of matrices, which we now define.

For each i = 0, 1, 2, . . . , let mi = |Vi|, the cardinality of Vi, and write Vi =
{vi

1, . . . , v
i
mi
} (in particular, v0 = v0

1). For i = 0, 1, 2, . . . , 1 ≤ k ≤ mi+1, and
1 ≤ ` ≤ mi, let

ai
k` = |{e ∈ E | s(e) = vi

` and r(e) = vi+1
k }|,

the number of edges from the `th vertex at the ith level to the kth vertex at
the (i + 1)st level. Thus, Ai : = [ai

k`] is an (mi+1×mi)-matrix with nonnegative
integral entries. Moreover, no column and no row of Ai consists entirely of zeroes.

The direct limit G(D) of the sequence

Z A0−→ Zm1 A1−→ Zm2 A2−→ Zm3 A3−→ · · ·Zmi
Ai−→ Zmi+1−→· · ·
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is a partially ordered abelian group with positive cone G+(D) given by the direct
limit of

Z+
A0−→ Zm1

+
A1−→ Zm2

+
A2−→ Zm3

+
A3−→ · · ·Zmi

+
Ai−→ Zmi+1

+ −→· · · .

(Here Z+ = {0, 1, 2, . . . }.)

Definition 8.2 The pair (G(D), G+(D)) is the dimension group associated to
the Bratteli diagram D. The class [1] ∈ G(D) of the unit 1 ∈ Z is an order unit6

and the triple (G(D), G+(D), [1]) is the unital dimension group associated to the
Bratteli diagram D.

The second invariant associated to a Bratteli diagram D by using the sequence
of matrices Ai is a direct limit of finite dimensional C∗-algebras (i.e., finite direct
sums of matrix algebras over C) defined as follows.

In general, let Mr denote the C∗-algebra of (r × r)-matrices over C. For
each v ∈ V, let k(v) be the number of directed paths in D from v0 to v. Let
C0 = C =M1 and, for i = 1, 2, 3, . . . , let

Ci =
mi⊕

j=1

Mk(vi
j)

.

The matrices Ai := [ai
k`] defined above may be considered to be matrices of

multiplicities determining unital C∗-algebra homomorphisms, also denoted Ai,
Ai : Ci → Ci+1 for each i = 0, 1, 2, . . . . Hence, there is a direct sequence

C = C0
A0−→ C1

A1−→ C2
A2−→ C3

A3−→ · · ·Ci
Ai−→ Ci+1−→· · · .

Let AF(D) denote the C∗-direct limit of the sequence just described. It is a
unital AF algebra with unit [1], the class of 1 ∈ C.

The two invariants of a Bratteli diagram defined above are related via K-
theory. It is well-known that the K0 group of the C∗-algebra AF(D) is G(D); in
fact, the unital, partially ordered abelian groups, (K0(AF(D)),K0(AF(D))+, [1])
and (G(D), G+(D), [1]), are isomorphic (see [15]).

6An element u of the positive cone G+ of a partially ordered abelian group G is an order

unit if for every x ∈ G there exists n ∈ N such that x ≤ nu.
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Finally, we recall the equivalence relation on Bratteli diagrams that are clas-
sified by these invariants.

Definition 8.3 A telescoping of a Bratteli diagram D = (V, E) to a Bratteli
diagram D′ = (V ′, E ′) consists of a subsequence 0 = m0 < m1 < m2 < · · · of Z+

such that

1. V ′n = Vmn for all n = 0, 1, 2, . . . , and

2. if n ∈ Z+, x ∈ V ′n, and y ∈ V ′n+1, then the number of edges in D′ from x to
y is exactly the number of directed paths in D from x to y.

Two Bratteli diagrams D = (V, E) and D′ = (V ′, E ′) are isomorphic if there
exists an isomorphism ϕ : D → D′ of directed graphs such that ϕ(Vn) = V ′n for all
n = 0, 1, 2, . . . . They are equivalent if they are equivalent under the equivalence
relation generated by isomorphism and telescoping.

Two partially ordered abelian groups (G,G+) and (G′, G′
+) are isomorphic is

there is a group isomorphism ϕ : G → G′ such that ϕ(G+) = G′
+. If in addition

u ∈ G and u′ ∈ G′ are given order units and ϕ(u) = u′, then the unital partially
ordered abelian groups (G,G+, u) and (G′, G′

+, u′) are isomorphic.

Theorem 8.4 (Bratteli, Elliott) For two Bratteli diagrams D, D′, the follow-
ing are equivalent:

1. D and D′ are equivalent Bratteli diagrams.

2. (G(D), G+(D), [1]) and (G(D′), G+(D′), [1]) are isomorphic unital partially
ordered abelian groups.

3. (AF(D), [1]) and (AF(D′), [1]) are isomorphic unital C∗-algebras.

Moreover, (G(D), G+(D)) and (G(D′), G+(D′)) are isomorphic partially ordered
abelian groups if and only if AF(D) and AF(D′) are stably isomorphic C∗-
algebras.

The equivalence of the first two conditions is due to Bratteli [9]; the equiva-
lence of the second two, as well as the final statement, is due to Elliott [18].



268 Bruce Hughes

8.2 The Bratteli diagram B(T, v) associated to a tree (T, v)

Let (T, v) be a rooted, geodesically complete, locally finite simplicial tree. As
mentioned above, the choice of root v gives an orientation to each edge of T :
the edges point away from the root. Thus, (T, v) is a connected, directed graph
(in fact, a Bratteli diagram). Let s(e) denote the initial, and r(e) the terminal,
vertex of the edge e.

For notation, let vert(T ) be the set of vertices of T and let Vi be the set of
vertices at level i. Thus,

Vi = {w ∈ vert(T ) | the minimal simplicial path from v to w has length i}.

For each w ∈ vert(T ), w 6= v, let Tw denote the subtree of T descending from
w.7 We let Tw be rooted at w. If w ∈ Vi, then we say (Tw, w) is a level i rooted
subtree of (T, v).

In turn, a level one subtree of a level i rooted subtree (Tw, w) of (T, v) is a level
(i+1) subtree (Tu, u) of (T, v) that is also a subtree of (Tw, w) (i.e., u is a vertex
of Tw). For each i = 0, 1, 2, . . . let mi be the number of rooted isometry classes of
level i subtrees of (T, v) and let T i

1, T
i
2, . . . T

i
mi

be a complete set of representatives
of the rooted isometry classes. Note that m0 = 1 and T 0

1 = T . Thus, for each
level i subtree S of T there exists a unique integer l such that 1 ≤ l ≤ mi and T i

l

is rooted isometric to S. Call these chosen subtrees the admissible ones.

For each i ≥ 1 and for each level i subtree S of T , choose a rooted isometry

α(T i
l , S) : T i

l → S

where l is the unique integer such that 1 ≤ l ≤ mi and T i
l is rooted isometric to

S. In choosing these isometries, insist that

α(T i
l , T

i
l ) = idT i

l
for each i ≥ 1 and 1 ≤ l ≤ mi.

Call these chosen rooted isometries the admissible ones.

Define an equivalence relation ∼ on T as follows. For two distinct vertices
w1, w2 of T , we have w1 ∼ w2 if and only if there exists i ≥ 1 such that w1, w2 ∈ Vi

7Thus, Tw contains all vertices and edges of T that are in directed paths beginning at w.
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and Tw1 is rooted isometric to Tw2 . For two distinct edges e1, e2 of T , we have
e1 ∼ e2 if and only if each of the following hold:

1. there exists i ≥ 1 such that s(e1), s(e2) ∈ Vi,

2. Ts(e1) is rooted isometric to Ts(e2) (in particular, s(e1) ∼ s(e2)),

3. if l is the unique integer with 1 ≤ l ≤ mi such that T i
l is rooted isometric to

Ts(e1) (which, of course, also implies T i
l is rooted isometric to Ts(e2)), then

α(T i
l , Ts(e1))

−1(e1) = α(T i
l , Ts(e2))

−1(e2)

as edges of T i
l .

Let B(T, v) = T/ ∼, which has the structure of a connected directed graph.
Level i vertices of B(T, v) are equivalence classes of level i vertices of (T, v),
and edges of B(T, v) are equivalence classes of edges of (T, v) with the induced
orientation. There is an initial vertex of B(T, v), namely the class [v] (which
consists only of v). Thus, B(T, v) is a Bratteli diagram and is called the Bratteli
diagram associated to (T, v).

Note that the quotient map κ : T → B(T, v) is a morphism of directed graphs.

Proposition 8.5 The Bratteli diagram B(T, v) is well-defined up to isomor-
phism.

Proof. We must show that if other choices of level i subtrees T i
1, T

i
2, . . . T

i
mi

and
admissible isometries α(T i

l , S) are made, then the resulting Bratteli diagram is
isomorphic to B(T, v). The vertex set V of B(T, v), and its expression as V =⋃∞

n=0 Vn, is obviously independent of the choices.

Thus, it remains to show that if w1, w2 are vertices of T such that w1 ∈ Vi

and w2 ∈ Vi+1 for some i, then the number of edges from [w1] to [w2] in B(T, v)
is independent of the choices. For this, note that the number of edges in B(T, v)
beginning at [w1] equals the number of edges in Tw1 beginning at w1, and e 7→
κ(e), where e is an edge in Tw1 beginning at w1, gives the bijection. Now observe
that for such an edge e in Tw1 from w1 to some w3, its image κ(e) ends at [w2] if
and only if Tw2 is rooted isometric to Tw3 . ¤
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Remark 8.6 We give here an explicit description of the vertices V and edges E
of the Bratteli diagram B(T, v). For i = 0, 1, 2, . . . , the level i vertices can be
written as a set of equivalence classes Vi = {[vi

1], . . . , [v
i
mi

]}, where vi
` is the root

of T i
` (1 ≤ ` ≤ mi). The number of edges in B(T, v) from [vi

`] to [vi+1
k ], where

i = 0, 1, 2, . . . , 1 ≤ ` ≤ mi, and 1 ≤ k ≤ mi+1, is nonzero if and only if there
exists w ∈ [vi+1

k ] such that w ∈ T i
` . When such a vertex w exists, the number of

edges from [vi
`] to [vi+1

k ] is the number of level 1 subtrees of T i
` that are rooted

isometric to T i+1
k .

Example 8.7 If (T, v) denotes the Cantor tree, the Fibonacci tree, the Sturmian
tree, the 2-regular tree R2, or the 3-ary tree A3 as defined in Section 5.3, the
corresponding Bratteli diagram B(T, v) is pictured in Figures 5 through 9. In
each case, the initial vertex appears on the far left.

t t t t t t q q q

Figure 5: Bratteli diagram of the Cantor tree C
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Figure 6: Bratteli diagram of the Fibonacci tree F

8.3 Recollections on path groupoids

In this section, we recall the construction of the groupoid of infinite directed paths
beginning at a distinguished vertex of a directed graph. The main properties of
this groupoid, due to Renault [43], are summarized in Theorem 8.8 below. For
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Figure 7: Bratteli diagram of the Sturmian tree S

t t t t t t q q q

Figure 8: Bratteli diagram of the 2-regular tree R2

t t t t t t q q q

Figure 9: Bratteli diagram of the 3-ary tree A3
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more details, see Kumjian, Pask, Raeburn, and Renault [31], Paterson [42], and
Renault [43].

We will only need the path groupoid of Bratteli diagrams, but it is just as
easy to recall the definitions for arbitrary directed graphs.

Let D = (V, E) be a directed graph with vertex set V, edge set E , initial map
s : E → V, terminal map r : E → V, and distinguished vertex v0. Assume that
for each vertex v ∈ V there are at most finitely many edges e ∈ E with initial
vertex s(e) = v (thus, D is row finite).

A path in D beginning at v0 is an infinite sequence α = (α0, α1, α2, . . . ) of
edges such that s(α0) = v0 and for each n ≥ 0, r(αn) = s(αn+1). Note that by
convention, our paths are infinite.

The path groupoid PG(D, v0) is the set of all pairs (α, β) of paths in D begin-
ning at v0 such that α and β are tail equivalent, i.e., there exists n ≥ 0 such that
αk = βk for all k ≥ n. Tail equivalence of α and β is denoted by α ∼ β. The unit
space is P = P(D, v0), the set of all paths in D beginning at v0. The domain
d : PG(D, v0) → P and range r : PG(D, v0) → P maps are given by d(α, β) = α

and r(α, β) = β. Pairs (γ, δ), (α, β) ∈ PG(D, v0) are composable if and only if
β = γ, in which case (γ, δ) · (α, β) = (α, δ).8

Observe that P has a natural topology; namely, consider P as a subspace
of the countably infinite product

∏∞
0 E where E is given the discrete topology

and the product has the product topology. This makes P a compact, totally
disconnected metric space.9

For example, let (T, v) be a rooted, geodesically complete, locally finite, sim-
plicial tree considered as a directed graph as in Section 8.1. Then P(T, v) =
end(T, v) as topological spaces. In addition, we may form the Bratteli diagram
B(T, v) with distinguished vertex [v] associated to the tree (T, v). In this case,

8Thus, PG(D, v0) is the groupoid associated to the equivalence relation of tail equivalence

on P.
9The topology on P is metrized by the ultrametric

d(α, β) =

{
0 if α = β

e−n, where n = min{j | αj 6= βj} otherwise.
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we write P(B(T, v), [v]) = P(B(T, v)) and PG(B(T, v), [v]) = PG(B(T, v)).

Returning to the general discussion, we want to put a topology on PG(D, v0)
so that it is a locally compact groupoid with unit space P. It is not the subspace
topology from P×P that we want, because that would not, in general, be locally
compact. Instead, we procede as follows. For each n ≥ 0, define an equivalence
relation ∼n on P by α ∼n β if and only if αk = βk for all k ≥ n. Let

Rn = {(α, β) ∈ P × P | α ∼n β}.

Thus, PG(D, v0) =
⋃∞

n=0Rn. Let each Rn have the subspace topology from
P × P. Each Rn is easily seen to be closed in P × P; hence, Rn is compact.
Finally, give PG(D, v0) the inductive (direct) limit topology.10 Note that for
each n ≥ 0, the quotient space P/ ∼n is Hausdorff. In the terminology of Exel
and Lopes [19] each ∼n is a proper equivalence relation and tail equivalence ∼ is
an approximately proper equivalence relation.

For a Bratteli diagram, there is the following result about the path groupoid.

Theorem 8.8 (Renault) Let D be a Bratteli diagram.

1. The path groupoid PG(D, v0) is a locally compact, Hausdorff, second count-
able, étale, AF groupoid.

2. The groupoid C∗-algebra C∗(PG(D, v0)) is isomorphic to AF (D) as a unital
C∗-algebra.

These results can be found in Renault [43]; see Exel and Renault [20] for a
recent alternative treatment. The groupoid C∗-algebra in the second statement
is defined in [43].

The first statement in Theorem 8.8 above, combined with Theorem 8.9 below,
gives another way of establishing the first two statements in Theorem 1.1.

10U ⊆ PG(D, v0) is open if and only if U ∩Rn is open for all n ≥ 0.
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8.4 Theorems on path groupoids of Bratteli diagrams

The main result of this section is the following theorem. It concerns locally rigid
end spaces of trees and relates their groupoids of local isometries to the path
groupoids of the Bratteli diagram associated to the tree.

Theorem 8.9 Let (T, v) be a rooted, geodesically complete, locally finite, simpli-
cial tree. If end(T, v) = X is locally rigid, then the quotient map κ : T → B(T, v)
induces an isomorphism of groupoids

κ∗ : GLI(X) → PG(B(T, v)).

Proof. We first show that the quotient map κ : T → B(T, v) induces a home-
omorphism κ# : end(T, v) = X → P(B(T, v)) = P between unit spaces of the
groupoids GLI(X) and PG(B(T, v)). This part of the proof does not use the local
rigidity hypothesis.

Define κ# as follows. Represent x ∈ end(T, v) (which is a geodesic ray
x : [0,∞) → T with x(0) = v) by an infinite sequence of edges (x0, x1, x2, . . . )
of T . That is, xi = x([i, i + 1]) for all i = 0, 1, 2, . . . . Then set κ#x =
(κx0, κx1, κx2, . . . ) ∈ P.

Note the following simple fact about the map κ.

Fact 8.10 If e1, e2 are edges of T such that e1 6= e2 and s(e1) = s(e2), then
κ(e1) 6= κ(e2) as edges of B(T, v).

This is true because otherwise α(T i
l , Ts(e1))−1(e1) = α(T i

l , Ts(e1))−1(e2), where
l is the integer such that T l

i is rooted isometric to Ts(e1) = Ts(e2), contradicting
the fact that α(T i

l , Ts(e1)) is an isometry.

From this fact it follows that κ is a local homeomorphism in the sense that for
all t ∈ T there exists an open neighborhood Ut of t in T such that κ| : Ut → κ(Ut)
is a homeomorphism. (However, κ(Ut) need not be open in B(T, v) because there
might be edges e1 6= e2 in T which go to edges in B(T, v) with the same terminal
vertices r(κ(e1)) = r(κ(e2)).)
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To see that κ# is surjective, suppose α = (α0, α1, α2, . . . ) ∈ P. Choose an
edge e0 in T beginning at v such that κ(e0) = α0. Then κ(r(e0)) = r(α0) = s(α1).
By the local homeomorphism property of κ mentioned above, there exists an
edge e1 in T beginning at r(e0) such that κ(e1) = α1. Continue this process to
construct x = (e0, e1, e2, . . . ) ∈ end(T, v) such that κ#x = α.

To see that κ# is injective, suppose x 6= y in end(T, v), and let t0 = sup{t ≥
0 | x(t) = y(t)}. Then e1 = x([t0, t0 + 1]) and e2 = y([t0, t0 + 1]) are distinct
edges of T with s(e1) = s(e2). It follows from Fact 8.10 that κ(e1) 6= κ(e2). It
follows that κ#x 6= κ#y.

Moreover,

t0 = min{j ∈ {0, 1, 2, . . . } | x(j + 1) 6= y(j + 1)}
= min{j ∈ {0, 1, 2, . . . } | κ(x([j, j + 1])) 6= κ(y([j, j + 1]))}.

Since de(x, y) = e−t0 , it follows that κ# is an isometry with respect to the natural
metric on P. This completes the proof that κ# is a homeomorphism.

In order to define κ∗ : GLI(X) → PG(B(T, v)), choose εX > 0 by Lemma 6.6.
This uses the local rigidity assumption on X. Represent a given groupoid element
[g, x] ∈ GLI(X) by an isometry g : B(x, ε) → B(gx, ε) with 0 < ε ≤ εX .

Claim 8.11 κ#x and κ#gx are tail equivalent.

Proof of Claim. Since

B(x, ε) = end(T〈x,ε〉, v〈x,ε〉) and B(gx, ε) = end(T〈gx,ε〉, v〈gx,ε〉),

(see Section 5) the isometry g induces a rooted isometry

g̃ : (T〈x,ε〉, v〈x,ε〉) → (T〈gx,ε〉, v〈gx,ε〉).

This map g̃ is defined on edges as follows: if e is an edge of T〈x,ε〉, choose y ∈
end(T, v) such that e = y([i, i + 1]) for some i. Then y ∈ B(x, ε) and so gy ∈
B(gx, ε). Thus, (gy)([i, i + 1]) is an edge of T〈gx,ε〉 and we set g̃e = (gy)([i, i +
1]). Isometries B(x, ε) → B(gx, ε) correspond bijectively to rooted isometries
(T〈x,ε〉, v〈x,ε〉) → (T〈gx,ε〉, v〈gx,ε〉) (e.g., see [26]). Since ε ≤ εX , g is the unique
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isometry from B(x, ε) to B(gx, ε). Thus, g̃ is the unique rooted isometry. It
follows that if T i

l is the admissible level i subtree of T that is rooted isometric
to T〈x,ε〉, and α1 : T i

l → T〈x,ε〉 and α2 : T i
l → T〈gx,ε〉, then g̃α1 = α2. From the

definition of g̃, it follows that if i ≥ d− ln εe, then g̃(x([i, i+1])) = (gx)([i, i+1]).
Thus, x([i, i + 1]) ∼ (gx)([i, i + 1]) for i ≥ d− ln εe. Thus, κ#x and κ#gx are tail
equivalent. ¤

Thus, define
κ∗([g, x]) = (κ#x, κ#gx) ∈ P × P.

The claim implies that (κ#x, κ#gx) ∈ PG(B(T, v)).

Note that κ∗([g, x]) is well-defined in the sense that it does not depend on
the isometry representing [g, x], only on the germ of the isometry at x (in fact, a
feature of local rigidity is that κ∗([g, x]) only depends on x and gx).

Note also that the diagram

X
κ#−−−−→ P

α

y
y∆

GLI(X) κ∗−−−−→ PG(B(T, v))

commutes, where the vertical maps are the natural inclusions of unit spaces (α
is given in Remark 3.12 and ∆ is the diagonal map ∆(β, β)).

It is equally obvious that the diagrams

GLI(X) κ∗−−−−→ PG(B(T, v))

d

y
yd

X
κ#−−−−→ P

and

GLI(X) κ∗−−−−→ PG(B(T, v))

r

y
yr

X
κ#−−−−→ P

commute.

To see that κ∗ is multiplicative, suppose [g1, x1], [g2, x2] ∈ GLI(X) with x2 =
g1x1. Then κ∗([g2, x2]·[g1, x1]) = κ∗([g2g1, x1]) = (κ#x1, κ#g2g1x1) = (κ#g1x1, κ#g2g1x1)·
(κ#x1, κ#g1x1) = κ∗([g2, g1x1]) · κ∗([g1, x1]).

It only remains to show that κ∗ : GLI(X) → PG(B(T, v)) is a homeomor-
phism. Let εX > 0 be given by Lemma 6.6 and choose a positive integer
N ≥ − ln εX . For i = 0, 1, 2, 3, . . . , let εi = e−(N+i).
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As in the proof of Theorem 7.6, GLI(X) is the union of approximating groupoids,
GLI(X) = ∪∞i=0Gεi

LI(X). Elements of Gεi
LI(X) are written (g, x), but when consid-

ered in GLI(X), are written [g, x].

Claim 8.12 For every i ≥ 0, κ∗ restricts to a homeomorphism

κ∗| : Gεi
LI(X) →RN+i.

Proof. If (g, x) ∈ Gεi
LI(X), then g : B(x, εi) → B(gx, εi) is an isometry. We first

need to observe that (κ#x, κ#gx) ∈ RN+i. According to the proof of Claim 8.11,
x([j, j + 1]) ∼ (gx)([j, j + 1]) for j ≥ d− ln εie. Since − ln εi = N + i, we have the
desired observation. This shows κ∗(g, x) ∈ RN+i.

To see that κ∗| is continuous, let (g, x) ∈ Gεi
LI(X) and let ε > 0 be given. We

may assume ε ≤ εi. Recall from Section 7 that (g, x) has an open neighborhood
Uε(g, x) in Gεi

LI(X) given by

Uε(g, x) = {(h, y) ∈ Gεi
LI(X) | d(x, y) < ε and d(gz, hz) < ε for every z ∈ B(x, εi}.

Let (h, y) ∈ Uε(g, x). Then d(x, y) < ε and d(gy, hy) < ε. Since g is an isometry,
d(gx, gy) < ε. Hence, d(x, y) < ε and d(gx, hy) < 2ε. Since it was shown above
that κ# is an isometry, we have d(κ#x, κ#y) < ε and d(κ#gx, κ#hy) < 2ε in P.
Thus, the distance between κ∗(g, x) = (κ#x, κ#gx) and κ∗(h, y) = (κ#y, κ#hy)
in P × P is small if ε is small enough. Since RN+i is topologized as a subspace
of P × P, this verifies the continuity of κ∗|.

To see that κ∗| is injective, suppose (g, x), (h, y) ∈ Gεi
LI(X). Since κ∗(g, x) =

(κ#x, κ#gx), κ∗(h, y) = (κ#y, κ#hy), and κ# is injective, it follows that κ∗(g, x) =
κ∗(h, y) implies that x = y and gx = hy. By the choice of εX , it follows that
g = h.

To see that κ∗| is surjective, let (α, β) ∈ RN+i be given. Choose x, y ∈ X

such that κ#x = α and κ#y = β. It suffices to show there exists an isometry
g : B(x, εi) → B(y, εi) such that gx = y; for then, (g, x) ∈ Gεi

LI(X) and κ∗(g, x) =
(α, β). Since (α, β) ∈ RN+i, it follows that αk = βk for all k ≥ N + i. Denote
the sequence of edges of x by (x0, x1, x2, . . . ) and those of y by (y0, y1, y2, . . . ).
That is, xk = x[k, k + 1] and yk = y[k, k + 1], where x, y : [0,∞) → T .
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If xk = y+k for all k, then we are done because we can take g = id. Therefore,
assume this is not the case and let M = min{k | xk 6= yk}.

Since xM 6= yM and s(xM ) = x(M) = y(M) = s(yM ), Fact 8.10 implies
αM = κ(xM ) 6= κ(yM ) = βM . Thus, M < N + i.

Since αN+i = βN+i, it follows that the tree Tx(N+i) is rooted isometric to
Ty(N+i). Let ` be the unique integer with 1 ≤ ` ≤ mN+i such that TN+i

` is rooted
isometric to Tx(N+i) and Ty(N+i). Consider the following rooted isometry defined
as a composition of an admissible isometry and the inverse of an admissible
isometry:

g̃ := α(TN+i
` , Ty(N+i)) ◦ α(TN+i

` , Tx(N+i))
−1 : Tx(N+i) → Ty(N+i).

Thus, g̃(xN+i) = yN+i.

It follows that g̃ induces an isometry g : B(x, εi) → B(y, εi). (According to
Section 5, there is an isometry between closed balls, but it restricts to an isometry
between open balls.) To show gx = y, it suffices to show that g̃(xk) = yk

for all k ≥ N + i. Assume to the contrary that this is not the case, and let
K = min{k ≥ N + i | g̃(x + k) 6= y + k}. Thus, K > N + i.

Proceed as above: since αK = βK , it follows that Tx(K) is rooted isometric
to Ty(K). Moreover, there exists a rooted isometry g̃K : Tx(K) → Ty(K) such
that g̃K(xK) = yK , and g̃K induces an isometry gK : B(x, e−K) → B(y, e−K).
It follows that g(B(x, e−K)) = B(y, e−K) (because g(x) ∈ B(y, e−K)). Hence,
g−1
K ◦ g| : B(x, e−K) → B(x, e−K) is an isometry with g−1

K ◦ g(x) 6= x. This
contradicts the choice of εX . For this, we need to observe that B(x, e−K) =
B(x, η) if e−K < η < e−(K+1), and any such η satisfies η < e−(K+1) ≤ εX . Hence,
gx = y and κ∗| is surjective.

Since Gεi
LI(X) is compact Hausdorff by Remark 7.5, this shows that κ∗| is a

homeomorphism and completes the proof of Claim 8.12. ¤
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Note that the following diagram commutes, where the vertical arrows are
inclusion maps:

Gεi
LI(X)

κ∗|−−−−→ RN+iy
y

Gεi+1

LI (X)
κ∗|−−−−→ RN+i+1

Recall from the proof of Theorem 7.6 that GLI(X) is the inductive limit (as
i →∞) of the left-hand vertical maps. By definition, R is the inductive limit of
the right-hand vertical maps. Hence, κ∗ is a homeomorphism.

This completes the proof of Theorem 8.9. ¤

8.5 Summary of Section 8

Let (T, v) be a rooted, geodesically complete, locally finite simplicial tree and let
X = end(T, v). By examining isomorphic subtrees of T rooted at the same level of
T , we defined a Bratteli diagram B(T, v) that is a quotient of T , κ : T → B(T, v).

For any Bratteli diagram (in fact, for any rooted directed graph) there is a
well-known construction of a groupoid, called the path groupoid, based on tail
equivalence of infinite directed paths beginning at the distinguished vertex of the
diagram. In our case, we denote the path groupoid of B(T, v) by PG(B(T, v)).
This groupoid satisfies sufficient conditions so that Renault’s theory can be ap-
plied to obtain a unital AF C∗-algebra C∗PG(B(T, v)).

On the other hand, Bratteli showed how to construct a unital AF C∗-algebra
from any Bratteli diagram. For the Bratteli diagram B(T, v), this algebra is
denoted by AF(B(T, v)).

It is well-known that Bratteli’s construction and Renault’s theory lead to
isomorphic unital C∗-algebras. In particular, there is an isomorphism

C∗PG(B(T, v)) ∼= AF(B(T, v))

of unital C∗-algebras.

A unital partially ordered abelian group is obtained from (T, v) in two ways.
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First, we take the unital, ordered K0-group of a unital C∗-algebra and get

(K0(C∗PG(B(T, v))),K0(C∗PG(B(T, v)))+, [1]).

Second, there is the unital dimension group associated to a Bratteli diagram.
In particular, we get (G(B(T, v)), G+(B(T, v)), [1]). Since this is the unital or-
dered K0-group of AF(B(T, v)), these two constructions lead to isomorphic unital
partially ordered abelian groups. In particular, there is an isomorphism

(K0(C∗PG(B(T, v))),K0(C∗PG(B(T, v)))+, [1]) ∼= (G(B(T, v)), G+(B(T, v)), [1])

of unital partially ordered abelian groups.

These constructions are summarized in the following diagram:

(T, v) Ã B(T, v)

ÃPG(B(T, v))

Ã C∗PG(B(T, v)) ∼= AF(B(T, v))

Ã (K0(C∗PG(B(T, v))),K0(C∗PG(B(T, v)))+, [1])
∼= (K0(AF(B(T, v)), (K0(AF(B(T, v))+, [1])
∼= (G(B(T, v)), G+(B(T, v)), [1])

Under the assumption that X = end(T, v) is locally rigid, there was another
route that led to groupoids, unital AF C∗-algebras, and unital partially ordered
abelian groups. Namely, we formed the groupoid GLI(X) of local isometries on X

and verified sufficient conditions so that Renault’s theory produces a unital AF
C∗-algebra C∗GLI(X). We can take the K0-group of that C∗-algebra and get a
unital partially ordered abelian group. This route is summarized by the following
diagram:

(T, v) Ã end(T, v) = X

Ã GLI(X)

Ã C∗GLI(X)

Ã (K0(C∗GLI(X)),K0(C∗GLI(X))+, [1])
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The main isomorphisms established in this section in the locally rigid case are
summarized in the following corollary.

Corollary 8.13 If (T, v) is a rooted, geodesically complete, locally finite simpli-
cial tree such that X = end(T, v) locally rigid, then

1. there is an isomorphism of topological groupoids GLI(X) ∼= PG(B(T, v)),

2. there are isomorphisms of unital C∗-algebras

C∗GLI(X)∼= AF(B(T, v))
∼= C∗PG(B(T, v)),

3. there are isomorphisms of unital partially ordered abelian groups

(K0(C∗GLI(X)),K0(C∗GLI(X))+, [1])
∼= (K0(C∗PG(B(T, v))),K0(C∗PG(B(T, v)))+, [1])
∼= (K0(AF(B(T, v)), (K0(AF(B(T, v))+, [1])
∼= (G(B(T, v)), G+(B(T, v)), [1]).

In particular, B(T, v) is the Bratteli diagram for the unital AF algebra C∗GLI(X).

Here is one last consequence of the results of this section.

Corollary 8.14 If (T, v) and (S,w) are rooted, geodesically complete, locally fi-
nite simplicial trees such that X = end(T, v) and Y = end(S,w) are locally
rigid, then the Bratteli diagrams B(T, v) and B(S,w) are equivalent if and only if
K0C

∗GLI(X) and K0C
∗GLI(Y ) are isomorphic as unital partially ordered abelian

groups.

Proof. By Theorem 8.4, B(T, v) and B(S,w) are equivalent if and only if G(B(T, v))
and G(B(S,w)) are isomorphic as unital partially ordered abelian groups. The
result now follows from the isomorphisms above. ¤
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9 The symmetry at infinity group

Let (T, v) be a rooted, geodesically complete, locally finite simplicial tree. In
Section 8 we defined a Bratteli diagram B(T, v) associated to (T, v) by identifying
infinite subtrees of T that occur at the same level. The Bratteli diagram B(T, v)
leads to three isomorphic unital partially ordered abelian groups (as is the case
for all Bratteli diagrams)11 :

(K0(C∗PG(B(T, v))),K0(C∗PG(B(T, v)))+, [1])
∼= (K0(AF(B(T, v)), (K0(AF(B(T, v))+, [1])
∼= (G(B(T, v)), G+(B(T, v)), [1])

Of these, (G(B(T, v)), G+(B(T, v)), [1]) is obviously the most directly defined.

We want to point out in this section that this unital partially ordered abelian
group can be defined even more directly from the tree (T, v) without passing to
the Bratteli diagram B(T, v). Of course, this is implicit in Section 8, but we want
to make clear just how elementary the idea is. Some examples are included at
the end of this section.

Since the group is defined directly from the tree (T, v) and it measures the
symmetries at infinity of (T, v)—that is, the number of isometric infinite subtrees
of (T, v)—we denote it by Sym∞(T, v).

We use the notation from Section 8.2. Recall that for each i = 0, 1, 2, . . . , mi

is the number of rooted isometry classes of level i subtrees of (T, v). We choose
level i subtrees T i

1, T
i
2, . . . T

i
mi

that form a complete set of representatives of the
rooted isometry classes. In particular, m0 = 1 and T 0

1 = T .

For 0 ≤ i, 1 ≤ k ≤ mi+1 and 1 ≤ ` ≤ mi, let ai
k` be the number of level one

subtrees of T i
` that are rooted isometric to T i+1

k . The matrix Ai = [ai
k`] is an

(mi+1×mi)− matrix with nonnegative integral entries. The indexing of the rows
and columns is indicated here:

11If X = end(T, v) is locally rigid, then (K0(C
∗GLI(X)), K0(C

∗GLI(X))+, [1]) is a fourth

group isomorphic to these.
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T i
1 · · · T i

` · · · T i
mi

Ai =




ai
11 · · · ai

1` · · · ai
1mi

...
...

...
ai

k1 · · · ai
k` · · · ai

kmi
...

...
...

ai
mi+11 · · · ai

mi+1` · · · ai
mi+1mi




T i+1
1
...

T i+1
k
...

T i+1
mi+1

The simplicial cone of Zn is Zn
+ = {(x1, x2, . . . , xn) ∈ Zn | xi ≥ 0}. It is a

subsemigroup of Zn and the resulting partial order on Zn is called the simplicial
ordering.

Definition 9.1 For a rooted, locally finite simplicial tree (T, v), using the no-
tation above, the symmetry at infinity group Sym∞(T, v) is the unital partially
ordered abelian group given by the direct limit

Sym∞(T, v) = lim→ (Z A0−→ Zm1 A1−→ Zm2 A2−→ Zm3 A3−→ · · ·Zmi
Ai−→ · · · ).

The positive cone of Sym∞(T, v) is the subsemigroup given by the direct limit

Sym∞(T, v)+ = lim→ (Z+
A0−→ Zm1

+
A1−→ Zm2

+
A2−→ Zm3

+
A3−→ · · ·Zmi

+
Ai−→ · · · ).

The order unit [1] of Sym∞(T, v) is the class of 1 ∈ Z in the direct limit.

Thus, we simply use Sym∞(T, v) to denote the unital partially ordered abelian
group given by the triple (Sym∞(T, v), Sym∞(T, v)+, [1]).

Proposition 9.2 If (T, v) is a rooted, geodesically complete, locally finite sim-
plicial tree, then Sym∞(T, v) is isomorphic to the unital dimension group of the
Bratteli diagram B(T, v); that is, there is an isomorphism of unital partially or-
dered abelian groups

Sym∞(T, v) ∼= (G(B(T, v)), G+(B(T, v)), [1]).
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Proof. We continue to use the notation from Section 8.2. Recall that the Bratteli
diagram B(T, v) = (V, E) with V = ∪∞i=0Vi and Vi = {[vi

1], . . . , [v
i
mi

]} where vi
` is

the root of T i
` . It follows from Remark 8.6 that the number ai

k` defined above
is exactly the number of edges in E from [vi

`] to [vi+1
k ]. This gives the required

isomorphism of unital partially ordered abelian groups. ¤

The following corollary is Theorem 1.15 of the Introduction.

Corollary 9.3 If X is a locally rigid, compact ultrametric space and X = end(T, v),
where (T, v) is a rooted, geodesically complete, locally finite simplicial tree, then
Sym∞(T, v) is isomorphic to K0C

∗GLI(X) as a unital partially ordered abelian
group.

Proof. This follows from Proposition 9.2 and Corollary 8.13. ¤

We now give the symmetry at infinity groups of the trees in Section 5.3. All of
the calculations are elementary and are well-known (perhaps in other contexts).
For each of the trees, the natural root is denoted v.

Example 9.4 (The Cantor tree C) Sym∞(C, v) is isomorphic to the ad-
ditive group of dyadic rationals Z[12 ] = {m

2i | m, i ∈ Z} ⊆ Q with positive cone
Sym∞(C, v)+ corresponding to the nonnegative dyadic rationals Z[12 ]+ and order
unit 1 ∈ Z[12 ]. The direct sequence is

Z 2−→ Z 2−→ Z 2−→ Z 2−→ · · · 2−→ Z 2−→ · · · .

Example 9.5 (The Fibonacci tree F ) Sym∞(F, v) is isomorphic to the two-
dimensional integral lattice Z2 with positive cone Sym∞(F, v)+ corresponding to
{(x, y) ∈ Z2 | τx + y ≥ 0} where τ = 1+

√
5

2 is the golden mean. The order unit is
(1, 1) ∈ Z2. Thus, Sym∞(F, v) ∼= (Z+τZ, (Z+τZ)∩R+, τ). The direct sequence
is

Z

[
1

1

]

−−→ Z2

[
1 1

1 0

]

−−−→ Z2

[
1 1

1 0

]

−−−→ Z2

[
1 1

1 0

]

−−−→ · · ·

[
1 1

1 0

]

−−−→ Z2

[
1 1

1 0

]

−−−→ · · · .

Example 9.6 (The Sturmian tree S) Sym∞(S, v) is isomorphic to the two-
dimensional integral lattice Z2 with positive cone Sym∞(S, v)+ corresponding to
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{(x, y) ∈ Z2 | x, y ≥ 0 or x > 0}. This is the lexiographic order of Z2. The order
unit is (1, 1) ∈ Z2. The direct sequence is

Z

[
1

1

]

−−→ Z2

[
1 0

1 1

]

−−−→ Z2

[
1 0

1 1

]

−−−→ Z2

[
1 0

1 1

]

−−−→ · · ·

[
1 0

1 1

]

−−−→ Z2

[
1 0

1 1

]

−−−→ · · · .

Example 9.7 (The n-regular tree Rn) Sym∞(Rn, v) is isomorphic to the
additive group Z[ 1

n ] = {m
ni | m, i ∈ Z} ⊆ Q with positive cone Sym∞(Rn, v)+

corresponding to the nonnegative elements of Z[ 1
n ]+ and order unit n + 1 ∈ Z[ 1

n ].
The direct sequence is

Z n+1−−→ Z n−→ Z n−→ Z n−→ · · · n−→ Z n−→ · · · .

Example 9.8 (The n-ary tree An) Sym∞(An, v) is isomorphic to Z[ 1
n ] with

positive cone Sym∞(An, v)+ corresponding to Z[ 1
n ]+ and order unit 1 ∈ Z[ 1

n ].
The direct sequence is

Z n−→ Z n−→ Z n−→ Z n−→ · · · n−→ Z n−→ · · · .

Example 9.9 (The n-ended tree En) Sym∞(En, v) is isomorphic to Z with
Sym∞(En, v)+ corresponding to the nonnegative integers Z+ and order unit n ∈
Z. The direct sequence is

Z n−→ Z 1−→ Z 1−→ Z 1−→ · · · 1−→ Z 1−→ · · · .

Example 9.10 (The irrational tree Tα) Let α = [a0, a1, a2, . . . ] be the con-
tinued fraction expansion of the positive irrational number α. Sym∞(Tα, v) is iso-
morphic to the two-dimensional integral lattice Z2 with positive cone Sym∞(Tα, v)+
corresponding to {(x, y) ∈ Z2 | αx+y ≥ 0}. The order unit is (a0, 1) ∈ Z2. Thus,
Sym∞(Tα, v) ∼= (Z+ αZ, (Z+ αZ) ∩ R+, a0α). The direct sequence is

Z

[
a0
1

]

−−−→ Z2

[
a1 1

1 0

]

−−−−→ Z2

[
a2 1

1 0

]

−−−−→ Z2

[
a3 1

1 0

]

−−−−→ · · · .

For this calculation, see Effros and Shen [17].
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10 Scalings and micro-scalings of ultrametrics

In this section we associate to any compact, ultrametric space X a Bratteli dia-
gram B(X). This is accomplished by taking any rooted, geodesically complete,
locally finite simplicial tree (T, v) with X scale equivalent (defined below) to
end(T, v) and defining B(X) = B(T, v). Along with scale equivalence we also
introduce the notion of micro-scale equivalence of metric spaces and prove that
the equivalence class of B(X) as a Bratteli diagram only depends on X up to
micro-scale equivalence.

Definition 10.1 Let d and d′ be metrics on a set X.

1. d′ is a scaling of d if there exists a homeomorphism λ : [0,∞) → [0,∞) such
that λd = d′. In this case, d and d′ are said to be scale equivalent.

2. d′ is a micro-scaling of d if there exist ε > 0 and a homeomorphism
λ : [0,∞) → [0,∞) such that λd(x, y) = d′(x, y) whenever x, y ∈ X and
min{d(x, y), d′(x, y)} < ε. In this case, d and d′ are said to be micro-scale
equivalent.

Note that scale equivalent or micro-scale equivalent metrics are topologically
equivalent. In addition, scale equivalence and micro-scale equivalence are equiva-
lence relations on the set of all metrics on X. Moreover, if (X, d) is an ultrametric
space, then part of the conditions in the definition are unnecessary in that when-
ever λ : [0,∞) → [0,∞) is a homeomorphism, λd is also an ultrametric.

Definition 10.2 Let h : X → Y be a bijection between metric spaces (X, dX)
and (Y, dY ).

1. h : X → Y is a scale equivalence if dX and h∗dY are scale equivalent.

2. h : X → Y is a micro-scale equivalence if dX and h∗dY are micro-scale
equivalent.

Here h∗dY denotes the pull-back metric, h∗dY (x, y) = dY (hx, hy). Note that
scale equivalences and micro-scale equivalences are necessarily homeomorphisms.
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Proposition 10.3 If h : X → Y is a uniform local similarity between compact
metric spaces (X, dX) and (Y, dY ), then h is a micro-scale equivalence.

Proof. Since X is compact, there exist ε > 0 and λ̂ > 0 such that h| : B(x, ε) →
B(hx, λ̂ε) is a λ̂-similarity for all x ∈ X. Thus, the homeomorphism λ : [0,∞) →
[0,∞), defined by λ(t) = λ̂t, shows that dX and h∗dY are micro-scale equivalent
(because dX(x, y) < ε implies dY (hx, hy) = λ̂dX(x, y) = (λ ◦ dX)(x, y)). ¤

In particular, local isometries between compact metric spaces are micro-scale
equivalences.

Proposition 10.4 If (X, dX) and (Y, dY ) are micro-scale equivalent ultrametric
spaces and X is locally rigid, then Y is also locally rigid.

Proof. Let h : X → Y be a bijection, λ : [0,∞) → [0,∞) a homeomorphism, and
ε > 0 such that λdX(x, y) = dY (hx, hy) whenever min{dX(x, y), dY (hx, hy)} < ε

and x, y ∈ X.

If 0 < δ ≤ min{ε, λ−1(ε)}, then h| : B(x, δ) → B(hx, λ(δ)) is a homeomor-
phism. If 0 < µ ≤ min{ε, λ(ε), λ−1(ε)}, and g : B(y, µ) → B(y, µ) is an isometry
between balls in Y , then

B(h−1y, λ−1(µ))
h|−−→ B(y, µ)

g−−→ B(y, µ)
h|−1

−−−→ B(h−1y, λ−1(µ))

is an isometry between balls in X.

Suppose y ∈ Y is given and let x = h−1y. Local rigidity of the ultrametric
space X implies there exists εx > 0 such that for any 0 < ν ≤ εx, every isometry
B(x, ν) → B(x, ν) is the identity (see Lemma 6.2).

Let εy = min{λ(εx), ε, λ(ε), λ−1(ε)} and suppose g : B(y, εy) → B(y, εy) is an
isometry. It follows that the composition

B(x, λ−1(εy))
h|−−→ B(y, εy)

g−−→ B(y, εy)
h|−1

−−−→ B(x, λ−1(εy))

is an isometry; hence, it is the identity. Thus, g is the identity and Y is locally
rigid. ¤
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Proposition 10.5 A micro-scale equivalence h : X → Y of metric spaces in-
duces an isomorphism h∗ : GLI(X) → GLI(Y ) of topological groupoids.

Proof. Let λ : [0,∞) → [0,∞) be a homeomorphism and ε > 0 such that
λdX(x, y) = dY (hx, hy) whenever min{dX(x, y), dY (hx, hy)} < ε and x, y ∈ X.

If 0 < δ ≤ min{ε, λ−1(ε)}, then h| : B(x, δ) → B(hx, λ(δ)) is a homeomor-
phism. If 0 < µ ≤ min{ε, λ(ε), λ−1(ε)}, and g : B(x, µ) → B(y, µ) is an isometry
between balls in X, then

B(hx, λ(µ))
h|−1

−−−→ B(x, µ)
g−−→ B(y, µ) h−−→ B(hy, λ(µ))

is an isometry between balls in Y .

Thus, there is a function h∗ : GLI(X) → GLI(Y ) defined by h∗[g, x] = [hgh−1, hx]
for each local isometry germ [g, x] ∈ GLI(X) such that the domain of g has suf-
ficiently small radius, which can be shown to be an isomorphism of groupoids.
¤

Note that a micro-scale equivalence need not induce an isomorphism between
local similarity groupoids.

The following result follows immediately from the preceding proposition. Note
that we have already established that, under the hypothesis of the corollary, that
GLI(X) satisfies the conditions required to apply Renault’s theory of groupoid
C∗-algebras (see Theorem 6.21).

Corollary 10.6 If (X, d) is a compact, locally rigid ultrametric space, then the
unital C∗-algebra C∗GLI(X) and the unital partially ordered abelian group
K0C

∗GLI(X) are invariants of X up to micro-scale equivalence of X.

Note that the preceding proposition and corollary imply Theorem 1.1(3) of
the Introduction.

We now begin to establish Theorem 1.1(4) of the Introduction.

Proposition 10.7 If (X, d) is a compact ultrametric metric space, then there
exists a rooted, geodesically complete, locally finite simplicial tree (T, v) such that
X is scale equivalent to end(T, v).
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Proof. It is well-known that there exists a finite or infinite sequence t0 > t1 >

t2 > · · · > 0 such that {d(x, y) | x, y ∈ X} = {0, t0, t1, t2, . . . }. Moreover, the
sequence is finite if and only if X is finite, and if X is infinite, then limi→∞ ti = 0.
See [5]. Let λ : [0,∞) → [0,∞) be a homeomorphism such that λ(ti) = e−i for
all i.

We may assume that X has more than one point, for otherwise the proof
is trivial; hence, (X, λd) has diameter 1. In [26], there is constructed a rooted,
geodesically complete R-tree (T, v) such that (X, λd) is isometric to end(T, v). It
follows that (X, d) is scale equivalent to end(T, v).

From Proposition 5.1 we know that T must be a proper R-tree. It only
remains to observe from the construction in [26], that T is in fact a locally finite
simplicial tree. This is because the set of distances in (X, λd) is contained in
{0, 1, e−1, e−2, . . . }. See Corollary 5.2. ¤

The existence of the tree in the preceding proposition allows us to make the
following definition.

Definition 10.8 If X is a compact ultrametric space, then the Bratteli diagram
B(X) associated to X is defined to be the Bratteli diagram B(T, v) associated to
a rooted, geodesically complete, locally finite simplicial tree (T, v) such that X

is scale equivalent to end(T, v).

The equivalence class of the Bratteli diagram B(X) in the preceding definition
is well-defined as the next result shows.

Theorem 10.9 Let (T, v) and (S,w) be rooted, geodesically complete, locally fi-
nite simplicial trees. If end(T, v) and end(S,w) are micro-scale equivalent, then
B(T, v) and B(S,w) are equivalent Bratteli diagrams.

Proof. Let X = end(T, v) and Y = end(S,w). Since X and Y are micro-scale
equivalent, there are homeomorphisms h : X → Y and λ : [0,∞) → [0,∞) and
ε > 0 such that λdX(x, y) = dY (hx, hy) whenever min{dX(x, y), dY (hx, hy)} < ε

and x, y ∈ X. We assume 0 < ε < 1. Fix M > max{− ln ε,− lnλ−1(1)}. Define
ĥ : T \ B̄(v, M) → S \ B̄(w,− lnλ(e−M )) as follows. Let x ∈ X and M < t < ∞;
thus, x(t) ∈ T \ B̄(v, M). Set ĥ(x(t)) = (h(x))(− lnλ(e−t)).
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Claim 10.10 ĥ is a homeomorphism.

Proof of Claim. We begin by showing that ĥ is well-defined. For x, y ∈ X and
M < t < ∞ such that x(t) = y(t), we must show that (h(x))(− lnλ(e−t)) =
(h(y))(− lnλ(e−t)). Assuming x 6= y, dX(x, y) = e−t0 , where t0 = sup{s ≥
0 | x(s) = y(s)}. Thus, t0 ≥ t ≥ − ln ε, which implies dX(x, y) ≤ e−t <

ε. Hence, λ(e−t0) = λdX(x, y) = dY (hx, hy) = e−t1 , where t1 = sup{s ≥
0 | (hx)(s) = (hy)(s)}. It follows that t1 = − lnλ(e−t0). Since t ≤ t0, we have
− lnλ(e−t) ≤ − lnλ(e−t0) = t1. The definition of t1 and this inequality imply
that (h(x))(− lnλ(e−t)) = (h(y))(− lnλ(e−t)). Therefore, ĥ is well-defined.

To see that ĥ is bijective, define g : S \ B̄(w,− lnλ(e−M )) → T \ B̄(v, M) by
g(y(s)) = (h−1(y))(− lnλ−1(e−s)) for y ∈ Y and − lnλ(e−M ) < s < ∞. It can
be checked that g is well-defined and g = (ĥ)−1.

We now proceed to show that ĥ is continuous. Suppose first that x ∈ X and
M < s < t < ∞, so that in T , d(x(s), x(t)) = t − s. In S, d(ĥ(x(s)), (̂x(t))) =
− lnλ(e−t) + lnλ(e−s) = ln

(
λ(e−s)
λ(e−t)

)
. The continuity of ĥ on x((M,∞)) follows

from this.

Now suppose x, y ∈ X, x 6= y and let dX(x, y) = e−t0 . Further suppose
M < t0 < s ≤ t < ∞. In T , d(x(s), y(t)) = s + t− 2t0. In S, d(ĥ(x(s)), ĥ(y(t)) =
− lnλ(e−s)− lnλ(e−t) + 2 lnλ(e−t0) = ln

(
[λ(e−t0 )]2

λ(e−s)λ(e−t)

)
. If d(x(s), y(t)) is small,

then s and t are both close to t0; hence, d(ĥ(x(s)), ĥ(y(t)) is small.

This now establishes that ĥ is continuous on connected components of T \
B̄(v, M); thus, ĥ is continuous. Likewise, g is continuous and ĥ is a homeomor-
phism. This completes the proof of the claim. ¤

Suppose n > M is an integer and x, y ∈ X. Let Tx and Ty be the rooted
subtrees of T descending from x(n) and y(n), respectively. Let Sx and Sy be the
rooted subtrees of S descending from ĥ(x(n)) and ĥ(y(n)), respectively.

Claim 10.11 (Tx, x(n)) and (Ty, y(n)) are rooted isometric if and only if
(Sx, ĥ(x(n))) and (Sy, ĥ(y(n))) are rooted isometric.

Proof of Claim. We suppress the roots of the subtrees from the notation. Suppose
Tx and Ty are rooted isometric. Then end(Tx) and end(Ty) are isometric when
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these end spaces are given the end space metric as recalled in Section 5.2 (see
Proposition 5.6). However, we want to give end(Tx) and end(Ty) the metrics they
inherit as subspaces of end(T, v)—that is, under the identifications end(Tx) =
B̄(x, e−n) ⊆ end(T, v), and end(Ty) = B̄(y, e−n) ⊆ end(T, v). Since the pairs of
possible metrics differ by a factor of e−n, end(Tx) and end(Ty) remain isometric
with the subspace metrics. Let j : B̄(x, e−n) → B̄(y, e−n) be an isometry. Then
ĥj(ĥ|)−1 : B̄(h(x), λ(e−n)) → B̄(h(y), λ(e−n)) is also an isometry. This means
that end(Sx) and end(Sy) are isometric as subspaces of end(S,w). As above,
we conclude that Sx and Sy are rooted isometric. Similar reasoning gives the
converse. This completes the proof of the claim. ¤

We can now complete the proof that B(T, v) and B(S,w) are equivalent. We
will show that Sym∞(T, v) ∼= Sym∞(S,w). Since these groups are isomorphic
to the unital dimension groups of B(T, v) and B(S,w), respectively, (by Propo-
sition 9.2), it follows from Bratteli’s Theorem 8.4 that B(T, v) and B(S,w) are
isomorphic.

Let DX = {t ∈ R | there exists x, y ∈ X such that dX(x, y) = t} and DY =
{t ∈ R | there exists x, y ∈ Y such that dY (x, y) = t}, the distance sets of X

and Y , respectively. Write DX = {0 < · · · < νi+1 < νi < · · · < ν0 ≤ 1}. Then
DY = {0 < · · · < λ(νi+1) < λ(νi) < · · · < λ(ν0) ≤ 1}. For each i = 0, 1, 2, . . . ,
let Li = − ln νi and Mi = − lnλ(νi). Note that 0 ≤ L0 < L1 < L2 < · · · and
0 ≤ M0 < M1 < M2 < · · · . The Li’s and Mi’s correspond to the levels in the
trees T and S, respectively, where nontrivial branching occurs.

For each i = 0, 1, 2, . . . , let µi be the number of rooted isometry classes of
level Li subtrees of (T, v) and let τ i

1, τ
i
2, . . . τ

i
µi

be a complete set of representatives
of the rooted isometry classes of level Li subtrees.

According to Claim 10.11, µi is also the number of rooted isometry classes of
level Mi subtrees of (S,w). Moreover, ĥ(τ i

1), ĥ(τ i
2), . . . , ĥ(τ i

µi
) is a complete set of

representatives of the rooted isometry classes of level Mi subtrees of (S,w).

For 0 ≤ i, 1 ≤ k ≤ µi+1 and 1 ≤ ` ≤ µi, let αi
k` be the number of level

(Li+1−Li) subtrees of τ i
` that are rooted isometric to τ i+1

k . The matrix αi = [αi
k`]

is a (µi+1 × µi)− matrix with nonnegative integral entries.
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Using Claim 10.11 again, it follows that ai
k` is also the number of level (Mi+1−

Mi) subtrees of ĥ(τ i
`) that are rooted isometric to ĥ(τ i+1

k ).

We claim that there is an isomorphism of unital partially ordered abelian
groups:

Sym∞(T, v) ∼= lim→ (Z α0−→ Zµ1 α1−→ Zµ2 α2−→ Zµ3 α3−→ · · ·Zµi
αi−→ · · · ).

It will follow by a similar argument that Sym∞(S,w) is also isomorphic to
this direct limit, finishing the proof.

We use the notation of Section 9. In particular, we have the matrices Ai =
[ai

k`] for i = 0, 1, 2, . . . , 1 ≤ ` ≤ mi, and 1leqk ≤ mi+1. Note that µi = mLi and
we can take τ i

` = TLi
` . In order to show that Sym∞(T, v) ∼= lim→ αi, it suffices to

show that αi = A(Li+1−1) · · ·A(Li+1)ALi for i, j = 0, 1, 2, . . . . Hence, the following
claim completes the proof.

Claim 10.12 For 1 ≤ ` ≤ mi, 1 ≤ k ≤ mi+j+1, and i, j = 0, 1, 2, . . . , the k`-
entry of the product Ai+j · · ·Ai is the number of level j subtrees of T i

` that are
rooted isometric to T i+j+1

k .

Proof of Claim. The proof is by induction on j. The statement is obviously
true for j = 0; so assume j > 0 and the statement is true for j − 1. Let B =
Ai+j−1 · · ·Ai and denote its entries by B = [bpq]. By the inductive assumption, bp`

is the number of level j− 1 subtrees of T i
` that are rooted isometric to T i+j

p . The
entries of the matrix Ai+j = [ai+j

kp ] have the following interpretation by definition:
ai+j

kp is the number of level 1 subtrees of T i+j
p that are rooted isometric to T i+j+1

k .
Hence, the number of level j subtrees of T i

` that are rooted isometric to T i+j+1
k

is given by
∑mi+j

p=1 akpbp`; that is, the k`-entry of Ai+j · · ·Ai. ¤

This completes the proof of the theorem. ¤

The converse of the preceding theorem is not true, as the following example
shows.

Example 10.13 There are two rooted, geodesically complete, locally finite sim-
plicial trees, (T, v) and (S,w), such that B(T, v) and B(S,w) are equivalent



Trees, Ultrametrics, and Noncommutative Geometry 293

Bratteli diagrams, but X = end(T, v) and Y = end(S,w) are not micro-scale
equivalent. The trees are pictured in Figure 10. Elements x ∈ X are sequences

x = (x0, x1, x2, . . . ) such that xi ∈
{
{0, 1} if i is even,
{0, 1, 2} if i is odd.

Elements y ∈ Y are se-

quences y = (y0, y1, y2, . . . ) such that yi ∈
{
{0, 1} if i is odd,
{0, 1, 2} if i is even.

Suppose X and

Y are micro-scale equivalent. Then there are homeomorphisms h : X → Y and
λ : [0,∞) → [0,∞) and 0 < ε ≤ 1 such that λdX(x, y) = dY (hx, hy) whenever
min{dX(x, y), dY (hx, hy)} < ε and x, y ∈ X. There exists integers i0 > − ln ε

and c ≤ i0 such that λ(e−i) = ec−i for all i ≥ i0. For each i = 0, 1, 2, . . . ,

let αi =

{
2 · (3 · 2)

i
2 if i is even,

(2 · 3)
i+1
2 if i is odd

and βi =

{
3 · (2 · 3)

i
2 if i is even,

(3 · 2)
i+1
2 if i is odd.

The number
{

αi

βi

is the maximum number of distinct points of

{
X

Y
whose distances from

each other are e−i. Clearly, αi = βi−c for all i ≥ i0. In particular, αi0 = βi0−c

and αi0+1 = βi0+1−c. This implies c = 0 and both i0 and i0+1 are odd—a contra-
diction; hence, X and Y are not micro-scale equivalent. The Bratteli diagrams
B(T, v) and B(S,w) both telescope to the Bratteli diagram D = (V, E) with
Vi = {vi}, a single vertex and six edges from vi to vi+1 for each i = 0, 1, 2, . . . .

T S

® ® ® ® ® ®U U U U U U ® ® ® ® ® ®U U U U U U? ? ? ? ? ?¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

A
A

A
A

A
A

A
A

A
A

A
A

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

¢
¢

A
A

A
A

A
A

A
A

A
A

A
A

´
´

´
´

´
´Q

Q
Q

Q
Q

Q

©©©©©

HHHHH

¶
¶

¶
¶

¶
¶

S
S

S
S

S
S

³³³³³³

PPPPPP

t t t t t t t t t t t t
t t t t t

t t

Figure 10: The trees of Example 10.13 with B(T, v) and B(S,w) equivalent.

The following result is a restatement of Theorem 1.1(4) in the Introduction.

Theorem 10.14 If X is a compact, locally rigid ultrametric space, then there ex-
ists a Bratteli diagram B(X) such that GLI(X) is isomorphic to the path groupoid
of B(X).
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Proof. Proposition 10.7 gives a rooted, geodesically complete, locally finite simpli-
cial tree (T, v) such that X is scale equivalent to Y := end(T, v). We have defined
B(X) := B(T, v); hence, we have equality of the path groupoids PG(B(X)) ∼=
PG(B(T, v)). Now Corollary 8.13 implies there is an isomorphism of topo-
logical groupoids PG(B(T, v)) ∼= GLI(Y ). Since X and Y are scale equiva-
lent, Proposition 10.5 implies there is an isomorphism of topological groupoids
GLI(X) ∼= GLI(Y ). Thus, GLI(X) ∼= PG(B(X)) as required. ¤

We now reinterpret our results on invariants for ultrametric spaces as invari-
ants for trees.

Corollary 10.15 Let (T, v) and (S,w) be rooted, geodesically complete, locally
finite simplicial trees. If (T, v) and (S,w) are uniformly isometric at infinity,
then

1. B(T, v) and B(S,w) are equivalent Bratteli diagrams, and

2. Sym∞(T, v) and Sym∞(S,w) are isomorphic partially ordered abelian groups.

If, in addition, either X := end(T, v) or Y := end(S,w) is locally rigid, then so
is the other, and

3. (K0C
∗GLI(X),K0C

∗GLI(X)+, [1]) and (K0C
∗GLI(Y ),K0C

∗GLI(Y )+, [1]) are
isomorphic unital partially ordered abelian groups.

Proof. The first statement follows from Propositions 5.6 and 10.3 and Theo-
rem 10.9. The second statement follows from the first, Proposition 9.2, and
Theorem 8.4. The final statement follows from the first, Proposition 10.4, and
Corollary 8.13. ¤

Corollary 10.16 Let (T, v) and (S,w) be rooted, geodesically complete, proper
R-trees that are uniformly isometric at infinity. If either X := end(T, v) or
Y := end(S,w) is locally rigid, then so is the other, and

(K0C
∗GLI(X),K0C

∗GLI(X)+, [1]) and (K0C
∗GLI(Y ),K0C

∗GLI(Y )+, [1])

are isomorphic unital partially ordered abelian groups.
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Proof. This follows from Propositions 5.6, 10.3, 10.4, and 10.7 and Corollary 10.6.
¤

11 Faithful unitary representations

The goal of this section is to prove the following theorem, which is the third part
of Theorem 1.3.

Theorem 11.1 If X is a compact ultrametric space with a countable subgroup
Γ ≤ LS(X) acting locally rigidly on X, then there is a faithful unitary represen-
tation of Γ into C∗GΓ(X).

It follows from Theorem 1.3(i) (Corollary 6.12) that under the hypothesis of
Theorem 11.1 Renault’s theory [43] can be applied so that C∗GΓ(X) is defined.

Of course, by a faithful unitary representation of Γ into C∗GΓ(X), we mean
an injective homomorphism of Γ into the multiplicative group of unitary elements
of C∗GΓ(X). This is proved by establishing, in Corollary 11.4 below, an injective
homomorphism ρ : Γ → Cc(GΓ(X)) into the unitary group of the convolution al-
gebra of GΓ(X). Since the C∗-algebra of GΓ(X) is a completion of the convolution
algebra of GΓ(X), Theorem 11.1 follows.

We begin by fixing notation for the convolution ∗-algebras of groups and
groupoids. For more details, see Muhly [36], Paterson [42] and Renault [43].

If Γ is a discrete group, then Cc(Γ) denotes the convolution ∗-algebra of Γ,
otherwise known as the complex algebra CΓ:

Cc(Γ) := {f : Γ → C | f has finite support}.

Multiplication and involution on this complex vector space are given by

(f ∗ g)(γ) :=
∑

β∈Γ

f(β)g(β−1γ) and f∗(γ) := f(γ−1),

where · denotes complex conjugation.



296 Bruce Hughes

Now if G is a locally compact, Hausdorff étale groupoid, then

Cc(G) := {f : G → C | f is continuous and has compact support}.

For each u in the unit space of G, r−1(u) := Gu is discrete. Thus, each ele-
ment of Cc(G) restricts to a function on each Gu with finite support. Therefore,
multiplication and involution on the complex vector space Cc(G) may be defined
by

(f ∗ g)(y) :=
∑

x∈Gr(y)

f(x)g(x−1y) and f∗(x) := f(x−1).

Thus, Cc(G) is a topological ∗-algebra.

If the unit space X = {xx−1 | x ∈ G} = {r(x) | x ∈ G} is compact, then
the algebra Cc(G) has a unit 1, namely, the characteristic function χX .12 In that
case, the unitary group of Cc(G) is the multiplicative group

{f ∈ Cc(G) | f∗f = 1 = ff∗}.

For the remainder of this section, let X be a (nonempty) compact ultrametric
space with a subgroup Γ ≤ LS(X) acting locally rigidly on X. Even though Γ
need not be a discrete subgroup of LS(X), we will endow Γ with the discrete
topology. Denote the identity of Γ by e; that is, e = idX .

For each γ ∈ Γ, let

Aγ := {[γ, x] | x ∈ X} ⊆ GΓ(X).

Lemma 11.2 For each γ ∈ Γ, Aγ is compact and open in GΓ(X).

Proof. Clearly, Aγ = ∪x∈XU(γ, x, 1). This shows Aγ is open. To see that Aγ is
compact, note that E : X → Aγ , defined by E(x) = [γ, x], is continuous. This is
because E−1U(γ, x, ε) = B(x, ε) for each x ∈ X and ε > 0. ¤

Thus, for each γ ∈ Γ, the characteristic function χAγ of Aγ is in Cc(GΓ(X)).

12Do not confuse 1 with the function on G that is identically 1, i.e., χG . Since G need not

be compact, χG need not be in Cc(G). On the other hand, 0 ∈ Cc(G) is the function that is

identically 0.
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Proposition 11.3 If γ, γ1, γ2 ∈ Γ, then

1. χ∗Aγ
= χAγ−1

2. χAγ1γ2
= χAγ1

∗ χAγ2

3. Ae = X, the unit space

4. χAγ = 1 if and only if γ = e

5. Aγ 6= ∅ (so that χAγ 6= 0).

Proof. (1) First note that for x ∈ X and β, γ ∈ Γ, [β, x] = [γ−1, x] if and only if
[β−1, βx] = [γ, βx]. Thus,

χ∗Aγ
([β, x]) = χAγ ([β, x]−1) = χAγ ([β, x]−1) = χAγ ([β−1, βx])

=

{
1 if [β−1, βx] = [γ, βx]
0 otherwise

=

{
1 if [β, x] = [γ−1, x]
0 otherwise

= χAγ−1 ([β, x]).

(2) Let [γ, x] ∈ GΓ(X) be given. Then

χAγ1γ2
[γ, x] =

{
1 if [γ, x] = [γ1γ2, x]
0 otherwise.

On the other hand,

χAγ1
∗ χAγ2

[γ, x] =
∑

[β,y]∈r−1(r[γ,x])

χAγ1
[β, y] · χAγ2

([β, y]−1[γ, x]) =
∑

βy=γx

χAγ1
[β, y] · χAγ2

[β−1γ, x].

Since

χAγ1
[β, y] =

{
1 if [β, y] = [γ1, y]
0 otherwise,

we have

χAγ1
∗ χAγ2

[γ, x] =
∑

S

χAγ2
[β−1γ, x],
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where S = {[β, y] ∈ GΓ(X) | βy = γx and [β, y] = [γ1, y]}. If [β, y] ∈ S, then
γx = βy = γ1y; thus, y = γ−1

1 γx and [β, y] = [γ1, γ
−1
1 γx]. It follows that

S = {[γ1, γ
−1
1 γx]}; in other words, the sum has only one term and

χAγ1
∗ χAγ2

[γ, x] = χAγ2
[γ−1

1 γ, x] =

{
1 if [γ−1

1 γ, x] = [γ2, x]
0 otherwise

=

{
1 if [γ, x] = [γ1γ2, x]
0 otherwise

= χAγ1γ2
[γ, x].

(3) This follows from the description of the unit space in Remark 3.12.

(4) If γ = e, then Ae is the unit space by 3. Thus, χAγ is the unit of Cc(GΓ(X))
by the general remarks made above. Conversely, if χAγ = 1, then χAγ = χAe and
Aγ = Ae. Thus, for each x ∈ X, [γ, x] = [idX , x]; hence, γ = e.

(5) is obvious. ¤

Corollary 11.4 ρ : Γ → Cc(GΓ(X)), defined by ρ(γ) = χAγ , is an injective
homomorphism into the unitary group of Cc(GΓ(X)).

Proof. That ρ is a homomorphism follows from 11.3 (2). The image of ρ lies in
the unitary group by 11.3 (1), (2), (4). The injectivity of ρ follows from 11.3 (4).
¤

This completes the proof of Theorem 11.1.

Example 11.5 Let X = {x1, . . . , xn} be the finite ultrametric space with d(xi, xj) =
1 if i 6= j. Then Γ := LS(X) = Isom(X) is the symmetric group Sn on n

elements and Γ acts locally rigidly on X. The groupoid GΓ(X) is the transi-
tive principle groupoid on n elements (that is, the trivial groupoid X ×X) and
Cc(GΓ(X)) = Mn(C). The homomorphism ρ : Γ → Mn(C) defined above is the
representation of Sn by permutation matrices.
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12 Miscellanea

12.1 Isometries of trees

In this section we show that a group acting by isometries on a tree sometimes
leads to a group of local similarities acting locally rigidly on the end space of the
tree. For the general theory of isometries on trees, see for example Alperin and
Bass [1], Bestvina [6], Chiswell [13], Morgan and Shalen [35], and Serre [46].

Let (T, v) be a geodesically complete, rooted, locally finite, simplicial tree,
let X = end(T, v), and let Isom(T ) denote the group of isometries on T .13 In
particular, X is compact ultrametric.

Description of a group homomorphism ε : Isom(T ) → LS(X). We will
use the notation and terminology from [26]. Let γ : T → T be an isometry and
let r = 1 + d(v, γv). Then ∂B(v, r) and ∂B(γv, r) are cut sets for (T, v) (cf. [26,
Example 3.2]). Let x ∈ X; thus, x : [0,∞) → T is an isometric embedding with
x(0) = v. Let x̂ : [0, ||γ(x(r))||] → X be the unique isometric embedding such
that x̂(0) = v and x̂(||γ(x(r)||) = γ(x(r)) (here ||y|| := d(v, y) for all y ∈ T ).

Define γ∗(x) : [0,∞) → T by

γ∗(x)(t) =

{
x̂(t) if 0 ≤ t ≤ ||γ(x(r))||
γ ◦ x(t− ||γ(x(r))||+ r) if ||γ(x(r))|| ≤ t.

Then γ∗(x) ∈ X, γ∗ : X → X is in LS(X), and ε : Isom(T ) → LS(X) defined
by ε(γ) = γ∗ is a group homomorphism (cf. [26, Section 5]).14

It follows that for x ∈ X and γ ∈ Isom(T ), ε(γ)(x) = x if and only if there
exists t1, t2 ≥ 0 such that x([t1,∞)) = γx([t2,∞)). From this the following key
property of ε can be verified: if x ∈ X, t0 ≥ 0, and γ ∈ Isom(T ) such that
γ ∈ Γx(t0) and ε(γ) ∈ ε(Γ)x, then γ ∈ Γx(t) for all t ≥ t0.

13Some of the facts and constructions in this section hold in the more general context of

R-trees.
14Of course, it is quite well-known that ε is a homomorphism from Isom(T ) into the group of

homeomorphisms of X; we are just pointing out here that when the end space X is given the

natural metric described herein, that the image of ε lies in LS(X).
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Remark 12.1 There exists a commuting diagram of groups and group homo-
morphisms:

Isom(T, v)
ε|−−−−→∼= Isom(X)

y
y

Isom(T ) ε−−−−→ LS(X)

The vertical arrows are inclusions of subgroups. The top horizontal map ε| is
easily seen to be an isomorphism (cf. Proposition 5.6 and [26, Corollary 8.7]).

Example 12.2 ε : Isom(T ) → LS(X) need not be surjective. There are many
local similarities of the end space of the Sturmian tree T (see Example 5.9), but
T has no non-trivial isometries. In general, ε is rarely surjective.

Example 12.3 Let X be the space in Example 6.16 and let (T, v) be the geodesi-
cally complete, rooted tree with X = end(T, v). The subgroup Γ ∼= Z/2 of LS(X)
defined in 6.16 is the isomorphic image of a subgroup Γ̂ of Isom(T, v) under ε.
Note that Γ̂x is finite for each x ∈ T even though Γ does not act locally rigidly
on X.

Theorem 12.4 Let Γ be a subgroup of Isom(T ). The group ε(Γ) acts locally
rigidly on X if and only if for every x ∈ X and for every γ ∈ Γ such that there
exists t0 ≥ 0 with γ ∈ Γx(t) for all t ≥ t0, there exists t1 ≥ t0 so that if y ∈ X

and y(t1) = x(t1), then γ ∈ Γy(t) for all t ≥ t1.

Proof. Assume first that ε(Γ) acts locally rigidly. Let x ∈ X, t0 ≥ 0, and
γ ∈ ∩{Γx(t) | t ≥ t0} be given. Clearly, ε(γ) ∈ ε(Γ)x and sim(ε(γ), x) = 1. By
the definition of a locally rigid action, there exists δ > 0 such that ε(γ) ∈ ε(Γ)y

for all y ∈ B(x, δ). Choose t1 ≥ t0 such that if y ∈ X and y(t1) = x(t1), then
y ∈ B(x, δ). For such a y, γ ∈ Γy(t1) and ε(γ) ∈ ε(Γ)y. Hence, it follows from the
key property of ε mentioned above that γ ∈ Γy(t) for all t ≥ t1.

For the converse, first observe that there is a bijection from X to the set
of open ends of T in the sense of [1] given by x 7→ [x([0,∞))], the open end
determined by the image of x. Moreover, for γ ∈ Isom(T ) and x ∈ X, ε(γ) ∈
ε(Γ)x if and only if γ fixes the open end of T determined by x. Also recall (e.g.
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from [1]) that for γ ∈ Isom(T ), `(γ) := min{d(t, γ(t)) | t ∈ T} and Aγ := {t ∈
T | d(t, γ(t)) = `(γ)}.

Now let x ∈ X and γ ∈ Γ be given such that ε(γ) ∈ ε(Γ)x and sim(ε(γ), x) =
1. We must show that ε(γ) fixes all points of X sufficiently close to x. Since γ

fixes the open end of T determined by x, it follows that x(t) ∈ Aγ for sufficiently
large t (see [1, Corollary 6.17]).

If γ is elliptic (i.e., fixes some point of T ), then Aγ is the fixed point set of
γ. Thus, γ ∈ Γx(t) for all sufficiently large t, say for t ≥ t0. Let t1 ≥ t0 be given
by the hypothesis. Then γ ∈ Γy(t) whenever y ∈ X, t ≥ t1, and y(t1) = x(t1).
That is, γ fixes the open end determined by such a y and hence, ε(γ) fixes y for
y sufficiently close to x.

On the other hand, if γ is hyperbolic (i.e., has no fixed point), it follows that
Aγ is isometric to R (see [1]). The condition sim(ε(γ), x) = 1 implies Aγ = T

and x is isolated in X. ¤

Remark 12.5 The homomorphism ε : Isom(T ) → LS(X) is an injection if and
only if T is not isometric to R. If T is isometric to R, one sees that Isom(T ) ∼=
RoZ/2 and LS(X) ∼= Z/2. In particular, ε is not injective. Conversely, if ε is not
injective, then there exists a non-trivial γ ∈ Γ such that ε(γ) is the identity on X.
Using the notation in the proof of Theorem 12.4, it follows that every point of X

determines an open end of Aγ (see [1, Corollary 6.17]). If γ is hyperbolic, then Aγ

is isometric to R and γ|Aγ is a translation; it follows that Aγ = T . If γ is elliptic,
then Aγ is the fixed point set of γ; it follows that Aγ = T , a contradiction.

The following two corollaries follow immediately from Theorem 12.4.

Corollary 12.6 Let Γ be a subgroup of Isom(T ). If {t ∈ T | Γt 6= {1}} is a
bounded subset of T , then ε(Γ) acts locally rigidly on X.

Corollary 12.7 If Γ ≤ Isom(T ) acts freely on T , then ε(Γ) acts locally rigidly
on X.

As an example, let Γ be a finitely generated free group with a free set of
generators S = {s1, s2, s3, . . . , sn} and identity element e. Recall that the Cayley
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graph Cay(Γ, S) is a geodesically complete, rooted (at e), locally finite, simplicial
tree . Moreover, Γ acts freely by isometries on Cay(Γ, S).

The following result follows from the previous corollary.

Corollary 12.8 ε(Γ) acts locally rigidly on end(Cay(Γ, S), e).

12.2 Local rigidity and tree lattices

We now characterize local rigidity of an ultrametric space X in terms of the
isometry group of X. This will be used below when we discuss a connection with
the Bass-Lubotzky theory of tree lattices. We will use the majorant topology
on the isometry group.15 This coincides with what is sometimes called the fine
Whitney topology and makes the isometry group into a topological group (see
[30, Essay I, appendix C]). Of course, when X is compact the majorant topology
agrees with the compact-open topology and the uniform topology (the usual sup-
metric).

Theorem 12.9 An ultrametric space (X, d) is locally rigid if and only if the
topological group Isom(X) is discrete in the majorant topology.

Proof. Assume first that Isom(X) is discrete in the majorant topology. If X

is not locally rigid, then there exists x ∈ X and a decreasing sequence {εi}∞i=1

of positive numbers converging to 0 and non-trivial isometries hi : B(x, εi) →
B(x, εi), i = 1, 2, 3, . . . . By Lemma 4.3 we can extend each hi to a non-trivial
isometry h̃i : X → X such that h̃i is the inclusion on the complement of B(x, εi).
It follows that h̃i converges to the identity on X in Isom(X) as i → ∞ in the
majorant topology, contradicting the discreteness of Isom(X).

15Let U be an open cover of the metric space X, h ∈ Isom(X) and define

N(h,U) = {g ∈ Isom(X) | for each x ∈ X there exists U ∈ U such that g(x), h(x) ∈ U}.

For fixed h the sets N(h,U) form a neighborhood basis for h and the resulting topology is called

the majorant topology. Alternatively, consider continuous functions ε : X → (0,∞]. Then the

sets

Nε(h) = {g ∈ Isom(X) | d(g(x), h(x) < ε(h(x)) for all x ∈ X}
also form a neighborhood basis for h in the majorant topology.
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Conversely, assume that X is locally rigid. For each x ∈ X, let εx > 0 be
given by Definition 6.1. Let U = {B(x, εx) | x ∈ X} and suppose g, h : X →
X are two isometries that are U-close. If y ∈ X, then there exists x ∈ X

such that g(y), h(y) ∈ B(x, εx). It follows that y ∈ g−1B(x, εx) ∩ h−1B(x, εx).
Moreover, g−1B(x, εx) = B(g−1x, εx) and h−1B(x, εx) = B(h−1x, εx). Hence,
g−1B(x, εx) = h−1B(x, εx) (by Proposition 4.2(1)). Thus, hg−1| : B(x, εx) →
B(x, εx) is an isometry and it follows that hg−1| is the identity (by the choice of
εx); in particular, g(y) = h(y). Thus, any two U-close isometries on X are equal
and Isom(X) is discrete in the majorant topology. ¤

Corollary 12.10 A compact ultrametric space X is locally rigid if and only if
Isom(X) is finite.

Proof. If X is compact, then so is Isom(X). Thus, Isom(X) is finite if and only
if it is discrete. ¤

Example 12.11 We give an example of a noncompact ultrametric space Y that
is locally rigid, but Isom(Y ) is not discrete in the compact-open topology (or, the
uniform topology). Let X be the space of Example 6.16 and let Y = X \ {x∞}.
For each i ∈ N, define an isometry hi : Y → Y by

hi(z) =

{
x|a−1|i if z = xai for i ∈ {0, 1}
z otherwise.

Then hi converges to the identity in the compact-open topology (hence, also in
the uniform topology). See Figure 11.

We now turn to some connections with some concepts encountered in the
theory of tree lattices as developed by Bass and Lubotzky [3]. Let T be a lo-
cally finite simplicial tree. The locally compact group Aut(T ) of simplicial auto-
homeomorphisms of T is a subgroup of the group Isom(T ) of isometries of T onto
T .16,17 If v ∈ T is a vertex and Aut(T, v) ⊆ Aut(T ) and Isom(T, v) ⊆ Isom(T )

16In fact, Aut(T ) = Isom(T ) if and only if T is not isometric to R.
17The topology on Aut(T ) is the compact-open topology, so that two simplicial auto-

homeomorphisms are close if they agree on a large finite subtree. What is important about

this topology is that discrete subgroups of Aut(T ) are precisely the subgroups whose vertex

stabilizers are finite.
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Figure 11: A non-discrete isometry group. See Example 12.11

are the subgroups of automorphisms fixing v, then Aut(T, v) = Isom(T, v).

Fix a vertex v ∈ T , the root, and assume now that (T, v) is geodesically com-
plete. The end space end(T, v) of (T, v) is a compact ultrametric space and the
natural function Aut(T, v) = Isom(T, v) → Isom(end(T, v)) is an isomorphism
(see Remark 12.1).

Recall the following definitions from [3] and [4]:

Definition 12.12 1. A locally finite simplicial tree T is rigid if Aut(T ) is
discrete.

2. A finite, connected simplicial graph K is π-rigid if π1(K) = Aut(K̃), where
K̃ is the locally finite simplicial tree that is the universal cover of K.

It follows that T is rigid if and only if Aut(T, v) is finite for all vertices v ∈ T ,
if and only if Aut(T, v) is finite for some vertex v ∈ T .

Proposition 12.13 If (T, v) is a geodesically complete, rooted locally finite sim-
plicial tree, then T is rigid if and only if the compact ultrametric space end(T, v)
is locally rigid.
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Proof. By the remarks above, T is rigid if and only if the group Isom(end(T, v))
is finite. Hence, the result follows from Corollary 12.10. ¤

It follows that there is a rich source of examples of compact, locally rigid
ultrametric spaces. In fact, Bass and Tits [4, page 185] assert that a randomly
constructed locally finite tree will have no non-trivial automorphisms. One there-
fore expects that almost all compact ultrametric spaces are locally rigid.

Bass and Kulkarni [2] and Bass and Tits [4] have provided examples of π-rigid
graphs K without terminal vertices. The universal covering trees K̃ of these
graphs are rigid (because in this case Aut(K̃) acts freely on K̃) and geodesically
complete (with respect to any vertex). Hence, these trees have end spaces that
are compact, locally rigid ultrametric spaces.

12.3 R. J. Thompson’s groups and their descendants

In this section we see how groups defined, generalized, and developed by Brown,
Higman, Thompson, Neretin, Röver, and others can be interpreted as groups of
local similarities on compact ultrametric spaces.

For the groups F , T , and V of Thompson [47], the connection with the current
paper arises from their description via reduced tree diagrams in Cannon, Floyd,
and Parry [12] based on work of K. Brown [11]. Higman [25] generalized V to a
family of infinite finitely presented groups Gn,r (n = 2, 3, 4, . . . , r = 1, 2, 3, . . . )
and Brown [11] extended this to families Fn,r ≤ Tn,r ≤ Gn,r with F2,1 = F ,
T2,1 = T , and G2,1 = V . Brown, based on earlier work of Jónsson and Tarski
[27], used trees to describe these groups. In particular, it is clear from Brown’s
work that each of these groups can be realized as subgroups of groups of local
similarities on end spaces of trees.

Röver [45], with his notion of almost automorphisms of trees, further devel-
oped the viewpoint of Brown and described the groups Gn,1 as subgroups of
homeomorphism groups of end spaces of trees (these homeomorphisms are lo-
cal similarities). See also Greenberg and Serigiescu [22] for an instance of tree
diagrams inducing groups of homeomorphisms on end spaces.

Neretin [38], [39], [40] introduced p-adic analogues of the diffeomorphism
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group Diff(S1) of the circle, called groups of spheromorphisms and, later, hierar-
chomorphisms, that are also groups of homeomorphisms of end spaces of trees.
As is the case with Röver’s groups, Neretin’s groups are subgroups of local simi-
larities on the end space of a tree. For more on Neretin’s groups, see Kapoudjian
[28] and Lavrenyuk and Sushchansky [32].

To indicate in a bit more detail how these groups are related to the current
paper, we need to introduce some more terminology.

Let (T, v) be a rooted, geodesically complete, locally finite simplicial tree. For
i ∈ Z+, Vi denotes the set of vertices of T a distance i from v (the vertices at
level i) as in Section 8.2, and Ei denotes the set of edges of T with one vertex
in Vi and the other in Vi+1 (the edges at level i). For a vertex w ∈ Vi, let
Ew : = {E ∈ Ei | w ∈ E}.

An order of (T, v) consists of a total order on Ew for each vertex w ∈ T , and
(T, v) is ordered if it comes with an order.

Note that an order of (T, v) induces a total order on Vi for each i = 0, 1, 2, . . .

defined inductively as follows. If v1 and v2 are distinct vertices in Vi+1, let E1, E2

be the unique edges in Ei with v1 ∈ E1, v2 ∈ E2, and let w1 ∈ E1, w2 ∈ E2 be
the vertices of these edges in Vi. If w1 = w2, then define v1 < v2 if and only if
E1 < E2; if w1 6= w2, define v1 < v2 if and only if w1 < w2.

Note that every (T, v) can be ordered. Furthermore, an order on the infinite
n-ary tree (An, v) is often implicitly used: the set of vertices immediately below
a given vertex is identified with the ordered set {0, 1, 2, . . . n− 1}.

If (T, v) is ordered, then there is an induced (dictionary) total order on
X = end(T, v). This is because X is identified with the set of all sequences
(v0, v1, v2, . . . ) such that vi ∈ Vi for each i. Thus, we can speak of order preserv-
ing maps X → X. Moreover, a map h : X → X is locally order preserving if for
each x ∈ X there exists ε > 0 such that h| : B(x, ε) → X is order preserving.

There also is an induced total order on any collection of disjoint balls in X

(this uses the description of balls in Section 5.2). In particular, such collections
have a cyclic order. Therefore, we say that a local similarity h : X → X is cyclic
order preserving if there exists ε > 0 such that for every x ∈ X there exists
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λx > 0 so that h| : B(x, ε) → B(hx, λxε) is a similarity, and the induced function
{B(x, ε) | x ∈ X} → {B(x, λxε) | x ∈ X}, B(x, ε) 7→ B(x, λxε), preserves the
cyclic order.

For the rest of this section, let (T, v) be an ordered, rooted, geodesically
complete, locally finite simplicial tree, and let X = end(T, v). We denote various
subgroups of LS(X) as follows:

LSo.p.(X) = {h ∈ LS(X) | h is order preserving}
LSl.o.p.(X) = {h ∈ LS(X) | h is locally order preserving}
LSo.p.

l.o.p.(X) = LSo.p.(X) ∩ LSl.o.p.(X)

LSc.o.p.(X) = {h ∈ LS(X) | h is cyclic order preserving}
LSc.o.p.

l.o.p. (X) = LSc.o.p.(X) ∩ LSl.o.p.(X)

Although Röver [45] focused on spherically homogeneous trees, it is clear that
his definition of the almost automorphism group AAut(T, v) can be made for any
(T, v) as above and that AAut(T, v) = LSl.o.p(X).

Likewise, Neretin’s [40] group Hier(T, Γ) of hierarchomorphisms, where Γ ≤
Isom(T ), is a subgroup of LS(X).

Example 12.14 Let Xn = end(An, v), the end space of the infinite n-ary tree.
Then, LSl.o.p(Xn) = Gn,1, the Higman–Thompson group. In particular, there are
the following interpretations of Thompson’s groups:

LSl.o.p(X2) = G2,1 = V

LSo.p.
l.o.p.(X2) = F

LSc.o.p.
l.o.p. (X2) = T

Proposition 12.15 If (T, v) is an ordered, rooted, geodesically complete, locally
finite simplicial tree and X = end(T, v), then LSl.o.p.(X) acts locally rigidly on
X.

Proof. Let h ∈ LSl.o.p(X) and x ∈ X such that hx = x and sim(h, x) = 1. Thus,
there exists ε > 0 such that h| : B(x, ε) → B(x, ε) is an order preserving isometry.
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This implies that h| is the identity (clearly, using the notation of Section 5.2, h

fixes the vertex 〈x, ε〉 ∈ T and each edge of E〈x,ε〉; continuing by induction, h fixes
each vertex of T〈x,ε〉). ¤

Corollary 12.16 (Birget [7], Nekrashevych [37]) For each n = 2, 3, 4, . . . ,
there exists a faithful unitary representation of the Higman–Thompson group Gn,1

into the Cuntz algebra On.

Proof. By Proposition 12.15, Γ = LSl.o.p(Xn) acts locally rigidly on Xn =
end(An, v). The groupoid GΓ(Xn) = On, the Cuntz groupoid, and C∗GΓ(Xn) =
On, the Cuntz algebra, by Renault [43]. Hence, the corollary follows from Theo-
rem 1.3(2) (i.e., Theorem 11.1). ¤

12.4 Symbolic dynamics

This brief section contains a preliminary comparison between the concept of local
isometry in ultrametric spaces and the concept of tail equivalence studied in
symbolic dynamics.

Let A be an n× n matrix with entries Aij ∈ {0, 1}, 1 ≤ i, j ≤ n. Let XA be
the one-sided subshift of finite type (i.e., the one-sided topological Markov shift)
with transition matrix A. Thus,

XA = {(xi)∞i=1 | for each i, xi ∈ {0, 1, . . . , n− 1} and Axi,xi+1 = 1}.

Define a metric on XA by

d(x, y) =

{
e−k if xi = yi for 1 ≤ i < k and xk 6= yk

0 if x = y.

As is well known, (XA, d) is a compact ultrametric space.

Proposition 12.17 If x, y ∈ XA and x and y are tail equivalent, then there exist
ε > 0 and an isometry h : B(x, ε) → B(y, ε) such that hx = y.



Trees, Ultrametrics, and Noncommutative Geometry 309

Proof. Suppose k ∈ N and xi = yi for all i ≥ k. Define h : B(x, e−(k+1)) →
B(y, e−(k+1)) by

h(z)i =

{
yi if 1 ≤ i ≤ k − 1
zi if k ≤ i,

for each z ∈ B(x, e−(k+1)).

It is easy to check that h is the desired isometry. ¤

Example 12.18 The converse of Proposition 12.17 does not hold in general.

For example, if A =

[
1 1
1 1

]
, then XA is the end space of the Cantor tree and

is isometrically homogeneous, i.e., the isometry group of XA acts transitively.

Another example is provided by the matrix A =




1 1 1
1 1 1
1 0 0


. In this case, XA is

not isometrically homogeneous, but equal local isometry type of points need not
imply tail equivalence.
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