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Abstract: We establish sufficient conditions for a continuous map of
nonzero degree between a closed manifold and a negatively curved closed
manifold to be homotopic to a smooth covering map, and in particular
a diffeomorphism when the degree is one. When the domain manifold
is negatively curved, the conditions can be stated in terms of the sphere
maps formed by composition of the geodesic projections and the asymptotic
boundary map induced by the original map on the universal covers.
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1. Introduction

A central problem in smooth topology is to determine when a continuous map
between two smooth closed manifolds is homotopic to a diffeomorphism. The
main purpose of this paper is to give a sufficient criterion of a coarse geometric
nature when the target manifold is negatively curved.

When both manifolds are negatively curved the main result roughly states that
if the composition of geodesic projections and the asymptotic boundary map of
any continuous map f are sufficiently close to being conformal maps between
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spheres, then f is homotopic to one which is as nice as possible – a smooth cover.
Our approach is to exploit and analyze the barycenter construction developed
in this generality by Besson Courtois and Gallot (see e.g. [BCG95, BCG96,
BCG99]). As a consequence, the resulting homotopy is fairly explicit.

Let f : M → N be a map between closed Riemannian manifolds (M, g) and
(N, go). When π1(M) and π1(N) are both Gromov hyperbolic groups, then we
can define ∂∞M̃ and ∂∞Ñ respectively to be the Gromov boundaries of π1(M)
and π1(N) for their word metrics with respect to any finite set of generators. If
f∗ : π1(M) → π1(N) is virtually an isomorphism (i.e. if f∗ has finite kernel and
finite index image), then by [Gro87] the homomorphism f∗ : π1(M) → π1(N)
induces an f∗-equivariant homeomorphism ∂f : ∂∞M̃ → ∂∞Ñ . Since the index
[f∗π1(N), π1(M)] divides deg(f), it is enough to assume that f has nonzero degree
and that ker f∗ is finite.

The map ∂f has further structure of an analytic nature once we equip ∂∞M̃

and ∂∞Ñ with their respective Gromov metrics. Namely, it is bi-Hölder and
quasimöbius (see Section 4). When the metrics g and go are negatively curved,
∂M and ∂N are topological spheres and it is more natural to equip ∂∞M̃ and
∂∞Ñ with the Gromov boundary metric induced from these metrics instead of
the word metrics on π1. In this case, there is a canonical family of boundary
metrics, biLipschitz to the Gromov boundary metrics, for which the boundary
action of all isometries is conformal. However, it is important to note that even
when ∂∞M̃ and ∂∞Ñ admit compatible smooth structures, their natural quasi-
conformal structures usually do not usually belong to the quasiconformal class
of the standard conformal structure given by the round metric. This happens
already for the rank one symmetric spaces of nonconstant curvature where the
Carnot-Carathéodory metrics determine the natural boundary conformal struc-
ture.

From now on we will assume that (N, go) is negatively curved, and therefore
we have projection homeomorphisms πx : SxÑ → ∂∞Ñ defined by setting πx(v)
to be the equivalence class of geodesic ray with initial tangent vector v. This
gives rise to the asymptotic holonomy maps πx,y : SxÑ → SxÑ defined by
πx,y := π−1

y ◦ πx. For example, in real hyperbolic space Hn, the πx,y are simply
ordinary Möbius maps.
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For our first main result we will assume that (M, g) and (N, go) are both
negatively curved and that f∗ : π1(M) → π1(N) is a virtual isomorphism so
that we have the homeomorphism ∂f . (These assumptions will be removed in
Theorem 1.3.) For all x ∈ M and y ∈ N , we can intertwine ∂f with projections
to obtain natural maps between tangent spheres Qx,y : SxM → SyN defined by
Qx,y = π−1

y ◦∂f ◦πx. (Here and henceforth we will always identify SxM with SxM̃

and SyN with SyÑ .) Henceforth we shall call the Qx,y the asymptotic maps.

The goal of this paper is to obtain a natural condition on the Qx,y that will
guarantee that f is homotopic to a diffeomorphism, or a covering map when
|deg(f)| > 1. As already indicated, with respect to the Gromov metrics on ∂∞M̃

and ∂∞Ñ , ∂f is always bi-Holder and quasimöbius (and quasisymmetric). So at
first glance it may seem natural to assume that a natural condition would be for
Qx,y to be quasimöbius with some uniform constraint on constants. However,
since the corresponding conformal structure on ∂∞M̃ and ∂∞Ñ will in general
be different from the standard one on SxM and SxN , we do not know if Qx,y

will even be quasiconformal with respect to the round metrics on SxM and SxN .
In fact, it follows from the main result of [Yue96a], after making a few standard
identifications, that if the πx,y are all smooth and uniformly quasiconformal, then
N has constant curvature.

Hence we should prefer a condition that only constrains large scale behavior
of the Qx,y. This is what we offer:

Theorem 1.1. Let M and N be two oriented closed negatively curved manifolds.
There is an ε > 0 such that for any continuous map f : M → N which is a virtual
isomorphism on π1, if the asymptotic maps are ε-Möbius, then f is homotopic to
a smooth cover of degree |deg(f)|. Moreover, ε depends only on the C1 norm of
the Margulis function of M .

Remarks 1.2.

• The condition on the Qx,y need only be checked for a compact set of x and
y. Alternately, if we are willing to shrink ε by one third, we need only
check that a single map Qxo,yo together with all the asymptotic holonomy
maps on M and N separately are ε-Möbius. (See Observation 3.3 and the
comments after.)
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• The condition of the theorem will be satisfied if we replace the ε-Möbius
condition with λ-quasiconformality, for a λ sufficiently close to 1. How-
ever this condition governs infinitesimal behavior of the maps making it
inherently much stronger.

• The oriented condition can be removed if we are willing to use the appro-
priate notion of degree of f . The proofs are essentially identical.

• While topological rigidity of closed nonpositively curved manifolds hold
in general ([FJ93]) starting in dimension five, smooth rigidity for closed
manifolds even in the negatively curved category simply fails. Farrell and
Jones ([FJ89]) have produced examples of closed manifolds with curva-
ture pinched as close to −1 as desired which are homeomorphic, but not
diffeomorphic, to a hyperbolic manifold. (See also [GT87] and [FJ94a].)
Moreover, Farrell and Ontaneda ([FO04]) showed that analytic deforma-
tion methods for producing smooth maps, provided they behave naturally
with respect to taking covers, cannot always recover an existing diffeomor-
phism between negatively curved manifolds. While the maps we use here,
like harmonic maps, share this naturality property, they can still prove
useful in the presence of additional assumptions.

A slightly different set of conditions for smooth rigidity along the same lines is
provided in Theorem 5.7 in Section 4. In [Con05] we gave volumetric conditions
for smooth rigidity, although those require dimension at least 5. One might also
try to interpret the results here as a coarse version of the quasiconformal type
boundary conditions for the strong rigidity of negatively and nonpositively curved
manifolds we gave in Theorems 1.2-1.5 and 4.3 of [Con03].

We will also generalize the above result to the case when M is arbitrary, and not
assumed to be negatively curved. However since we do not have an asymptotic
boundary sphere in this case, we are obligated to work with geodesic spheres.
We define the geodesic sphere maps πR

x : SxM → M̃ by v 7→ πR
x (v) = expx(Rv),

where the exponential map is taken on the universal cover of M . Since Ñ is
a Hadamard space, for each y ∈ Ñ we have the map projy : Ñ − {y} → SyN

given by x 7→ exp−1
y (x)

‖exp−1
y (x)‖ . We similarly define for each x ∈ M and y ∈ N the

map QR
x,y : SxM → SyN by QR

x,y = projy ◦f̃ ◦ πR
x where f̃ is any fixed lift to the

universal covers. This is well defined off of the set of points v ∈ SxM such that
f̃(expx(Rv)) = y. In particular, since f is a map of nonzero degree, for almost
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every R > 0, the mapQR
x,y is defined on almost all of SxM . The following result

will be proved in Section 6.

Theorem 1.3. There is an ε > 0, depending only on M , such that for any
continuous map f : M → N of nonzero degree between any closed manifold
M and any closed negatively curved manifold N , if for each pair (x, y), every
convergent limit map limi→∞QRi

x,y with Ri → ∞ is ε close, off of null sets, to a
common ε-Möbius map, then f is homotopic to a smooth cover of degree |deg(f)|.

Remark 1.4. The condition in the above theorem can be replaced by the condition
that the maps Qx,y be ε-Möbius where Qx,y is a globally well-defined integrated
version of the maps QR

x,y given in Section 3 right before Subsection 3.1.

We would like to end the section by mentioning the following surprising result
of Farrell and Jones which was our primary inspiration.

Theorem 1.5 (Asymptotic Regularity ([FJ94b])). Let f : M → N be a homotopy
equivalence between two nonpositively curved smooth manifolds of dimension at
least 5. Suppose,

• ∂∞M̃ and ∂∞Ñ have a natural C1 structure (i.e. πx,y are C1);
• There is a C1 conjugacy ∂h : ∂∞M̃

∼=−→ ∂∞Ñ of the π1-actions;
• ∂h extends to a C0 semiconjugacy h̃ : M̃ → Ñ ;
• χ(M) = 0.

Then f is homotopic to a diffeomorphism.

Since compatible C1 structures at infinity are only known to exist for surfaces
and quarter pinched negatively curved manifolds, it was the search for some sort
of sufficient coarse condition that led to the results in this paper. I would also
like to thank Tom Farrell for his encouragement.

2. The Natural Barycenter Map

Let (M, g) and (N, go) be closed, orientable manifolds and let f : M → N be
an arbitrary continuous map with degree denoted by deg(f).

We begin by recalling the construction of the natural maps

Fs : M → N
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due to Besson, Courtois and Gallot in its present form. Here s is a parameter
chosen to be larger than the volume growth entropy h(g) of (M̃, g) defined by

h(g) = lim sup
R→∞

log VolB(x,R)
R

,

where B(x,R) is the geodesic ball of radius R in M̃ . Moreover, since M is
compact, the limsup in the definition of h(g) can be replaced by the actual limit,
which exists ([Man79]).

Let f̃ : M̃ → Ñ denote the lift of f to the universal covers. For each s > 0
and x ∈ M̃ consider the measure µs

x on M̃ in the Lebesgue class with density

dµs
x

dvolg
(z) = e−sd(x,z),

where d is the distance function of M̃ . Recall the definition of the volume growth
entropy h(g). For all s > h(g) and all x ∈ M̃ the total measure ‖µs

x‖ of µs
x is

finite.

Consider the push-forward measure f̃∗µs
x on Ñ , and define a measure σs

x on
∂∞Ñ in the following way. For z ∈ Ñ , let νz be the “visual” or Patterson-Sullivan
measures normalized to be probability measures on ∂∞Ñ (see [BCG95]), and for
U ⊂ ∂∞Ñ measurable define

(1) σs
x(U) =

∫

Ñ
νz(U)d(f̃∗µs

x)(z).

That is, we take σs
x to be convolution of the push-forward measure f̃∗µs

x with the
visual measures νz. Notice that for all s, x, ‖µs

x‖ = ‖σs
x‖, so the measure σs

x is
finite for s > h(g).

For θ ∈ ∂∞Ñ denote by Bθ(y) the Busemann function of N (normalized so
that Bθ(O) = 0 for some fixed origin O ∈ Ñ) and consider the function on Ñ

defined by

(2) Bσs
x
(y) =

∫

∂∞Ñ
Bθ(y)dσs

x(θ).

This is a proper strictly convex function, hence it has a unique minimum [BCG95],
which we call the barycenter of the measure σs

x and denote by Bar(σs
x).

This construction can be made more general: Given any finite measure λ on
Ñ we can define as in (1) a measure σλ as the convolution of λ with the family
of visual measures. For example the convolution of the Dirac-measure δz with
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support z ∈ Ñ is the visual measure νz. Similarly, we can define for every finite
measure m of ∂∞Ñ the function Bm as in (2). The function Bm is proper and
convex if m has no atoms. If this is the case, we define Bar(m), the barycenter
of m, to be the unique minimum of Bm.

For all s > h(g), the map F̃s : M̃ → Ñ defined by x 7→ Bar(σs
x) can be

summarized in the following diagram:

M1(M̃)
f̃∗ // M1(Ñ)

~νz // M1(∂∞Ñ)

bar

²²

M̃

µs
x

OO

F̃s //_____________ Ñ

y

Each stage is equivariant under the intertwined action of π1(M) and f∗π1(M) <

π1(N). Hence F̃s descends to the natural map Fs : M → N.

The following is a collection and restatement of some of the important prop-
erties of the natural map due to Besson, Courtois and Gallot [BCG95, BCG98].

Theorem 2.1. Let (M, g) and (N, go) be closed orientable n-manifolds, let f :
M → N be a map of nonzero degree and assume that the sectional curvatures of
go are bounded from above by −1. For each s > h(g) and all x ∈ M ,

(1) The natural map Fs is at least C1.
(2) The map Ψ̃s : [0, 1]×M̃ → Ñ defined by Ψ̃s(t, x) = Bar

(
tν

f̃(x)
+ (1− t)σs

x

)

is equivariant and induces a continuous homotopy between f and Fs.
(3) If n ≥ 3, then | Jac(Fs)(x)| ≤

(
s

n−1

)n
.

Remark 2.2. The appropriate version of the above theorem also holds when M or
N are not orientable, assuming that f induces an orientation true homomorphism
between the fundamental groups.

3. Derivatives of the Natural Map

The barycenter of σλ is defined to be the minimum of the C1-function Bσλ
(·).

In particular, Bar(σλ) = x if and only if the gradient of Bσλ
vanishes at x. This

gradient can be computed as follows

∇xBσλ
=

∫

∂∞Ñ
∇xBθ dσλ(θ) =

∫

Ñ

∫

∂∞Ñ
∇xBθ dνz(θ) dλ(z),
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where ∇xBθ is the unit vector in TxÑ pointing to θ ∈ ∂∞Ñ . Applying this to
λ = µs

y, we have σλ = σs
y and the gradient vanishes at x = F̃s(y). We denote by

rz the function rz(x) = d(x, z). Taking the covariant derivative of the gradient
with respect to y, i.e. directions v ∈ TyM̃ , yields

0 = Dv∇Fs(y)Bσs
y

=
∫

∂∞Ñ
DdyFs(v)∇Bθ dσs

y(θ)

− s

∫

M̃

∫

∂∞Ñ
∇Fs(y)Bθ ⊗ dyrz(v) dνf̃(z)(θ) dµs

y(z).

Therefore we have,

dyFs = s

(∫

∂∞Ñ
DdFs(y)Bθdσs

y

)−1 ∫

M̃

(∫

∂∞Ñ
∇Fs(y)Bθ dνf̃(z)(θ)

)
⊗ dyrz(y) dµs

x(z),

where DdFs(y)Bθ is the Hessian of Bθ at the point Fs(y). More specifically, it is the
self adjoint linear map from TFs(y)Ñ → TFs(y)Ñ such that DdFs(y)Bθ(∇Fs(y)Bθ) =

0 and DdFs(y)Bθ restricted to
(∇Fs(y)Bθ

)⊥ is the second fundamental form of the
horosphere through Fs(y) and tangent to θ.

We can rewrite the previous expression more concisely as

dyFs = s

(∫

∂∞Ñ
DdBθ dσs

y

)−1

︸ ︷︷ ︸
A−1

∫

M̃

∫

∂∞Ñ
∇Bθ ⊗ drz dνf̃(z)(θ) dµs

y(z)
︸ ︷︷ ︸

H

.

For any Hadamard space X, let vx,z represent the unit vector in SxX tangent
to the unique geodesic segment γx,z from x to z ∈ X ∪ ∂X. More generally for
any manifold X, the map vx,· : X → SxX makes sense as a Lebesgue measurable
function since it is well defined and smooth off of the cut locus of x, a subset of
Hausdorff codimension at least 1. (Off of the cut locus we choose γx,z to be the
unique minimizing geodesic.)

Lemma 3.1. The map Fs : M → N has a critical point x ∈ M in the direction
u ∈ SxM if and only if

∫

∂∞Ñ
vy,θdσs

x(θ) = 0 and
∫

M̃

(∫

∂∞Ñ
vy,θdνf(z)(θ)

)
〈vx,z, u〉x dµs

x(z) = 0,

for some y ∈ M . (In this case we will necessarily have y = Fs(x).)

Proof. Since fory ∈ Ñ we have ∇yBθ = −vy,θ, the first expression is just the
statement that y = Fs(x).
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Note that on the orthogonal complement of ∇Bθ, DdBθ is the second funda-
mental form of the horosphere at θ in Ñ . Hence it has one dimensional kernel
precisely in the direction of ∇yBθ = −vy,θ, and the other eigenvalues are all
bounded away from 0 depending only on the upper curvature bound of N . Since
dσx is supported on all of ∂∞Ñ , there is no common kernel direction so the
tensors A and A−1 have no kernel.

Therefore, from the expression of dxFs given above, Fs will have a critical
direction u if and only if H(u) = 0. Since drz(u) = 〈vx,z, u〉x, this yields the
second expression. ¤

Now suppose for the moment that (M, g) is also negatively curved and that
the induced map f∗ on π1 has finite kernel. As mentioned in the introduction,
[f∗π1(M) : π1(N)] divides deg(f) and hence f∗ is a virtual isomorphism since we
will assume deg(f) 6= 0. In particular, there is an equivariant homomorphism
∂f : ∂∞M̃ → ∂∞Ñ of the boundary spheres.

Under these assumptions on M , the measures σs
x limit to the push forward

measures (∂f)∗νx as s → h(g), where νx also denotes the Patterson-Sullivan
measure on ∂∞M̃ (see [BCG96]). The two conditions simplify to

∫

∂∞Ñ
vy,θd(∂f)∗νx(θ) = 0 and

∫

∂∞Ñ
vy,θ

〈
vx,∂f−1(θ), u

〉
x

d(∂f)∗νx(θ) = 0.

These can be rewritten as
∫

∂∞M̃
vy,∂f(θ)dνx(θ) = 0 and

∫

∂∞M̃
vy,∂f(θ) 〈vx,θ, u〉x dνx(θ) = 0.

For any choice of base point p ∈ Ñ , the general case can be rewritten as
∫

∂∞Ñ
vy,θdσs

x(θ) = 0 and
∫

∂∞Ñ
vy,θ

(∫

M̃
〈vx,z, u〉x e−hBp,θ(f(z)) dµs

x(z)
)

dνp(θ) = 0.

Recall the projection maps πx defined in the introduction. We will slightly
abuse notation. For any measure ν on ∂∞Ñ , we also denote the measure (πx)∗ν
on SxN by ν as well. Doing this we can write the previous conditions as,
∫

SyN
vdσs

x(v) = 0 and
∫

SyN
v

(∫

M̃
〈vx,z, u〉x e−sBv(f(z)) dµs

x(z)
)

dνy(v) = 0.
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In the case M is also negatively curved, the limit map F := lims→h Fs exists,
and the measures σh

x = f∗νx, the push forwards of the Patterson-Sullivan mea-
sures. We also have radial projection maps πx : SxM → ∂∞M̃ . Define the maps
Qx : SxM → SF (x)N by Qx = π−1

F (x) ◦ ∂f ◦ πx. So in this case, we may express
the condition for a critical point as∫

SF (x)N
vdf∗νx(v) = 0 and

∫

SF (x)N
v

〈Q−1
x v, u

〉
x
df∗νx(v) = 0,

or finally,

∫

SxM
Qx(v)dνx(v) = 0 and

∫

SxM
Qx(v) 〈v, u〉x dνx(v) = 0.(3)

The maps Qx are natural in the sense that if M̃ and Ñ are the same rank
one symmetric space and f is an isometry, then the F = f and Qx is simply the
linear isometry dxf restricted to the corresponding unit tangent spheres.

Since linear maps commute with (dominated) vector integrals, if x ∈ M is a
critical point for the map F and L : TF (x)N → TxM is any linear map, we have

∫

SxM
L(Qx(v))dνx(v) = 0 and

∫

SxM
L(Qx(v)) 〈v, u〉x dνx(v) = 0.

Post composing with arbitrary linear maps also allows us to capture all of
the additional obvious symmetries of the situation that we may exploit. For
instance, taking the inner product of the original vector valued integrals with a
fixed v0 ∈ TF (x)N is equivalent to taking L to be the linear projection to the
line v0R followed by an isometry to R. There are also symmetries of the integrals
coming from nonlinear measure preserving transformations, but these are entirely
dependent on the measures µs

x that may arise.

For our immediate purposes, the point of the above observation is to allow us
to work on a single space, namely the (n− 1)-sphere SxM . It will be convenient
to establish the following convention.

Definition 3.2. We set the map Qx,y : SxM → SxM to be the map Qx,y =
Lx,y ◦ Qx,y where Lx,y : TyN → TxM is any fixed choice of linear isometry. We
similarly define Qx, QR

x,y and QR
x . In the latter two cases, we choose the same

Lx,y for each R > 0.
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Having distilled the condition in Lemma 3.1, we can begin to more clearly see
the nature of the constraint imposed by a critical point. Working in TxM , we can
approximate integration by the measure (Qx)∗νx on C0(SxM) by the approxi-
mating measure gεmx, where mx is the standard Lebesgue measure on SxM and
gε(v) = νx(Q−1

x (B(v,ε)))
mx(B(v,ε)) . Hence writing q(v) := 〈v, u〉x, both

∫
SxM v gε dmx(v) and∫

SxM v q(v) gε(v) dmx(v) should tend to 0 as ε → 0. This is a somewhat unlikely
event, since this last expression says that the average of

∫
q(v)>0 v |q(v)| gε(v) dmx(v)

should almost equal
∫
q(v)<0 v |q(v)| gε(v) dmx(v). These vectors are respectively

the Euclidean centers of mass over the subsets
S+ = {vgε(v) |q(v)| : q(v) > 0} and S− = {vgε(v) |q(v)| : q(v) < 0}. Since S+

and S− are star convex sets from 0 ∈ TxM , we obtain a contradiction if Qx carries
the hemisphere determined by u sufficiently close to any hemisphere of SxM . We
will quantify this situation and weaken such conditions to those of the theorems
which do not depend on the intrinsic local nature of the construction.

In the case of a general closed manifold M , we will prefer a simpler form of
barycenter construction than the one given above, which we will still need and
use for the case of a negatively curved M .

We shall relabel σs
x = f̃∗µs

x and then Fs(x) will be the unique critical point of
the map

y 7→
∫

Ñ
do(y, z)2dσs

x(z).

where do is the distance function on Ñ . Since Ñ is a negatively curved Hadamard
manifold d2

o is smooth everywhere, and the implicitly defined Fs is C1. We can
differentiate Fs as before to obtain,

dxFs(u) = −s

(∫

Ñ
do(Fs(x), z)UFs(x)(z)dσs

x(z)
)−1

◦
∫

M̃
∇Fs(x)do(Fs(x), f̃(z))

〈∇xd(x, z), u〉x dµs
x(z),

where UFs(x)(z) is the second fundamental form of the geodesic sphere centered
at and with radius d(Fs(x), z) evaluated at the point z on the sphere. (For a
more detailed account of the derivation of dxFs, using this definition of Fs, see
Lemma A.1 of [Sam99].) Since UFs(x)(z) is positive definite in a negatively curved
manifold, the entire first integral is strictly positive definite, and so a critical point
occurs if and only if the last integral vanishes.
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Using the vector notation vx,z to denote ∇xd(x, z), we can write this integral
condition more simply as,∫

M̃
v
Fs(x),f̃(z)

〈vx,z, u〉x dµs
x(z) = 0.

We can decompose the volume form dvol on M̃ into the induced spherical
volume measures, Volr on the geodesic sphere S(x, r), so that for any measurable
set U ⊂ M̃ we have,

Vol(U) =
∫ ∞

0
Volr (U ∩ S(x, r)) dr.

We therefore obtain a decomposition of the measure µs
x as

µs
x(U) =

∫ ∞

0
e−sr Volr (U ∩ S(x, r)) dr.

We now let σs
x denote the measure in the class of the Lebesgue measure on

SxM such that

dσs
x(v) =

∫ ∞

0
dµs

x(expx(rv))dr.

Now let mx denote the standard spherical measure on SxM and dvolr(v) denote
the spherical volume element of radius r in the direction of v ∈ SxM . We can
then write for any measurable U ⊂ SxM ,

σs
x(U) =

∫ ∞

0

∫

U
e−sr dvolr(v)dmx(v)dr.

Using this we can now write the above condition together with the barycenter
condition in terms of the maps QR

x as,

∫ ∞

0

∫

SxM
〈v, u〉xQr

x(v)e−sr dvolr(v)dmx(v)dr = 0
∫ ∞

0

∫

SxM
Qr

x(v)e−sr dvolr(v)dmx(v)dr = 0.

This can be expressed even more simply in terms of the integrated maps with non-

spherical range, Jx : SxM → TxM, given by Jx(v) =
∫ ∞

0
Qr

x(v)e−sr dvolr(v)dr.

∫

SxM
〈v, u〉x Jx(v)dmx(v) = 0 and

∫

SxM
Jx(v)dmx(v) = 0.



Asymptotic Conditions for Smooth Rigidity... 119

Finally, we may set Qx : SxM → SxM, to be the, possibly discontinuous, map

Qx =





Jx(v)
‖Jx(v)‖ Jx(v) 6= 0

0 Jx(v) = 0.

(Similarly we may define Jx,y and Qx,y in the obvious way so that Qx = Qx,Fs(x).)
If the measure τ s

x is redefined to be the unique measure satisfying τ s
x << mx with

Radon-Nikodym derivative dτs
x

dmx
(v) = ‖Jx(v)‖, then the condition for a critical

point becomes simply,
∫

SxM
〈v, u〉x Qx(v)dτ s

x(v) = 0 and
∫

SxM
Qx(v)dτ s

x(v) = 0.(4)

3.1. Equivariance of the Asymptotic Maps. If we denote by ΓM and ΓN the
image of the natural representations π1(M) ↪→ Isom(M̃) and π1(N) ↪→ Isom(Ñ),
then for each γ ∈ ΓM and x ∈ M̃ we have πγx = γ ◦ πx ◦ dγ−1 where dγ−1 is
the derivative map on tangent spheres of the isometry γ−1 and γ is the induced
map on ∂∞M̃ . (As we will see shortly this latter map is Möbius with respect to a
certain natural class of metrics on ∂∞M̃ .) The analogous relation holds for πγ′y

for all y ∈ Ñ and γ′ ∈ ΓN .

Similarly, we have ∂f ◦ γ = f∗(γ) ◦ ∂f . From these observations it follows that
for each x ∈ M̃ , y ∈ Ñ and γ ∈ ΓM we have,

Qγx,f∗(γ)y = df∗(γ) ◦ Qx,y ◦ dγ−1.

Since the derivatives of isometries are pointwise linear isometries, we see that
the Qx,y are determined by those maps where either x lies within a fundamental
domain of M̃ or y lies in a fundamental domain of Ñ . It is easy to check that a
similar equivariance holds in the more general case for the QR

x,y. Since the range
of the map F and the maps Fs on a fundamental domain are compact, we have

Observation 3.3. The conditions on the Qx,y and QR
x,y in Theorems 1.1–1.3

need only be checked for a compact set of x and y.

As an immediate consequence of the definitions, for any x, x′ ∈ M̃ and y, y′ ∈ Ñ

we have
Qx′,y′ = πy,y′ ◦ Qx,y ◦ πx′,x.

Hence the maps Qx,y are entirely determined by the Qx,y for x in a fundamental
domain FM for ΓM and y in a fundamental domain FN for ΓN together with the
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maps πx,γx (respectively πy,γ′y) where x ∈ FM (resp. y ∈ FN ). Similarly, the
Qx,y are determined by any single map Qxo,yo together with all of the asymptotic
holonomy maps πx,x′ and πy,y′ for x, x′ ∈ M̃ and y, y′ ∈ Ñ .

Despite the fact that γ is an isometry and γ acts by Möbius transformations
with respect to the natural choice of metric on ∂∞M̃ , one should bear in mind that
the maps πx,γx are rarely smooth, let alone Möbius with respect to the standard
conformal structure. More specifically, they are in general only 1

κ -Hölder when
the metric is 1

k2 -pinched ([AS85]). However, they are always smooth for surfaces
and C1 in the quarter pinched case.

4. Quasimöbius and ε-Möbius Maps

In this section we mainly recall the some aspects of quasiconformal maps and
the asymptotic geometry of negatively curved manifolds.

We begin more generally with a general CAT(−1) space X, such as M̃ . The
Gromov product is the quantity

(x · y)p :=
1
2
(d(p, x) + d(p, y)− d(x, y)), ∀p, x, y ∈ X.

In this setting, the product extends continuously to the compactification X =
X ∪ ∂∞X. The

Now we define the visual metric at p ∈ X to be

dp(x, y) = e−(x·y)p .

Bourdon ([Bou95]) showed that this is always an honest metric.

Recall that a map f : (Z, d) → (Z ′, d′) is quasiconformal if there exists K ∈
[1,∞) such that for each x ∈ Z,

lim
r→ sup

0
,
sup{d′(fx, fy)|y ∈ Zandd(x, y) ≤ r}
inf{d(fx, fz)|z ∈ Zandd(x, z) ≥ r} ≤ K

We Define the cross-ratio on ∂∞X via dp, i.e.

[x, y, z, w] :=
dp(x, z)dp(y, w)
dp(x,w)dp(y, z)

.
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This expression only makes sense for pairwise distinct points x, y, z, w in ∂∞X.
It can also be defined in the larger domain X, and it is independent of the choice
of p (see [Pau96]). A map is called Möbius if it preserves the cross-ratio.

If one puts the metric dp on the ideal boundary of the CAT(−1) space X, then
the homomorphism of ∂X induced by g ∈ Isom(X) is Möbius, bi-Lipschitz and
conformal ([Bou95]).

Definition 4.1. Given two metric spaces (X, d) and (Y, d′), a homeomorphism
f : X → Y is called η-quasisymmetric with respect to a homeomorphism η :
[0,∞) → [0,∞) if

d′(f(x), f(y))
d′(f(x), f(z))

≤ η

(
d(x, y)
d(x, z)

)
,

for all triples x, y, z ∈ X.

Definition 4.2. Given two metric spaces (X, d) and (Y, d′), a homeomorphism
f : X → Y is called η-quasimöbius with respect to a homeomorphism η : [0,∞) →
[0,∞) if

[f(x), f(y), f(z), f(w)] ≤ η ([x, y, z, w]) ,

for all quadruples x, y, z, w ∈ X.

In the above two definitions two metrics d and d′ on X are η-quasisymmetric
(resp. η-quasimöbius) if the identity map has corresponding property. Similarly,
we say that a map or metric is quasisymmetric (resp. quasimöbius) if it is η-
quasisymmetric (resp. η-quasimöbius) for some η.

Definition 4.3. A space X is said to be homogeneously dense if there is a number
λ such that 0 < λ < 1 and for each pair of points a, b ∈ X there is a point x ∈ X

satisfying the condition d(x, a) < λd(a, b) and d(x, b) < λd(a, b).

Lemma 4.1. The space (∂∞X, dp) is homogeneously dense for each p.

Proof. For each pair a, b ∈ ∂∞X let q be the point on the geodesic [a, b] closest to
p. Take x to be the endpoint of the geodesic ray from p to q. Let r be the point on
[a, x] furthest from [a, q]∪ [q, x]. Since ∠q(a, x) = π

2 , there is a universal constant
C such that d(q, r) < C so |d(p, r)− d(p, q)| ≤ C. By Gromov δ-hyperbolicity of
X, |d(p, [a, b])− (a, b)p| ≤ 2δ. Consequently we can take λ = e−C−8δ. ¤
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4.1. Quasimöbius Maps.

Definition 4.4. For any k > 0 the term k-quasimöbius (respectively
k-quasisymmetric) will mean η-quasimöbius (respectively η-quasisymmetric) for
the homeomorphism η(t) = k ∗ t

1
k .

The following result shows that the more restricted notion of k-quasisymmetric
or Möbius is equivalent to the more general η-version.

Proposition 4.2 (Tukia and Vaisala [Väi71]). For any homogeneously dense
metric space for any η-quasisymmetric (η-quasimöbius) map f there is a k such
that f is k-quasisymmetric (k-quasimöbius).

The property of being quasimöbius is the natural analogue on Sn of the prop-
erty of being quasisymmetric n Rn. Indeed, if Sta : Sn \ {a} → Rn is the
(conformal) stereographic projection from the point a ∈ Sn, then f : Sn → Sn is
quasimöbius with respect to the standard round metric if and only if Stb ◦f ◦St−1

a

is a quasisymmetric map for all a, b ∈ Sn.

In fact, we can make this analogy precise for an arbitrary Gromov hyperbolic
space X. For x ∈ X and any fixed a ∈ ∂∞X̃, following [Min07] we define the
stereographic projection of dx with respect to a by

dx|a(y, z) :=
dx(y, z)

dx(y, a)dx(z, a)
, y, z ∈ ∂∞X̃\{a}.

When dx is replaced by the round metric, this formula agrees with the formula
from elementary Euclidean geometry for the classical stereographic projection.
The following establishes the main property of the stereographic projection.

Proposition 4.3 (Theorem 16 of [Min07]). The function dx|a is a metric on
∂X\{b} conformally equivalent to dx. The metrics dx and dx|a induce the same
(usual) topology on ∂X\{b}.

In particular quasimöbius maps with respect to dx are quasisymmetric with
respect to dx|a for any a ∈ ∂∞X. We now introduce some related definitions for
later use.

Definition 4.5. We say that a map g : Sn → Sn is θ-antipodal if ∠(g(v),−g(−v)) ≤
θ for all v ∈ Sn.
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Definition 4.6. We say that a (not necessarily continuous) map f : Sn → Sn

is ε-coarsely Möbius, or simply ε-Möbius, if it is pointwise ε-close to a Möbius
map, with respect to the standard round metric on Sn.

Definition 4.7. Given any map f : X → Y between two metric spaces (X, d)
and (Y, d′), we say that f is ε-spherical if the image of every d-ball is contained in
the ε-neighborhood of some d′-ball. We say two metrics d, d′ on X are ε-spherical
if both the identity map from (X, d) to (X, d′) and from (X, d′) to (X, d) are
ε-spherical.

4.2. Sullivan’s shadow lemma. Fix a point p ∈ X. For any x ∈ X and

R > 0 consider the shadow of the ball B(x,R) from p to ∂∞X defined by

Op(x,R) = {a ∈ ∂∞X : γp,a ∩B(x,R) 6= ∅},

where γp,a is the geodesic from p to a.

The following result is due to Sullivan in the constant curvature case:

Lemma 4.4 (Sullivan’s shadow lemma ([Sul84],[Rob03],[Yue96b])). For all R >

0, there exists a constant C = C(R) > 1 such that for all p ∈ X and all γ ∈ Γ
we have

C−1e−hd(p,γp) ≤ νp (Op(γp, R)) ≤ C−1e−hd(p,γp)

If a ∈ ∂∞X is the endpoint of the geodesic from p passing through γp then
there is a C > 1 such that Bdp(a,C−1e−d(p,γp)) ⊂ Op(γp, 1) ⊂ Bdp(a,Ce−d(p,γp)).
Hence the Sullivan Lemma can be restated as saying

Corollary 4.5. There exists a constant C > 1 such that for all p ∈ X we have

1
C

rh ≤ νp

(
Bdp(a, r)

) ≤ C−1rh

for all a ∈ X and r ≤ 1

As a consequence, for each p ∈ X, νp is in the class of the h-dimensional
Hausdorff measure Hp for the metric dp. Using the fact that Γ acts νp-ergodically
on ∂∞X, it was shown in [Ham89] that for the right choice of metric bilipschitz
to dp, the corresponding h-dimensional Hausdorff measure is a constant multiple
of νp.
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5. Rigidity of the Asymptotic Maps

5.1. Properties of the Qx maps. While not necessary for the proof of the
main theorems, the next two lemmas give some control on the asymptotic map
at the barycenter point of a Patterson-Sullivan measure, and therefore may be of
independent interest.

Lemma 5.1. Choose any 1 ≥ m ≥ 1
2 and let B ⊂ SxM be any set with

νx(πx(B)) ≥ m ‖νx‖. The image under Qx of B cannot be contained in any
spherical ball of radius less than θ = cos−1

(
1−m

m

)
.

Proof. Suppose not, then we claim that the magnitude of the vector

w =
∫

Qx(B)
v dπ∗F (x)(∂f)∗νx

would be larger than m cos(θ). To see this, first suppose that we allowed
π∗F (x)(∂f)∗νx to be any measure at all. Note that since we assumed θ ≤ π

2 ,
any measure with minimal ‖w‖ must have the property that the intersection of
its support with Qx(B) lies on an angular sphere S(u, θ) of radius θ centered at
some point u ∈ SF (x)N containing Qx(B), and that it takes equal values on op-
posing subsets of S(u, θ). In particular we must have diam(Qx(B)) = 2θ. Hence,
in any minimal case, we have

w =
1
2
π∗F (x)(∂f)∗νx(Qx(B))2 cos(∠(u,w))u = m cos(θ) ‖νx‖u.

On the other hand, in order for F (x) to be the barycenter point, we must have
the vector average over a subset of the hemisphere defined by {u : ∠(u,w) < 0}
canceling w. However, even if the remaining mass were concentrated at − w

‖w‖ ,
it would not be sufficient. For if (1 −m) ‖νx‖ = ‖w‖ ≥ m cos(θ) ‖νx‖, then this
contradicts θ < cos−1

(
1−m

m

)
. ¤

Lemma 5.2. The maps Qx : SxM → SF (x)N are always θ-antipodal for some θ

depending only on the constants in the Shadow Lemma.

Proof. Suppose dF (x)(∂f(πx(v)), ∂f(πx(−v))) < t for some value t << 1. Since
dp(πx(v), πx(−v)) = 1, every dx ball containing both v and −v has radius at least
1
2 . Since ∂f is λ-quasimöbius with respect to π∗xdx and π∗F (x)dF (x), at least one
of these balls is sent into a π∗F (x)dF (x)-ball of radius at most λt centered at some
point w ∈ SF (x)N . By the Shadow Lemma 4.4 for some K > 1 a ball containing
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m =
√

2
1+
√

2
fraction of the total mass of νx is sent into the π∗F (x)dF (x)-ball of radius

(1+ε)Kt. However, for t sufficiently small this will lie in a spherical ball of radius
π
4 . This contradicts the previous lemma.

Hence dF (x)(∂f(πx(v)), ∂f(πx(−v))) is larger than some uniform constant, and
so ∠F (x)(Qx(v),Qx(−v)) > π − θ for some uniform θ depending only on the
quasimöbius constants and the diameter of N . ¤

For x ∈ M , let c(x) denote the Margulis function at the point x ∈ M . If
B(x̃, R) represents the ball of radius R in M̃ for any lift x̃ of x, then we may
define c(x) by

c(x) := lim
R→∞

VolB(x,R)
ehR

where the limit exists by [Mar70]. By [Yue91] this function is smooth and can be
expressed as

c(x)
c(p)

= ‖νx‖ =
∫

∂∞M̃
ehB(x,p,ξ)dνp(ξ).

Hence we can express the gradient as

∇c(x)
c(p)

=
∫

SxM
vdνx(v).

In other words ∇c(x) = 0 if and only if the barycenter of bar(νx) = x.

Example 5.3. Suppose that for some x ∈ M the transformation Qx is Möbius.
For any fixed u ∈ SxM , Qx sends some level set of the function v 7→ 〈v, u〉 to
an equator sphere. If the measure νx were supported on such a level set, then we
would immediately have that u ∈ ker dxF . This follows from the fact that in this
case the two integral conditions are just scalar multiples of each other, so they
are zero simultaneously.

This degenerate situation cannot occur however, since νx cannot be supported
on anything less than the whole sphere. Nevertheless, how uniformly νx is sup-
ported on SxM is controlled by the constants arising in the Shadow Lemma 4.4
together with the properties of the metric dx. This also affects how far Qx can
vary from being Möbius.
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5.2. Proof of Theorem 1.1.

Lemma 5.4. If Qx is Möbius then x is not a critical point for F .

Proof. Suppose u ∈ ker dxF , and let {St} denote the partition of SxM by level
sets of the function t(v) = 〈v, u〉. Since Qx is Möbius, there is a unique sphere
St0 for some to ∈ (−1, 1) which is sent to an equator sphere by Qx. Let {v+, v−}
be the two (antipodal) unit vectors orthogonal to Qx(St0) and let H+ and H− be
the hemispheres corresponding to v+ and v− respectively. (Here we assume we
have chosen v+ such that Qx(u) ∈ H+.)

Recalling our aforementioned notational convenience, we will allow νx to also
denote the Patterson-Sullivan measure on ∂∞M̃ projected to SxM , namely(
π−1

x

)
∗ νx. After splitting the integral conditions (3) on F into hemispheres and

taking the inner product with v+ = −v−, they imply
∫

Q−1
x (H+)

〈Qx(v), v+〉 dνx(v) =
∫

Q−1
x (H−)

〈Qx(v), v−〉 dνx(v)

and
∫

Q−1
x (H+)

〈v, u〉 〈Qx(v), v+〉 dνx(v) =
∫

Q−1
x (H−)

〈v, u〉 〈Qx(v), v−〉 dνx(v).

However, the function 〈v, u〉 is monotone on the partition {St} and ∪t>t0St ⊂
Q−1

x (H+) while ∪t<t0St ⊂ Q−1
x (H−). Hence we may compute,

∫

Q−1
x (H+)

〈v, u〉 〈Qx(v), v+〉 dνx(v) >

(
inf

v∈Q−1
x (H+)

〈v, u〉
)∫

Q−1
x (H+)

〈Qx(v), v+〉 dνx(v)

=

(
inf

v∈Q−1
x (H+)

〈v, u〉
)∫

Q−1
x (H−)

〈Qx(v), v−〉 dνx(v)

=

(
sup

v∈Q−1
x (H−)

〈v, u〉
)∫

Q−1
x (H−)

〈Qx(v), v−〉 dνx(v)

>

∫

Q−1
x (H−)

〈v, u〉 〈Qx(v), v−〉 dνx(v).

The strictness of the inequalities follow from the fact that the measure νx is
supported on the entire sphere SxM . ¤
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Lemma 5.5. In the proof of the previous lemma, the value of t0 tends to 0
uniformly as ‖∇xc(x)‖ tends to 0.

Proof. If ∇c(x) = c(p)
∫
SxM vdνx(v) is 0, then since Qx sends spheres to spheres,

it must take every hemisphere to every hemisphere in order for the barycenter
condition to be fulfilled. In particular Qx is an isometry since we are already
assuming it to be Möbius. Moreover, the size of the smallest neighborhood carried
into a hemisphere by Qx is continuous in ‖∇xc(x)‖, uniformly in x. The lemma
immediately follows from this. ¤

The natural normalization for the gradient of the Margulis function is

∇xc(x)
c(x)

=
∇xc(x)

c(p) ‖νx‖ =
∇x ‖νx‖
‖νx‖ =

1
‖νx‖

∫

∂∞M̃
v dνx.

In other words, this is just the νx vector average.

Lemma 5.6. There is a continuous monotone function θ : [0, 1) → (0, π
2 ] with

θ(0) = π
2 such that for all δ < 1 if ‖∇xc(x)‖

c(x) < δ and Qx is ε-Möbius, then Qx

maps every ball of angular radius θ(δ)− ε into an open hemisphere.

Proof. From the previous lemma we just need observe that ‖∇xc(x)‖
c(x) < 1 and so

if ε = 0 then Qx always carries every θ-ball into a hemisphere by compactness.
On the other hand, from the definition, if Qx is ε-Möbius then Qx will still carry
every θ − ε ball into a hemisphere. The fact that θ(0) = π

2 follows from Lemma
5.5. ¤

Proof of Theorem 1.1. Let Mx be a Möbius map that is closest to Qx in the
uniform Hausdorff metric.

Set δ = supx∈M
‖∇xc(x)‖

c(x) . By Lemma 5.6 as δ tends to 0, the map Qx becomes
ε-Hausdorff close to an isometry of the sphere, and uniformly in δ.

Consequently, there is a function ε(δ) increasing to ε(0) such that whenever
ε < ε(δ), the difference∫

Q−1
x (H+)

〈v, u〉 〈Qx(v), v+〉 dνx(v)−
∫

Q−1
x (H−)

〈v, u〉 〈Qx(v), v+〉 dνx(v)

from the inequality in the proof of Lemma 5.4 will be positive which produces
the desired contradiction.

¤
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We can also give alternate hypotheses in Theorem 1.1 which exploit the fact
that ∂f is always λ-quasimöbius with respect to the dx metrics.

Theorem 5.7. There exist positive numbers ε > 0 and λ > 1 with the property
that if f : M → N is any continuous map of nonzero degree between two closed
negatively curved manifolds such that such that

(1) ∂f : ∂∞M̃ → ∂∞Ñ is λ-quasimöbius, and
(2) for each p ∈ M and p ∈ N , the metrics π∗pdp and ∠p are ε-spherical,

then f is homotopic to a smooth cover F : M → N of degree deg(f).

Here the bounds on λ and ε can be given as a single bound on what (λ−1)+ ε

can be. Note also that the hypotheses do not automatically imply that Qx is
δ-Möbius for any δ > 0 on the scale of (λ− 1) + ε since both the ε-spherical and
λ-qausimöbius conditions only apply to spheres individually and not to the entire
map.

Proof. Once again suppose u ∈ ker dxF , and let {St} denote the partition of SxM

by level sets of the function t(v) = 〈v, u〉.
The maps π−1

y πx are conformal with respect to π∗xdx and π∗ydy for pairs of points
x, y ∈ M or x, y ∈ N . Hence the conditions imply that there is a δ that depends
on ε and λ such that the the spheres St are sent by Qx into δ-neighborhoods of
round spheres. On the other hand since Qx is a homeomorphism, one of these is
in the δ-neighborhood of a single hemisphere.

The rest of the proof then mimics that of the proof of Theorem 1.1.

¤

6. The General Case for M

In this section we prove Theorem 1.3. We recall that we are assuming that M

is an arbitrary smooth closed manifold and that we had a decomposition of the
measure µs

x from Section 3 as

µs
x(U) =

∫ ∞

0
e−sr Volr (U ∩ S(x, r)) dr.

With this notation we can now state,
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Lemma 6.1. for any compact subset U ⊂ M̃ and any ε > 0, we can choose an
s sufficiently close to h(g) such that µs

x(U)
‖µs

x‖ < ε.

Proof. Since U∪S(x,R) for some R > 0, we have µs
x(U) ≤ ∫ R

0 e−sr Volr (S(x, r)) dr.

So it remains to show that ‖µs
x‖ =

∫∞
0 e−sr Volr (S(x, r)) dr tends to ∞ as

s → h(g).

Note that∫ ∞

0
e−sr Volr (S(x, r)) dr =

∫ ∞

0
e−sr d

dr
Vol (B(x, r)) dr

=
∫ ∞

0

d

dr

(
e−sr Vol (B(x, r))

)
dr

−
∫ ∞

0

d

dr

(
e−sr

)
Vol (B(x, r)) dr

= e−sr Vol (B(x, r))
∣∣∞
0

+ s

∫ ∞

0
e−sr Vol (B(x, r)) dr

= s

∫ ∞

0
e−sr Vol (B(x, r)) dr.

So it is sufficient to show that
∫∞
0 e−hr Vol (B(x, r)) dr is unbounded.

Let Γ be the image of the covering representation of π1(M) in Isom(M̃). By
the Theorem 7.2 of [Coo93], if N(x,R) is the number of orbit points of Γ · x in
B(x,R), then there exists C > 0 such that

1
C

ehR ≤ N(x,R) ≤ CehR.

Hence if F is a Dirichlet fundamental domain centered at x for the action of
Γ and D is the diameter of F , then

1
C

e−hD Vol(F )ehR ≤ VolB(x,R) ≤ CehD Vol(F )ehR.

The lemma now follows easily from the lower bound. ¤

Lemma 6.2. Given an ε < π
4 and any R0 > 0, there is an s sufficiently close

enough to h(g) such that if for all R > R0 the QR
x are ε close to a Möbius map

Mx, then Qx is continuous and 2ε close to Mx.

Proof. If all QR
x are ε close to Mx, then the values of Jx(v) lie in the positive

cone on a spherical ball of radius ε ball about Mx(v). With the bound on ε this
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cone is strictly convex. By choosing s sufficiently close to h(g) as in Lemma 6.1,

the value of
∫ R0
0 e−srdvolr(v)dr∫∞
0 e−srdvolr(v)dr

can be made as small as desired uniformly in v.

Hence for s sufficiently close to h(g), Jx is continuous since the QR
x are con-

tinuous at each v for all but a measure zero set of values of R. Moreover, after
normalizing Jx(v) to Qx, it will be at as close to ε distant from Mx as desired,
so 2ε will do. ¤

Proof of Theorem 1.3. By Lemma 6.2, under the hypotheses of the theorem, we
may assume we have chosen s small enough so that Qx is 2ε close to a Möbius
map which we shall denote Mx.

Again we suppose that x ∈ M is a critical point of Fs and u ∈ ker dxFs. As
in the negatively curved case, we consider first the special case when Qx = Mx

for all sufficiently large R. Adopting similar notation to the proof of 5.4, we have
by assumption for all sufficiently large R, a common unique sphere St0 ⊂ SxM

which is sent to an equator sphere by Mx. Let {v+, v−} be the two (antipodal)
unit vectors orthogonal to Mx(St0) and let H+ and H− be the hemispheres
corresponding to v+ and v− respectively. (Here again we assume we have chosen
v+ such that Mx(u) ∈ H+.)

For the case Qx = Mx, the conclusion again follows from the same proof as
that of Lemma 5.4, using the measure τ s

x that
∫

M−1
x (H+)

〈v, u〉 〈Mx(v), v+〉 dτ s
x(v) >

∫

M−1
x (H−)

〈v, u〉 〈Mx(v), v−〉 dτ s
x(v),

contradicting Conditions (4) on Fs.

For the general case if Qx is within 2ε of Mx, then since the quantity
∫

Q
−1
x (H+)

〈v, u〉 〈Qx(v), v+

〉
dτ s

x(v)−
∫

Q
−1
x (H−)

〈v, u〉 〈Qx(v), v−
〉
dτ s

x(v),

involves only bounded integrals and continuous maps whose limit as ε tends to
0 equals Mx, it will become positive for ε sufficiently small, again contradicting
Conditions (4). ¤

Remark 6.3. As a final remark, we note that Theorem 1.3 adds to the long
list of methods by which one can attempt to rule out the existence of homotopy
spheres in dimension three. If N is a closed hyperbolic 3-manifold, and H were
a homotopy sphere, then we could form any smooth connect sum to obtain M =
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H#N . There is a natural homotopy equivalence f : M → N . If one could
metrize a neighborhood of H in the connect sum in such a way that the lifts of
H in the universal cover did not distort the asymptotic holonomy maps on M

too badly, then f would be homotopic to a diffeomorphism by the main theorem.
Milnor primality would then imply that H was a sphere. However, achieving
sufficient control this way on the Qx seems very difficult. For instance, in most
dimensions greater than six a similar construction using exotic spheres produces
non-diffeomorphic manifolds. In particular, the Qx could not be ε-Möbius with
the required ε in that case. Fortunately, Perelman’s work makes any such effort
unnecessary.
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[Ham89] U. Hamenstädt, A new description of the Bowen-Margulis measure, Ergodic Theory

Dynamical Systems 9 (1989), no. 3, 455–464.

[Man79] A. Manning, Topological entropy for geodesic flows, Ann. of Math. (2) 110 (1979),

no. 3, 567–573.

[Mar70] G. A. Margulis, Certain measures that are connected with U-flows on compact mani-

folds, Funkcional. Anal. i Priložen. 4 (1970), no. 1, 62–76.
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