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Remarks Concerning Lubotzky’s Filtration

F. R. Cohen∗, Marston Conder, J. Lopez and Stratos Prassidis†

Abstract: A discrete group which admits a faithful, finite dimensional, linear
representation over a field F of characteristic zero is called linear. This note
combines the natural structure of semi-direct products with work of A. Lubotzky
[13] on the existence of linear representations to develop a technique to give
sufficient conditions to show that a semi-direct product is linear.

Let G denote a discrete group which is a semi-direct product given by a split
extension

1 → π → G → Γ → 1.

This note defines an additional type of structure for this semi-direct product
called a stable extension below. The main results are as follows:

(1) If π and Γ are linear, and the extension is stable, then G is also linear.
Restrictions concerning this extension are necessary to guarantee that G

is linear as seen from properties of the Formanek-Procesi “poison group”
[7].

(2) If the action of Γ on π has a “Galois-like” property that it factors through
the automorphisms of certain natural “towers of groups over π” ( to be
defined below ), then the associated extension is stable and thus G is
linear.

(3) The condition of a stable extension also implies that G admits filtration
quotients which themselves give a natural structure of Lie algebra and
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which also imply earlier results of Kohno, and Falk-Randell [10, 6] on the
Lie algebra attached to the descending central series associated to the
fundamental groups of complex hyperplane complements.

The methods here suggest that a possible technique for obtaining new linearity
results may be to analyze automorphisms of towers of groups.
Keywords: Semi-Direct Products, Faithful Representations, Filtrations, Lie Al-
gebras.

1. Introduction

A. Lubotzky [13] or [5], pages 172-175, gave a purely group theoretic criterion
which is equivalent to the existence a faithful finite dimensional representation
over a field F of characteristic zero for a discrete group G (where the image is not
necessarily discrete). A group G with this property is called linear.

The purpose of this paper is to give an extension of Lubotzky’s criterion which
can sometimes be applied to show that a semi-direct product of linear groups is
again linear. The main subject of this article is a split extension of groups given
by

1 −−−−→ π
i−−−−→ G

p−−−−→ Γ −−−−→ 1

for which it is assumed that both π and Γ are linear. The main purpose of this
article is to define the notion of a stable extension as given in Definition 2.5 which
implies that G is linear.

The approach weaves together semi-direct products regarded as pull-backs of
a universal semi-direct product known as the holomorph together with certain
choices of filtrations of both π and Γ. Roughly speaking, one of the main results
here is that representations of Γ in the automorphism group of π which factor
through the automorphism group of the filtration of π as given in Definition 3.1
suffices to show that G is linear via Lubotzky’s criteria [13].

Notice that it may be the case that both π and Γ admit faithful finite dimen-
sional representations, but that G does not. A basic example due to Formanek
and Procesi [7] is a split extension

1 −−−−→ F3
i−−−−→ H

p−−−−→ F2 −−−−→ 1
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where H = G, Fn is a free group on n letters, and the group H admits the
following presentation:

(1) H = 〈a1, a2, a3, φ1, φ2 | φiajφ
−1
i = aj , φia3φ

−1
i = a3ai, i, j = 1, 2〉.

This example, the Formanek-Procesi “poison group”, is a subgroup of Aut(F3),
the automorphism group of F3 and has the property that the action of F2 on the
first homology group of F3 is non-trivial.

Contrasting examples with π given by Fn which do in fact admit faithful finite
dimensional representations from the methods given here are explained next. A
subgroup of Aut(Fn) known as McCool’s group M(n) is generated by automor-
phisms given by conjugating a fixed basis element by another fixed basis element
[14]. Furthermore, the kernel of the natural map Aut(Fn) → GL(n,Z), IAn,
contains M(n).

Consider a split extension

1 −−−−→ Fn
i−−−−→ G

p−−−−→ Γ −−−−→ 1

where Γ admits a faithful finite dimensional representation and the action of Γ
on Fn factors through M(n). It is shown below that G is sometimes linear. Thus
it is natural to ask the following question which is also raised in [2] with some
additional evidence here.

Conjecture 1.1. Consider a split exact sequence of groups

1 −−−−→ Fn −−−−→ G −−−−→ Γ −−−−→ 1

with Fn a free group on n letters and Γ a group that admits a finite dimensional
faithful linear representation. If the conjugation action of Γ on Fn is trivial on
homology, H1(Fn;Z), and thus factors through IAn, then G is linear.

A weaker conjecture is to replace IAn by McCool’s group M(n): that is, if the
conjugation action of Γ on Fn factors through M(n), then G is linear.

Notice that both conjectures are consistent with work of Bigelow [1] and Kram-
mer [11] who proved that Artin’s braid groups are linear. The veracity of either
conjecture implies that the pure braid groups, thus the full braid groups are
linear.

Remark 1.2. Observe that M(2) = IA2. Thus in case n = 2, this conjecture
follows directly from the observations in Corollary 8.3 below. In case Γ is a sub-
group of GL(n,F), it follows from the computations below that G is a subgroup
of GL(n + 4,F) with details left as an exercise.
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The authors would like to congratulate Tom Farrell and Lowell Jones on this
happy occasion of their 60-th birthday. The authors would also like to thank the
organizers for this stimulating and interesting opportunity to participate in an
excellent conference.

2. Definitions and Statement of Results

Recall the following definition from [5] (page 171) and [13].

Definition 2.1. A filtration of the group π is a descending chain of normal
subgroups

· · · ⊆ Lj(π) ⊆ · · · ⊆ L1(π) ⊆ L0(π) = π

for j ≥ 0 such that
⋂

j≥1 Lj(π) = {1}.
Definition 2.2. A p-congruence system for the group π is a filtration of π

· · · ⊆ Lj(π) ⊆ · · · ⊆ L1(π) ⊆ L0(π) = π

for j ≥ 0 such that

(1) π/L1(π) is finite, and
(2) L1(π)/L1+j(π) is a finite p-group for all j ≥ 0.

Definition 2.3. A bounded p-congruence system for the group π is a p-congruence
system for the group π given by

· · · ⊆ Lj(π) ⊆ · · · ⊆ L1(π) ⊆ L0(π) = π

such that d(Li(π)/Lj(π)) ≤ e for all 0 ≤ i < j (where the number d(G) denotes
the minimal number of generators of the group G ([5], page xvii)). A bounded
p-congruence system is also called a Lubotzky filtration below.

The following is a restatement here of a result due to A. Lubotzky [13].

Theorem 2.4. A group G admits a bounded p-congruence system for some prime
p if and only if G admits a faithful finite dimensional representation for some field
of characteristic zero.

Let Aut(π) denote the automorphism group of π. Consider a discrete group π

together with the universal semi-direct product Hol(π) “the natural” split exten-
sion of Aut(π) by π,

1 → π → Hol(π) → Aut(π) → 1
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The group Hol(π), as a set, is the product Aut(π)×π with the product structure
defined by the formula

(f, x) · (g, y) = (f · g, g−1(x) · y)

for f, g in Aut(π), and x, y in π.

The next four formulas follow from the definition but are listed here for con-
venience of the reader in the proofs below.

(1) (f, x)−1 = (f−1, f(x−1)),
(2) (f, 1)−1 · (1, y) · (f, 1) = (1, f−1(y)),
(3) (f, x) · (g, y) · (f, x)−1 = (f · g · f−1, f(g−1(x) · y) · f(x−1)), and
(4) [(f, x), (g, y)] = (f · g · f−1 · g−1, g{f(g−1(x) · y) · f(x−1)} · g(y−1)).

Consider a homomorphism

φ : Γ → Aut(π)

called the classifying map for the extension. Pull back the extension deter-
mined by Hol(π) to obtain the extension G together with a morphism of exten-
sions (as developed in more detail in [16]):

1 −−−−→ π
i−−−−→ G

pφ−−−−→ Γ −−−−→ 1y1

y
yφ

1 −−−−→ π
i−−−−→ Hol(π)

p−−−−→ Aut(π) −−−−→ 1

Furthermore, every split extension of Γ with kernel π is given by such a pull-back
for some choice of homomorphism

φ : Γ → Aut(π).

Thus if (f, x), (g, y) ∈ Γ×π then (f, x)·(g, y) = (f ·g, φ(g−1)(x)·y). A notational
convention used throughout this article is that g−1(x) denotes φ(g−1)(x).

The results here intertwine filtrations for the groups π and Γ in the extension

1 −−−−→ π
i−−−−→ G

pφ−−−−→ Γ −−−−→ 1

by focusing on the classifying map for the extension given by φ : Γ → Aut(π)
rather than considering the extension itself. Thus, the main focus here are con-
ditions concerning the homomorphism φ : Γ → Aut(π) which imply that G is
linear.
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Definition 2.5. Assume that

1 −−−−→ π
i−−−−→ G

pφ−−−−→ Γ −−−−→ 1
is a split extension classified by the map

φ : Γ → Aut(π)

together with filtrations

(1) for the group π

· · · ⊆ Lj(π) ⊆ · · · ⊆ L1(π) ⊆ L0(π) = π

for j ≥ 0 and
(2) for Γ

· · · ⊆ Fj(Γ) ⊆ · · · ⊆ F1(Γ) ⊆ F0(Γ) = Γ

for j ≥ 0.

The extension ( together with the two filtrations ) is said to be stable if and only
if for every (g, y) in Fr+s(Γ)× Lr+s(π) and for every (f, x) in Fr(Γ)× Lr(π) the
following properties are satisfied for r, s ≥ 0:

(1) f(y) ∈ Lr+s(π) and
(2) g(x) = δx · x for δx ∈ Lr+s(π).

Remark 2.6. These two conditions both of which must be satisfied in what is
given below fit naturally with extensions. They arise by considering the natural
“twisting” for the holomorph as well as for certain fibre bundles.

The definition of a stable extension is basically recording the feature that
certain extensions “look like products” modulo certain higher filtrations. One
result is as follows.

Theorem 2.7. Assume that the split extension

1 −−−−→ π
i−−−−→ G

pφ−−−−→ Γ −−−−→ 1
is classified by the map φ : Γ → Aut(π) which satisfies the conditions that

(1) Γ and π admit bounded p-congruence systems for some prime p as given
in Definition 2.3, and

(2) the p-congruence systems for the groups π and Γ in part (1) are stable in
the sense of Definition 2.5.

Then G is linear.
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Examples of Theorem 2.7 are given in sections 7 and 8. These examples arise
by forming the split extension

1 → Fn → G → Γ → 1

where

(1) Γ is a subgroup of GL(2,Z) ( and thus Γ has a normal finite index sub-
group which is free ),

(2) Fn is isomorphic to a principal congruence subgroup of level pr in PSL(2,Z),
and

(3) Γ acts by conjugation on Fn.

That these examples are linear follows from standard elementary methods as well
as the methods here. One related special case is as follows.

Example 2.8. Consider the extension

1 −−−−→ F [a1, a2, · · · , an, b] −−−−→ Gn −−−−→ F [x, y] −−−−→ 1

for which the action of F [x, y] is given as follows.

(1) (a) x(aq) = aq+1 if 1 ≤ q < n with x(an) = b · a1 · b−1 and
(b) x(b) = b.

(2) The action of y is given by
(a) y(aq) = a1 · aq · a−1

1 and
(b) y(b) = a1 · b · a−1

1 .

Then Gn is linear. As shown in Section 8, these examples can be done easily by
using elementary, “bare-hands” methods.

In the case of a split extension

1 −−−−→ π
i−−−−→ G

pφ−−−−→ Γ −−−−→ 1
which is stable ( Definition 2.5 ), the group G inherits a natural filtration which
is defined next with properties developed in section 4.

Definition 2.9. A filtration of the group G is given by

Fj(G) = Fj(Γ)× Lj(π)

as a set with multiplication obtained from restriction of the formula

(f, x) · (g, y) = (f · g, φ(g)−1(x) · y)

for f, g in Γ, and x, y in π.
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Remark 2.10. To be precise, it must be checked that the stated multiplication
in Definition 2.9 restricts to give Fj(G) as a subgroup of G. This verification is
carried out in section 4.

Let H denote a discrete group. Recall that the commutator function

[−,−] : H ×H → H

induces the structure of Lie algebra on the associated graded for the descending
central series filtration of H. Kohno [10], and Falk-Randell [6] obtained a struc-
ture theorem for these Lie algebras restricted to certain semi-direct products of
groups. A similar theorem holds for the mod-p descending central series filtra-
tion [3]. However, there are other natural filtrations for which a similar extension
theorem holds which are addressed by using the following definition.

Definition 2.11. A filtration of the group H given by {Fj(H)} is said to be
Lie-like provided the commutator function

[−,−] : H ×H → H

restricts to
[−,−] : Fp(H)× Fq(H) → Fp+q(H)

for all p, q ≥ 0.

An analogue of this last property for split group extensions is defined next.

Definition 2.12. Consider the split extension

1 −−−−→ π
i−−−−→ G −−−−→ Γ −−−−→ 1

Two filtrations L∗(π) and F∗(Γ) are said to be stably Lie-like if

(1) F∗(Γ) is Lie-like
(2) For (f, x) ∈ Fr(Γ)×Lr(π) and (g, y) ∈ Fs(Γ)×Ls(π), f(x·g(y)) ∈ Lr+s(π)

Remark 2.13. If L∗(π) is a filtration as part of a stably Lie-like extension, then
it is Lie-like. For this, notice that (1, x) ∈ Fr(Γ)×Lr(π) and (1, y) ∈ Fs(Γ)×Ls(π)
implies that xy ∈ Lr+s(π). Similary, x−1y−1 ∈ Lr+s(π). Thus, the commutator
[x, y] = xyx−1y−1 ∈ Lr+s(π).

Theorem 2.14. Assume that the split extension

1 −−−−→ π
i−−−−→ G

pφ−−−−→ Γ −−−−→ 1

is classified by the map φ : Γ → Aut(π) which satisfies the following conditions:
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(1) The groups Γ and π admit filtrations (not necessarily bounded p-congruence
systems) F∗(Γ) and L∗(π) as given in Definition 2.1.

(2) The filtrations for the groups π and Γ in part (1) are stable in the sense
of Definition 2.5.

(3) The filtrations F∗(Γ) and L∗(π) are both stably Lie-like with associated
graded Lie algebras denoted grF∗ (Γ) and grL∗ (π).

Then the filtration of G given in Definition 2.9 is Lie-like. Furthermore, there is
a split, short exact sequence of Lie algebras

0 → grL
∗ (π) → gr∗(G) → grF

∗ (Γ) → 0

where gr∗(G) is the associated graded Lie algebra with Lie bracket induced by the
commutator pairing

[−,−] : G×G → G

A systematic setting for stable extensions arises by considering automorphisms
of a tower of groups given by a bounded p-congruence system for the group π.
That method is recorded in the next section.

3. Automorphisms of Towers of Groups

The purpose of this section is (i) to define the automorphism group of a tower
of groups over a discrete group π and (ii) to show how the structure of the
automorphism group of certain towers over π gives rise to linear groups. The
automorphism group of a tower of groups is defined next and is analogous to that
of [15].

Definition 3.1. A tower of groups over π is

(1) a family of groups Ln(π) for n in a pointed, totally ordered index set
I = S ∪ {•} with unique least element • and L•(π) = π,

(2) for every i ≥ j ∈ I, there is a ( possibly empty ) family of homomorphisms
F(i, j) given by α(i, j) : Li(π) → Lj(π) with unique homomorphisms
α(i, •) : Li(π) → π such that

α(i, •) = α(j, •) ◦ α(i, j)

for all α(i, j) ∈ F(i, j) .
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The automorphism group of this tower over π denoted

Aut(L∗(π))

is the subgroup of elements (φn) ∈ ∏
n∈I Aut(Ln(π)) such that

φj ◦ α(i, j) = α(i, j) ◦ φi, for all α(i, j) ∈ F(i, j).

A special case is given next.

Definition 3.2. An inductive tower of groups over π is a tower of groups {Ln(π) |n ∈
I ∪ {•}} over π such that

(1) the index set I is given by the natural numbers N = I with • = 0,
(2) each group Ln(π) is a subgroup of π, and
(3) for every i ≥ j, there is exactly one α(i, j) : Li(π) → Lj(π) given by the

natural inclusion.

Three remarks are given next.

Remark 3.3. (1) A filtration of π given by

· · · ⊆ Lj(π) ⊆ · · · ⊆ L1(π) ⊆ L0(π) = π

is an inductive tower over π. Thus, a bounded p-congruence system is an
inductive tower over π.

(2) The automorphism group of an inductive tower of groups over π is the
subgroup of elements in Aut(π) which leave every Ln(π) invariant.

(3) Restrict to the case where Ln(π) is the (n + 1)-st stage of the descending
central series of π, Γn+1(π). The natural inclusions

· · · ⊆ Γn+1(π) ⊆ · · · ⊆ Γ2(π) ⊆ Γ1(π) = π

specify an inductive tower over π for which each Γn+1(π) is invariant.
Thus, the automorphism group of the inductive tower given by the de-
scending central series is equal to Aut(π). Similar remarks apply to the
mod-p descending central series of π.

The next Lemma is a remark which follows from the above definitions.

Lemma 3.4. Assume that {Ln(π) |n ∈ I} is an inductive tower of groups over
π so that the automorphism group of this tower, Aut(L∗(π)), is a subgroup of
Aut(π). Given an automorphism ρ ∈ Aut(L∗(π)), there is the natural induced
split extension
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1 −−−−→ π
i−−−−→ G

pρ−−−−→ Γ −−−−→ 1
classified by regarding ρ ∈ Aut(π).

Automorphisms of certain towers then have implications for whether extensions
are linear.

Theorem 3.5. Consider the split extension

1 −−−−→ π −−−−→ G −−−−→ Γ −−−−→ 1

and suppose that the following conditions are satisfied:

(1) The filtration L∗(π) is a Lubotzky filtration for the group π.
(2) The extension is classfied by a map ρ : Γ −→ Aut(L∗(π)) where Aut(L∗(π))

⊆ Aut(π) is the automorphism group of the tower L∗(π).
(3) There exists a Lubotzky filtration F∗(Γ) for the group Γ such that the

filtrations F∗(Γ) and L∗(π) satisfy condition (2) in Definition 2.5.

Then G is linear.

Proof. It suffices to show that the extension is stable in the sense of Definition
2.5, since the result will then follow from Theorem 2.7

Suppose (f, x) ∈ Fr(Γ)×Lr(π) and (g, y) ∈ Fr+s(Γ)×Lr+s(π) where r, s ≥ 0.
Since the action of Γ is tower-preserving and y ∈ Lr+s(π), it follows that f(y) ∈
Lr+s(π) and the extension is stable. ¤

Remark 3.6. The constructions in this section give a method to extend the
techniques here to arbitrary group extensions without the assumption that the
extension is required to be split. This remark will be addressed elsewhere.

4. Two Filtrations

The purpose of this section is to investigate split extensions equipped with two
filtrations as given in Definition 2.5. Suppose

1 −−−−→ π
i−−−−→ G

pφ−−−−→ Γ −−−−→ 1

is a split extension classified by the map φ : Γ → Aut(π) together with filtrations
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(1) L∗(π) given by

· · · ⊆ Lj(π) ⊆ · · · ⊆ L1(π) ⊆ L0(π) = π

for j ≥ 0 for the group π and
(2) F∗(Γ) given by

· · · ⊆ Fj(Γ) ⊆ · · · ⊆ F1(Γ) ⊆ F0(Γ) = Γ

for j ≥ 0 for the group Γ.

Assume that the extension (together with the two filtrations) is stable as in
Definition 2.5. An equivalent technical formulation for the definition of a stable
extension is stated next. Although elementary, direct, and technical, the next
lemma is checked here as the second condition listed is the one actually used in
the proofs of the theorems below.

Lemma 4.1. Assume that every (g, y) in Fr+s(Γ)× Lr+s(π) and every (f, x) in
Fr(Γ)× Lr(π). The formulas given in Definition 2.5 by

(1) f(y) ∈ Lr+s(π) and
(2) g(x) = δx · x for δx ∈ Lr+s(π).

are equivalent to

(1) f(y) ∈ Lr+s(π) and
(2) g−1(x) · x−1 ∈ Lr+s(π).

Proof. Assume that every (g, y) in Fr+s(Γ)×Lr+s(π) and every (f, x) in Fr(Γ)×
Lr(π). It suffices to check that g(x) = δx · x for δx ∈ Lr+s(π) if and only if
g−1(x) · x−1 ∈ Lr+s(π).

(1) Assume that g−1(x) · x−1 ∈ Lr+s(π), and so g−1(x) · x−1 = εx ∈ Lr+s(π).
Thus g(εx) = δx

−1 ∈ Lr+s(π) by setting f = g and y = εx. Thus
x · g(x−1) = δx

−1.

(2) Assume that g−1(x)·x−1 = εx
−1 ∈ Lr+s(π). Apply g to obtain x·g(x−1) =

g(g−1(x) · x−1) = g(ε−1) ∈ Lr+s(π).

¤

A filtration of G, F∗(G), was defined in Definition 2.9 without verifying that it
is a filtration, namely Fj(G) is naturally a subgroup of G. This fact is recorded
next.
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Lemma 4.2. Assume that

1 −−−−→ π
i−−−−→ G

pφ−−−−→ Γ −−−−→ 1

is a split extension classified by the map φ : Γ → Aut(π) and which is stable with
respect to filtrations L∗(π) and F∗(Γ). Then Fj(G) is a group which is naturally
a subgroup of G and there is a morphism of extensions

Lj(π) i−−−−→ Fj(G)
pφ−−−−→ Fj(Γ)

inclusion

y
y

yinclusion

π
i−−−−→ G

pφ−−−−→ Γ.

Proof. It suffices to check that Fj(G) is closed with respect to the product in G

given by (f, x) · (g, y) = (f · g, φ(g)−1(x) · y) for f, g in Γ, and x, y in π where, by
convention,

g(x) = φ(g)(x).

Assume that f, g are in Fj(Γ), and that x, y are in Lj(π). By the “stability”
condition in Definition 2.5, φ(g)−1(x) is in Lj(π). Thus φ(g)−1(x) · y is in Lj(π).
The lemma follows by inspection. ¤

Properties of the groups Fj(G) are recorded in the next lemma.

Lemma 4.3. Let

1 −−−−→ π
i−−−−→ G

pφ−−−−→ Γ −−−−→ 1

denote a split extension classified by a map φ : Γ → Aut(π) and which is stable
with respect to filtrations L∗(π) and F∗(Γ). Let Fj(G) denote the groups defined
earlier.

Then there are morphisms of split extensions

1 −−−−→ Lr+s(π) i−−−−→ Fr+s(G)
pφ−−−−→ Fr+s(Γ) −−−−→ 1y

y
y1

1 −−−−→ Lr(π) i−−−−→ Fr(G)
pφ−−−−→ Fr(Γ) −−−−→ 1y

y
yφ

1 −−−−→ π
i−−−−→ Hol(π)

p−−−−→ Aut(π) −−−−→ 1
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for every s ≥ 0. Furthermore, Fr+s(G) is a normal subgroup of Fr(G) and there
is an extension

1 −−−−→ Lr(π)/Lr+s(π) i−−−−→ Fr(G)/Fr+s(G)
pφ−−−−→ Fr(Γ)/Fr+s(Γ) −−−−→ 1.

Thus if Fr(Γ)/Fr+s(Γ) is generated by c elements and Lr(π)/Lr+s(π) is generated
by d elements, then Fr(G)/Fr+s(G) is generated by c + d elements.

Proof. In the proof below, recall the convention that f(x) = φ(f)(x) for x ∈ π,
f ∈ Γ and φ : Γ → Aut(π). Since the split extension

1 −−−−→ π
i−−−−→ G

pφ−−−−→ Γ −−−−→ 1

is classified by a map φ : Γ → Aut(π) which is stable with respect to filtrations
L∗(π) and F∗(Γ), there is a morphism of split extensions

1 −−−−→ Lr+s(π) i−−−−→ Fr+s(G)
pφ−−−−→ Fr+s(Γ) −−−−→ 1y

y
y1

1 −−−−→ Lr(π) i−−−−→ Fr(G)
pφ−−−−→ Fr(Γ) −−−−→ 1y

y
yφ

1 −−−−→ π
i−−−−→ Hol(π)

p−−−−→ Aut(π) −−−−→ 1

by Lemma 4.3.

To check that Fr+s(G) is a normal subgroup of Fr(G) for any s ≥ 0, let (f, x)
denote an element in Fr(Γ)× Lr(π) and (g, y) an element in Fr+s(Γ)× Lr+s(π).
Then

(f, x) · (g, y) · (f, x)−1 = (f · g · f−1, f(g−1(x) · y) · f(x−1)).

Notice that

(1) f · g · f−1 is in Fr+s(Γ) since it’s a normal subgroup of Fr(Γ),
(2) f(g−1(x) · y) · f(x−1) = f(g−1(x)) · f(y) · f(x−1),
(3) f(g−1(x)) · f(x−1) is in Lr+s(π) by stability,
(4) y is in Lr+s(π) by assumption, thus f(y) is in Lr+s(π) by stability,
(5) f(x) · f(y) · f(x−1) is in Lr+s(π) by stability and
(6) f(g−1(x)) · f(y) · f(x−1) = f(g−1(x)) · f(x−1) · f(x) · f(y) · f(x−1) is in

Lr+s(π).
(7) Thus Fr+s(G) is a normal subgroup of Fr(G).
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Since Fr+s(G) is a normal subgroup of Fr(G), there is a morphism of extensions

1 −−−−→ Lr+s(π) i−−−−→ Fr+s(G)
pφ−−−−→ Fr+s(Γ) −−−−→ 1y

y
y1

1 −−−−→ Lr(π) i−−−−→ Fr(G)
pφ−−−−→ Fr(Γ) −−−−→ 1y

y
yφ

1 −−−−→ Lr(π)/Lr+s(π) i−−−−→ Fr(G)/Fr+s(G) −−−−→ Fr(Γ)/Fr+s(Γ) −−−−→ 1.

Since Fr(Γ)/Fr+s(Γ) is generated by d elements, the subgroup of Fr(G)/Fr+s(G)
generated by lifts of these elements together with c elements which generate the
kernel then generate the entire group. The lemma follows. ¤

5. Two Filtrations Continued: Proof of Theorem 2.7

The purpose of this section is to describe properties of filtrations arising in
section 4 inspired by work of A. Lubotzky who gave a sufficient condition for the
existence of a finite dimensional faithful representation of a discrete group [13].
Lubotzky’s filtration condition is changed below to fit questions for an extension
theorem.

Given filtrations for Γ and π which are stable for the group extension

1 −−−−→ π
i−−−−→ G

pφ−−−−→ Γ −−−−→ 1,

there are naturally associated semi-direct products Fj(G) defined in section 4.

Properties of the groups Fj(G) are recorded in the next lemma.

Lemma 5.1. Let

1 −−−−→ π
i−−−−→ G

pφ−−−−→ Γ −−−−→ 1

denote a split extension classified by a map φ : Γ → Aut(π) and which is sta-
ble with respect to filtrations L∗(π) and F∗(Γ) which are also assumed to be p-
congruence systems. Then F∗(G) is a p-congruence system for G.

Proof. To check that F∗(G) is p-congruence system for G, recall that it suffices
to check (by Definition 2.2) that

⋂

j≥1

Fj(G) = {1}
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and F∗(G) is a descending chain of normal subgroups

· · · ⊆ Fj(G) ⊆ · · · ⊆ F1(G) ⊆ F0(G) = G

for j ≥ 0 such that

(1) G/F1(G) is finite and
(2) F1(G)/F1+j(G) is a finite p-group for all j ≥ 0.

That Fr+s(G) is a normal subgroup of Fr(G) is checked in Lemma 4.3. Notice
that by the proof of Lemma 4.3,

⋂

j≥1

Fj(G) =
⋂

j≥1

(Fj(Γ)× Lj(π)) = {1}.

Furthermore by 4.3, F∗(G) is a decreasing filtration of G with the property that
there is an extension

1 −−−−→ Lr(π)/Lr+s(π) i−−−−→ Fr(G)/Fr+s(G)
pφ−−−−→ Fr(Γ)/Fr+s(Γ) −−−−→ 1.

Thus

(1) if Γ/Fj(Γ) as well as π/Lj(π) are finite, then so is G/Fj(G) and
(2) if Fr(Γ)/Fr+s(Γ) as well as Lr(π)/Lr+s(π) are finite p-groups, then so is

Fr(G)/Fr+s(G).

Thus F∗(G) is p-congruence system for G and the lemma follows.

¤

Lemma 5.2. Let

1 −−−−→ π
i−−−−→ G

pφ−−−−→ Γ −−−−→ 1

denote a split extension classified by a map φ : Γ → Aut(π) and which is stable
with respect to filtrations L∗(π) and F∗(Γ) which are also assumed to be bounded p-
congruence systems. Then F∗(G) is a Lubotzky filtration, a bounded p-congruence
system.

Proof. By Lemma 5.1, F∗(G) is p-congruence system for G. Furthermore by 4.3,
F∗(G) is a decreasing filtration of G with the property that there is an extension

1 −−−−→ Lr(π)/Lr+s(π) i−−−−→ Fr(G)/Fr+s(G)
pφ−−−−→ Fr(Γ)/Fr+s(Γ) −−−−→ 1.
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Thus if Fr(Γ)/Fr+s(Γ) is generated by c elements and Lr(π)/Lr+s(π) is gen-
erated by d elements, then Fr(G)/Fr+s(G) is generated by c + d elements. By
Definition 2.3, F∗(G) is a a Lubotzky filtration, a bounded p-congruence system
for G.

¤

One consequence of Theorem 2.4 as well as Lemma 5.1 is Theorem 2.7.

6. Proof of Theorem 2.14

Consider the two filtrations L∗(π) and F∗(Γ) associated to the stable extension

1 −−−−→ π
i−−−−→ G

pφ−−−−→ Γ −−−−→ 1
as stated in Definition 2.5 and developed in section 4.

A filtration of G regarded as a set was defined by

Fj(G) = Fj(Γ)× Lj(π)

in Definition 2.9. Some properties of Fj(G) were proven in Lemmas 4.2 and 4.3
as follows.

(1) The subset Fj(G) is naturally a subgroup of G.
(2) There is a morphism of split group extensions

1 −−−−→ Lr+s(π) i−−−−→ Fr+s(G)
pφ−−−−→ Fr+s(Γ) −−−−→ 1y

y
y1

1 −−−−→ Lr(π) i−−−−→ Fr(G)
pφ−−−−→ Fr(Γ) −−−−→ 1.

(3) There is a split extension

1 −−−−→ Lr(π)/Lr+s(π) i−−−−→ Fr(G)/Fr+s(G)
pφ−−−−→ Fr(Γ)/Fr+s(Γ) −−−−→ 1.

Consider the filtration quotients

grF
r (Γ) = Fr(Γ)/Fr+1(Γ), grL

r (π) = Lr(π)/Lr+1(π), and grr(G) = Fr(G)/Fr+1(G).

Then there is a split short exact sequence of groups

{0} −−−−→ grL
r (π) −−−−→ grr(G) −−−−→ grF

r (Γ) −−−−→ {0}
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by Lemmas 4.2 and 4.3.

That F∗(G) is Lie-like is checked next. Suppose (f, x) ∈ Fs(G) and (g, y) ∈
Fr(G). It will be checked that g[f(g−1(x)·y)·f(x−1)]·g(y−1) ∈ Lr+s(π) whenever
the following conditions are satisfied:

(1) The extenstion is stable.
(2) The filtration on Γ is Lie-like.
(3) f(x · g(y)) ∈ Lr+s(π).

Since the filtration F∗(Γ) is Lie-like, there exists h ∈ Fr+s(Γ) with gfg−1 = fh.
Since the extension is stable, there exists δx ∈ Lr+s(π) such that h(x) = δx · x.
This implies the following:

g[f(g−1(x) · y) · f(x−1)] · g(y−1) = gfg−1(x) · gf(y) · gf(x−1) · g(y−1)

= fh(x) · gf(y) · gf(x−1) · g(y−1)

= f(δx) · f(x) · gf(y) · gf(x−1) · g(y−1)

Notice that f(δx) ∈ Lr+s(π) by stability. So it suffices to show f(x) · gf(y) ·
gf(x−1) · g(y−1) ∈ Lr+s(π). Since F∗(Γ) is Lie-like, there exists k ∈ Fr+s(Γ)
with gf = fgk. Since the extension is stable and the filtration of π is given by
normal subgroups, there is δy ∈ Lr+s(π) such that k(y) = y · δy. This implies the
following:

f(x) · gf(y) · gf(x−1) · g(y−1) = f(x) · fgk(y) · gf(x−1) · g(y−1)

= f(x) · fg(y · δy) · g(f(x−1) · y−1)

= f(x) · fg(y) · fg(δy) · g(f(x−1) · y−1)

= f(x · g(y)) · fg(δy) · g(f(x−1) · y−1)

Now fg(δy) ∈ Lr+s(π) by the stability condition. The additional condition (3)
above gives that f(x · g(y)) ∈ Lr+s(π) and g(f(x−1) · y−1) ∈ Lr+s(π).
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To finish the proof, notice that Theorem 2.14 follows at once from the property
that these maps induce morphisms of Lie algebras, a property which is checked
next.

First observe that if x ∈ Lr(π) and y ∈ Ls(π), then [x, y] ∈ Lr+s(π) by the
assumption that the filtration L∗(π) is Lie-like. Secondly, since the filtration of
G is Lie-like, there is a commutative diagram

Lr(π)× Ls(π)
[−,−]−−−−→ Lr+s(π)

i×i

y
yi

Fr(G)× Fs(G)
[−,−]−−−−→ Fr+s(G).

Thus the map i : π → G passes to quotients on the level of associated graded
modules and preserves the structure of the underlying Lie algebras. Thus the
map

pφ : G → Γ

preserves the structure of Lie algebras. The Theorem follows.

7. An Example

The purpose of this section is to give examples of Theorem 2.7 and Theorem
3.5. This example has the serious drawback that the extension can be shown to
be linear by a “bare-hands”, more general, classical argument which is reviewed
in section 8.

These examples arise by forming the split extension

1 → Fn → G → Γ → 1

where

(1) Γ is a subgroup of GL(2,Z) ( and thus Γ has a normal finite index sub-
group which is free ),

(2) Fn is isomorphic to a principal congruence subgroup of level pr in PSL(2,Z),
and

(3) Γ acts by conjugation on Fn.
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Let PΓ(2, pr) denote the kernel of the “mod-pr reduction map”

ρpr : PSL(2,Z) −→ PSL(2,Z/prZ).

Natural automorphisms of PΓ(2, pr) as well as the tower

· · · ⊆ PΓ(2, pr+1) ⊆ PΓ(2, pr) ⊆ · · · ⊆ PΓ(2, p) = π

are given by conjugation by an element in GL(2,Z).

Furthermore if p is a prime, the groups PΓ(2, p) are free on 1 + p(p2 − 1)/12
generators if p is an odd prime [8] or 2 letters if p = 2 [9]. Let Γ(2, pr) denote
the kernel of the natural reduction map GL(2,Z) → GL(2,Z/prZ). Below it is
shown that

· · ·PΓ(2, pr+1) ⊆ PΓ(2, pr) ⊆ · · · ⊆ PΓ(2, p2) ⊆ PΓ(2, p)

gives a Lubotzky filtration for PΓ(2, p). The reader can check that similar argu-
ments show that

· · · ⊆ Γ(2, pr+1) ⊆ Γ(2, pr) ⊆ · · · ⊆ Γ(2, p2) ⊆ Γ(2, p)

gives a Lubotzky filtration for Γ(2, p). This information is recorded next while a
more standard development is given in section 8.

Lemma 7.1. The filtration

· · · ⊆ Γ(2, pr+1) ⊆ Γ(2, pr) ⊆ · · · ⊆ Γ(2, p2) ⊆ Γ(2, p)

of Γ(2, p) is a Lubotzky filtration.

Proposition 7.2. The extension

1 −−−−→ PΓ(2, pr) −−−−→ G −−−−→ Γ(2, ps) −−−−→ 1

is linear where Γ(2, ps) acts on PΓ(2, pr) by conjugation and r, s ≥ 1.



Remarks Concerning Lubotzky’s Filtration 99

Proof. Let f ∈ Γ(2, ps) and x ∈ PΓ(2, pr+q) where q ≥ 0, so that x projects to the
identity in PSL(2,Z/pr+qZ). Since fxf−1 ∈ PΓ(2, pr+q), the conjugation action
is tower-preserving. Thus this filtration, along with the filtration of PΓ(2, pr) is
stable in the sense of Definition 2.5. Theorem 2.7 then implies that G is linear.

¤

Additional properties, some classical, some possibly not, are recorded next.
Notice that an automorphism of the tower of groups

· · · ⊆ PΓ(2, pr+1) ⊆ PΓ(2, pr) ⊆ · · · ⊆ PΓ(2, p) = π

induces an automorphism of the Lie algebra

gr∗(PΓ(2, p)) = ⊕s≥1PΓ(2, ps)/PΓ(2, ps+1).

Thus it is natural to identify the structure of this Lie algebra.

That structure is given next where related, and standard properties of these
principal congruence subgroups are recorded for convenience. Recall that
PΓ(2, ps+1) is a normal subgroup of PΓ(2, ps). Define

grs(PΓ(2, p)) = PΓ(2, ps)/PΓ(2, ps+1)

the associated graded.

The commutator map

[−,−] : PSL(2,Z)× PSL(2,Z) → PSL(2,Z)

restricts to

[−,−] : PΓ(2, pr)× PΓ(2, ps) → PΓ(2, pr+s),

and induces the structure of Lie algebra on the associated graded

gr∗(PΓ(2, p))) = ⊕s≥1grs(PΓ(2, p))

with

[−,−] : grs(PΓ(2, p))⊗ grt(PΓ(2, p)) → grs+t(PΓ(2, p)).
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Furthermore, the p-th power map

ψp : PΓ(2, ps) → PΓ(2, ps+1)

induces a ( possibly non-linear ) map

ψp : grs(PΓ(2, p)) → grs+1(PΓ(2, p)).

Together with the previous structure of Lie algebra for gr∗(PΓ(2, p)), this gives
the structure of a restricted Lie algebra over the field with p elements Fp. Clas-
sical, well-known properties of the filtration quotients PΓ(2, pr)/PΓ(2, pr+1) are
recorded in the next theorem.

Theorem 7.3. If p is an odd prime, there are isomorphisms

θq : ⊕3Z/pZ→ grq(PΓ(2, p))

with a choice of basis given by

Aq =

(
1 pq

0 1

)
, Bq =

(
1 0
pq 1

)
, Cq =

(
1 + pq pq

−pq 1− pq

)
.

Furthermore,

Bq · Cq ·A−1
q = Dq

( where the next matrix is not the reduction of a matrix in PSL(2,Z) but repre-
sents a nontrivial coset in grq(PΓ(2, p)) )

Dq =

(
1 + pq 0

0 1− pq

)
.

If p = 2, there are isomorphisms

θq : ⊕2Z/2Z→ grq(PΓ(2, 2))

with a choice of basis given by

Aq =

(
1 2q

0 1

)
, Bq =

(
1 0
2q 1

)
.

Furthermore
[Aq, Bq] = 1.
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The additive structure given above is given in a global way in terms of restricted
Lie algebras. That structure is listed next.

Theorem 7.4. If p = 2, then the restricted Lie algebra gr∗(PΓ(2, 2)) is gener-
ated by A1 and B1 (as a restricted Lie algebra). Furthermore, gr∗(PΓ(2, 2)) is
the abelian, free restricted Lie algebra (over F2) generated by A1 and B1 where,
redundantly, the following relations are satisfied:

(1) [Aq, Bs] = 1 for all q and s,
(2) ψ2(Aq) = Aq+1 and
(3) ψ2(Bq) = Bq+1.

If p is an odd prime, then the restricted Lie algebra gr∗(PΓ(2, p)) is generated
by A1, B1 and D1. Furthermore, gr∗(PΓ(2, p)) is the free restricted Lie algebra
(over Fp) generated by A1, B1 and D1 subject to the following relations.

(1) [Aq, Bs] = Dq+s for all q and s,
(2) [Aq, Ds] = A−2

q+s for all q and s,
(3) [Bq, Ds] = B2

q+s for all q and s,
(4) ψp(Aq) = Aq+1,
(5) ψp(Bq) = Bq+1, and
(6) ψp(Dq) = Dq+1.

Theorem 7.3 is classical and can be found in [8]. The proof of Theorem 7.4 is
a computation based on the next classical lemma.

Proposition 7.5. The quotient PΓ(2, pr)/PΓ(2, pr+1) is isomorphic to the kernel
of the natural reduction map

γpr : PSL(2,Z/pr+1Z) −→ PSL(2,Z/prZ)

and so there are isomorphisms

PΓ(2, pr)/PΓ(2, pr+1) ∼=
{
⊕2Z/2Z if p = 2, and

⊕3Z/pZ if p is an odd prime.

Proof. The proof follows directly from the commutative diagram where the rows
and columns are all group extensions:
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PΓ(2, pr+1) 1−−−−→ PΓ(2, pr+1) −−−−→ 1y
y

y1

PΓ(2, pr) −−−−→ PSL(2,Z)
ρpr−−−−→ PSL(2,Z/prZ)y

yρpr+1

y1

Ker(2, pr) −−−−→ PSL(2,Z/pr+1Z)
γpr−−−−→ PSL(2,Z/prZ)

¤

More applications to other groups SL(n,A) and to their cohomology will ap-
pear in the thesis of J. Lopez [12].

8. A Second Example

The purpose of this section is to review classical properties of the natural
extension of PSL(n,A) by SL(n,A) with conjugation action where A is a com-
mutative ring. First, Let Z(G) denote the center of the group G and consider the
conjugation action of G on itself thus inducing an action of G/Z(G) on G given
by

Inn(G) = G/Z(G) → Aut(G).

Let ∆(G) denote the associated extension

1 −−−−→ G
i−−−−→ ∆(G)

p−−−−→ G/Z(G) −−−−→ 1

obtained from the conjugation action of G/Z(G) on G.

Notice that SL(n,A) acts on the full matrix ring M(n,A) in two ways recorded
next where M ∈ M(n,A) and γ, y ∈ SL(n,A).

(1) (1, y)(M) = yM and
(2) (γ, 1)(M) = γ · (M) · γ−1.

Then define

(γ, y)(M) = γ · (y ·M) · γ−1.

Lemma 8.1. The formula

(γ, y)(M) = γ · (y ·M) · γ−1
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for M ∈ M(n,A) and γ, y ∈ SL(n,A) specifies a left action of ∆(SL(n,A)) on
M(n,A).

Assume Lemma 8.1 for the moment.

Theorem 8.2. The formula

ρ((γ, y))(M) = γ · (y ·M) · γ−1

for M ∈ M(n,A) and γ, y ∈ SL(n,A) induces a faithful representation

ρ : ∆(SL(n,A)) → GL(n2, A).

The theorem has an elementary, immediate consequence.

Corollary 8.3. If G is a group with trivial center and is a subgroup of SL(n,A),
then the split extension

1 −−−−→ G
i−−−−→ ∆(G)

p−−−−→ G/Z(G) = G −−−−→ 1

where G acts on itself by conjugation is a subgroup of GL(n2, A).

The proof of Theorem 8.2 is given next.

Proof. First notice that by Lemma 8.1 the function ρ is a homomorphism.

If (γ, y) is in the kernel of ρ then

ρ((γ, y))(M) = M

for all M ∈ M(n,A). Let M = 1n the multiplicative identity element in M(n,A).
Then

γ · (y · 1n) · γ−1 = 1n

implies that y = 1n.

Thus assume that (γ, 1n) is in the kernel of ρ. Hence

γ(M)γ−1 = M
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for all M ∈ M(n,A), and γ is in the center of PSL(n,A) which, by definition is
trivial. The Theorem follows.

¤

The proof of Lemma 8.1 is given next.

Proof. Let (α, x) and (β, y) denote elements in the semi-direct product ∆(SL(n,A)).

Then the following hold for M ∈ M(n,A).

(1) (α, x)(β, y) = (αβ, β−1xβy)
(2) (αβ, β−1xβy)(M) = αβ(β−1xβyM)β−1α−1 = α(xβyM)β−1α−1

(3) (α, x)((β, y)(M)) = (α, x)(βyMβ−1) = α(xβ(yM)β−1)α−1

Since the two formulas agree, the Lemma follows.

¤
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