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Abstract: Let M be the moduli space of rank 2 stable bundles with fixed
determinant of degree 1 on a smooth projective curve C of genus g ≥ 2.
When C is generic, we show that any elliptic curve on M has degree (re-
spect to anti-canonical divisor −KM ) at least 6, and we give a complete
classification for elliptic curves of degree 6. Moreover, if g > 4, we show that
any elliptic curve passing through the generic point of M has degree at least
12. We also formulate a conjecture for higher rank.
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1. Introduction

Let C be a smooth projective curve of genus g ≥ 2 and L be a line bundle of
degree d on C. Let M := SUC(r,L)s be the moduli space of stable vector bundles
on C of rank r and with fixed determinant L, which is a smooth qusi-projective
Fano variety with Pic(M) = Z · Θ and −KM = 2(r, d)Θ, where Θ is an ample
divisor. Let B be a smooth projective curve of genus b. The degree of a curve
φ : B → M is defined to be degφ∗(−KM ). It seems quite natural to ask what is
the lower bound of degree and to classify the curves of lowest degree.

When B = P1, we have determined all φ : P1 → M with lowest degree in [6]
and all φ : P1 → M passing through the generic point of M with lowest degree

Received: Oct. 16, 2010; Revised: Feb. 20, 2011.

Supported by NBRPC 2011CB302400, NSFC60821002/F02 and NSFC10731030.



1762 Xiaotao Sun

in [9]. In fact, one can construct φ : P→ M for various projective spaces P such
that φ∗(−KM ) = OP(2(r, d)), and φ : Pr−1 → M passing through the generic
point of M such that φ∗(−KM ) = OPr−1(2r). Then it was proved in [6] and [9]
that the images of lines in these projective spaces exhaust all minimal rational
curves on M (resp. minimal rational curves passing through generic point of M).
Some applications of the results were also pointed out in [6] and [9]. Thus it is
natural to ask what are the situation when b > 0. This note is a start to study the
case of b = 1. It may happen that the normalization of φ(B) is P1. To avoid this
case, we call φ : B → M an essential elliptic curve of M if the normalization
of φ(B) is an elliptic curve.

It is easy to construct essential elliptic curves of degree 6(r, d) on M , and
essential elliptic curves of degree 6r that pass through the generic point of M . For
example, for smooth elliptic curves B ⊂ P of degree 3, the morphism φ : P→ M

defines essential elliptic curves φ|B : B → M of degree 6(r, d) (See Example
3.6), which are called elliptic curves of split type. For smooth elliptic curves
B ⊂ Pr−1 of degree 3 (here we assume r > 2), the morphism φ : Pr−1 → M

defines essential elliptic curves φ|B : B → M of degree 6r passing through the
generic point of M (See Example 3.5), which are called elliptic curves of Hecke
type. Are they minimal elliptic curves of M (resp. minimal elliptic curves passing
through generic point of M)? Do they exhaust all minimal essential elliptic curves
on M (See Conjecture 4.8 for detail)?

In this note, we consider the case that r = 2 and d = 1, then M is a smooth
projective Fano manifold of dimension 3g − 3. When C is generic, we show that
any essential elliptic curve φ : B → M has degree at least 6, and it must be an
elliptic curve of split type if it has degree 6 (See Theorem 4.6). When g > 4
and C is generic, we show that any essential elliptic curve φ : B → M passing
through the generic point of M has degree at least 12 (See Theorem 4.7). When
C is generic, there is no nontrivial morphism from C to an elliptic curve, which
implies that Pic(C × B) = Pic(C) × Pic(B) (in fact, for any line bundle L on
C × B, L defines a morphism C → Jd(B), which must be trivial since Jd(B) is
isomorphic to an elliptic curve. Thus L|{x1}×B

∼= L|{x2}×B for any x1 , x2 ∈ C,
and there is a line bundle L2 on B such that L′ := L ⊗ p∗BL−1

2 is trivial at each
fiber of pC : C × B → C, then L2 := pC∗L′ is a line bundle and L′ = p∗CL2). It
is the condition that we need through the whole paper.
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We give a brief description of the article. In Section 2, we show a formula of
degree for general case. In Section 3, we show how the general formula implies
the known case B = P1 and construct the examples of essential elliptic curves
of degree 6(r, d) and 6r. In Section 4, we prove the main theorems (Theorem
4.6 and Theorem 4.7), which is the special case r = 2, d = 1 of Conjecture 4.8.
Although I believe the conjecture, I leave the case of r > 2 to other occasion.

Acknowledegements: The author would like to thank one of the referees for the
careful reading and English corrections, which improve the writing.

2. The degree formula of curves in moduli spaces

Let C be a smooth projective curve of genus g ≥ 2 and L a line bundle on C

of degree d. Let M = SUC(r,L)s be the moduli spaces of stable bundles on C of
rank r, with fixed determinant L. It is well-known that Pic(M) = Z · Θ, where
Θ is an ample divisor.

Lemma 2.1. For any smooth projective curve B of genus b, if

φ : B → M

is defined by a vector bundle E on C ×B, then

degφ∗(−KM ) = c2(End0(E)) = 2rc2(E)− (r − 1)c1(E)2 := ∆(E)

Proof. In general, there is no universal bundle on C ×M , but there exist vector
bundle End0 and projective bundle P on C×M such that End0|C×{[V ]} = End0(V )
and P|C×{[V ]} = P(V ) for any [V ] ∈ M . Let π : C ×M → M be the projection,
then TM = R1π∗(End0), which commutes with base changes since π∗(End0) = 0.

For any curve φ : B → M , let X := C × B, E = (id × φ)∗End0 and π : X =
C×B → B still denote the projection. Then φ∗TM = R1π∗E. By Riemann-Roch
theorem, we have

degφ∗(−KM ) = χ(R1π∗E) + (r2 − 1)(g − 1)(b− 1).

By using Leray spectral sequence and χ(E) = deg(ch(E) · td(TX))2, we have
χ(R1π∗E) = −χ(E) = c2(E)− (r2 − 1)(g − 1)(b− 1), hence

degφ∗(−KM ) = c2(E).
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If φ : B → M is defined by a vector bundle E on X = C ×B, then E = End0(E)
(cf. the proof of lemma 2.1 in [9]). Thus

degφ∗(−KM ) = c2(End0(E)) = 2rc2(E)− (r − 1)c1(E)2.

¤

Let f : X → C be the projection. Then, for any vector bundle E on X, there
is a relative Harder-Narasimhan filtration (cf Theorem 2.3.2, page 45 in [5])

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E

such that Fi = Ei/Ei−1 (i = 1, ... n) are flat over C and its restriction to general
fiber Xp = f−1(p) is the Harder-Narasimhan filtration of E|Xp . Thus Fi are
semi-stable of slop µi at generic fiber of f : X → B with µ1 > µ2 > · · · > µn.

Then we have the following theorem

Theorem 2.2. For any vector bundle E of rank r on X, let

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E

be the relative Harder-Narasimhan filtration over C with Fi = Ei/Ei−1 and µi =
µ(Fi|f−1(x)) for generic x ∈ C. Let µ(E) and µ(Ei) denote the slope of E|π−1(b)

and Ei|π−1(b) for generic b ∈ B. Then, if

Pic(C ×B) = Pic(C)× Pic(B),

we have the following formula

∆(E) = 2r




n∑

i=1

(
c2(Fi)− rk(Fi)− 1

2 rk(Fi)
c1(Fi)2

)

+
n−1∑

i=1

(µ(E)− µ(Ei))rk(Ei)(µi − µi+1)




.(2.1)

Proof. It is easy to see that

2c2(E) = 2
n∑

i=1

c2(Fi) + 2
n∑

i=1

c1(Ei−1)c1(Fi)

= 2
n∑

i=1

c2(Fi) + c1(E)2 −
n∑

i=1

c1(Fi)2.
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Thus

∆(E) = 2r
n∑

i=1

c2(Fi) + c1(E)2 − r
n∑

i=1

c1(Fi)2.

Let ri be the rank of Fi and di be the degree of Fi on the generic fiber of
π : C ×B → B. Then we can write

c1(Fi) = f∗OC(di) + π∗OB(riµi)

where OC(di) (resp. OB(riµi)) denotes a divisor of degree di (resp. degree riµi)
of C (resp. B). Note that

c1(Fi)2 = 2diriµi, c1(E)2 = 2d

n∑

i=1

riµi

we have

∆(E) = 2r

(
n∑

i=1

c2(Fi) + µ(E)
n∑

i=1

riµi −
n∑

i=1

diriµi

)

= 2r

(
n∑

i=1

(c2(Fi)− (ri − 1)diµi) + µ(E)
n∑

i=1

riµi −
n∑

i=1

diµi

)
.

Let deg(Ei) denote the degree of Ei on the generic fiber of

π : C ×B → B.

Using di = deg(Ei)− deg(Ei−1) and ri = rk(Ei)− rk(Ei−1), we have

µ(E)
n∑

i=1

riµi −
n∑

i=1

diµi =
n−1∑

i=1

(µ(E)− µ(Ei))rk(Ei)(µi − µi+1).

Since diµi = c1(Fi)2/2ri, we get the formula

∆(E) = 2r




n∑

i=1

(
c2(Fi)− ri − 1

2ri
c1(Fi)2

)

+
n−1∑

i=1

(µ(E)− µ(Ei))rk(Ei)(µi − µi+1)




.

¤

Remark 2.3. I do not know if the formula holds without the assumption that
Pic(C × B) = Pic(C)× Pic(B). On the other hand, the assumption holds when
B is an elliptic curve and C is generic.
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Theorem 2.4. For any torsion free sheaf F on X = C × B, where B is any
smooth projective curve, if its restriction to a fiber of f : X = C × B → C is
semi-stable, then

∆(F) = 2 rk(F) c2(F)− (rk(F)− 1)c1(F)2 ≥ 0.

If the determinants {det(F∗∗)x}x∈C are isomorphic to each other, then ∆(F) = 0
if and only if F is locally free and satisfies the following

• All the bundles {Fx := F|{x}×B}x∈C are semi-stable and s-equivalent to
each other, and

• the bundles {Fy := F|C×{y}}y∈B are isomorphic to each other.

Proof. Since ∆(F) ≥ ∆(F∗∗), we can assume that F is a vector bundle. There
is a x ∈ C such that Fx = F|{x}×B is semi-stable, so is End0(F)x = End0(Fx).
Thus, by a theorem of Faltings (cf. Theorem I.2. of [1]), there is a vector bundle
V on B such that

H0(End0(F)x ⊗ V ) = H1(End0(F)x ⊗ V ) = 0,

which defines a global section ϑ(V ) of the line bundle

Θ(End0(F)⊗ π∗V ) = (detf!(End0(F)⊗ π∗V ))−1

such that ϑ(V )(x) 6= 0 where π : C × B → B denotes the projection. By
Grothendieck-Riemann-Roch theorem,

c1(detf!(End0(F)⊗ π∗V )) = f∗(ch(End0(F)⊗ π∗V )td(π∗TB))2

= −c2(End0(F)⊗ π∗V )

which means that the line bundle Θ(End0(F)⊗ π∗V ) has degree

c2(End0(F)⊗ π∗V ) = rk(V ) · c2(End0(F)) = rk(V ) ·∆(F)

with a nonzero global section ϑ(V ). Thus ∆(F) ≥ 0.

If ∆(F) = 0, then F = F∗∗ must be locally free and ϑ(V )(x) 6= 0 for any
x ∈ C, which means that for any x ∈ C, we have

H0(End0(F)x ⊗ V ) = H1(End0(F)x ⊗ V ) = 0.

Then, by the theorem of Faltings (cf. Theorem I.2. of [1]), the bundles

{ End0(F)x }x∈C
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are all semi-stable. Thus, for any x ∈ C, the bundle Fx := F|{x}×B is semi-stable.
The bundle F defines a morphism φF : C → UB from C to the moduli space UB

of semi-stable bundles on B, the line bundle Θ(End0(F)⊗ π∗V ) clearly descends
to a line bundle on UB. If the determinants det(Fx) (x ∈ C) are fixed, then
Pic(UB) ∼= Z and Θ(End0(F) ⊗ π∗V ) descends to ample line bundle (a positive
power of anti-canonical bundle of UB). Thus

deg(Θ(End0(F)⊗ π∗V )) = 0

implies that F defines a constant morphism φF : C → UB, which means that all
{Fx}x∈C are s-equivalent.

By using a technique of [4] (see Step 5 in the proof of Theorem 4.2 in [4], see
also the proof of Theorem I.4 in [1]), we will show

F|C×{y1} ∼= F|C×{y2}, ∀ y1, y2 ∈ B.

Choose a nontrivial extension 0 → V → V ′ q1−→ Oy1 → 0 on B, let Q be the
Quot-scheme of rank 0 and degree 1 quotients of V ′, and

0 → K → p∗BV ′ → T → 0

be the tautological exact sequence on B ×Q. Fix a point x1 ∈ C, then the set
q ∈ Q such that H0(Fx1 ⊗ Kq) = H1(Fx1 ⊗ Kq) = 0 is an open set U ⊂ Q and
U 6= ∅ since q1 = (0 → V → V ′ q1−→ Oy1 → 0) ∈ U .

Let Γ ⊂ B × P(V ′) be the graph of P(V ′) p−→ B, then

p∗BV ′ → p∗BV ′|Γ = p∗V ′ → O(1) → 0

induces a quotient p∗BV ′ → ΓO(1) → 0 on B × P(V ′), which defines a morphism
P(V ′) → Q. It is easy to see that P(V ′) → Q is surjective (in fact, it is a
isomorphism). Thus there is an open B1 ⊂ B with y1 ∈ B1 such that for any
y ∈ B1 there exists an exact sequence

0 → Kq → V ′ q−→ Oy → 0(2.2)

such that H0(Fx1 ⊗Kq) = H1(Fx1 ⊗Kq) = 0, which implies

H0(Fx ⊗Kq) = H1(Fx ⊗Kq) = 0 ∀ x ∈ C

since Fx is s-equivalent to Fx1 for any x ∈ C. Pull back the exact sequence (2.2)
by π : C ×B → B and tensor with F , we have the exact sequence

0 → F ⊗ π∗Kq → F ⊗ π∗V ′ → Fy → 0.(2.3)
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Take direct images of (2.2) under f : C ×B → C, we have

Fy
∼= f∗(F ⊗ π∗V ′) , ∀ y ∈ B1

which implies that all {Fy}y∈B are isomorphic each other. ¤

We will need the following lemma in the later computation, whose proofs are
straightforward computations (see Lemma 1 in Chapter 2 of [2] for the case of
rank 1).

Lemma 2.5. Let X be a smooth projective surface and j : D ↪→ X be an effective
divisor. Then, for any vector bundle V on D, we have

c1(j∗V ) = rk(V ) ·D

c2(j∗V ) =
rk(V )(rk(V ) + 1)

2
D2 − j∗c1(V ).

Recall that Xt = f−1(t) denotes the fiber of f : X → C and for any vector
bundle F on X, Ft denote the restrictions of F to Xt.

Lemma 2.6. Let Ft → W → 0 be a locally free quotient and

0 → F ′ → F → XtW → 0

be the elementary transformation of F along W at Xt ⊂ X. Then

∆(F) = ∆(F ′) + 2r(µ(Ft)− µ(W ))rk(W ).

3. Mminimal rational curves and examples of elliptic curves on

moduli spaces

When B = P1, the condition Pic(C × B) = Pic(C) × Pic(B) always hold and
any morphism B → M is defined by a vector bundle on C × B (cf. Lemma 2.1
of [9]).

Recall that given two nonnegative integers k, `, a vector bundle W of rank r

and degree d on C is (k, `)-stable, if, for each proper subbundle W ′ of W , we
have

deg(W ′) + k

rk(W ′)
<

deg(W ) + k − `

r
.

The usual stability is equivalent to (0, 0)-stability. The (k, `)-stability is an open
condition. The proofs of following lemmas are easy and elementary (cf. [7]).
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Lemma 3.1. If g ≥ 3, M contains (0, 1)-stable and (0, 1)-stable bundles. M

contains a (1, 1)-stable bundle W unless g = 3, d, r both even.

Lemma 3.2. Let 0 → V → W → Op → 0 be an exact sequence, where Op is
the 1-dimensional skyscraper sheaf at p ∈ C. If W is (k, `)-stable, then V is
(k, `− 1)-stable.

A curve B → M defined by E on C ×B passing through the generic point of
M satisfies that Ey := E|C×{y} is (1, 1)-stable for generic y ∈ B. Thus in the
formula (2.1) of Theorem 2.2 we have

(µ(E)− µ(Ei))rk(Ei) > 1.(3.1)

On the other hand, any semi-stable bundle on B = P1 must have integer slope.
By the formula (2.1) in Theorem 2.2, we have

∆(E) > 2r

if E is not semi-stable on the generic fiber of f : X = C × P1 → C.

When E is semi-stable on the generic fiber of f : X → C, by tensor E with a
line bundle, we can assume that E is trivial on the generic fiber of f : X → C.
Thus ∆(E) = 2rc2(E) ≥ 2r and there must be a fiber Xt = f−1(t) such that
Et = E|Xt is not semi-stable by Theorem 2.4. If ∆(E) = 2r, by Lemma 2.6,
we must have rk(W ) = 1, µ(W ) = −1 and ∆(F ′) = 0 in Lemma 2.6. Thus
∆(E) = 2r if and only if E satisfies

0 → f∗V → E → XtOP1(−1) → 0

which defines a so called Hecke curve. Therefore we get the main theorem in [9].

Theorem 3.3. If g ≥ 3, then any rational curve of M passing through the generic
point of M has at least degree 2r with respect to −KM . It has degree 2r if and
only if it is a Hecke curve unless g = 3, r = 2 and (2, d) = 2.

At the end of this section, we give some examples of elliptic curves on M . Let
us recall the construction of Hecke curves. Let UC(r, d− 1) be the moduli space
of stable bundles of rank r and degree d− 1. Let

O ⊂ UC(r, d− 1)
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be the open set of (1, 0)-stable bundles. Let C × O
ψ−→ Jd(C) be defined as

ψ(x, V ) = OC(x)⊗ det(V ) and

RC := ψ−1(L) ⊂ C ×O,

which consists of the points (x, V ) such that V are (1, 0)-stable bundles on C

with det(V ) = L(−x). There exists a projective bundle

p : P → RC

such that for any (x, V ) ∈ RC we have p−1(x, V ) = P(V ∨
x ). Let

V ∨
x ⊗OP(V ∨x ) → OP(V ∨x )(1) → 0

be the universal quotient, f : C × P(V ∨
x ) → C be the projection, and

0 → E ∨ → f∗V ∨ → {x}×P(V ∨x )OP(V ∨x )(1) → 0

where E ∨ is defined to the kernel of the surjection. Taking dual, we have

0 → f∗V → E → {x}×P(V ∨x )OP(V ∨x )(−1) → 0,(3.2)

which, at any ξ = (V ∨
x → Λ → 0) ∈ P(V ∨

x ), gives an exact sequence

0 → V
ι−→ Eξ → Ox → 0

on C such that ker(ιx) = Λ∨ ⊂ Vx. V being (1, 0)-stable implies the stability of
Eξ. Thus (3.2) defines

Ψ(x,V ) : P(V ∨
x ) = p−1(x, V ) → M.(3.3)

Definition 3.4. The images (under {Ψ(x,V )}(x,V )∈RC
) of lines in the fibres of

p : P → RC are the so called Hecke curves in M . The images (under
{Ψ(x,V )}(x,V )∈RC

) of elliptic curves in the fibres of

p : P → RC

are called elliptic curves of Hecke type.

It is known (cf. [7, Lemma 5.9]) that the morphisms in (3.3) are closed im-
mersions. By a straightforward computation, we have

Ψ∗
(x,V )(−KM ) = OP(V ∨x )(2r).(3.4)

For any point [W ] ∈ M and (Wx → C → 0) ∈ P(Wx), where W is (1, 1)-stable,
we define a (1, 0)-stable bundle V by

0 → V
α−→ W → xC→ 0.
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Then the images of p−1(x, V ) = P(V ∨
x ) are projective spaces that pass through

[W ] ∈ M , and the images of lines ` ⊂ P(V ∨
x ) that pass through [ker(αx)] ∈ P(V ∨

x )
are Hecke curves passing through [W ] ∈ M .

Example 3.5. When g ≥ 4 and r > 2, for generic [W ] ∈ M , the images of
smooth elliptic curves B ⊂ P(V ∨

x ) with degree 3 and [ker(αx)] ∈ B are smooth
elliptic curves on M that pass through [W ] ∈ M , which have degree 6r by (3.4).

If we do not require the curve φ : B → M passing through generic point of M ,
we may construct rational curves and elliptic curves with smaller degree. Let us
recall the Construction 2.3 from [6].

For any given r and d, let r1, r2 be positive integers and d1, d2 be integers that
satisfy the equalities r1 + r2 = r, d1 + d2 = d and

r1
d

(r, d)
− d1

r

(r, d)
= 1, d2

r

(r, d)
− r2

d

(r, d)
= 1.

Let UC(r1, d1) (resp. UC(r2, d2)) be the moduli space of stable vector bundles
with rank r1 (resp. r2) and degree d1 (resp. d2). Then, since (r1, d1) = 1 and
(r2, d2) = 1, there are universal vector bundles V1, V2 on C × UC(r1, d1) and
C × UC(r2, d2) respectively. Consider

UC(r1, d1)× UC(r2, d2)
det(•)×det(•)−−−−−−−−→ Jd1

C × Jd2
C

(•)⊗(•)−−−−→ Jd
C ,

let R(r1, d1) be its fiber at [L] ∈ Jd
C . The pullback of V1, V2 by the projection

C ×R(r1, d1) → C × UC(ri, di) (i = 1, 2) is still denoted by V1, V2 respectively.
Let p : C ×R(r1, d1) →R(r1, d1) and

G = R1p∗(V∨2 ⊗ V1),

which is locally free of rank r1r2(g − 1) + (r, d). Let

q : P (r1, d1) = P(G) →R(r1, d1)

be the projective bundle parametrzing 1-dimensional subspaces of Gt (t ∈ R(r1, d1))
and f : C × P (r1, d1) → C, π : C × P (r1, d1) → P (r1, d1) be the projections.
Then there is a universal extension

0 → (id× q)∗V1 ⊗ π∗OP (r1,d1)(1) → E → (id× q)∗V2 → 0(3.5)

on C × P (r1, d1) such that for any x = ([V1], [V2], [e]) ∈ P (r1, d1), where [Vi] ∈
UC(ri, di) with det(V1) ⊗ det(V2) = L and [e] ⊂ H1(C, V ∨

2 ⊗ V1) being a line
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through the origin, the bundle E|C×{x} is the isomorphism class of vector bundles
V given by extensions

0 → V1 → V → V2 → 0

that are defined by vectors on the line [e] ⊂ H1(C, V ∨
2 ⊗ V1). Then V must be

stable by [6, Lemma 2.2], and the sequence (3.5) defines

Φ : P (r1, d1) → SUC(r,L)s = M.

On each fiber q−1(ξ) = P(H1(V ∨
2 ⊗ V1)) at ξ = (V1, V2), the morphisms

Φξ := Φ|q−1(ξ) : q−1(ξ) = P(H1(V ∨
2 ⊗ V1)) → M(3.6)

is birational and Φ∗ξ(−KM ) = OP(H1(V ∨2 ⊗V1))(2(r, d)) by [6, Lemma 2.4].

Example 3.6. The images of lines ` ⊂ P(H1(V ∨
2 ⊗ V1)) are rational curves

of degree 2(r, d) on M , which is clearly of the minimal degree since −KM =
2(r, d)Θ. For smooth elliptic curves B ⊂ P(H1(V ∨

2 ⊗ V1)) of degree 3, the images
of Φξ : B → M are of degree 6(r, d). For any smooth elliptic curve B ⊂ q−1(ξ)
(∀ ξ ∈ R(r1, d1)), the images of Φξ : B → M are called elliptic curves of split
type.

4. Minimal elliptic curves on moduli spaces

In this section, we consider the moduli space M of rank 2 stable bundles on
C with a fixed determinant L of degree 1. We also assume that the curve C is
generic in the sense that C admits no surjective morphism to an elliptic curve.
With this assumption, we know that Pic(C × B) = Pic(C) × Pic(B) for any
elliptic curve B.

For a morphism φ : B → M , it may happen that the normalization of φ(B) is
a rational curve. To avoid this case, we make the following definition

Definition 4.1. φ : B → M is called an essential elliptic curve of M if the
normalization of φ(B) is an elliptic curve.

Let φ : B → M be a morphism defined by a vector bundle E on X = C × B

(Such E exists for any φ since M has a universal family and it is determined up
to tensoring by a pull-back of line bundle on B). In this section, B will always
denote an elliptic curve.
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Proposition 4.2. Let φ : B → M be an essential elliptic curve of M defined by
a vector bundle E. If E is not semi-stable on the generic fiber of f : X → C,
then

∆(E) ≥ 6.

If g = g(C) ≥ 4 and the curve φ : B → M passes through the generic point of
M , then

∆(E) > 12.

Proof. Let 0 → E1 → E → F2 → 0 be the relative Harder-Narasimhan filtration
over C. Then we have exact sequence

0 → E1|Xt → E|Xt → F2|Xt → 0

on each fiber Xt = {t} × B of f : X → C since E1, F2 are flat over C. Thus E1

is locally free (cf. Lemma 1.27 of [8]) and

∆(E) = 4c2(F2) + 4(µ(E)− µ(E1))(µ1 − µ2)(4.1)

where µ1 = deg(E1|Xt), µ2 = deg(F2|Xt) for t ∈ C (cf. Theorem 2.2).

That 0 → E1 → E → F2 → 0 is the relative Harder-Narasimhan filtration over
C means for almost all t ∈ C the exact sequences

0 → E1|Xt → E|Xt → F2|Xt → 0

are the Harder-Narasimhan filtration of E|Xt , which in particular means that F2

is locally free over f−1(C \ T ) where T ⊂ C is a finite set. Thus

0 → E1|C×{y} → E|C×{y} → F2|C×{y} → 0 , ∀ y ∈ B(4.2)

are exact sequences, which imply that F2 is also B-flat.

If c2(F2) = 0, then F2 is a line bundle and there are line bundles V1, V2 on C

such that

E1 = f∗V1 ⊗ π∗O(µ1), F2 = f∗V2 ⊗ π∗O(µ2)

where O(µi) denote line bundles on B of degree µi. Replace E by E⊗π∗O(−µ2),
we can assume that E satisfies

0 → f∗V1 ⊗ π∗O(µ1 − µ2) → E → f∗V2 → 0.(4.3)

Let di = deg(Vi), J = {(L1, L2) ∈ Jd1
C × Jd2

C |L1 ⊗ L2 = L}, and let Vi be the
pullback of universal line bundle on C × Jdi

C (under the morphism C × J →
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C×Jdi
C ). Then G := R1pJ∗(V−1

2 ⊗V1) is locally free of rank d2−d1 +g−1, where
pJ : C × pJ → J is the projection. Let

q : P = P(G) → J

be the projective bundle parametrizing 1-dimensional subspaces of Gt for any
point t ∈ J . Then there is an universal extension

0 → (id× q)∗V1 ⊗ π∗OP (1) → E → (id× q)∗V2 → 0(4.4)

on C×P , where π : C×P → P denotes the projection. For any x = ([V1], [V2], [e]) ∈
P , the bundle E|C×{x} is the isomorphism class of vector bundles V given by ex-
tensions

0 → V1 → V → V2 → 0

which are defined by vectors on the line [e] ⊂ H1(C, V −1
2 ⊗ V1). Thus the exact

sequence (4.3) induces a morphism

ψ : B → Pd2−d1+g−2 = q−1(V1, V2) ⊂ P(4.5)

such that O(µ1 − µ2) = ψ∗OP (1) and φ : B → M factors through ψ : B →
ψ(B) ⊂ Pd2−d1+g−2, which implies that the normalization of ψ(B) is an elliptic
curve. Hence µ1 − µ2 ≥ 3 and ∆(E) ≥ 6 by (4.1). If φ : B → M passes through
the generic point, then µ(E)− µ(E1) > 1 and ∆(E) > 12.

If c2(F2) 6= 0, F2 is not locally free, which implies that there is a y0 ∈ B such
that F2|C×{y0} has torsion τ(F2|C×{y0}) 6= 0 since F2 is B-flat (cf. Lemma 1.27
of [8]). Let

0 → τ(F2|C×{y0}) → F2|C×{y0} → F 0
2 → 0.(4.6)

Then F 0
2 being a quotient line bundle of E|C×{y0} implies

deg(F 0
2 ) > µ(E|C×{y0}) =

1
2

since E|C×{y0} is stable. By sequences (4.2) and (4.6), we have

µ(E1) = deg(E1|C×{y0}) = 1− deg(F 0
2 )− dim τ(F2|C×{y0}) ≤ −1

which, by the formula (4.1), implies that

∆(E) ≥ 4c2(F2) + 4(
1
2

+ 1)(µ1 − µ2) ≥ 10.

When φ : B → M passes through a generic point, in order to show ∆(E) > 12,
we note that c2(F2) 6= 0 and F2 being C-flat also imply that there exists a t0 ∈ C
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such that F2|Xt0
has torsion τ(F2|Xt0

) 6= 0. Let 0 → τ(F2|Xt0
) → F2|Xt0

→ Q→
0 and E′ = ker(E → Xt0

Q), then

0 → E′ → E → Xt0
Q → 0

which, for any y ∈ B, induces exact sequence

0 → E′|C×{y} → E|C×{y} → (t0,y)Q → 0.(4.7)

Thus all E′
y := E′|C×{y} are semi-stable of degree 0. If φ : B → M passes

through a generic point, then there is a y0 ∈ B such that Ey0 is (1, 1)-stable
on Xy0 = C × {y0}, thus E′

y0
is stable by (4.7) and Lemma 3.2. This implies

that ∆(E′) > 0. Otherwise {E′
y}y∈B are s-equivalent to each other by applying

Theorem 2.4 to π : X → B, which implies E′ = f∗V ⊗π∗L for a stable bundle V

on C and a line bundle L on B. Then Et = E′
t = L⊕ L for any t 6= t0, which is

a contradiction since E is not semi-stable on the generic fiber of f : X → C.

To compute ∆(E′), consider the Harder-Narasimhan filtration

0 → E′
1 → E′ → F ′

2 → 0

over C, let µ′1 = deg(E′
1|Xt), µ′2 = deg(F ′

2|Xt) for t ∈ C, then

∆(E′) = 4c2(F ′
2) + 4(µ(E′)− µ(E′

1))(µ
′
1 − µ′2) ≥ 8.

To see it, we can assume c2(F ′
2) = 0, then there are line bundles V ′

i on C and line
bundles O(µ′i) on B of degree µ′i such that

0 → f∗V ′
1 ⊗ π∗O(µ′1 − µ′2) → E′ ⊗ π∗O(−µ′2) → f∗V ′

2 → 0

which defines a morphism ψ : B → P to a projective space such that O(µ′1−µ′2) =
ψ∗OP(1). Thus µ′1 − µ′2 ≥ 2 and ∆(E′) ≥ 8. Then

∆(E) = ∆(E′) + 4(µ(E|Xt0
)− µ(Q)) ≥ ∆(E′) + 6 ≥ 14.

¤

Now we consider the case that E is semi-stable on the generic fiber of f : X →
C. We can assume 0 ≤ deg(E|Xt) ≤ 1 on Xt = f−1(t).

Proposition 4.3. When E is semi-stable of degree 1 on the generic fiber of
f : X → C, we have ∆(E) ≥ 10. If g > 4 and φ : B → M passes through the
generic point, then ∆(E) ≥ 14.
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Proof. In the case of rank 2 and degree 1, semi-stability is equivalent to stability.
If all {Et = E|Xt}t∈C are semi-stable (note that their determinants are fixed),
then all {Et}t∈C are isomorphic to each other since the moduli space of stable rank
2 bundle with a fixed determinant of degree 1 on an elliptic curve has dimension
0. Thus ∆(E) > 0 if and only if there exists t1 ∈ C such that Et1 = E|Xt1

is not
semi-stable.

Let Et1 → O(µ1) → 0 be the quotient of minimal degree and

0 → E(1) → E → Xt1
O(µ1) → 0

be the elementary transformation of E along O(µ1) at Xt1 . If E(i) is defined and
∆(E(i)) > 0, let ti+1 ∈ C such that E

(i)
ti+1

= E(i)|Xti+1
is not semi-stable and

E
(i)
ti+1

→ O(µi+1) → 0 be the quotient of minimal degree, then we define E(i+1) to
be the elementary transformation of E(i) along O(µi+1) at Xti+1 , namely E(i+1)

satisfies the exact sequence

0 → E(i+1) → E(i) → Xti+1
O(µi+1) → 0.(4.8)

Let s be the minimal integer such that ∆(E(s)) = 0. Then

∆(E) = 2 · s− 4
s∑

i=1

µi(4.9)

where µi ≤ 0 (i = 1 , 2 , ... , s). Since ∆(E(s)) = 0, all {E(s)
t }t∈C are stable bundles

of degree 1, thus H1(B,E
(s)
t ) ∼= H0(B, (E(s)

t )∨) = 0, which implies R1f∗E(s) = 0.
Taking direct images of (4.8), we have

0 → f∗E(s) → f∗E(s−1) → tsH
0(O(µs)) → 0(4.10)

and deg(f∗E(i+1)) ≤ deg(f∗E(i)), which imply

deg(f∗E(s)) ≤ deg(f∗E)− dimH0(O(µs)).(4.11)

Restrict (4.8) to a fiber Xy = π−1(y), we have exact sequence

0 → E(i+1)
y → E(i)

y → (ti+1,y)C→ 0,

which implies that

deg(E(s)
y ) = deg(Ey)− s = 1− s.(4.12)
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On the other hand, by Theorem 2.4, ∆(E(s)) = 0 implies that there exist a stable
rank 2 vector bundle V of degree 1 on B and a line bundle L on C such that
E(s) = π∗V ⊗ f∗L. It is easy to see

deg(E(s)
y ) = 2 deg(L) = 2 deg(f∗E(s)).

Thus, combining (4.11) and (4.12), we have the inequality

s ≥ 1− 2 deg(f∗E) + 2 dimH0(O(µs)).(4.13)

We claim that deg(f∗E) ≤ −1. To show it, consider

0 → F ′ := f∗(f∗E) → E → F → 0(4.14)

where F is locally free on f−1(C \ T ) and T ⊂ C is a finite set such that Et

(t ∈ T ) is not semi-stable. Thus, for any y ∈ B, the sequence

0 → F ′y → Ey → Fy → 0(4.15)

is still exact, which implies that F is B-flat (cf. Lemma 2.1.4 of [5]). The sequence
(4.15) already implies deg(f∗E) = deg(F ′y) ≤ 0 since Ey is stable of degree 1.
Thus F can not be locally free since

4 · c2(F) = ∆(E)− 4 · deg(f∗E) + 2 > 0.

To see this computation, using (4.14) and noting that f∗E is a line bundle, we
have c2(F) = c2(E)− c1(F ′) · c1(E) = c2(E)−deg(f∗E), thus 4 · c2(F) = ∆(E)−
4 · deg(f∗E) + 2 since c1(E)2 = 2 (here we use Pic(C × B) = Pic(C) × Pic(B)).
Then there is at least a y0 ∈ B such that Fy0 has torsion, otherwise F is locally
free (cf. Lemma 1.27 of [8]). The stability of Ey0 implies that Fy0/torsion has
degree at least 1. Thus deg(Fy0) ≥ 2 and

deg(f∗E) = deg(F ′y0
) ≤ −1,

which proves the claim. The claim implies s ≥ 3 + 2 dimH0(O(µs)). Therefore,
if µs < 0, we have ∆(E) ≥ 2 · s + 4 ≥ 10 by (4.9). If µs = 0, by tensoring E with
π∗O(µs)−1, we may assume dim H0(O(µs)) = 1, then s ≥ 5 and ∆(E) ≥ 10.

If φ : B → M passes through the generic point of M , we claim that deg(f∗E) ≤
−2, which implies ∆(E) ≥ 14. To prove the claim, assume deg(f∗E) = −1, we
will show that φ(B) lies in a given divisor. Note that Fy must be locally free of
degree 2 for generic y ∈ B (if Fy has nontrivial torsion, then Ey has a quotient
line bundle of degree at most 1, which is impossible since Ey is (1, 1)-stable for
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generic y ∈ B). Thus Ey satisfies 0 → ξ → Ey → ξ−1 ⊗ L → 0 where ξ is a
line bundle of degree −1 on C. The locus of such bundles has dimension at most
g + h1(ξ2 ⊗ L−1)− 1 = 2g + 1 < dim(M) when g > 4. We are done. ¤

Now we consider the case that E is semi-stable of degree 0 on the generic fiber
of f : X → C. If E is semi-stable on every fiber of f : X → C, then E induces a
non-trivial morphism

ϕE : C → P1

(cf. Theorem 1.5 of [3]) such that ϕ∗EOP1(1) = Θ(E) = (detf!E)−1, which has
degree c2(E) by Grothendieck-Riemann-Roch theorem. Thus

∆(E) = 4 · c2(E) = 4 · deg(ϕE) ≥ 8.(4.16)

If there is a t0 ∈ C such that Et0 = E|Xt0
is not semi-stable on Xt0 = f−1(t0),

let Et0 → O(µ) → 0 be the quotient line bundle of minimal degree µ and E′ =
kernel (E → Xt0

O(µ) → 0 ), then we have

Lemma 4.4. If ∆(E′) = 0, then there is a semi-stable vector bundle V on C

and a line bundle L of degree 0 on B such that

E′ = f∗V ⊗ π∗L.

Proof. By the definition, {E′
t = E′|{t}×B}t∈C and {E′

y = E′|C×{y}}y∈B are fami-
lies of semi-stable bundles of degree 0. Apply Theorem 2.4 to f : X → C (resp.
π : X → B), then ∆(E′) = 0 implies that {E′

t}t∈C (resp. {E′
y}y∈B) are iso-

morphic to each other. By tensoring E (thus E′) with π∗L−1 (where L is a line
bundle of degree 0 on B), we can assume that H0(E′

t) 6= 0 (∀ t ∈ C), which has
dimension at most 2 since E′

t is semi-stable of degree 0. If H0(E′
t) has dimension

2, then E′ = f∗(f∗E′) and we are done.

If H0(E′
t) has dimension 1, we will show a contradiction. In fact, by the

definition of E′, we have an exact sequence

0 → E′ → E → Xt0
O(µ) → 0(4.17)

where O(µ) is a line bundle on {t0} ×B ∼= B of degree µ < 0. Then

V1 := f∗E = f∗E′
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is a line bundle on C. Since {E′
t}t∈C are isomorphic to each other and H0(E′

t)
has dimension 1, we have the exact sequence

0 → f∗V1 → E′ → f∗V2 ⊗ π∗L0 → 0(4.18)

for a line bundle V2 on C and a degree 0 line bundle L0 on B. If L0 6= OB, then
Rif∗(f∗(V −1

2 ⊗ V1) ⊗ L0) = V −1
2 ⊗ V1 ⊗ Hi(L0) = 0 (i = 0, 1), which implies

H1(X, f∗(V −1
2 ⊗V1)⊗L0) = 0 and (4.18) is splitting. This is impossible since E′

y

is semi-stable of degree 0 and we can show that deg(V1) = deg(f∗E) ≤ −1 in the
following.

To prove that deg(f∗E) ≤ −1, we consider the exact sequence

0 → f∗f∗E → E → F → 0(4.19)

where F|f−1(C\{t0}) is locally free of rank 1 by (4.18). But F is not locally free
(otherwise c2(E) = (c1(E)− c1(f∗f∗E)) · c1(f∗f∗E) = 0) and for any y ∈ B the
restriction of (4.19) to Xy = π−1(y)

0 → f∗E → Ey → Fy → 0(4.20)

is exact, which means that F is B-flat (cf. Lemma 2.1.4 of [5]). Thus, by Lemma
1.27 of [8], there is a y0 ∈ B such that Fy0 has torsion τ 6= 0 since F is not locally
free. Then, since Ey0 is stable of degree 1,

deg(Fy0) ≥ 1 + deg(Fy0/τ) > 1 + µ(Ey0) =
3
2

which implies deg(f∗E) ≤ −1 by (4.20).

We have shown that L0 has to be OB and (4.18) has to be

0 → f∗V1 → E′ → f∗V2 → 0(4.21)

which is determined by a class of H1(X, f∗(V1⊗V −1
2 )). However, noting R1f∗(f∗(V1⊗

V −1
2 )) = V1 ⊗ V −1

2 ⊗H1(OB) = V1 ⊗ V −1
2 and

H0(C, V1 ⊗ V −1
2 ) = 0,

by using Leray spectral sequence, we have

H1(C, V1 ⊗ V −1
2 ) ∼= H1(X, f∗(V1 ⊗ V −1

2 )).

Hence there exists an extension 0 → V1 → V → V2 → 0 on C such that E′ ∼= f∗V ,
which contradicts the assumption

dim(H0({t} ×B,E′
t)) = 1.
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¤

Proposition 4.5. When E is semi-stable of degree 0 on the generic fiber of
f : X → C, we have ∆(E) ≥ 8. If C is not hyper-elliptic and φ : B → M passes
through a (1, 1)-stable bundle, assuming that E defines an essential elliptic curve,
then ∆(E) ≥ 12.

Proof. If E is semi-stable on each fiber Xt = f−1(t), then E induces a non-trivial
morphism ϕE : C → P1. By (4.16), ∆(E) ≥ 8.

If there is a t0 ∈ C such that Et0 is not semi-stable, then we have

0 → E′ → E → Xt0
O(µ) → 0

where O(µ) is a line bundle of degree µ on B. If ∆(E′) 6= 0, then ∆(E′) > 0 by
Theorem 2.4. On the other hand, c1(E′)2 = 0 since E′ has degree 0 on the generic
fiber of X → C and Pic(C×B) = Pic(C)×Pic(B). Thus ∆(E′) = 4 · c2(E′) ≥ 4,
and by Lemma 2.6

∆(E) = ∆(E′)− 4µ ≥ 8.

If ∆(E′) = 0, by Lemma 4.4, we can assume that E′ = f∗V , then the se-
quence (4.17) induces a nontrivial morphism ϕ : B → P(V ∨

t0 ) such that O(−µ) =
ϕ∗OP(V ∨t0 )(1). Thus ∆(E) = −4µ ≥ 8.

Now we assume that C is not hyper-elliptic and φ : B → M passes through
a (1, 1)-stable bundle. If E is semi-stable on each fiber Xt, then ∆(E) = 4 ·
deg(ϕE) ≥ 12 by (4.16) since C is not hyper-elliptic.

If there is t0 ∈ C such that Et0 is not semi-stable, we claim ∆(E′) > 0 since
φ : B → M passes through a (1, 1)-stable bundle. Otherwise, E′ = f∗V where
V is a (1, 0)-stable by Lemma 3.2, then sequence (4.17) implies that φ : B → M

factors through a Hecke curve, which implies that φ : B → M is not an essential
elliptic curve. If E′ is semi-stable on each fiber Xt, then E′ defines a nontrivial
morphism ϕE′ : C → P1 such that ϕ∗OP1(1) = Θ(E′) = (detf!E

′)−1 = c2(E′).
Thus ∆(E′) = 4 · deg(ϕE′) ≥ 12 and ∆(E) = ∆(E′)− 4µ ≥ 16.

If there is t′0 ∈ C such that E′
t′0

is not semi-stable, then we have

0 → F → E′ → Xt′0
O(µ′) → 0(4.22)

where Fy = F|C×{y} is stable of degre −1 for generic y ∈ B since E′
y is stable

of degree 0. If ∆(F) 6= 0, it is clear that ∆(F) = 4 · c2(F) ≥ 4 and ∆(E) =
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∆(F)−4µ′−4µ ≥ 12. If ∆(F) = 0, by Theorem 2.4, there is a stable vector bundle
V ′ on C such that Fy

∼= V ′ for all y ∈ B. Then we can choose F = f∗V ′ such
that the sequence (4.22) induces a nontrivial morphism ϕ : B → P(V ′∨

t′0
) with

O(−µ′) = ϕ∗OP(V ′∨
t′0

)(1). Thus ∆(E′) = −4µ′ ≥ 8 and ∆(E) = ∆(E′)− 4µ ≥ 12.

¤

We have seen in Example 3.6 the existence of essential elliptic curves of degree
6(r, d) (which is 6 in our case). Then we have shown

Theorem 4.6. Let M = SUC(2,L) be the moduli space of rank two stable bundles
on C with a fixed determinant of degree 1. Then, when C is generic, any essential
elliptic curve φ : B → M has degree

degφ∗(−KM ) ≥ 6

and degφ∗(−KM ) = 6 if and only if φ : B → M factors through

φ : B
ψ−→ q−1(ξ) = P(H1(V ∨

2 ⊗ V1))
Φξ−→ M

for some ξ = (V1, V2) such that ψ∗OP(H1(V ∨2 ⊗V1))(1) has degree 3.

Proof. By Proposition 4.2, Proposition 4.3 and Proposition 4.5, we have ∆(E) ≥
6. The possible case ∆(E) = 6 occurs only in Proposition 4.2 when c2(F2) = 0.
This implies that E must satisfy

0 → f∗V1 ⊗ π∗O(µ1 − µ2) → E → f∗V2 → 0

which defines ψ : B → P(H1(V ∨
2 ⊗ V1)) such that ψ∗OP(H1(V ∨2 ⊗V1))(1) has degree

µ1 − µ2. Then ∆(E) = 6 and (4.1) imply µ1 − µ2 = 3. ¤

Theorem 4.7. When g > 4 and C is generic, any essential elliptic curve φ : B →
M = SUC(2,L) that passes through the generic point must have degφ∗(−KM ) ≥
12.

For r > 2, let M = SUC(r,L) where L is a line bundle of degree d. What
is the minimal degree of essential elliptic curves on M ? I expect the following
conjecture to be true.

Conjecture 4.8. Let φ : B → M = SUC(r,L)s be an essential elliptic curve
defined by a vector bundle E on C ×M . Then, when C is a generic curve, we
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have

degφ∗(−KM ) ≥ 6(r, d).

When (r, d) 6= r, then degφ∗(−KM ) = 6(r, d) if and only if it is an elliptic curve
of split type in Example 3.6. If φ : B → M passes through the generic point and
g > 4, then degφ∗(−KM ) ≥ 6r.

Remark 4.9. One of referees asked to strengthen Theorem 4.7 to characterize the
elliptic curves of Hecke type, so that the statement of Theorem 4.7 is comparable
with Theorem 4.6. However, when r = 2, there is no essential elliptic curve of
Hecke type. In fact, when r = 2, I have no easy example of essential elliptic
curve through the generic point of M . But it is still meaningful to ask the
characterization of essential elliptic curves of degree 12 that pass through the
generic point (if any). Now we assume that E defines an essential elliptic curve
through generic point with ∆(E) = 12. Then, firstly, it can only happen in the
situation of Proposition 4.5, namely, Et = E|{t}×B are semi-stable of degree 0
for generic points t ∈ C. Secondly, if C admits no cover C → P1 of degree 2
and degree 3, then there are t′0, t0 ∈ C such that either (i) there exists a stable
bundle V ′ of degree −1 on C suited in the following exact sequences

0 → f∗V ′ → E′ → Xt′0
O(−2) → 0,

0 → E′ → E → Xt0
O(−1) → 0

or (ii) there exists a bundle F on X with c2(F) = 1 suited in the following exact
sequences

0 → F → E′ → Xt′0
O(−1) → 0,

0 → E′ → E → Xt0
O(−1) → 0

where Fy = F|C×{y} is stable of degree −1 for generic y ∈ B.
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