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1. Introduction

This paper originated with the project of trying to understand how the tech-
niques of harmonic theory and moduli spaces would apply to local systems over
smooth proper Deligne-Mumford stacks.

The subject of DM-stacks has a rich history. The Kawamata-Viehweg van-
ishing theorem [57] [109] was originally proven by techniques involving cyclic or
polycyclic Galois coverings of a smooth projective variety, ramified over a divisor
with simple normal crossings. In current-day terms, Matsuki and Olsson have
explained it as an instance of Kodaira vanishing over a root stack [68]. Viewed
in this light, the vanishing theorem could be considered as one of the first major
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results about usual varieties where the geometry of Deligne-Mumford stacks plays
a crucial role.

The coverings which appear in the original proofs may be viewed as varieties
covering the DM-stack. We will take up this idea here to say, in Theorem 5.4,
that any smooth proper DM-stack X is covered by a map φ : Z → X from a
disjoint union of smooth projective varieties such that every point downstairs
x ∈ X admits at least one point z ∈ φ−1(x) ⊂ Z where φ is etale. A techni-
cal contribution to this statement comes from the Chow lemma of Gruson and
Raynaud [86]. Proper coverings of stacks by schemes, with essentially similar
constructions, have been considered by many authors, see for example [62], [83],
[81].

The goal here is to use these covering varieties Z to understand local systems
on X. In order to do this, it is natural to look next at Z ×X Z, but then resolve
its singularities to get a smooth variety Z1. This is the beginning of a simplicial
resolution

Z1
−→−→Z = Z0 → X

and standard constructions allow it to be completed to a full one. Such simpli-
cial resolutions were used by Deligne for Hodge theory on singular varieties [33],
and would seem to represent interesting topological objects in their own right.
So we expand the level of generality by usually looking at a simplicial scheme
Z• such that the components Zk are smooth projective varieties. In the differ-
entiable category, these objects have been considered in [39] and [55]. Pridham
has considered mixed Hodge structures on the rational and schematic homotopy
types of simplicial smooth proper varieties in [85]. No further topological gen-
erality would be gained by looking at simplicial objects whose levels are proper
algebraic spaces.

The various moduli stacks of local systems on X may now be expressed as
limits of the moduli stacks for the Zk, Proposition 6.2. The moduli stacks admit
universal categorical quotients which are the various versions of the character
variety [65] of representations up to conjugacy. A natural question is to what
extent these moduli stacks and their character varieties behave like in the smooth
projective case.

After considering the general theory of moduli of local systems, we would like
to use the covering varieties to do nonabelian harmonic analysis over the stack.
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In fact it turns out that we just have to apply the classical theory at each level of
the simplicial variety. The surjectivity of the etale locus of the coverings allows
us to interpret the result in terms of harmonic bundles on the original stack.

Our discussion of nonabelian harmonic theory on stacks adds to a subject which
has already been treated by several authors [12] [36] [45] [104], and for the case of
root stacks it is closely related to harmonic theory for parabolic bundles [15] [29]
[64] [74] [70] [71] [84] [101]. The relationship between local systems and ramified
covers can be related to the Chern class calculations of Esnault and Viehweg in
[41], going back also to [80], and related formulae involving parabolic and orbifold
bundles were studied in [53] [54]. This subject also connects with Viehweg’s recent
works such as [110] [111], since Shimura varieties are best considered as DM-
stacks and indeed symmetric spaces were a main part of the original motivation
for the notion of V -manifold [90] [91] which appears in our title. The other
main motivation came from Mg [34], but as Campana has pointed out [26], local
systems on orbifolds play an important part in the theory of moduli of more
general varieties too. Examples over stacks locally of ADE-discriminant type
up to dimension 6 have been constructed in [72]. See [106] for a classification
of orbifold structures over P2. Fascinating new examples have arisen with the
notion of “twisted curves”, see [27] for references.

A general simplicial scheme can have a pretty arbitrary topological type, for
example any simplicial set with Xk finite for each k qualifies. For a general X• one
should therefore modify the kind of question being asked—not which topological
types can occur, but rather how the topologies of the Xk interact with the full
topological type of |X•|. This is a very interesting question closely related to the
notion of nonabelian weight filtration.

The role of the weight filtration is illustrated by looking at the mixed Hodge
structure on the complete local ring of the space of representations of π1, Propo-
sition 7.13, generalizing the recent paper [42]. A somewhat delicate point to
beware of is the choice of basepoints. Even though we only need to use the rep-
resentation spaces for the first two pieces of a simplicial resolution Z0 and Z1,
the example 2.4 of three planes meeting in a point readily shows that one should
be sure to choose basepoints meeting all components of Z2.
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Whereas the intervention of the weight filtration is to be expected in a general
singular situation, one hopes that some kind of purity would hold for smooth
proper DM-stacks.

For this, we can notice that the simplicial resolutions Z• → X arising for
smooth Deligne-Mumford stacks have the nice property that the image of π1(Z0)
is of finite index in π1(X) (Condition 8.1). This guarantees that π1(X) doesn’t
include loops which jump from one place to another in Z0 by going through the
space Z1 of 1-simplices. This condition allows us to recover much of the theory
of moduli of local systems.

The finite-index condition holds for simplicial hyperresolutions of singular vari-
eties, whenever the singularities are normal or indeed geometrically unibranched.
The phenomenon we are trying to avoid is loops going through singular points
and jumping from one branch to the other. We can therefore make the essen-
tially straightforward observation that much of the theory known for the smooth
projective case applies also to geometrically unibranched varieties, and in fact—
combining the two examples—to geometrically unibranched DM-stacks.

Some of the main properties are Hitchin’s hyperkähler structure, Theorem
8.8 and the continuous action of C∗ whose fixed points are variations of Hodge
structure, Lemma 7.6 and Corollary 8.9. These results all lead to restrictions
on which groups can occur as fundamental groups of proper geometrically uni-
branched DM-stacks.

We take the opportunity to explain how Deligne’s theory of [33] applies to
get mixed twistor structures on the cohomology of semisimple local systems.
Poincaré duality implies that these mixed structures are pure in the case of a
smooth proper DM-stack.

Near the end of the paper, we discuss some constructions involving finite group
actions, constructions which motivate the passage from smooth projective vari-
eties to DM-stacks. If Φ is a finite group acting on a smooth projective X then
the stack quotient of the moduli stack M(X, G)//Φ may be interpreted as a piece
of the moduli stack of H-local systems on the DM-stack quotient Y = X//Φ for
a suitable group H (Corollary 11.5). In the last section of the paper, we answer
a question posed by D. Toledo many years ago, showing that any group can be
the fundamental group of an irreducible variety.
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Conventions: All schemes are separated and of finite type over the field C of
complex numbers.
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2. The topology of simplicial schemes

Let ∆ be the category of nonempty finite linearly ordered sets denoted [n] =
{0, . . . , n}. A simplicial object in a category C is a functor Y• : ∆o → C, with
levels denoted Yk := Y•([k]). Following [33] an augmented simplicial object is a
simplicial object Y• together with another object S ∈ C and a natural transfor-
mation p : Y• → S from Y• to the constant simplicial object with values S. This
may also be considered as a functor (∆ ∪ {[−1]})o → C where [−1] = ∅ is the
empty linearly ordered set, with Y−1 = S. We usually write such an object as
Y• → S, thinking of C as being contained in the category of simplicial C-objects
by the constant-object functor.

If C = Top or C = K where K = Hom(∆o, Sets) is the Kan-Quillen model
category of simplicial sets, then a simplicial C-object will be called a simplicial
space. A simplicial space Y• has a topological realization denoted |Y•| which is a
space, defined as the quotient space of

∐

k∈∆

Yk ×Rk

by the relation (φ∗(y), r) ∼ (y, φ∗r) whenever y ∈ Yk, r ∈ Rm and φ : [m] → [k]
is a morphism in ∆. Here Rk are the standard k-simplices, fitting together into
a cosimplicial space. The fat realization ‖X•‖ is defined in the same way but
using only the injective maps in ∆. For C = Top some cofibrancy conditions [77]
must be imposed in order to have a homotopy equivalence ‖X•‖ ∼→ |X|; these
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conditions are automatic for C = K, and also hold when X• is s-split, so they will
be tacitly assumed in all statements.

Suppose now X• is a simplicial scheme. Then applying the usual functor to
underlying topological spaces levelwise we obtain a simplicial space Xtop

• whose
levels are the (Xk)top. The topological realization is a topological space

|X•| := |Xtop
• |.

These spaces will be the main objects of our study.

A simplicial scheme or space has split degeneracies, or is s-split in Deligne’s
terminology [33], if each Xm is a disjoint union given by the degeneracy maps

Xm = XN
m t

∐

k<m,m³k

XN
k .

The first term is XN
0 = X0. We usually assume this condition, which also implies

the cofibrancy conditions refered to above.

A local system on a simplicial space Y• consists of a collection L• = {Lk}
of local systems Lk on Yk, together with isomorphisms φ∗(Lk) ∼= Lm whenever
φ : [k] → [m] induces Ym → Yk, and these isomorphisms should satisfy the
natural compatibility conditions as well as being the identity when φ is. This
applies to local systems of abelian groups, vector spaces or modules over a ring,
but also to local systems of sets and hence to G-torsors which are local systems
of G-principal homogeneous sets.

We generally assume that our spaces are good enough that local systems cor-
respond to representations of π1. This assumption holds for the underlying topo-
logical spaces of schemes for example, but also for the realizations of simplicial
spaces which levelwise are good enough and satisfy the required cofibrancy con-
ditions.

Reflecting the fact that realizations and fat realizations are homotopy equiv-
alent, the notion of local system is equivalent to the analogous notion defined
using only the injective maps φ : [k] ↪→ [m].

If L• is a local system of abelian groups on Y•, we can choose a compatible
system of injective resolutions F•k of Lk over Yk. Taking sections gives a simplicial
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complex of abelian groups whose total complex t(F•• (Y•)) is defined by

t(F•• (Y•))i =
⊕

k+j=i

F j
k(Yk),

with differential using the alternating signed sum of face maps. The cohomology
H i(Y•, L•) is defined to be the cohomology of this total complex. It is independent
of the choice of resolution.

Lemma 2.1. Suppose L is a local system over |Y•|. For each k, let Lk be the
pushdown along Yk×Rk → Yk of the restriction of L. Then the Lk fit together to
form a local system L• on Y• and this construction establishes an equivalence of
categories between local systems on |Y•| and local systems on Y•. If L is a local
system of abelian groups on |Y•| and L• the corresponding local system on Y• then
there is a natural isomorphism H i(|Y•|, L) ∼= H i(Y•, L•).

Corollary 2.2. The groupoid of G-torsors on |Y•|, denoted H1(|Y•|, G), is the
2-limit of the ∆-diagram of groupoids k 7→ H1(Yk, G).

This generalizes to higher nonabelian cohomology: if T is an n-groupoid then
Hom(Πn(|Y•|), T ) is the n + 1-limit of the functor from ∆ to nGPD given by
k 7→ Hom(Πn(Yk), T ).

For basepoints, rather than simply choosing a single one, it is often necessary
to consider a map from a simplicial set. Suppose U• is a simplicial set with a
map U• → Y•. For each k we obtain a collection of points Uk mapping to Yk; it
is more convenient not to require the map to be injective. The realization |U•| is
just the usual realization of the simplicial set, and we obtain a map |U•| → |Y•|.

Say that U• is 0-truncated if the realization |U•| is a 0-truncated space, i.e. its
homotopy groups vanish in degrees i ≥ 1. Equivalently, it is a disjoint union of
contractible pieces. A simplicial basepoint is a map U• → Y• such that U• is a
0-truncated simplicial set with each Uk finite.

We mainly consider such a U• which is a finite disjoint union of standard
simplices. Let h([k]) denote the representable simplicial set represented by [k] ∈
∆, thus h([k])m = ∆([m], [k]). It is contractible. Suppose given a point y ∈ Yk;
this induces a map h([k]) → Y•, and furthermore any map is induced from a point
y ∈ Yk in that way. As notation, write 〈y〉 := h([k]) together with the given map
to Y•. If {yi} is a collection of nondegenerate points yi ∈ Yki

such that the 〈yi〉
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are disjoint, their union

U• :=
∐

i

〈yi〉 → Y•

is a simplicial basepoint. It is often convenient to look at v0yi ∈ Y0, the 0-th
vertex of yi, corresponding to [0] ⊂ [ki]. It realizes to a point also denoted
v0yi ∈ |〈yi〉| ⊂ |Y•|.

Suppose L• is a local system on Y• corresponding to L on |Y•|. If U• → Y•
is a map from a simplicial set, then the restriction of L• to U• is a local system
on the realization |U•|. In particular, if U• is 0-truncated, then the restriction
is trivializable on each contractible connected component of |U•|, and a choice
of trivialization is equivalent to a choice of trivialization over any point of this
component.

Apply this to a simplicial basepoint U• =
∐

i{〈yi〉}, with yi ∈ Yki
. The inclu-

sion of the 0-th vertex into the standard simplex Rki yields an isomorphism

Lki
(yi) ∼= L(v0yi).

A trivialization of L• restricted to U• is therefore the same thing as a collection
of trivializations of Lki

(yi) or a collection of trivializations of L(v0yi).

If U → Y is a map of spaces and G is a group, denote by H1(Y, U ;G) the
groupoid of G-torsors on Y together with trivializations of the pullbacks to U .
If the image of U meets each connected component of Y then this groupoid is a
discrete set.

If U• → Y• is simplicial basepoint, then we obtain a diagram

k 7→ H1(Yk, Uk;G)

of groupoids.

Proposition 2.3. Suppose that U• → Y• is a simplicial basepoint. Suppose G is
a group. Suppose that Uk meets all the connected components of Yk for k = 0, 1, 2.
Then H1(|Y•|, |U•|;G) is the equalizer of the pair of face maps

H1(Y0, U0;G)−→−→H1(Y1, U1;G).

Let P := π0(|U•|). Then GP acts on this equalizer and the quotient groupoid is
H1(Y•, G).
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Proof. The cohomology 1-groupoid H1(|Y•|, |U•|;G) is the 2-limit of the family
of cohomology groupoids H1(Yk, Uk;G) indexed by k ∈ ∆. This only depends
on the initial part for k = 0, 1, 2, as will be explained later in Lemma 6.1. If Uk

meets all components of Yk for k = 0, 1, 2 then the groupoids are discrete, and
the 2-limit is a 1-limit of a diagram of sets, which in turn is equal to the stated
equalizer. ¤

Notice that (Y2, U2) doesn’t enter into the expression for the cohomology
groupoid H1(|Y•|, |U•|;G). However, if U2 doesn’t meet all the connected compo-
nents of Y2 then the expression may not be true as the following example shows.

Example 2.4. Let X be a singular variety, union of three coordinate planes
meeting at the origin in P3. Let Y• be the standard simplicial resolution [33] with
Y0 being the disjoint union of three planes, the nondegenerate part of Y1 being the
disjoint union of three lines, and the nondegenerate part of Y2 being the origin.

If U contains a basepoint on each of the double intersections but not at the
origin, then the equalizer in the expression of Proposition 2.3 is different from
H1(X, U,G).

To see this, let X ′ be the pyramid consisting of three copies of P1×P1 meeting
along three disjoint lines. For a set of basepoints U ⊂ X not containing the
origin, one can choose a similar collection U ′ ⊂ X ′ for which the expression of
the equalizer in 2.3 is the same. In the case of X ′ there are no triple intersections
so the equalizer expression is the correct one and it gives H1(X ′, U ′, G). However,
π1(|X ′|) = Z whereas X was simply connected, so H1(X ′, U ′, G) 6= H1(X, U,G).

3. Deligne-Mumford stacks

Let Sch denote the category of separated schemes of finite type over C. Pro-
vided with the etale topology it becomes a site.

Classically, a 1-stack over Sch is viewed as a category fibered in groupoids
X → Sch, satisfying a descent condition. Recall that a fibered category can be
strictified to a presheaf of 1-groupoids by setting X(S) equal to the groupoid of
sections Sch/S → X . There is also a more topological approach.
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Let SP denote the category of simplicial presheaves, with W defined as the
class of Illusie weak equivalences. Let SP1 ⊂ SP be the subcategory of 1-
truncated simplicial presheaves X, that is ones where X(S) has πi = 0 for i ≥ 2.

Given a presheaf of 1-groupoids, the corresponding presheaf of nerves is in SP1.
Conversely given a 1-truncated simplicial presheaf, we can look at the presheaf
of Poincaré 1-groupoids. For speaking of 1-prestacks, these constructions, to-
gether with the strictification construction described above, set up an essential
equivalence between the classical fibered-category point of view, and the category
SP1.

Illusie weak equivalence defines a class of morphisms still denoted byW in SP1.
The W-local objects in SP1 correspond to presheaves of 1-groupoids or fibered
categories which satisfy the descent condition to be 1-stacks, see [49] for example.
Denote by SP1,loc the subcategory of W-local objects; one may equivalently take
the subcategory of fibrant objects for either the projective or injective model
structures.

Dwyer-Kan localization provides a simplicial or (∞, 1)-category

St := LDK(SP1,loc,W) ∼ LDK(SP1,W)

of 1-stacks on Sch. It is 2-truncated, that is to say the mapping spaces are
1-truncated, so in Lurie’s terminology it corresponds to a (2, 1)-category. This
is a 2-category in which all 2-morphisms are invertible. This is the same as
the classical 2-category of 1-stacks over the site Sch, a compatibility well-known
particularly from Hollander’s work [49].

The above viewpoint involving localization is useful for defining the topological
realization of a stack. The topological realization functor on simplicial presheaves,
considered in [99], [102], [38], is denoted

| | : SP → Top

where we are using Top as shorthand for the Kan-Quillen model category of
simplicial sets. It sends Illusie weak equivalences to weak equivalences, so it
passes to the Dwyer-Kan localizations. Let TOP denote the (∞, 1)-category
which is the Dwyer-Kan localization of Top by the weak equivalences. Then we
get an (∞, 1)-functor

| | : LDK(SP1,loc,W) → TOP
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which is written as a realization functor for stacks

| | : St → TOP.

Note that |X| is equivalent to the realization of any simplicial presheaf which is
Illusie weak-equivalent to X. From this, follows the compatibility of realization
with etale hypercoverings. If Y• is a simplicial scheme, then since objects of Sch
determine representable presheaves, we obtain a simplicial presheaf. An etale
hypercovering of a stack X is a morphism in LDK(SP,W)

Y• → X

such that the matching maps

Yk → matchk(Y• → X)

are coverings in the etale topology. Here the simplicial coordinate is included
in Y• but not in X to emphasize that we are considering this as an augmented
simplicial object in LDK(SP,W), but it may also be viewed as just a morphism
in LDK(SP,W). The fact that X is a stack rather than a scheme doesn’t affect
the definition of hypercovering, see Remark 5.1 below.

An etale hypercovering is, when viewed as a morphism of simplicial presheaves,
an Illusie weak equivalence.

In this situation, k 7→ |Yk| is a simplicial space denoted |Y |•. We have a weak
equivalence of spaces

|(|Y |•)| ∼ |X|.
In other words, the topological realization of X may be calculated by first choos-
ing an etale hypercovering, then taking the associated simplicial space, and taking
the topological realization of that in the sense used at the start of the paper. This
brings us back to Noohi’s construction of the topological realization of a stack
[79], and similar constructions considered by Gepner, Henriques [44] and Ebert
[40].

If Z• is a simplicial object in DMSt then k 7→ |Zk| is a simplicial space,
whose realization also denoted |Z•| is functorial in Z•. For a simplicial scheme
this coincides up to weak equivalence with the realization defined previously. In
particular, if Z•

a→ X is a morphism from a simplicial scheme to a stack, consid-
ering the target as a constant simplicial object which has the same realization,
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we obtain a map of spaces

(3.1) |Z•| |a|−→ |X|.

In the case of the etale hypercovering Y• this is the weak equivalence considered
above; we shall be interested in it for a proper surjective hypercovering.

A 1-stack X is a Deligne-Mumford (DM) stack if it has a presentation of
the form X = Z/R where Z is a separated scheme of finite type over C, and
R → Z × Z is a groupoid in the category of schemes such that each projection
R → Z is etale. For smooth DM-stacks, this notion is the algebraic analogue
of Satake’s notion of V -manifold [90] [91] or “orbifold”, with the added feature
that the generic stabilizer group can be nontrivial. But even if we start with
a V -manifold, natural substacks can have nontrivial generic stabilizer so that
possibility remains geometrically motivated and should be included.

The collection of DM-stacks naturally forms a 2-category which we denote
by DMSt, a full sub-2-category of St. The 2-category structure comes about
because one can have nontrivial natural automorphisms of morphisms f : X →
Y . This phenomenon occurs particularly if the automorphism group in Y at
the general point of the image of f is nontrivial. Note however that if Y is a
scheme or algebraic space, then maps from any stack to Y have no nontrivial
automorphisms.

It is instructive to consider the case where Y = V //G is a quotient stack of a
scheme V by the action of a finite group G. In this case, a map X → Y is a pair
(T, φ) where T → X is a G-torsor and φ : T → V is an equivariant map. An
isomorphism between two maps (T, φ) ∼= (T ′, φ′) is an isomorphism of G-torsors
u : T ∼= T ′ such that φ′u = φ.

Following the previous discussion, let SPDM ⊂ SP1,loc denote the full sub-
category of simplicial presheaves corresponding to 1-stacks which are Deligne-
Mumford. Then

DMSt := LDK(SPDM ,W)

is the (∞, 1)-category defined by Dwyer-Kan localization along the Illusie weak
equivalences (which, for W-local objects, are the same thing as the objectwise
weak equivalences of simplicial presheaves or, in a terminology more adapted to
1-stacks, objectwise equivalences of 1-groupoids). Again this is 2-truncated, i.e.
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it is really a (2, 1)-category, and we denote also by DMSt the same considered
as a classical 2-category in which the 2-morphisms are invertible.

This 2-category has a 1-truncation τ≤1DMSt. It is the category whose objects
are DM-stacks and whose morphisms are equivalence classes of morphisms. The
projection functor

DMSt → τ≤1DMSt

does not have a section, as one can already see on examples of the form BG for a
finite group G. Hence, when we speak of a “map between DM-stacks” it means a
morphism of simplicial presheaves or fibered categories. Thus, by the “category
of DM-stacks” we really mean either SPDM or the more classical category whose
objects are categories fibered in 1-groupoids over Sch. In these categories there
will usually be several different morphisms representing the same equivalence
class.

The 2-functor DMSt → TOP gives us some additional structure. Suppose
X, Y are DM-stacks. Then HomDMSt(X, Y ) is a groupoid, and its realization
maps to the space HomTOP(|X|, |Y |). Given a map X → Y , this gives a map of
spaces from the classifying space of the finite group of natural automorphisms of
f , to the the mapping space:

B(AutDMSt(X,Y )(f)) → HomTOP(|X|, |Y |).
The first part of this structure is just the map of groups

AutDMSt(X,Y )(f) → π1(HomTOP(|X|, |Y |), |f |)
but the map of spaces contains extra structure which would be interesting to
study further.

4. The structure of DM-stacks

One of the original goals of this work was to get information about the topology
of DM-stacks. In preparation for the construction of smooth projective covering
varieties, we first recall some standard structural results. Many references are
available: we have found [46] to be useful and concise, [104] discusses a wide
range of topics, numerous papers of Olsson and other co-authors [81] . . . provide
invaluable viewpoints, and [2] is a guide to the extensive literature; in the future
[31] will provide a definitive reference.
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A closed substack is a morphism Y → X such that on any etale chart Zi → X,
the fiber product Y ×X Zi is a closed subscheme of Zi. This amounts to specifying
a closed substack on each chart, compatible with the glueing equivalence relation.
The intersection of any number of closed substacks is again a closed substack.
Notice, however, that a morphism from a point is not generally a closed substack,
for example the only closed substacks of BG are ∅ and BG itself.

A Cartier divisor D on X is the specification for each etale chart p : Zp → X of

a Cartier divisor Dp on Zp, such that if Zq
f→ Zp → X is a diagram of etale charts

then f∗(Dp) = Dq. In this paper the word divisor will mean a Cartier divisor.
For a scheme or an algebraic space this definition coincides with the usual one.
If f : X → Y is a morphism of DM-stacks and D is a divisor on Y then, if
no irreducible component of X maps into D we can define the pullback f∗(D).
The divisors Dp in the definition above are also the pullbacks Dp = p∗(D). We
say that D has normal crossings if for any etale chart p : Zp → X the divisor
p∗(D) = Dp has normal crossings. A divisor may be identified with a closed
substack. The etale charts for the substack D are the Dpi for etale charts pi

covering X.

A DM-stack X is separated if the diagonal map X → X ×X is proper, which
is equivalent to a valuative criterion or also to saying that the map R → Z × Z

in the groupoid defining X is proper.

A DM-stack X is proper if and only if it is separated and satisfies the valuative
criterion, saying that for any discrete valuation ring A with fraction field K and
any map Spec(K) → X there exists an extension to a map Spec(A′) → X where
A′ is the normalization of A in a finite extension K ′ of K. This is equivalent to
the existence of a surjective covering map from a proper scheme [63] [81] [46].

Recall the results of Keel and Mori [58]. For any separated finite-type DM-
stack X there exists an algebraic space Xc called the coarse moduli space together
with a finite map X → Xc. It is universal for maps from X to a separated
algebraic space, and furthermore if Y is an algebraic space mapping to Xc then
X ×Xc Y → Y is also universal for maps to an algebraic space.

Locally over Xc in the etale topology, X is a quotient stack. Toen [104,
Proposition 1.17] refers to Vistoli [113, Proof of 2.8] for this statement; see also
Kresch [61].
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The functorial resolution of singularities of Bierstone-Milman [9] and Villa-
mayor [112] implies resolution of singularities for Deligne-Mumford stacks:

Proposition 4.1. Suppose X is a reduced separated DM-stack of finite type over
Spec(C). Then there exists a surjective proper birational morphism Z → X of
DM-stacks, an isomorphism over the dense Zariski open substack of smooth points
of X, such that Z is smooth.

Proof. Functoriality of the resolution procedure for etale morphisms means that
the glueing procedure described in [10, §7.1], see also [112], extends to the case
of etale open coverings of a DM-stack. ¤

One of the main constructions of Deligne-Mumford stacks is to look at the
Cadman-Vistoli root stacks. Let X be a smooth projective variety, and D = D1+
. . .+Dk a divisor with normal crossings broken up into its components Di which
are assumed to be irreducible and smooth. Fix a sequence of strictly positive
integers n1, . . . , nk. Cadman [25] defines and studies a stack Z := X[D1

n1
, . . . , Dk

nk
]

with a morphism Z → X. Often we choose the same n for each component.
Vistoli had also considered these stacks, see [1].

In a philosophical sense, the technique of root stacks may be traced back to
Viehweg’s use of cyclic coverings branched along a normal crossings divisor [109]
and Kawamata’s covering lemma [56]. This covering technique has been used by
many authors since then; for a recent example see Urzúa [107].

The stack Z can be explicitly presented as a quotient stack locally in the
Zariski topology of X, indeed the construction of etale charts in Cadman [25]
actually gives a local quotient structure. Over a neighborhood in X where Di

have equations fi = 0, the chart is the subvariety of X × Ak given by fi = uni
i .

Within the local charts, one can remark that there is a standard divisor denoted
R = R1+ . . .+Rk in X[D1

n1
, . . . , Dk

nk
], and ni ·Ri = p∗(Di) where p is the projection

from the Cadman stack back to X. In particular if all the ni are the same n then
n· = D. Note also that R has normal crossings, as can be seen in the local charts.

Lemma 4.2. Suppose f : Y → X is a finite Galois covering from a normal vari-
ety, unramified outside D, with Galois group Φ corresponding to a representation
ϕ : π1(X − D) → Φ. Then f lifts to a map f̃ : Y → Z if and only if, for each
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point x ∈ Di1 ∩ · · · ∩Dir the kernel of the map from the local fundamental group

Zr → Φ

is contained in ni1Z ⊕ · · · ⊕ nirZ ⊂ Zr. The map f̃ is an etale covering space if
and only if equality holds for the kernel at each point x. In this case Y is smooth.

The “Kawamata covering lemma” [56, Theorem 17] gives us projective varieties
covering the root stack. I first learned about this kind of idea when reading
Viehweg’s paper [109], even though his technical approach, investigating further
the singularities of purely cyclic coverings arising from the crossing points, is
different from Kawamata’s.

Lemma 4.3. If X is a smooth variety with simple normal crossings divisor D =
D1 + . . .+Dk, and if Z = X[D1

n1
, . . . , Dk

nk
] is a root stack, then for any z ∈ Z there

exists a smooth variety Y with a finite, flat morphism r : Y → Z such that r is
a finite etale covering over a neighborhood of z.

Proof. Recall the procedure from [56]. For each divisor component Di, choose
a very ample divisor Ki such that Di + Ki is a multiple of ni in Pic(X). Then
choose representatives Kj

i ∼ Ki, such that the full divisor

DK :=
∑

i

Di +
∑

i,j

Kj
i

has normal crossings. For each i, j there is a cyclic covering branched along
Di and Ki determined by choosing an ni-th root of Di + Kj

i . These coverings
determine subgroups of π1(X −DK), and Kawamata shows (in a more algebraic
notation) that if enough Kj

i are chosen for each i, then the intersection of all
of these subgroups satisfies the conditions of Lemma 4.2. That gives a smooth
variety Y branched over DK and mapping to the root stack over DK . Composing
with the projection

Y → X[. . . ,
Di

ni
, . . . ,

Kj
i

ni
, . . .] → X[. . . ,

Di

ni
, . . .]

gives a finite flat map r. The Kj
i are chosen arbitrarily in very ample linear

systems, so we can assume that they miss the given point z, in which case r will
be etale over z. ¤

The Cadman-Vistoli root stack satisfies a good extension property for mor-
phisms.
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Proposition 4.4. Suppose (X, D) is a smooth variety with normal crossings
divisor as above. Suppose Y is an irreducible DM-stack with coarse moduli space
Y c. Suppose given a diagram

X −D→ Y

↓ ↓
X → Y c.

Suppose ni are strictly positive integers. A lifting over the root stack

f̃ : X[
D1

n1
, . . . ,

Dk

nk
] → Y

fitting into commutative diagrams with the given maps, is unique up to unique
isomorphism if it exists. Furthermore, there exists a choice of ni such that a
lifting exists.

Proof. Consider first the unicity statement when ni = 1, i.e. for extensions to
X. For this, we can localize in the etale topology over Y c. By Keel-Mori, this
means that we can assume Y = Z//G for a finite group G acting on an algebraic
space Z. The given map X−D → Z//G corresponds to a pair (T, φ) where T is a
G-torsor on X−D and φ : T → Z is G-equivariant. An extension to X consists of
(T , φ) where T is an extension of T to a G-torsor on X and φ extends φ. Since X

is smooth—indeed geometrically unibranched would be sufficient here, a preview
of the phenomenon to be met in Theorem 8.4 later—the extension T is unique up
to unique isomorphism, and of course φ is unique since X contains no embedded
points. This shows the unicity up to unique isomorphism for extensions from
X −D to X.

For extensions over a root stack, use local smooth charts for the root stack
and unicity of the extension on these charts from the previous paragraph, to get
unicity up to unique isomorphism for extensions

X[
D1

n1
, . . . ,

Dk

nk
] → Y.

Now to construct an extension, in view of the unicity, we can localize in the
etale topology over X, hence we can also localize in the etale topology over Y c.
Therefore assume Y = Z//G for a finite group G acting on an algebraic space Z.
In this case Y c = Z/G is the usual quotient.
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The map X −D → Z//G corresponds to a pair (T, φ) where T is a G-torsor
on X −D and φ : T → Z is a G-equivariant map. The local fundamental group
of X −D near a point x ∈ Di1 × · · · ×Dir of D is of the form Zr, but G is finite
so its action on T factors through a quotient of the form Z/ni1 × Z/nir . Let ni

be a common multiple of the integers appearing here for all points of Di. Then
T extends to a torsor over the root stack

T → X[
D1

n1
, . . . ,

Dk

nk
].

Note that the total space of T itself is a smooth algebraic space, and the inverse
image of the divisor is a divisor with normal crossings R ⊂ T . It remains to
extend φ. However, T is a normal space and Z → Z/G is a finite map. It follows
that one can extend the given map φ : T − R → Z to a map φ : T → Z, from
knowing that the extension T → Z/G exists.

This may be seen on local affine charts: write T = Spec(A), Z = Spec(B), so
T − R = Spec(Ag) where g is the function defining the divisor R, and Z/G =
Spec(BG). The extension BG ⊂ B is finite, and the map B → Ag sends BG to
A, it follows from normality of A that B maps into A ⊂ Ag, in a unique way
hence G-equivariantly. This provides the required map T → Z corresponding to
an extension

X[
D1

n1
, . . . ,

Dk

nk
] → Z//G.

Going back to Y and globalizing over Y c gives the required extension to prove
the lemma. ¤

5. Proper surjective hypercoverings by smooth projective varieties

We use the notations of [33]. Suppose X•
a→ S is an augmented simplicial

scheme. For each k ≥ 0, the coskeleton construction defines the matching object

matchk(X• → S) := csk(skk−1X•)k

in Deligne’s notation [33], and we have a natural “matching” map

(5.1) Xk → matchk(X• → S).

At k = 0 the matching map is just X0 → S and at k = 1 it is X1 → X0 ×S X0.
For k ≥ 2 the matching map is independent of the augmentation X0 → S.
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A morphism X• → S is a proper surjective hypercovering if the matching
maps are proper surjections, if X0 → S is a proper surjection, and if X• has split
degeneracies. An etale hypercovering is given by requiring that the matching
maps be coverings in the etale topology, i.e. admit sections etale-locally.

Remark 5.1. The notion of proper surjective (resp. etale) hypercovering extends
to the case where S is a separated DM-stack, indeed then X0×S X0 is an algebraic
space so the proper surjectivity of the matching maps at X0 and X1 are well-
defined conditions.

It is a well-known fact that coverings of proper DM-stacks by projective vari-
eties exist [62] [81]:

Lemma 5.2. If X is a proper DM-stack then there exists a surjective proper map
Z → X where Z is a smooth projective variety.

Proof. One could first apply the general existence of proper coverings [81] and
then apply the Chow lemma and resolve singularities; or alternatively, resolve
first the singularities of X and then apply Theorem 5.4 below. ¤

Theorem 5.3. A proper DM-stack X admits a proper surjective hypercovering
with split degeneracies, by smooth projective varieties. Any two such hypercover-
ings can be topped off by a third one.

Proof. Use the previous lemma to choose Z0 → X. Notice that Z0 ×X Z0 →
Z0 × Z0 is finite so Z0 ×X Z0 is a projective variety. Continue from there using
Deligne’s technique [33]. ¤

Suppose f : Z → X is a morphism of DM stacks. We say that f is surjective
where etale if, letting Z ′ ⊂ Z be the open substack where f is etale, we have
Z ′ → X surjective. This is equivalent to saying that any point x ∈ X admits at
least one lift z ∈ Z such that f is etale near z. On the other hand f will not be
etale or even finite in a neighborhood of a different point of the fiber over x.

The precise form of the Chow lemma proven by Raynaud and Gruson in [86]
allows us to obtain a good form of the Chow lemma for smooth proper DM-stacks.
This improves Deligne-Mumford’s statement 4.12 of [34], or rather it gives a
refined statement which, if they had given a proof, they would undoubtedly have
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proven along the way. See also Kresch-Vistoli [62], Olsson, and Starr [83], [81]
for statements about existence of coverings.

The techniques of [86] have been applied in many similar situations. See Rydh
[87] for a recent application, and de Jong [30] for a more classical utilisation. It is
also interesting to note the extensive and detailed AMS review of [86] by Masaki
Maruyama. Maehara refers to these techniques, while speaking of Kawamata-
Viehweg coverings, in his paper [66].

Theorem 5.4. Suppose X is a smooth and proper DM-stack of finite type. Then
there exists a morphism f : Z → X such that f is surjective where etale and Z

is a smooth projective variety.

Proof. Fix a point x ∈ X. We will find f : Z → X with a lifting z ∈ Z of x such
that Z is smooth projective and f is etale at z.

Start with an etale neighborhood p : U → X with a lifting u ∈ U of the point
u, U an affine scheme of finite type over C, and p an etale morphism. This exists
by the definition of DM-stack. Note that U is smooth and quasiprojective.

Let U ⊂ P be a completion to a smooth projective variety. Let C ⊂ P ×Xc

be the closure of the graph of the map U → Xc to the coarse moduli space. It is
a proper algebraic space containing U as a Zariski open subset.

By resolution of singularities for algebraic spaces [112] [9] we can resolve the
singularities of C without touching U , which gives a diagram of algebraic spaces

U ↪→ Y

↘ ↓
C

where Y is a smooth proper algebraic space and D := Y − U is a divisor with
normal crossings. Write D = D1 + . . . + Dk and we may assume that the Di are
irreducible and smooth. Raynaud and Gruson [86, Cor. 5.7.14], refering also to
Knutson [59], prove this version of the Chow lemma: if Y is a separated proper
algebraic space and U ⊂ Y is an open subset such that U is a quasiprojective
variety, then there is a blow-up Ỹ → Y which is an isomorphism over U such
that Ỹ is projective. This means that after replacing Y by Ỹ which is the same
over U , then again resolving singularities of the complementary divisor, we can
suppose that Y is projective.
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We are now in the situation of Lemma 4.4 with a diagram

U → X

↓ ↓
Y →Xc.

so there there is n, which for convenience can be assumed the same for all divisor
components, such that the map extends over the root stack to a map

Y [
D1

n
, . . . ,

Dk

n
] → X.

There is a morphism from a projective scheme Z → Y [D1
n , . . . , Dk

n ], which is
finite and projects to a cover of Y ramified along a subset which misses u. This
is exactly the covering lemma 4.3.

Hence, for any point z ∈ Z lying over u ∈ U , the morphism Z → U is etale at
z. Thus, we obtain a map Z → X as desired for the proof of the theorem relative
to one point. It suffices to take a finite disjoint union of such varieties Z in order
to get a map surjective where etale. ¤

There is a variant of this result which takes into account a divisor with normal
crossings.

Proposition 5.5. Suppose X is a smooth proper and separated DM-stack of finite
type and D ⊂ X a divisor with normal crossings. Then there exists a morphism
f : Z → X such that f is surjective where etale, and Z is a smooth projective
variety, such that f∗(D) is a divisor whose associated reduced divisor has normal
crossings.

Proof. Left to the reader. ¤

Question 5.6. To what extent does the statement of Theorem 5.4 hold for DM-
stacks which are not smooth?

The above construction of covering spaces provides the starting point for the
construction of a hypercovering. Follow the technique of [33] with a little extra
care at the first stage to conserve a trace of the surjective-where-etale property.

Suppose X is a smooth proper DM stack. Let p : Z → X be a morphism from
a smooth projective variety, such that X is covered by the open set Z ′ where p

is etale.
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Consider R1 := Z ×X Z and K1 := Z ×X Z ×X Z. These are algebraic spaces.
Note that Z, R1 and K1 form the first part of a simplicial object. However, R1

and K1 are not smooth.

Lemma 5.7. In fact R1 and K1 are projective.

Proof. The map R1 → Z × Z is finite because X is a proper, whence separated
DM stack. Since Z is projective, we get that R1 is projective. The same holds
for K1. ¤

Let R′ := (Z ′ ×X Z) ∪ (Z ×X Z ′). Then R′ ⊂ R1 is a smooth open subset of
R1. It decomposes

R′ = R′,N t Z ′

where Z ′ → R′ → Z ×X Z is the diagonal. Notice that Z ′ → R′ is a closed
immersion, so it is one of the connected components of R′.

Let R → R1 be a resolution of singularities of the union of irreducible compo-
nents of R1 which meet R′, and which is an isomorphism over R′ ⊂ R. Choose in
particular Z as the completion of the component Z ′ ⊂ R′. In this way, R′ ⊂ R is
an open dense subset, and

R = RN t Z.

This insures the split degeneracy condition for R.

The matching object at the next stage is the equalizer

M → R×R×R−→−→Z × Z × Z

of the two maps sending (u, v, w) to (∂0u, ∂0v, ∂1w) and (∂0w, ∂1u, ∂1v) respec-
tively.

Notice that M is projective. Rather than continue with a more careful choice
such as was done with R (and which the reader is invited to do), we can just set
KN → M to be a resolution of singularities from a smooth projective variety,
isomorphism over the smooth locus. Put

K2 := KN tRN tRN t Z.

Notice that K ′ := Z ′ ×X Z ′ ×X Z ′ splits in the same way and we can choose a
map K ′ → K2 respecting this decomposition. Let K be the union of components
of K2 containing K ′. The map K → M is still surjective.
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We now have a diagram

K
−→−→−→R−→−→Z

f→ X

plus the degeneracies going in the other direction, which looks like the beginning
of an augmented simplicial object. In other words, the compositions which would
be equal for a simplicial set, are also equal here. For maps into X one must
replace “equality” by “isomorphism”, and be careful about coherences. In the
first three terms the elements are smooth projective varieties. Denote by ∂0, ∂1

the two maps from R to Z, and by ∂01, ∂02 and ∂12 the three maps from K to R.
Note that we have open dense subsets

Z ′ ×X Z ′ ⊂ R′ ⊂ R

and

Z ′ ×X Z ′ ×X Z ′ = K ′ ⊂ K,

and these open subsets form the beginning of the standard simplicial object for
Z ′ → X. The required equalities of maps K → Z follow because these open
subsets are dense, and these serve to define three maps v0, v1, v2 : K → Z:

(5.2) v0 := ∂0 ◦∂01 = ∂0 ◦∂02, v1 := ∂1 ◦∂01 = ∂0 ◦∂12, v2 := ∂1 ◦∂02 = ∂1 ◦∂12.

We have a natural isomorphism α : f ◦∂0
∼= f ◦∂1, and the coherence conditions

say that the hexagon made with three copies ∂∗ijα and the three equalities above
composed with f , commutes. Of course if X were an orbifold, that is a DM
stack with trivial generic stabilizer, then generically surjective maps from an
irreducible smooth variety into X wouldn’t have any nontrivial isomorphisms,
so in this case there would have been no need to speak of α and the coherence
condition. However, even in this case we will meet the hexagonal coherence
condition when looking at bundles.

Theorem 5.8. A smooth proper DM-stack X admits a proper surjective hyper-
covering with split degeneracies by smooth projective varieties, obtained by com-
pleting the partial simplicial object (Z, R, K) constructed above. Again, any two
such hypercoverings can be topped off by a third one.

Proof. For X smooth, starting from the first part constructed above, Deligne’s
technique [33] allows us to finish. ¤
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Suppose Z• is a simplicial scheme with smooth projective levels, and split
degeneracies. Denote by (Z, R, K) the first three terms. Keep the notations from
before, with two morphisms ∂0, ∂1 : Z → X and three morphisms ∂ij : R → Z

for 0 ≤ i < j ≤ 2, and equalities (5.2) over K. The simplicial object then starts
with Z0 = Z, Z1 = R = RN t Z and Z2 = K = KN tRN tRN t Z.

A descent datum for (Z, R, K) is a bundle E on Z, and an isomorphism ϕ :
∂∗0E ∼= ∂∗1E on R such that the hexagon formed by alternating the ∂∗ijϕ with the
equalities (5.2), commutes. A morphism between descent data (E, ϕ) → (E′, φ)
is a morphism E → E′ commuting with the isomorphisms. Given a bundle F on
X, its pullback to Z is provided with a natural descent datum.

A descent datum for (Z, R, K) according to this definition is automatically
compatible with the degeneracy map s0 : Z → R in the sense that s∗0(φ) = 1E .
Indeed, if s1 and s2 denote the two degeneracy maps from R to K, then

∂∗1s∗0(φ) ◦ φ = s∗2∂
∗
12(φ) ◦ s∗2∂

∗
01(φ) = s∗2∂

∗
02(φ) = φ,

so ∂∗1s∗0(φ) = 1∂∗1 (E) since φ is invertible, so

s∗0(φ) = s∗0∂
∗
1s∗0(φ) = s∗0(1∂∗1 (E)) = 1E .

Lemma 5.9. The category of descent data for vector bundles (maybe with ex-
tra structure) over Z• is equivalent to the category of explicit descent data on
(Z, R, K).

Proof. A descent datum on Z• restricts in an obvious way to a descent datum on
(Z, R, K). Suppose given a descent datum (E, ϕ) over (Z, R, K). The j-th vertex
map [0] → [k] in ∆ induces vj : Zk → Z0 = Z. A path of edges relating the i-th
and j-th vertices in [k] gives, using ϕ, an isomorphism of bundles between v∗i (E)
and v∗j (E) on Xk. When two paths differ by the boundary of a 2-simplex, the
equalities required of ϕ imply that the two isomorphisms are the same. But any
two paths can be connected by a sequence of transformations along boundaries
of 2-simplices, so any two paths induce the same isomorphism. This canonically
identifies all of the v∗j (E) to a unique bundle which can be called Ek. It is now easy
to see that the Ek are naturally functorial for pullbacks along the simplicial maps
Xk → Xm. This constructs the essential inverse to the restriction functor. ¤

Remark 5.10. If (Z, R,K) is the start of a proper surjective hypercovering of a
proper DM-stack X, and (E, ϕ) is a descent datum for a bundle or local system
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on (Z,R, K). Then ϕ determines a continuous isomorphism between pr∗1(E) and
pr∗2(E) over Z ×X Z.

Proof. The map R → Z ×X Z is proper and surjective, with ϕ defined over R.
There is a map from R×(Z×XZ)R to the matching object: given r, r′ ∈ R mapping
to (z, z′) ∈ Z×X Z, associate (r, 1z′ , r

′) in the matching object. As K surjects to
the matching object, and ϕ(1z′) = 1E(z′), the cocycle condition over K says that
ϕ(r′) = ϕ(1z′) ◦ϕ(r). Thus, ϕ descends as a continuous function to Z ×X Z. ¤

Return now to the hypothesis that X is a smooth DM-stack, and Z• → X is
a proper surjective hypercovering with Zk smooth projective, starting off with
(Z, R, K) chosen according to the procedure described before Theorem 5.8. Thus
Z → X is assumed to be surjective where etale, and R chosen as a completion of
the smooth R′ as above.

There is also a natural pullback functor from bundles on X to descent data on
(Z, R, K).

When X is smooth, the extra information given by the surjective-where-etale
property allows us to transfer analytic constructions from Z• back to X, to get
things like the definition and existence of harmonic metrics. It might be possible
to descend these things along proper surjective hypercoverings too, and in that
way get around Theorem 5.4 entirely, but that would require a much more detailed
study of descent for bundles along proper surjective maps, a subject discussed in
[13] [14].

Notice that Z• may be chosen to contain an etale hypercovering as an open
simplicial subvariety, but is not itself an etale hypercovering. This is because the
places where the maps are not etale lead to singularities in the matching objects,
so one needs to use resolution of singularities at each stage in order to have Zk

smooth. Nonetheless an explicit treatment of the first part of the resolution yields
descent for bundles.

Lemma 5.11. The category of bundles on X is naturally equivalent via this
pullback functor to the category of descent data on Z• or the partial simplicial
object (Z, R, K).
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Proof. Recall that Z ′ ⊂ Z is the Zariski dense open set over which the projection
p is etale. By descent for the map Z ′ → X, we obtain a bundle F over X, with
an isomorphism ψ′ : p∗(F )|Z′ ∼= E|Z′ compatible with the descent data over Z ′.

Recall that R′ := Z ′×X Z ∪Z×X Z ′ is a smooth open subset of R, which itself
contains Z ′ ×X Z as an open subset. The descent datum yields an isomorphism
∂∗1(E|Z′) ∼= ∂∗2E over Z ′ ×X Z, but

∂∗1(E|Z′) ∼= ∂∗1(p∗(F )|Z′) ∼= p∗R(F )|Z′×XZ

where pR : R → X is the projection, whence

p∗R(F )|Z′×XZ
∼= ∂∗2(E)|Z′×XZ .

The map ∂2 : Z ′ ×X Z → Z is an etale covering, and we are now given an
isomorphism between p∗(F ) and E, locally with respect to this covering. Using
the cocycle condition for the descent data over K, this isomorphism is the same
as the previous one over Z ′. The property of extending an isomorphism from
a Zariski open set to the whole of Z is etale-local on the complementary closed
subset, so this shows that our isomorphism extends to a global isomorphism
ψ : p∗(F ) ∼= E on Z. It is compatible with the given descent data since the open
subsets Z ′ and R′ are dense.

We have shown that the pullback functor from bundles to descent data is
essentially surjective. To show that it is fully faithful, given a morphism between
descent data it restricts to a morphism between descent data on (Z ′, Z ′ ×X Z ′)
so descends to a morphism between bundles. ¤

Suppose λ ∈ C. A λ-connection on a descent datum (E, ϕ) is a λ-connection ∇
on E, such that ϕ intertwines the pullbacks ∂∗0∇ on ∂∗0E and ∂∗1∇ on ∂∗1E. This
definition extends to objects defined over a base scheme S, for any λ ∈ Γ(S,OS).

Lemma 5.12. Suppose (E, ϕ) is the descent datum corresponding to a bundle F

on X. Given a λ-connection ∇E on (E, ϕ) there is a unique λ-connection ∇F on
F such that f∗∇F = ∇E via the isomorphism f∗F ∼= E.

Proof. As before, if Z were replaced by Z ′ this would be the classical etale descent.
In particular, ∇E |Z′ descends to a unique connection ∇F on F . But now, f∗∇F

and ∇E are two λ-connections on E over the smooth variety Z, with the same
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restriction to the dense open subset Z ′. Therefore they are equal. Unicity of ∇F

follows by descent only over Z ′. ¤

We can similarly descend C∞ vector bundles, hermitian metrics on them, and
differential-geometric structures such as differential operators. It is left to the
reader to formulate these statements.

Cohomological descent along proper surjective hyperresolutions was the main
technique used by Deligne to apply Hodge theory to the topology of singular
varieties. It is the main reason for looking at simplicial schemes, but the same
techniques also apply to get proper surjective hyperresolutions for DM-stacks as
stated in Theorem 5.8 above.

Proper surjective cohomological descent [89] [108] [33] then says that for any
local system L on S,

(5.3) H i(S,L)
∼=→ H i(X•, a∗L).

Lemma 5.13. The isomorphism (5.3) holds also in the case when S is a separated
DM-stack.

Proof. Choose an etale hypercovering Z• → S•, then we get a bisimplicial alge-
braic space {Xk×X Zl}(k,l)∈∆×∆. Cohomological descent for the proper surjective
topology gives cohomological descent in the k-variable down to Zl, and the etale
hypercovering induces an equivalence of realizations so we have cohomological
descent in the l-variable, down to Xk and to S. These allow us to conclude by a
spectral sequence argument. ¤

Lemma 5.14. Suppose X• → S is a proper surjective hypercovering to a sepa-
rated DM-stack. If L is a local system of sets over X•, then it descends: there
exists a local system LS on S such that a∗LS

∼= L.

Proof. Suppose first that S itself is a separated scheme of finite type over C.
Suppose y ∈ S. Let X•(y) denote the fiber over y, that is Xk(y) is the inverse
image of y in Xk. It is nonempty.

Working with local systems and the fundamental group involves only the pieces
X0, X1, X2, X3 of the hypercovering, so for the purposes of the present argument
we truncated. This makes it so there are only finitely many k.
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The descent data for the local system over the hypercovering imply that L is
trivial, i.e. isomorphic to a constant local system, when restricted to X•(y). To
see this, choose a lifting z ∈ X0 mapping to y, and note that the restriction of L

to X0 ×S X• from the second factor, is isomorphic to the pullback of L|X0 from
the first factor. Restricting to {z}×S X• = X•(y) gives the desired trivialization
L|X•(y)

∼= L0(z). Note that this trivialization is compatible with the descent data.

Next, note that there exist usual open neighborhoods Xk(y) ⊂ Wk ⊂ Xk such
that L|Wk

has a trivialization compatible with the one constructed previously on
Xk(y). To see this, choose an open covering U i

k on which L is trivialized, then
refine it so that any nonempty U i

k ∩ Xk(y) are connected. The trivialization of
L|Xk(y) induces a well-defined trivialization of each L|U i

k
for those open sets U i

k

meeting Xk(y); for the other open sets choose arbitrarily. Pass then to relatively
compact V i

k ⊂ U i
k which still cover Xk. Now, for any connected component of

some V i
k ∩ V j

k on which the transition isomorphism gij for L is not the identity,
the closure of that connected component misses Xk(y). Taking the complement
of the closures of such connected components of V i

k ∩V j
k gives a neighborhood Wk

of Xk(y) covered by V i
k ∩ Wk, such that the transition functions for L|Wk

with
respect to the covering and the given trivializations, are identities. Patching
together gives a global trivialization of L|Wk

compatible with the previous one
on Xk(y).

The previous trivializations of L|Xk(y) were compatible with the descent data,
so possibly reducing the size of Wk we may assume that this is true for our
trivializations of L|Wk

. Properness of the finitely many maps Xk → S in play,
implies that there is a usual open neighborhood y ∈ S′ ⊂ S such that the inverse
image of S′ (which we call W ′

k) is contained in Wk. The trivialization of L|W ′
k

then becomes an isomorphism between L|W ′
k

and the pullback of the constant
local system on S′, compatible with the descent data. In other words, we have
descended L|W ′

k
to a constant local system on S′. For any point y ∈ S we obtain

such a neighborhood, and the descended local system is unique up to canonical
isomorphism (as can be seen by proper surjective descent for sections of local
systems). Hence the descended local systems on neighborhoods glue together to
give a descent of the local system to LS on S whose pullback to X• is L. ¤
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Proposition 5.15. Suppose X• → S is a proper surjective hypercovering to a

separated DM-stack. Then this induces a map on topological realisations |X•| |a|−→
|S| which is a weak homotopy equivalence.

Proof. The induced map |a| is from (3.1) above. To prove that |a| is a weak equiv-
alence, using Quillen’s criterion and cohomological descent (Lemma 5.13 above),
it suffices to verify in addition that |a| induces an isomorphism on fundamental
groups at any basepoint x ∈ X0. This is shown by the preceding lemma. ¤

Remark 5.16. Suppose S• is a simplicial projective variety or even a simplicial
object in DMSt. Then there is a map X• → S• which is a weak equivalence for
the proper surjective topology, with the Xk being smooth projective varieties. So
topologically speaking we don’t lose any generality by passing to simplicial smooth
projective varieties.

One can also define the de Rham cohomology of a scheme or stack, using some
form of crystalline cohomology, see [102] and [82] for example.

In [105], it is shown that the cohomological descent isomorphism (5.3) also
holds for de Rham cohomology. A bisimplicial argument shows that this is also
true when S is a separated DM-stack.

To complete the picture of de Rham descent, we note that the analogue of
Lemma 5.14 also holds.

Lemma 5.17. Suppose X• → S is a proper surjective hypercovering to a sep-
arated DM-stack. Suppose F• is a compatible system of de Rham local systems
with regular singularities on X•, that is Fk is a stratification on the crystalline
site of Xk provided with pullback isomorphisms Fk|Xm

∼= Fm whenever m → k in
∆. Then there exists a de Rham local system G on S with a∗(G) ∼= F•.

Proof. The de Rham local systems with regular singularities correspond to local
systems by the Riemann-Hilbert correspondence (see [102] about this question
for stacks), so this follows from Lemma 5.14. It would be interesting to have
a direct algebraic proof, which could apply to irregular de Rham local systems
too. ¤
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A further interesting question is the descent of vector bundles along proper
surjective hypercoverings. Some understanding of this issue would be helpful in
order to obtain an algebraic construction of descent for de Rham local systems.

6. Moduli of local systems on simplicial varieties

Let ArtSt denote the 2-category of Artin algebraic stacks of finite type. Sup-
pose C is a category, and suppose given a 2-functor F : Co → ArtSt. Suppose X•
is a simplicial object of C, that is to say a functor ∆o → C. Then we can define
F(X•) as the 2-limit of the diagram F ◦X• : ∆ → ArtSt.

Concretely an object E• of F(X•) consists of a collection of objects Ek of
F(Xk) together with isomorphisms X∗

φ(Ek) ∼= Em whenever φ : k → m is a map
in ∆ inducing Xφ : Xm → Xk, and these isomorphisms are required to satisfy
the obvious compatibility conditions for compositions k → m → l and identities.

Lemma 6.1. The 2-limit F(X•) depends only on the start of the simplicial object,
in fact it is the 2-limit of the diagram

F(X0)−→−→F(X1)
−→−→−→F(X2).

An object E• of F(X•) may also be viewed as just an object E0 of F(X0) together
with an isomorphism ∂∗0E0

∼= ∂∗1E0, over X1, satisfying the cocycle condition
when pulled back to X2.

Proof. The same as for Lemma 5.9 (see the paragraph just before 5.9 for why we
don’t need to include the degeneracies in the diagram). ¤

The terminology “simplicial family” will sometimes be useful to describe ob-
jects of the form E•. Morphisms in F(X•) have corresponding descriptions.

The above construction applies in particular to the category C of smooth pro-
jective varieties. Various functors include:
X 7→ MB(X, G) the moduli stack of representations of Π1(X) in an algebraic
group G;
X 7→ MDR(X, G) the moduli stack of pairs (P,∇) where P is a principal G-
bundle and ∇ an integrable algebraic connection;
X 7→ MH(X, G) the moduli stack of pairs (P, θ) where P is a principal G-bundle
with θ an integrable Higgs field of semiharmonic type (see Definition 7.1);
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X 7→ MHod(X, G) the moduli stack of triples (λ, P,∇) where P is a principal G-
bundle and ∇ an integrable algebraic λ-connection of semiharmonic type (which
specializes to the preceding two in the cases λ = 1, 0);
X 7→ MDH(X, G) the analytic Deligne-Hitchin moduli stack obtained by glueing
two copies of MHod, noting that here we use ArtStan the 2-category of analytic
Artin stacks.

The 2-limit construction gives:

Proposition 6.2. These functors extend to moduli stacks of various types of local
systems denoted Mη(X•, G) for η = B,DR,H, Hod, DH, defined for a simplicial
object X• in the category of smooth projective varieties and a linear algebraic
group G.

A more explicit description may also be given. The notion of local system on
X• was discussed above, and indeed it applies to local systems with values in
any 1-groupoid. If S is a scheme then BG(S) is the groupoid of G-torsors over
S, and MB(X•, G)(S) is the 1-groupoid of local systems with values in BG(S).
In other words, an object in MB(X•, G)(S) consists of a locally constant sheaf
of G-torsors over S on each space |Xk| together with isomorphisms between the
pullbacks functorial in k ∈ ∆.

For a base scheme S with a group scheme G/S and function λ : S → A1, a
principal G/S-bundle with λ-connection on X• × S/S is a pair (P•,∇) where P•
is a collection of principal ∂∗1(G)-bundles P (k) on Xk × S, with λ-connections
∇ relative to S on each P (k), and compatibility isomorphisms (P (k),∇) ∼=
(Xφ)∗(P (m),∇) whenever φ : m → k in ∆, compatible with compositions of
φ.

If G is a fixed linear algebraic group scheme then apply the previous paragraph
with G × S/S. Recall that there are notions of semistability and vanishing of
rational Chern classes for principal G-bundles on the projective varieties Xk. The
combination of these two conditions is independent of the choice of polarization,
and functorial for pullbacks. It will be called “semiharmonic type” in Definition
7.1 below. Say that a principal G×S/S-bundle with λ-connection on X•×S/S,
is of semiharmonic type if its fibers over all s ∈ S are so.

The moduli stack MHod(X•, G) is the functor from schemes S/A1 to 1-group-
oids, which to S

λ→ A1 associates the 1-groupoid of principal G × S/S-bundles
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with λ-connection of semiharmonic type. Specializing to λ = 0 and λ = 1 yields
the Hitchin and de Rham moduli stacks respectively.

Equivalences between moduli stacks which are natural in the variable X trans-
late in the simplicial setting to equivalences. This gives the Riemann-Hilbert
equivalence

MDR(X•, G)an ∼= MB(X•, G)an

which in turn allows us to construct the analytic moduli stack

MDH(X•, G) → P1

by the Deligne-Hitchin glueing [98].

For G = GL(n) letting n vary we obtain the categories of local systems of
vector spaces, or of bundles with λ-connection. In this case we may consider all
morphisms not necessarily isomorphisms, and the same considerations as above
apply.

Say that X• is connected if its topological realization is connected. If x :
Spec(C) → X0 is a basepoint, we obtain a map of Artin stacks

x∗ : Mη(X•, G) → BG.

Let Rη(X•, x, G) denote the fiber of x∗ over the standard basepoint 0 ∈ BG.
When X• is connected, the correspondences between G-torsors and bundles with
integrable connection, or Higgs bundles of semiharmonic type, imply that all
points Rη(X•, x, G) have trivial stabilizers.

As in Proposition 2.3, one should choose multiple base points in order to express
Rη(X•, x, G) in terms of the representation spaces of the components Xk. Choose
a nonempty simplicial set x•, finite at each level, with a map x• → X•. An η-local
system with coefficients in G, such as a flat G-torsor for η = B or a principal G-
Higgs bundle for η = H, restricts to a simplicial family of vector spaces over x•.
In all cases this corresponds to a flat G-torsor on the realization |x•|. A framing
is a trivialization of this flat G-torsor. If we assume that |x•| is homotopically
discrete and choose a set of points mapping isomorphically to its π0, then a
framing is the same thing as a framing of the collection of fibers of our torsor
over the given points.

Let Rη(X•,x•, G) denote the moduli stack of η-local systems on X• with co-
efficients in G, framed along x•.
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Proposition 6.3. With the above notations, the stack Rη(X•,x•, G) is the 2-
limit of the diagram k 7→ Rη(Xk,xk, G).

If furthermore the finite sets xk meet each component of Xk for k = 0, 1, 2, then
Rη(X•,x•, G) is the equalizer of the two maps between the pieces for k = 0, 1:

(6.1) Rη(X•,x•, G) → Rη(X0,x0, G)−→−→Rη(X1,x1, G).

In particular, it is a quasiprojective scheme.

Proof. The first part is formal. The 2-limit only depends on the first three
terms. If the simplicial basepoint meets all components of the Xk then the terms
Rη(Xk,xk, G) are quasiprojective schemes [97], so the 2-limit is just the equal-
izer. ¤

As discussed in Proposition 2.3 and Example 2.4 for local systems (that is
η = B), the condition that the basepoint meets the components of X2 is necessary
for this to be true even though it doesn’t then enter into the formula.

Suppose the set of basepoints is smaller, for example a single x. In the Betti
case Rη(X•, x, G) is a quasiprojective scheme. In fact it is just the usual affine
scheme of representations of π1(|X•|, x). By the Riemann-Hilbert correspon-
dence, separability follows for the de Rham case η = DR. For Higgs bundles,
a geometrical argument seems to be needed and will be formulated in the next
theorem.

Lemma 6.4. Suppose Y is a smooth projective variety and P, Q are principal
G-bundles with λ-connection on Y × S/S for a quasiprojective base scheme S.
Then the functor which to S′ → S associates the set of isomorphisms between
P |Y×S and Q|Y×S is represented by a quasiprojective S-scheme IsoY×S/S(P, Q)
affine over S.

Proof. Embedd G ⊂ GL(n), so P and Q give rise to GL(n)-bundles. The functor
of morphisms between two such linear bundles with λ-connection is representable
by a vector scheme. Isomorphisms are then parametrized by pairs of morphisms
going both ways whose composition is the identity, and the condition that the
isomorphism respect the reduction of structure group to G is a closed condition.

¤
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Theorem 6.5. Suppose X• is a connected simplicial smooth projective variety,
with a nonempty simplicial basepoint x• → X•. Then Rη(X•,x•, G) is a quasipro-
jective (in particular separated) scheme.

If z ∈ Xk, let x′• = x• t 〈z〉. Then G acts freely on Rη(X•,x′•, G) by change
of framing at z, and the quotient is Rη(X•,x•, G).

Proof. The second statement follows from the first, because Rη(X•,x′•, G) is the
G-bundle of frames of the universal bundle over Rη(X•,x•, G).

No argument is needed for η = B, so we will be treating G-principal λ-
connections. The condition of semiharmonic type, i.e. semistability and vanishing
of Chern classes, is assumed everywhere.

For any simplicial basepoint x•, even if it doesn’t meet all components of the
Xk, let Rη(X≤1,x≤1, G) denote the moduli stack of η-local systems on the 1-
skeleton of X•, trivialized over the 1-skeleton of x•. In general it might be a
stack, as occurs when x• is empty for example.

It parametrizes degeneracy-compatible descent data on X1
−→−→X0, that is to

say pairs (P, φ) where P is a G-bundle with λ-connection of semiharmonic type
on X0, and φ : ∂∗0(P ) ∼= ∂∗1(P ) such that s∗0(φ) = 1 where s0 : X0 → X1 is the
degeneracy. This condition needs to be included here or else one would have to
talk about (X≤1)2 which is nonempty but has only degenerate pieces.

If x• meets all connected components of the Xk then compatibility with the
degeneracy is automatic, and Rη(X≤1,x≤1, G) is the equalizer (6.1) occuring in
Proposition 6.3. In this case it is a quasiprojective scheme rather than a stack.

For components of the simplicial basepoint of the form 〈y〉 ∼= h([2]) for y ∈ X2,
the 1-skeleton is not contractible: rather it is the boundary triangle of the 2-
simplex. This case is what leads to new equations for the representation varieties
when we add in points to the simplicial basepoint, so it is worth looking at
more closely. Let T• := h([2]) denote the contractible simplicial 2-simplex. Its
boundary or 1-skeleton T≤1 is a triangle. Let t0 ∈ T0 denote the 0-th vertex.

The inclusion of the boundary triangle into the 2-simplex induces the map

(6.2) ∗ = Rη(T•, (t0)≤1, G) →Rη(T≤1, (t0)≤1, G) = G
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which is inclusion of the identity element as a point in G. This may be seen
directly from the configuration of three points in T0 corresponding to vertices of
the triangle and six points of T1, three degenerate ones located at the vertices
and three corresponding to the nondegenerate edges. A principal G-bundle over
this configuration together with its face and degeneracy maps corresponds to a
flat G-bundle on the boundary of the triangle. When the trivialization at t0 is
included, it corresponds to a monodromy element in G, and it extends to all of
T if and only if the monodromy element is trivial.

Continue with the proof of the theorem. Suppose given a simplicial basepoint
of the form x = 〈x1〉t · · · t 〈xr〉 with x1 ∈ X0 and xi ∈ Xki for ki ∈ {0, 1, 2}. Let
G′(x•) :=

∏r
j=2 G with the j-th term acting by change of framing over the 0-th

vertex of xj . Thus G′(x•) acts on Rη(X≤1,x≤1, G).

If x• meets all connected components of X0, X1 and X2 then Proposition 6.3
tells us that R(X•,x•, G) = Rη(X≤1,x≤1, G) hence

R(X•, x1, G) = Rη(X≤1,x≤1, G)//G′(x•).

The goal is to show that this is quasiprojective.

Start with a simpler choice of simplicial basepoint. Order the connected compo-
nents of X0 as X1

0 , . . . , Xa
0 , such that for any 2 ≤ i ≤ a there exists a connected

component Xi
1 of X1 with ∂0(Xi

1) ⊂ Xj
0 for j < i and ∂1(Xi

1) ⊂ Xi
0. Choose

y1 ∈ X1
0 , and for 2 ≤ i ≤ a choose yi ∈ Xi

1. Then set

y• = 〈y1〉 t · · · t 〈ya〉.
Consider first the equalizer

R′ → R(X0,y0, G)−→−→R(
a∐

i=2

Xi
1,y1, G).

The quotient R′//G(y•) is a moduli stack parametrizing a-tuples of G-principal
λ-connections P i on the Xi

0, with a choice of framing for P 1 over x1, together with
choices of isomorphisms between the restrictions ∂∗0(P i−1) and ∂∗1(P i−1) over Xi

1

for i = 2, . . . , a.

Let Vk denote the moduli stack of k-uples (P 1, . . . , P k) with isomorphisms as
above. We prove by induction on k that it is a quasiprojective scheme, starting
with k = 1 which is the case of principal λ-connections over the smooth projective
variety X1

0 [97].
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There is a universal object over Uk×X1
0×· · ·×Xa

0 , in particular its restriction to
the next basepoint ∂0(yk+1) is a principal G-bundle over Uk. The representation
variety R(Xk+1

0 , ∂1(yk+1), G) has a G-action, so we can twist it to get a fibration
Vk+1 → Uk with fiber R(Xk+1

0 , ∂1(yk+1), G). Similarly, twisting gives a fibration
Wk+1 → Uk with fiber R(Xk+1

1 , yk+1, G). Restriction of the universal bundle is
a section Uk → Wk+1, and restriction from Xk+1

0 is a morphism Vk → Wk+1.
Specifying a k+1-tuple (P 1, . . . , P k+1) is equivalent to specifying a point in Vk+1

whose restriction is the same as that of P k. In other words, the next moduli
space is the fiber product

Uk+1 = Vk+1 ×Wk+1
Uk.

Hence Uk+1 is a quasiprojective scheme. This completes the inductive step. At
k = a, this shows that

Ua = R′//G(y•)

is quasiprojective.

Now Rη(X≤1,y≤1, G)//G′(y•) is affine over R′//G(y•) parametrizing isomor-
phisms between the restrictions ∂∗0 and ∂∗1 of the universal object, to the other
components of X1. Lemma 6.4 applied to the union of other components, gives
that Rη(X≤1,y≤1, G)//G′(y•) is quasiprojective.

To finish, proceed by induction starting from y and successively adding points
until we get to a simplicial basepoint meeting all the required components. It
suffices analyze what happens when we pass from x• to x• t 〈z〉 for z ∈ Xk,
k = 0, 1, 2. For in X0 or X1, the moduli problem solved by Rη(X≤1,y≤1 t
〈z〉≤1, G)//G′(y• t 〈z〉) is the same as that solved by Rη(X≤1,y≤1, G)//G′(y•),
plus a choice of framing over z, but also modulo the action of an extra copy of G

on this choice of framing. Therefore

Rη(X≤1,y≤1 t 〈z〉≤1, G)//G′(y• t 〈z〉) ∼= Rη(X≤1,y≤1, G)//G′(y•)

and quasiprojectivity for y• implies quasiprojecxtivity for y• t 〈z〉.
Consider therefore the case z ∈ X2. Then 〈z〉 is the 2-simplex T consid-

ered above. A descent datum on X≤1 restricts to one over T≤1, hence to a
monodromy element as discussed after equation (6.2) above. The moduli prob-
lem solved by Rη(X≤1,y≤1 t 〈z〉≤1, G)//G′(y• t 〈z〉) is the moduli problem for
U := Rη(X≤1,y≤1, G)//G′(y•), plus a trivialization of this G-bundle on the
boundary of the triangle T≤1, modulo choice of framing at one point.
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Over U × X≤1 there is a universal object which restricts to a G-bundle on
U × T≤1/U . The condition that the monodromy be trivial is a closed condition
over U . To prove this it suffices to do it etale-locally, but then we can assume that
there is a trivialization of the restriction to one vertex; the monodromy becomes
a function to G such that the inverse image of {1G} (see (6.2)) is the required
closed subset. From all of this we conclude that

Rη(X≤1,y≤1 t 〈z〉≤1, G)//G′(y• t 〈z〉) ⊂ Rη(X≤1,y≤1, G)//G′(y•)

is a closed subscheme. Again, quasiprojectivity on the right implies it on the left.
This completes the induction step.

By induction, we can go to the case of a simplicial basepoint x• meeting all
components of Xk for k = 0, 1, 2. We have shown that Rη(X≤1,x≤1, G)//G′(x•)
is a quasiprojective scheme. However, it is equal to R in this case by Proposition
6.3, which completes the proof that

R(X•, x1, G) = R(X•,x•, G)//G′(x•)

is quasiprojective. This finishes the proof of the theorem in case of a single base-
point. For any nonempty simplicial basepoint, going back in the other direction
corresponds to looking at frame bundles over R(X•, x1, G), which are quasipro-
jective too. ¤

This proof shows how the components of X2 lead to additional equations for
the representation scheme, via the monodromy elements over triangles T≤1. In
case of a simplicial scheme X• such that each Xk is simply connected, the funda-
mental group is the same as that of the simplicial set k 7→ π0(Xk) and the above
procedure shows how the elements of π0(X2) act as relations.

Corollary 6.6. Suppose X• is connected with each Xk being a smooth projective
variety. Choose a basepoint x ∈ X0. Then Rη(X•, x, G) is a quasiprojective
scheme for η = B,DR, H, Hod, an analytic space for η = DH. The group G

acts on it and the quotient stack is Mη(X•, G). For the cases η = H, Hod, DH

there is an action of Gm on both the representation scheme R and the quotient
stack M.

Proof. Apply the previous theorem with the nonempty basepoint 〈x〉. The group
actions are obtained from the universal property. ¤
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For an explicit description of the representation scheme, let y1 = x ∈ X0 be
the first basepoint. Choose yj ∈ xm(j) for j = 2, . . . , r such that the collection
meets all components of X0, X1 and X2. Let y• =

∐r
j=1〈yj〉 be the corresponding

simplicial basepoint. Choose representatives xj ∈ 〈yj〉0.

Corollary 6.7. With these notations, Proposition 6.3 allows us to calculate
Rη(X•,y•, G). Then, applying Theorem 6.5 recursively, the group

∏r
j=2 G acts

freely on Rη(X•,y•, G) by change of framings at the points xj, and the quotient
is Rη(X•, x, G). It extends to an action of the group

∏r
j=1 G with

Rη(X•,y•, G)//(G×
r∏

j=1

G) ∼= Rη(X•, x, G)//G ∼= Mη(X•, G).

Choosing only basepoints in X0 gives a slightly different description refering
directly to Lemma 6.4.

Corollary 6.8. Choose basepoints yj ∈ X0 meeting all the connected components
of X0, and let y• =

∐r
j=1〈yj〉. Then

Rη(X≤1,y≤1, G) → Rη(X0, {yj}, G)

is an affine map parametrizing G-principal λ-connections P on X0, framed at
the yj, together with isomorphisms φ : ∂∗0(P ) ∼= ∂∗1(P ) on X1 compatible with the
degeneracies (or equivalently, with the framings on X1). Furthermore

Rη(X•,y•, G) ⊂ Rη(X≤1,y≤1, G)

is a closed subvariety parametrizing the (P, φ) such that φ satisfies the cocycle
condition on X2.

Turn now to the study of the universal categorical quotients of the moduli
stacks, going back to [73] and more particularly [65] for the moduli of representa-
tions. Consider first the abstract setup of an algebraic stack M, similarly to the
work of Iwanari [52]. A morphism M→ M is a universal categorical quotient in
the category of schemes if M is a scheme, and if for any schemes Y and Z with
a map Z → M , a map

M×M Z → Y

factors through a unique map Z → Y . A universal categorical quotient is obvi-
ously unique.
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In our situation, the moduli stack is a quotient stack M = R//G with R a
quasiprojective scheme. In this case, Seshadri defines the notion of good quo-
tient [93] and notes that Mumford’s construction of the quotient for the set of
semistable points [73] is good. A good quotient is separated and quasiprojective,
and the points correspond to closed orbits of the G-action.

Lemma 6.9. Suppose V is a quasiprojective scheme with G action, such that all
points are semistable with respect to a linearized line bundle L. Suppose ϕ : F →
G is a G-equivariant affine map. Then all points of F are semistable for ϕ∗(L),
so there is a good quotient F/G too.

Proof. If z ∈ F then ϕ(z) is semistable by hypothesis. This means that there
is a section f ∈ H0(V, L⊗n)G such that Vf 6=0 is an affine neighborhood of ϕ(z).
It pulls back to a G-invariant section on F and Fϕ∗(f) 6=0 = ϕ−1(Vf 6=0) is affine.
Thus z is semistable. ¤

Theorem 6.10. Suppose Z• is a simplicial scheme with split degeneracies such
that the Zk are smooth projective varieties. Suppose Z• is connected with a base-
point z. Then for η = B,DR, H, Hod there is a linearized line bundle such that
all points of Rη(Z•, z, G) are semistable. Therefore Mη(Z•, G) admits a universal
categorical quotient which is a good quotient

Mη(Z•, G) = Rη(Z•, z, G)/G.

Proof. Choose points z = y1, . . . , yb in all the connected components of Z0 and
let y• be the corresponding simplicial basepoint of Z•. Then the action of Gb on
Rη(Z0, {yj}, G) by change of framings, linearizes a line bundle L0 for which all
points are semistable. By Corollary 6.8 the map

Rη(Z•,y•, G) → Rη(Z0, {yj}, G)

is a Gb-equivariant affine map. Therefore L0 pulls back to a Gb-linearized line
bundle L̃ on Rη(Z•,y•, G) for which all points are semistable and there exists a
good quotient, as pointed out in Lemma 6.9. The quotient map factors through
a good quotient by Gb−1 first, then the quotient by G:

(6.3) Rη(Z•,y•, G) → Rη(Z•, y1, G) → Mη(Z•, G).

In the middle is a quasiprojective scheme representing the corresponding functor,
by Theorem 6.5. The line bundle L̃ descends to a G-linearized bundle L on
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Rη(Z•, y1, G), which is the pullback of a bundle on the good Gb-quotient M =
Mη(Z•, G). All of the maps in (6.3) are affine maps since the middle variety is
covered by the affine Gb-quotients of the inverse images of affine sets defined by
sections of the line bundle on M . It follows that all points of Rη(Z•, y1, G) are
semistable, and M is a good quotient of Rη(Z•,1 , G) by the action of G. ¤

Corollary 6.11. The universal categorical quotients

MHod(X•, G) → MHod(X•, G)

glue together to give a separated analytic universal categorical quotient

MDH(X•, G) → MDH(X•, G)

which is the Deligne-Hitchin twistor space for representations of π1(X•) in G.

One can interpret these things as a kind of weight filtration. Suppose X•
is a simplicial scheme such that each Xk is a smooth projective variety. The
morphisms

Mη(X•, G) →Mη(X0, G)

Mη(X•, G) → Mη(X0, G)

and, for x ∈ X0 a basepoint,

Rη(X•, x, G) → Rη(X0, x, G),

induce equivalence relations on the left hand sides. Define the weight filtration
to be the equivalence relation

WMη(X•, G) := Mη(X•, G)×Mη(X0,G) Mη(X•, G),

and similarly for WMη and WRη. The WMη and WRη are equivalence relations
on Mη and Rη respectively. Because of the stackiness, WMη will in general have
a structure of groupoid in the category of stacks. However, the arguments given
above show that the map Mη(X•, G) →Mη(X0, G) is representable and affine.

It might be interesting to use the derived fiber product here instead, but that would go

beyond our present scope.
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7. Hodge and harmonic theory

Classical results and techniques from Hodge theory apply also to Deligne-
Mumford stacks, see [104] [68] for example, and more generally to simplicial
manifolds as in [39] [55]. Similarly, nonabelian harmonic theory for local systems
applies to a simplicial smooth projective variety, with a few modifications, by
working on each level. Many proofs in this section will be shortened or left to
the reader.

Suppose X• is a simplicial smooth projective variety. A simplicial Higgs bun-
dle (E•, θ) is a collection of Higgs bundles Ek of rank n on Xk, together with
compatibility isomorphisms for each k → m in ∆ in the same way as for local
systems.

If G is a linear algebraic group, a principal G-Higgs bundles (P•, θ) on X•
is a simplicial family of principal G-Higgs bundles on the Xk. The preceding
definition is recovered for G = GL(n). Make the corresponding definitions for
λ-connections over λ ∈ A1.

Definition 7.1. A principal G-Higgs bundle (P, θ) on a smooth projective variety
X is of semiharmonic type if it is semistable with Chern clases vanishing in
rational cohomology. This condition is independant of the choice of Kähler class.

A simplicial principal G-Higgs bundle (P•, θ) over a simplicial smooth projec-
tive variety X• is said to be of semiharmonic type if each (Pk, θ) is of semihar-
monic type on Xk.

Given a principal G-bundle with λ-connection (P•,∇), say that it is of semi-
harmonic type if it satisfies the previous definition when λ = 0; the condition is
automatically true for λ 6= 0 since we consider only the compact case here.

Applying the equivalence of categories from [96] level by level gives a simplicial
version.

Proposition 7.2. Suppose X• is a connected simplicial smooth projective variety.
There is an equivalence of tannakian categories between the category of simplicial
Higgs bundles of semiharmonic type on X• and the category of local systems. This
equivalence is compatible with pullback along morphisms of simplicial varieties,
in particular it preserves the fiber functors of restriction to a basepoint. For any
linear group G this induces an equivalence between the categories of simplicial
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principal G-Higgs bundles of semiharmonic type on X• and the category of G-
torsors over |X•|.

Say G is reductive. A principal Higgs bundle of semiharmonic type will be
called polarizable if each (Pk, θ) admits a harmonic reduction of structure group
to the maximal compact of G, or equivalently if it is polystable. Pridham calls
this “normally semisimple” in [85, Section 9] where he treats much of the relevant
harmonic theory. Say that (P•, θ) is strongly polarizable if there is a simplicial
family of harmonic reductions of structure group hk compatible under the tran-
sition maps for k → m in ∆. Similarly, say that a local system is strongly
polarizable if there exists a compatible collection of harmonic metrics hk on Lk.
We use this terminology interchangeably for the corresponding local system L on
|X•|.

The equivalence of categories of Proposition 7.2 preserves the conditions of
polarizability and strong polarizability. For polarizable objects the equivalence
can be expressed in terms of harmonic bundles on X•, in other words simpli-
cial families denoted E• of harmonic bundles (Ek, ∂, ∂, θ, θ) on Xk, together with
pullback isomorphisms compatible with cohomology.

The category of harmonic bundles on a simplicial scheme X• maps by an
equivalence of category to the subcategory of polarizable local systems L• on X•,
i.e. ones such that each Lk is semisimple on Xk. It also maps by an equivalence of
categories to the category of termwise polystable λ-connections, for any λ ∈ A1.
Among other things, these functors with the same formulae as in the usual smooth
projective case, provide us with a collection of prefered sections of the family of
analytic moduli stacks MDH(X•, G) → P1, and their images which are sections
of the family of moduli spaces MDH(X•, G) → P1.

Proposition 7.3. The category of strongly polarizable local systems is tannakian
and semisimple. Restriction to any basepoint x ∈ |X•| provides a fiber func-
tor, and the corresponding affine algebraic group $SP

1 (X•, x) is reductive. The
monodromy representation of a strongly polarizable local system is semisimple.

Proof. Suppose (L•, h•) is a strongly polarized local system on X•. If U• ⊂
L• is a sub-local system then the simplicial family V : k 7→ U⊥

k of orthogonal
complements with respect to the hk forms a complement, L• = U• ⊕ V•. ¤
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The following example shows that semisimplicity doesn’t necessarily hold for
local systems which are only polarizable; and furthermore that semisimple local
systems are not necessarily strongly polarizable.

Example 7.4. Suppose X• is a simplicial smooth projective variety such that
each Xk is simply connected. Then every local system L on |X•| is polarizable,
but a local system is strongly polarizable if and only if it is unitary.

In fact, semisimplicity doesn’t necessarily imply polarizability, either.

Example 7.5. Let X• be the simplicial resolution of a nodal curve, with X0

the normalization of genus g > 1. Then there are local systems which are not
semisimple on X0, but where the additional monodromy transformation at the
node makes the full monodromy representation semisimple.

On the other hand, for hypercoverings of normal DM-stacks,

π1(X0, x) → π1(|X•|, x)

has image of finite index and polarizability, semisimplicity and strong polariz-
ability are the same—see Lemma 8.2 and Theorem 8.4 below.

If X• is a simplicial smooth scheme, a variation of Hodge structure V• over X•
consists of specifying a variation of Hodge structure Vk on each Xk, together with
functoriality isomorphisms φ∗(Vk) ∼= Vm whenever φ : [k] → [m] is a map in ∆,
satisfying the usual compatibility condition. We say that V• is polarizable if each
Vk is polarizable. We say that V• is strongly polarizable if there exist polarizations
hk on each Vk which are compatible with the functoriality isomorphisms.

Lemma 7.6. Suppose X• is a simplicial smooth projective variety. Suppose L• is
a polarizable local system on X• corresponding to the Higgs bundle (E•, θ). Then
a structure of polarizable VHS on L• is exactly given by a trivialization of the C∗

action ϕt : (E•, θ) ∼= (E•, tθ). A strongly polarizable local system which is a fixed
point, corresponds to a strongly polarizable variation of Hodge structure.

Remark 7.7. Suppose V• is a strongly polarizable VHS. Then the monodromy
group of the underlying representation of π1(|X•|) is contained in some U(p, q).
However, this is not necessarily the case for a polarizable VHS which is not
strongly polarizable.
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Conjecture 7.8. For a strongly polarizable variation of Hodge structure, the real
Zariski closure of the image of π1(|X•|, x) in GL(L(x)) is a group of Hodge type.

If X• is a simplicial variety whose components are simply connected, then
any local system is trivial on each Xk, in particular setting V 0,0

k := Lk gives a
polarizable VHS, which will not however usually be strongly polarizable. So in
general the existence of a polarizable VHS doesn’t lead to restrictions on the
representation or the fundamental group. For that, one requires the finite index
condition 8.1, as will be discussed in the next section on normal DM-stacks. That
condition implies Conjecture 7.8.

The following lemma shows that lack of strong polarizability is an obstruction
to extending a local system to a smooth ambient variety.

Lemma 7.9. Suppose X• → Z is a morphism from a simplicial smooth projective
variety, to a smooth quasiprojective variety Z; for example when X• is a proper
surjective hypercovering of a closed subscheme of Z. If L• is a semisimple local
system on X• which is the pullback of a local system on Z, then it is strongly
polarizable.

Proof. If L• is the pullback of a local system LZ , then it is also the pullback
of the associated-graded of the Jordan-Hölder series for LZ , so we may assume
LZ semisimple; it then has a harmonic metric [71] which restricts to a strong
polarization of L•. ¤

There are other obstructions of a similar nature. Suppose X• is a simplicial
smooth projective variety, and x ∈ X1 is a point. It has two images ∂0x, ∂1x ∈ X0.
If (E•, θ) is a Higgs bundle on X• then

E0(∂0x) ∼= E1(x) ∼= E0(∂1x)

so the Higgs field θ on E0 over X0 provide separately commutative actions of the
two tangent spaces T∂0xX0 and T∂1xX0 on E1(x). Say that (E•, θ) satisfies the
commutativity obstruction if these two actions commute with each other, in other
words θ(∂0x)(v0) and θ(∂1x)(v1) commute as endomorphisms of E1(x) whenever
v0 ∈ T∂0xX0 and v1 ∈ T∂1xX0. The following lemma identifies this as another
obstruction to extending a local system to a smooth ambient variety.

Lemma 7.10. Suppose f : X• → Z is a morphism from a simplicial smooth
projective variety to a smooth quasiprojective variety Z, and L• is a local system
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on X• corresponding to a Higgs bundle (E•, θ). If L• is the pullback of a local
system on Z then (E•, θ) satisfies the commutativity obstruction at each x ∈ X1.

Proof. If L• is a pullback from Z, then (E•, θ) is the pullback of a Higgs bundle
(F, ϕ) on Z (this works even if Z is only quasiprojective by [71]). For any x ∈ X1,
the actions of both tangent spaces T∂0xX0 and T∂1xX0 factor through the action
of Tf(x)Z on E1(x) ∼= F (f(x)) given by ϕf(x). ¤

To give a concrete example, suppose X is a nodal curve embedded in a smooth
variety Z. A local system L on X restricts to a local system corresponding to
a Higgs bundle (E0, θ) on the normalization X0 = X̃. At each node x ∈ X

we obtain two endomorphisms of L(x) given by the Higgs field θ applied to the
tangent vectors along the two branches going through x. The commutativity
obstruction says that these should commute, as will be the case if the Higgs
bundle is a pullback from Z.

Look now at the local structure of the space of representations. If G is an
algebraic stack and p ∈ G(C) is a closed point, the tangent space TpG is defined
as the set of pairs (f, e) where

f : SpecC[ε]/ε2 → G

and e : f |SpecC ∼= p is an isomorphism of points, up to natural equivalences of the
f respecting the isomorphisms e. If G is a moduli stack then the tangent space
is usually known as the deformation space: a point consists of an infinitesimal
deformation with isomorphism between the central fiber and the original object
in question.

Suppose X• is a connected simplicial smooth projective variety, with basepoint
x ∈ X0. The tangent space to the moduli stack MB(X•, G) of G-local systems
on |X•| at L is H1(X•, ad(L)) where ad(L) is the adjoint local system, equal to
End(L) in the linear case and derived from the adjoint action of G on Lie(G) in
general. See [95] for a discussion of some fine points on tangent spaces of moduli
of local systems.

Combining differential forms on the various simplicial levels gives a complex
of forms on a simplicial variety, as is known from [39] and [55]. This may be
applied here. If (E•, θ) is a Higgs bundle on X•, define the Dolbeault coho-
mology H i

Dol(X•, E•, θ) to be the cohomology of the total complex obtained by
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adding together the Dolbeault complexes A•Dol(Xk, Ek, θ) (or any equivalent func-
torial family of complexes computing the same hypercohomology) on each Xk

and adding the alternating sum of face maps to the differential. More generally if
(E,∇) is a bundle with λ-connection then we can define the de Rham cohomol-
ogy H i

DR(X•, E•,∇) using the de Rham complexes on each Xk. The simplicial
version of Biswas and Ramanan’s calculation of the deformation space [16] holds:

Lemma 7.11. Suppose (P•, θ) is a principal G-Higgs bundle on X• of semi-
harmonic type. Let (ad(P ), θ) denote the linear Higgs bundle obtained from the
adjoint representation. The tangent space to the moduli stack MH(X•, G) is
naturally identified as H1

Dol(X•, ad(P ), θ). The corresponding statement holds for
the relative tangent space to the moduli stack MHod(X•, G) of λ-connections over
any λ ∈ A1.

Suppose x ∈ X0 is a point. It may be viewed as a simplicial morphism x → X•
from the constant one-point simplicial scheme to X•. The relative Dolbeault
complex is the cone on the map

⊕

j,k

Aj
Dol(Xk, Ek, θ) → E0(x),

or equivalently the kernel of this map, giving a complex which calculates the
cohomology relative to the basepoint. Again the same may be said for de Rham
cohomology.

Remark 7.12. The tangent space to Rη(X•, x, G) is given by the relative coho-
mology H1

η (X•, x, ad(ρ)) of the required type.

Proposition 7.13. Suppose X• is a simplicial smooth projective variety, con-
nected, with basepoint x ∈ X0. Suppose V• is a polarizable variation of Hodge
structure. Then the complete local ring Ôρ,x of the formal completion of the rep-
resentation variety RB(X•, x, GL(n)) at the monodromy representation ρ of V•
has a natural and functorial mixed Hodge structure generalizing that of [42].

Proof. This is a sketch of proof. Suppose first that x• → X• is a simplicial
basepoint meeting all components of X0, X1 and X2, so Proposition 6.3 applies.
The complete local ring Ôρ,x• of the formal completion of RB(X•,x•, GL(n)) at
ρ has a unique mixed Hodge structure compatible with the maps in the cartesian
square (6.1) and the mixed Hodge structures on the local rings of the other three
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pieces given by [42]. This is because the maps in (6.1) are morphisms of mixed
Hodge structures, and the local ring of the fiber product is the tensor product of
the local rings of the other three pieces so it inherits an MHS.

Write x• = 〈x〉 t 〈y1〉 t · · · t 〈ya〉. Write Y := {y1, . . . , ya}. At y ∈ Y let
Vy denote the Hodge structure fiber of V• at y. This determines a mixed Hodge
structure on the formal completion of GL(Vy) at the identity. For these mixed
Hodge structures, the action of

∏
y∈Y GL(Vy) on RB(X•,x•, GL(n)) is compatible

with the mixed Hodge structures. The action is free and

RB(X•, x, GL(n)) = RB(X•,x•, GL(n))/
∏

y∈Y

GL(Vy).

The complete local ring Ôρ,x is thus the subring of invariants in Ôρ,x• under the
formal action of

∏
y∈Y GL(Vy), so there is an exact sequence

0 → Ôρ,x → Ôρ,x• → ÔW,(ρ,1,...,1)

where

W = RB(X•,x•, GL(n))×
∏

y∈Y

GL(Vy).

The map on the right is a map of MHS so Ôρ,x acquires a MHS. ¤

8. The normal case

A normal variety is geometrically unibranched. Conversely, if X is geometri-
cally unibranched then its normalization X̃ → X is a one-to-one map and induces
an homeomorphism of topological realizations. This localizes in the etale topol-
ogy so the same hold when X is a DM-stack.

A more general condition in the situation of a simplicial variety is the following
“finite index condition”.

Condition 8.1. For X• a simplicial smooth projective variety, the present con-
dition says that:
(1) for any two components Xi

0 and Xj
0 of X0, there is a component Xij

1 of X1

which dominates them by ∂0 and ∂1 respectively;
(2) for any basepoint x ∈ Xi

0, the image of π1(Xi
0, x) → π1(|X•|, x) has finite

index; and
(3) every polarizable local system on X• is strongly polarizable.
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Condition (2) is independent of the choice of basepoint, because a path in Xi
0

can be lifted to Xij
1 and projected to a path in Xj

0 .

One could conjecture that Condition (3) is a consequence of the other two
conditions, or perhaps some other natural geometric condition. I couldn’t find
an argument, but Theorem 8.4 will say that it holds for standard resolutions of
geometrically unibranched proper DM-stacks.

Lemma 8.2. If X• is a simplicial smooth projective variety satisfying Condition
8.1, then the following conditions for a local system L• on X• are equivalent:
(a) L• is semisimple;
(b) there exists a component X ′

0 of X0 such that L0|X′
0

is semisimple;
(c) L• is polarizable;
(d) L• is strongly polarizable.

For a G-torsor, the monodromy is reductive if and only if the monodromy of
its restriction to X ′

0 is reductive.

Proof. Semisimplicity of a representation is equivalent to semisimplicity of its
restriction to a finite-index subgroup. Therefore, from part (2) of 8.1, (b) implies
(a) and (a) implies:
(b)′ for any component X ′

0 of X0, L0|X′
0

is semisimple,
a condition which clearly implies (b). Also, (c) implies (b)′ since polarizability and
semisimplicity are the same on a smooth quasiprojective variety. The pullback
of a polarizable local system is again polarizable, so (b)′ implies (c). By part (3)
of 8.1, (d) is equivalent to (c). ¤

Condition 8.1 holds in a wide variety of cases. In preparation for the proof,
here is a version of Zariski’s connectedness.

Lemma 8.3. Suppose Z is a smooth variety with a projective map to a con-
nected geometrically unibranched DM-stack X, such that every component of Z

dominates X. Suppose U ⊂ Z is a dense open subset. Then every connected
component of Z ×X Z meets U ×X U .

Proof. Suppose X ′ → X is an etale covering, then the same statement for Z ×X

X ′ → X ′ implies the statement for Z → X. Therefore we may assume that X is
a quasiprojective scheme, also it can be assumed reduced.
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Let Z
g→ V

h→ X be the Stein factorization: h is finite and g has connected
fibers. All irreducible components of V dominate X, so they have the same
dimension as X. There is an open dense set W ⊂ V such that U meets all the
fibers g−1(w) for w ∈ W .

Suppose (z1, z2) ∈ Z×XZ, with z1, z2 7→ x ∈ X. Let v1 = g(z1) and v2 = g(z2).
Thus (v1, v2) ∈ V ×X V . Let N1 and N2 be small usual analytic neighborhoods
of v1 and v2 respectively in V . Their images h(Ni) ⊂ X are germs of closed
subvarieties of the same dimension as X, so by the hypothesis that X is geomet-
rically unibranched, the h(Ni) must contain neighborhoods of x. But W ⊂ V

is a dense Zariski-open subset, so h(N1 ∩ W ) ∩ h(N2 ∩ W ) 6= ∅. By succes-
sively reducing the size of the neighborhoods, we can choose a sequence of points
(w1(j), w2(j))j∈N ∈ W×X W approaching (v1, v2) for j →∞. Lift wi(j) to points
yi(j) ∈ U . Since g is proper, a subsequence of (y1(j), y2(j)) ∈ U ×X U converges
to some (z′1, z

′
2) ∈ Z ×X Z lying over (v1, v2) ∈ V ×X V . But the fibers of g

are connected (that is where Zariski’s connectedness theorem is used), so z′1 is
connected to z1 in g−1(v1) and z′2 is connected to z2 in g−1(v2). Therefore (z′1, z

′
2)

lies in the same connected component of Z ×X Z as (z1, z2). However, (z′1, z
′
2) is

also a limit of points in U ×X U , so the component of (z1, z2) meets U ×X U . ¤

Theorem 8.4. Suppose that X is a proper singular DM-stack which is reduced,
connected and geometrically unibranched, that is the analytic germ of an etale
chart at any singular point is irreducible. Then, for a proper surjective hypercov-
ering by smooth projective varieties Z• → Y constructed as in Theorem 5.8, the
finite index condition 8.1 holds.

Proof. We may assume that X is reduced (the reduced substack has the same
topological type). Also it is irreducible, because connected and geometrically
unibranched. If a hypercovering is constructed as in Theorem 5.8 then it satisfies
condition (1). Suppose V → X is a surjective etale map. Elements of the fun-
damental group π1(X, x) can be viewed as paths which are piecewise continuous
on V , related by the equivalence relation V ×X V at the jumping points. Fur-
thermore the jumping points can be assumed general, i.e. where V is smooth.
Since V is geometrically unibranched, paths can be moved away from the singu-
larities and in fact, into any dense open substack. There exists an open dense
substack U ⊂ X which is smooth and a gerb over its smooth coarse moduli space
Uc. Then U is also connected and paths can be moved into U , so π1(U) surjects
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onto π1(X). Now suppose f : Z• → X is a proper surjective hypercovering, in
particular by Proposition 5.15, π1(|Z•|) ∼= π1(X). Some connected component
Z ′0 dominates X, from which it follows that π1(f−1(U)∩Z ′0) → π1(Uc) has image
of finite index. Thus the image is of finite index in π1(U), and in turn the image
of π1(Z ′0) in π1(X) = π1(|Z•|) has finite index.

For (3), given a polarizable local system L• on Z•, we need to construct a
strong polarization, that is a collection of harmonic metrics hk on Lk compatible
with the restrictions. Eventually adding an extra component to Z = Z0, we may
assume that there is a component Z1 ⊂ Z containing an open set U1 ⊂ Z1 such
that U1 → X is a finite etale Galois cover over its image UX which is in the
smooth locus of X, and in fact in the locus where X is a gerb over the smooth
part of Xc.

Let Φ be the Galois group acting on U1; by equivariant resolution of singu-
larities [112] [9], we may assume that it extends to an action on Z1. Therefore
by averaging over Φ an initial choice of harmonic metric on LZ1 , we obtain a
Φ-invariant harmonic metric h′ over U1. For each component Zi of Z, choose a
component R1i mapping by dominant maps ∂0 : R1i → Z1 and ∂1 : R1i → Zi.
Then ∂∗1(LZi) is a local system on R1i isomorphic by the descent datum, to
∂∗0(LZ1). In general, given a harmonic metric on the pullback of a semisimple
local system by a dominant map of smooth projective varieties, there is a unique
harmonic metric downstairs whose pullback is the given one. So there is a har-
monic metric hi on LZi with ∂∗1(hi) = ∂∗0(h1) on R1i. Together these define a
harmonic metric h on L0 over Z = Z0.

The descent datum ϕ gives a continuous isomorphism between the two pull-
backs pr∗0(L0) and pr∗1(L0) over Z ×X Z as pointed out in Remark 5.10. Let
K ⊂ Z ×X Z be the subset of points (z1, z2) where ϕ∗pr∗0(h) = pr∗1(h). The
strong polarizability condition says that K should be all of Z ×X Z.

The subset K is closed in the usual topology, since it results from the compar-
ison of two continuously varying metrics. It is also open, indeed if (z1, z2) ∈ K

and (y1, y2) is a nearby point, then there is a connected smooth projective alge-
braic curve C → Z ×X Z passing through (z1, z2) and (y1, y2). The two pullback
metrics induce harmonic metrics on L|C which agree over (z1, z2), but a harmonic
metric on a smooth projective variety is determined by its value at one point, so



Local Systems 1725

the two metrics agree over (y1, y2) too. This shows that (y1, y2) ∈ K, so K is
open. It follows that K is a union of connected components of Z ×X Z.

On the other hand, the invariance property of h1 means essentially that over
UX it is pulled back from a harmonic metric on the local system L over UX , so an
argument with the descent data will show that the collection of hi are compatible
with the descent data on the open set U ⊂ Z which is the inverse image of UX .
Thus U ×X U ⊂ K. Lemma 8.3 implies that K = Z ×X Z so L is strongly
polarizable. ¤

If the condition “finite index” is replace by “surjective” then there is a closed
immersion of representation spaces.

Lemma 8.5. Suppose X• is a simplicial smooth projective variety, connected,
and let (X ′

0, x) be a connected component with basepoint in X0. Suppose that
π1(X ′

0, x) → π1(X•, x) is surjective. Then the map

RB(X•, x, G) → RB(X ′
0, x, G)

is a closed immersion.

Proof. It is just given by the equations saying that the elements of the kernel of
the map on fundamental groups, have trivial image. ¤

This lemma would apply, for example, to geometrically unibranched DM-stacks
with quasiprojective moduli space and trivial generic stabilizer. At points corre-
sponding to variations of Hodge structures, the closed immersion expresses the
mixed Hodge structure on the complete local ring of RB(X•, x, G) as a quotient
of that of RB(X ′

0, x, G) by a mixed Hodge ideal.

Suppose X• is a simplicial smooth projective variety, connected, satisfying the
finite index condition 8.1. Suppose P is a G-principal bundle with λ-connection,
or a G-torsor on |X•|. Fix a basepoint x ∈ X0 and a framing for P (x). One
should be able to construct, following [55], a Lie algebra of forms with coeffi-
cients in ad(P ) A•η(X•, ad(P )), augmented towards Lie(G), which controls the
deformation theory of P in the sense of Goldman-Millson. Say that a dgla is
formal in degrees ≤ 11

2 if it is joined to a complex with zero differential, by
morphisms inducing isomorphisms on H0 and H1 and injections on H2. This is
enough to get a control of the structure of the representation space.
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Conjecture 8.6. In this situation, if P is polarizable and X• satisfies the finite
index condition 8.1, then the above dgla is formal in degrees ≤ 11

2 . Furthermore
in this case there are natural quasiisomorphisms between the Dolbeault dgla con-
troling deformations of the G-principal Higgs bundle and the de Rham and Betti
dgla’s controling deformations of the associated G-torsor.

To get around this conjecture we can prove directly one of the main conse-
quences, but without making any statement about quadraticity.

Lemma 8.7. Suppose X• is a simplicial scheme with smooth projective levels
satisfying the finite index condition 8.1. Suppose ρ : π1(X•) → G is a semisimple
representation, corresponding to principal G-Higgs bundle (P, θ). The local ana-
lytic structures of MH(X•, G) at (P, θ) and of MB(X•, G) or MDR(X•, G) at ρ

are the same.

Proof. In the case of a smooth projective variety, the formal local structures of
the representation spaces for η = B and η = H, at points corresponding to a
semisimple representation and its corresponding Higgs bundle, are canonically
isomorphic. The isomorphism respects the group actions by change of frames,
and is functorial for morphisms of smooth projective varieties.

This comes from the formality isomorphism on the Goldman-Millson dgla’s
for a smooth projective variety. From the expression of (6.1) we get the same
canonical isomorphisms

RB(X•,x•, GL(n))∧,ρ ∼= RH(X•,x•, GL(n))∧,(P,θ).

From Condition 8.1, ρ is a point where the stabilizer is reductive. Using Luna’s
etale slice theorem as in [42], and taking the quotient by the stabilizer, gives the
required local formal isomorphism M∧,ρ

B
∼= M

∧,(P,θ)
H . ¤

Condition 8.1 implies that the categorical equivalence between Higgs bundles
and local systems gives a homeomorphism of character varieties, joining together
two different complex structures to give a quaternionic structure as in [48]. One
expects that some condition such as 8.1 is necessary here, because of the non-
continuity of the correspondence at non-semisimple points, see the Counterexam-
ple of [97] (II, p. 39).
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Theorem 8.8. Suppose X• is a simplicial smooth projective variety, connected
and which satisfies the finite index condition 8.1. Suppose G is a linear reductive
group. Then the points of the various coarse moduli spaces Mη(X•, G) parametrize
polarizable G-local systems. The correspondence between Higgs bundles and local
systems gives a homeomorphism of coarse moduli spaces

MH(X•, G)top ∼= MB(X•, G)top.

There are stratifications of MH , MDR, and MB by locally closed smooth sub-
varieties which correspond to each other by the above homeomorphism and the
Riemann-Hilbert isomorphism between Man

DR and Man
B , such that the Hitchin and

Betti complex structures combine to give a hyperkähler structure on each stratum.

Proof. This is a sketch of proof. The correspondence preserves semisimplicity
so it gives a map from the points of MH to the points of MB. Proceed as
in [97] to get the homeomorphism, using the real subspaces of Rh

B ⊂ RB and
Rh

H ⊂ RH consisting of framings compatible with harmonic metrics. The moduli
spaces are quotients of Rh

B and Rh
H by compact groups. This argument will give,

furthermore, that the map

Mη(X•, G) → Mη(X0, G)

is a proper map of topological spaces, from which it follows that it is a proper
map of schemes. Since, for η = B, these are affine, we get in fact that the emap
is finite.

Define a canonical stratification by starting with the open set of smooth points
(of the reduced subscheme) where furthermore the restriction map to Mη(X0, G)
is etale onto its image, looking at the complement, and continuing with the same
construction. Lemma 8.7 shows that a point ρ ∈ MB will be at the same depth
of this stratification as its corresponding point (P, θ) ∈ MH . The images of the
strata are canonically defined locally closed subvarieties of Mη(X0, G). As such,
they are compatible with all of the complex structures, so they are hyperkähler
subvarieties of the hyperkähler structure of Hitchin-Fujiki [43]. Being etale over
those of Mη(X0, G), the strata in Mη(X•, G) have hyperkähler structures too. ¤

The homeomorphism gives continuity of the C∗ action.
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Corollary 8.9. Suppose X• is a simplicial smooth projective variety, connected
and which satisfies the finite index condition 8.1. Then the action of C∗ is con-
tinuous on the character variety MB(X•, G).

In particular, if ρ is a semisimple representation of π1(|X•|) which is locally
rigid, then it is fixed by the action of C∗ so it underlies a strongly polarizable
variation of Hodge structure.

The real Zariski closure of its monodromy group is of Hodge type. Therefore,
lattices in real groups not of Hodge type cannot occur as π1(|X•|).

Proof. The action is algebraic on MH so by the homeomorphism of the previous
theorem it is continuous on MB. The rest follows as in [96]. For the last part,
note that the real Zariski closure of the monodromy group of π1(X0) has finite
index in the real Zariski closure of the monodrom on π1(|X•|), so the conditions
of Hodge type are equivalent, one concludes using [96] for X0. ¤

By Theorem 8.4, these restrictions, analogous to those for smooth projective
varieties, apply in particular to any normal or even geometrically unibranched
DM-stack.

An interesting question is whether other restrictions on fundamental groups
of compact Kähler manifolds, including many works such as Gromov’s [47]—see
the full discussion of [3]—extend to the π1(|X•|) for X• satisfying the finite index
condition 8.1. A weaker question is to what extent these restrictions hold for
smooth proper DM-stacks. Is the class of fundamental groups of smooth proper
DM-stacks different from the classes of compact Kähler groups, or fundamental
groups of smooth projective varieties? And how do these compare with the
classes of fundamental groups of normal projective varieties, normal DM-stacks,
the π1(|X•|) for X• satisfying the finite index condition 8.1, etc?

9. The smooth case

Look now at the above constructions for the case when X is a smooth proper
Deligne-Mumford stack. This was our main and original motivation, even though
for expositional reasons we have concentrated on the simplicial case up until now.
It is one of the cases which has attracted the most attention in the literature. For
example, Biswas-Gómez-Hoffmann-Hogadi [12] treat local systems over an abelian
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gerb. If X is a smooth projective variety with simple normal crossings divisor
D, then the Cadman-Vistoli root stacks which have been discussed previously
are smooth and proper. Local systems on root stacks correspond to parabolic
bundles (with rational weights), so the numerous works concerning parabolic
bundles may be viewed as treating local systems on the root stacks, as will be
discussed in detail in the second half of this section.

Fix a connected smooth proper DM-stack X, and let Z• → X be a proper
surjective hypercovering such that the Zk are smooth projective varieties given
by Theorem 5.8. The first terms (Z, R,K) are assumed to form a partial simplicial
resolution constructed according to the recipe above Theorem 5.8, starting from
a surjective-where-etale morphism Z → X from a smooth projective variety of
Theorem 5.4.

For η = B,DR, H, Hod, DH the moduli stacks Mη(Z•, G) may be interpreted
as moduli stacks of the various kinds of local systems on X

Mη(Z•, G) ∼= Mη(X, G),

indeed bundles with λ-connection (resp. local systems) on Z• descend to bundles
with λ-connection (resp. local systems) on X, by Lemma 5.11 (resp. Lemma
5.14). Semistability for Higgs bundles requires some further discussion below.

Letting z ∈ Z be a lift of the basepoint x ∈ X, the same may be said of the
representation schemes

Rη(Z•, z, G) ∼= Rη(X•, x, G).

Local systems on X may be identified with representations of Noohi’s funda-
mental group π1(X, x) defined in [78], which is the same as the fundamental group
of the topological realization |X|. So the Betti moduli stacks can be expressed

RB(X, x, G) = Hom(π1(X, x), G)

MB(X) = Hom(π1(X, x), G)//G.

We have the Riemann-Hilbert correspondence between local systems and vector
bundles with integrable algebraic connection

MB(X)an ∼= MDR(X)an

which may be constructed over Z and then descended down to X.
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A smooth proper DM-stack satisfies Condition 8.1, by Theorem 8.4, so polariz-
ability, strong polarizability and semistability are the same by Lemma 8.2. More
generally all the results of the previous section apply.

In order to give an intrinsic description of the moduli stack of Higgs bundles
MH(X, G), a notion of semistability is needed.

Nironi has introduced a very interesting notion of projective DM-stack [75].
This allows him to generalize the theory of moduli of vector bundles and similar
objects, by applying the same techniques as in the projective case. Our tech-
nique applies to any proper smooth DM-stack, but doesn’t give as much as what
Nironi can do: we are constrained to consider only moduli spaces of objects with
vanishing Chern classes, which correspond in some way to representations of the
fundamental group, while Nironi’s techniques in the case of a “projective” DM-
stack (in his sense) would allow consideration of moduli spaces of vector bundles
with arbitrary Chern classes.

On a general smooth proper DM-stack X we don’t have a Kähler class to use
for defining semistability, but due to the fact that we are interested in flat bundles
here i.e. c2 = 0, there are various ways of getting around that: either require
semistability for some variety mapping to X, or for all varieties mapping to X.

Definition 9.1. Suppose (E, θ) is a Higgs bundle on a smooth proper DM-stack
X. We say that it is potentially semistable (resp. potentially polystable) if there
exists a polarized projective variety Y and a surjective map g : Y → X such that
the Higgs bundle g∗(E, θ) is slope-semistable (resp. slope-polystable) on Y with
respect to the given polarization.

In general this notion will not be very well behaved: even if X is a projective
variety itself, we are allowing semistability with respect to an arbitrary polar-
ization. However, when the Chern classes vanish then the condition no longer
depends on a choice of polarization so we can expect that it gives a reasonable
condition on a DM-stack too. Recall that Vistoli’s theorem provides the no-
tion of rational Chern classes on X, see [53]. Thus, the condition ci(E) = 0 in
H2i(|X|,Q) makes good sense.

The following condition for Higgs bundles has been introduced and extensively
considered by Bruzzo, Hernández, Otero and others [23] [24]. They relate it to a
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condition of numerical effectivity, as was originally considered for vector bundles
by Demailly, Peternell, and Schneider [35].

Definition 9.2. Suppose (E, θ) is a Higgs bundle on a smooth proper DM-stack
X. We say that it is pluri-semistable (resp. pluri-polystable) if for every curve
Y and map g : Y → X the Higgs bundle g∗(E, θ) is slope-semistable (resp. slope-
polystable) on Y with respect to the polarization which, for a curve, is unique up
to scalars.

Remark 9.3. If (E, θ) is pluri-semistable (resp. pluri-polystable) then for any
polarized smooth projective variety Y and map g : Y → X, g∗(E, θ) is slope-
semistable (resp. slope-polystable) on Y with respect to the given polarization. In
particular (E, θ) is potentially semistable (resp. potentially polystable).

Potential semistability implies pluri-semistability if the rational Chern classes
vanish, and these conditions are also related to Higgs-nefness of the bundle and
its dual, see Bruzzo-Otero [24, Theorem 4.7].

Lemma 9.4. Suppose (E, θ) is a potentially semistable (resp. potentially poly-
stable) Higgs bundle on X, with ci(E) = 0 in rational cohomology for i = 1, 2.
Then it is pluri-semistable (resp. pluri-polystable). In particular for any map
from a smooth projective variety g : Y → X, the pullback g∗(E, θ) is a successive
extension of stable Higgs bundles and corresponds to a representation of π1(Y )
via [96]. The rational Chern classes vanish for all i.

Bruzzo and co-authors have formulated the following partial converse (for in-
stance it would be the implication in the other direction in Bruzzo-Otero [24,
Theorem 4.7]), which we call the Bruzzo conjecture:

Conjecture 9.5 (Bruzzo conjecture). If (E, θ) is a pluri-semistable Higgs bundle
over a smooth proper DM-stack, then ci(E) = 0 in rational cohomology for all i.

This conjecture would generalize to Higgs bundles the theorem of Demailly,
Peternell and Schneider who prove it for vector bundles i.e. when θ = 0 [35].

After this discussion of semistability, we can formulate more precisely the mod-
uli problems solved by MH(X, G) and MHod(X, G).

Definition 9.6. A G-principal Higgs bundle on X is of semiharmonic (resp.
harmonic) type, if its Chern classes vanish in rational cohomology, and if it is
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potentially or equivalently pluri-semistable (resp. pluri-polystable). This defini-
tion extends to λ-connections too.

If P is a G-principal Higgs bundle on X then its pullback to Z• is of semihar-
monic type if and only if P is. Hence, the moduli stack MH(X, G) parametrizes
principal Higgs G-bundles of semiharmonic type; and the moduli stack

MHod(X, G) → A1

parametrizes principal G-bundles with λ-connection of semiharmonic type.

Theorem 9.7. Proposition 7.2 gives a tannakian Kobayashi-Hitchin correspon-
dence between Higgs bundles of semiharmonic type on X and local systems on X.
The Higgs bundles of harmonic type correspond to the semisimple local systems,
these conditions being the same as (strong) polarizability on both sides. For these
polarizable objects, harmonic metrics exist which set up the correspondence via
the same differential-geometric structures as in the case of varieties, over the
etale local charts. The resulting map between moduli spaces is a homeomorphism
and determines a hyperkähler structure.

Proof. By Condition 8.1 and Lemma 8.2, polarizability, strong polarizability and
semisimplicity are equivalent in the categories of local systems or Higgs bundles
of semiharmonic type. Those tannakian categories are equivalent by Proposition
7.2. Given a Higgs bundle of harmonic type, its pullback to each Zk is of har-
monic type, so it has a unique structure of harmonic bundle. Furthermore, by
strong polarizability, a compatible collection of metrics hk may be chosen. Then
from the condition that Z → X is surjective where etale, and the subsequent
choice of the rest of Z•, the bundle, the harmonic metric, and various connection
operators descend to X. Over etale charts in X, in particular those which are
contained in Z, these structures satisfy the usual axioms for a harmonic metric.
They give in particular the corresponding flat connection. The same discussion
works starting from a semisimple local system. For the homeomorphism and
hyperkähler structure, apply Theorem 8.8. ¤

Suppose X is a smooth variety and D ⊂ X is a divisor with normal crossings.
Hermitian Yang-Mills theory and the Kobayashi-Hitchin correspondence have
been considered for parabolic bundles on (X, D) by many authors [15] [64] [74]
[70] [71] [84] [101]. These theories may be related to the the corresponding theories
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over a smooth proper Cadman-Vistoli root stack, something that was basically
observed by Daskalopoulos and Wentworth quite some time ago [29].

Let Z → X be the root stack corresponding to denominators ni for the irre-
ducible components Di of D. As in the original article of Seshadri [94], a vector
bundle on Z corresponds to a parabolic bundle on (X, D) such that the weights
along Di are in 1

ni
Z. This correspondence has been used and studied by many

authors, see for example Boden [18], Balaji et al [5], Biswas [11], Borne [20] [21]
as well as [53] and [54].

An important condition for a parabolic structure is to be locally abelian, that is
near any multiple intersection point of D, the parabolic structure should decom-
pose as a direct sum of parabolic line bundles. Borne and Vistoli [20] [21] have
recently improved our understanding of this condition by the following result.

Theorem 9.8 (Borne). Suppose E = {Eα1,...,αm} is a parabolic torsion-free sheaf
(that is a system of torsion-free sheaves and inclusions satisfying the conditions
of semicontinuity and twisting by the divisor components). Then E is a locally
abelian parabolic bundle, if and only if all of the component sheaves Eα1,...,αm are
locally free.

Proof. If E is locally abelian then automatically the components are bundles, so
the task is to prove that if each Eα1,...,αm is a vector bundle, then the parabolic
structure is locally abelian.

This is Borne’s Proposition 2.3.10 [21]. For the proof, he uses the following
main statement which he attributes to Vistoli [21, Lemma 2.3.11]: suppose E ⊂
F ⊂ E(D) is a pair of inclusions of locally free sheaves, with D a smooth divisor.
Then F/E and E(D)/F are locally free sheaves on D. The proof in turn refers
to the formula of Auslander-Buchsbaum in EGA. ¤

A parabolic λ-connection is a locally abelian parabolic bundle E• together with
a λ-connection operator

∇ : Eα1,...,αm → Eα1,...,αm ⊗ Ω1
X(log D).

One defines the parabolic degree and hence the notion of parabolic stability. Mod-
uli spaces for parabolic vector bundles, parabolic Higgs bundles, and parabolic
connections have been studied in many places: [94] [69] [67] [19] [115] [76] [60]
[74] [103] [4] [51] is a certainly non-exhaustive list.
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Given a semistable parabolic λ-connection, the residual data are locally con-
stant along the non-intersection points y of the divisor components Di. Thus one
can speak of the residue of (E,∇) along Di. It is a pair

resDi,y(E,∇) =


 ⊕

α∈(−1,0]

grDi
α (E(y)), res(∇)




consisting of a vector space graded by a finite number of parabolic weights α ∈
(−1, 0], together with an endomorphism res(∇). The graded piece grα(E(y)) is
the fiber at y of the quotient Eα/Eα−ε, and the residue of ∇ comes from the
action on this graded piece. Here y is in a single divisor component Di so the
parabolic structure near y is reduced to a single index, indicated for the notation
by a superscript grDi .

Say that (E,∇) has semisimple residues, if the res(∇) are semisimple endo-
morphisms. Note that this is a weaker condition than asking that the residue be
semisimple for ∇ considered as a logarithmic connection on one of the component
vector bundles Eα1,...,αm , because this bigger residual endomorphism might have
a unipotent factor which acts by strictly decreasing the parabolic weight.

One can more generally define the notion of parabolic bundle on a smooth
DM-stack with respect to a normal crossings divisor, a viewpoint which is useful
for the inductive kind of argument used in [54]. On the other hand, a parabolic
bundle all of whose weights are integers, may be viewed as a usual parabolic
bundle.

The bundles with λ-connection on the root stack Z = X[D1
n1

, . . . , Dm
nm

] are ex-
actly the pullbacks of parabolic bundles from (X, D) such that the pullback has
integer weights and trivial residue of the connection. Making this condition ex-
plicit gives the following proposition.

Proposition 9.9. Suppose λ ∈ C and ni are strictly positive integers. Pullback
gives an equivalence of categories, preserving the conditions of (semi)stability and
the Chern classes, between:
—parabolic λ-connections on (X, D) such that the parabolic weights along Di

are in 1
ni
Z and the residue of the connection on each parabolic graded piece is

semisimple with a single eigenvalue given as follows:

resDi
α (∇) = λα · 1

gr
Di
α (E)

;
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and
—bundles with λ-connection on the root stack Z = X

[
D1
n1

, . . . , Dm
nm

]
.

One may translate using this equivalence between the parabolic and stack-
theoretic points of view, in particular the numerous works on harmonic theory and
moduli for parabolic bundles become relevant for the problem we are considering
here. Particularly so in the basic case of a root stack. A further discussion of
the details, such as the behavior of the harmonic metrics near Di, would take us
too far afield and these aspects are amply treated already in the many available
references.

The analogue of parabolic structures for principal G-bundles is not completely
straightforward: one needs to introduce the notion of parahoric structure, and
this is the subject of current ongoing research by several authors [17] [6].

For smooth proper X it is natural to formulate Poincaré duality. The impor-
tance of Poincaré duality for the study of fundamental groups has become ap-
parent in recent works of Bruno Klingler. The coarse moduli space of a smooth
proper DM-stack X is a proper rational homology manifold. The cohomology of
the stack is the same as that of its coarse moduli space, so it is easy to see that
Poincaré duality holds for H•(X,Q). This has been remarked for example by
Abramovich, Graber and Vistoli in [1], and was undoubtedly one of the reasons
for Deligne’s comment about rational homology manifolds in [33]. Still, for coho-
mology with coefficients in a local system it is better to have an intrinsic proof
such as was given by Behrend.

Theorem 9.10. Suppose X is a connected smooth proper DM-stack of dimension
n. Then the fundamental class of X gives a canonical isomorphism H2n(X,C) ∼=
C; and for any local system L on X, the cup product followed by the trace L⊗L∗ →
C gives a perfect pairing

H i(X, L)×H2n−i(X, L∗) → H2n(X,C) ∼= C.

Proof. We refer to Behrend [7]. ¤

Poincaré duality allows us to prove the purity of the mixed twistor structure
on cohomology.

Corollary 9.11. Suppose X is a connected smooth proper DM-stack. If f : Z →
X is a dominant morphism from another smooth proper DM-stack (in particular
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Z could be a smooth projective variety) then for any local system L, pullback along
f is an injection

f∗ : H i(X, L) ↪→ H i(Z, f∗L).

If L is a pure variation of Hodge structure of weight w, then the mixed Hodge
structure on H i(X, L) is pure of weight i + w.

Proof. Suppose dim(X) = n and p : Y → Z is a surjective morphism from a
connected smooth projective variety, also of dimension n. This exists by Theorem
5.4. There is an open subset U ⊂ X over which p is a finite etale covering of
degree d. A top degree cohomology class on X may be represented by a form
which is compactly supported in U , so the pullback map

C ∼= H2n(X,C)
p∗→ H2n(Y,C) ∼= C

is multiplication by d. If p! denotes the Poincaré dual of p∗ the standard argument
shows that p!(p∗u) = d · u for u ∈ H i(X, L), implying that p∗ is injective.

Suppose f : Z → X is a dominant morphism of smooth proper DM-stacks.
Choose a surjective map q : V → Z from a smooth projective variety with
dim(V ) = dim(Z). Let Y be a general complete intersection of hyperplane sec-
tions in Z, with dim(Y ) = dim(X). The projection p : Y → X is surjective so
by the previous discussion p∗ is injective; it follows that f∗ is injective.

If L is a variation of pure Hodge structure of weight w, the pullback map

p∗ : H i(X, L) → H i(Y, p∗(L))

is an injective morphism of mixed Hodge structures, whose target is pure of weight
i + w, therefore H i(X, L) is pure of weight i + w. ¤

10. Mixed twistor theory

Deligne’s theory of [33] goes over to mixed twistor structures. This is useful
for looking at the topology of simplicial smooth projective varieties, so we give
some details here expanding upon the places where it was mentioned in [100]. It
will allow us to generalize Corollary 9.11 to a purity statement, Corollary 10.9,
for any semisimple local system. The development presented here is undoubtedly
subsumed in a theory of “mixed twistor modules” generalizing Saito’s mixed
Hodge modules as was done by Sabbah for the pure case [88].



Local Systems 1737

A D-mixed twistor complex is a filtered complex of sheaves of OP1-modules
(F•,W•) on P1 such that

H i(WnF•/Wn−1F•)
is a semistable vector bundle of slope n + i on P1, nonzero for only finitely many
(i, n).

A B-mixed twistor complex is a filtered complex of sheaves of OP1-modules
(F•,W•) on P1 such that

H i(WmF•/Wm−1F•)

is a semistable vector bundle of slope m on P1, nonzero for only finitely many
(i,m).

In our notations D stands for Deligne and B for Beilinson: the D-mixed Hodge
complexes were defined by Deligne [33], whereas Beilinson’s treatment [8], see
also Huber [50], refers to the B-mixed notion. See also Zucker [116], where the
notion of relaxed MHC is introduced.

I have often wondered about how to express the relationship between these
two notions. Although this materiel is well-known to experts, it seems likely that
some readers will find it useful to review the relationship. This explanation is
easier to follow in the case of mixed twistor structures, since we can work within
the abelian category of sheaves on P1, avoiding concerns about strictness of maps
between filtered vector spaces.

Consider first the passage from a D-mixed twistor complex to the mixed twistor
structure on cohomology. Recall that the spectral sequence of a filtered complex
(F•,W•) has

Ek,l
0 := W−kFk+l/W−k−1Fk+l

with differential d0 : Ek,l
0 → Ek,l+1

0 induced by the differential d of F•. Then

Ek,l
1 (F•,W•) = Hk+l(W−k/W−k−1).

The differential d1 : Ek,l
1 → Ek+1,l

1 is, with different indices, the connecting map

H i(Wm/Wm−1) → H i+1(Wm−1/Wm−2)

coming from the short exact sequence of complexes

0 → Wm−1/Wm−2 → Wm/Wm−2 → Wm/Wm−1 → 0.
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Going back to the indices k, l we obtain the expression

(10.1) Ek,l
2 (F•,W•) =

ker
(
Hk+l(W−k/W−k−1) → Hk+l+1(W−k−1/W−k−2)

)

im (Hk+l−1(W1−k/W−k) → Hk+l(W−k/W−k−1))
.

The next differential is
d2 : Ek,l

2 → Ek+2,l−1
2 .

Finally, the spectral sequence abuts to Hk+l(F•) with the filtration induced by
W•, more precisely defined as

WmH i(F•) := im
(
H i(WmF•) → H i(F•)) .

This all works in the context of filtered complexes in any abelian category. In
our case we work with the abelian category of sheaves of OP1-modules over P1.

If (F•,W•) is a D-mixed twistor complex, then by definition

Ek,l
1 (F•,W•) = Hk+l(W−k/W−k−1)

is a semistable vector bundle of slope (k + l − k) = l on P1. In particular the
differential d1 : Ek,l

1 → Ek+1,l
1 is a strict morphism between semistable vector

bundles of the same slope l, so its kernel and cokernels are also semistable vector
bundles of slope l, and indeed the expression (10.1) expresses Ek,l

2 as the quotient
of a semistable bundle by another one of the same slope.

Corollary 10.1. If (F•,W•) is a D-mixed twistor complex, then d1 is a strict
morphism between semistable vector bundles of slope l, and the cohomology Ek,l

2

of the resulting complex is a semistable vector bundle of slope l. Furthermore,
dr = 0 for all r ≥ 2 and the spectral sequence degenerates at E2. We obtain the
expression

(10.1) = Ek,l
2 =

W−kH
k+l(F•)

W−k−1Hk+l(F•) .
Hence, if we set

WB
mH i(F•) := Wm−iH

i(F•) = im
(
H i(WmF•) → H i(F•))

then (H i(F•),WB• ) is a mixed twistor structure.

Proof. The first sentence is what was seen above. But then d2 is a map from a
semistable vector bundle of slope l to a semistable vector bundle of slope l − 1,
so d2 = 0. Hence E3 = E2, d3 becomes a morphism from a bundle of slope l

to one of slope l − 2 so it vanishes, and so on. Inductively dr = 0 for all r ≥ 2
so the spectral sequence degenerates at E2. Thus Ek,l

2 = GrW
−kH

k+l and this is
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a semistable bundle of slope l. Changing the indices, this says that GrW
m H i is

semistable of slope m + i. To get a mixed twistor structure we have to shift the
filtration; the new filtration may be denoted WB• because it will coincide with
the filtration obtained from the Beilinson picture (see below). We have

GrW B

m H i = GrW
m−iH

i

which is semistable of slope (m − i + i) = m, which exactly says that H i(F•)
together with its filtration WB• is a mixed twistor structure. ¤

We now look at how this works if we first pass to the Beilinson point of view.

Corollary 10.2. If (F•,WB• ) is a B-mixed twistor complex then the spectral
sequence degenerates at

Ek,l
1 (F•,WB

• ) = Hk+l(GrW B

−k F•)
which are semistable bundles of slope −k on P1. The induced filtration

WB
mH i(F•) := im

(
H i(WB

mF•) → H i(F•))

gives a mixed twistor structure on H i(F•).

Proof. Follow the proof of Corollary 10.1, noting that Hk+l(GrW B

−k F•) is semi-
stable of slope −k by the definition of B-mixed twistor complex. The differential
d1 vanishes already because it decreases the slope. ¤

Given a D-mixed twistor complex (F•,W•) with the differential of the complex
F• denoted by d, we obtain a B-mixed twistor complex (F•,WB• ) by setting

WB
m (F i) :=

ker
(

d : Wm−iF i → Wm−iF i+1

Wm−i−1F i+1

)
.

This is a subobject of Wm−iF i. Note in passing that if d = 0 this is just the same
as Wm−i explaining the notation in Corollary 10.1 above. The filtration WB• is
usually called Dec(W•), cf [33] and [50].

Lemma 10.3. The above construction starting from a D-mixed twistor complex
yields a B-mixed twistor complex. More particularly,

Ek,l
1 (F•,WB

• ) = Hk+l(GrW B

−k F•) = E2k+l,−k
2 (F•,W•).
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The spectral sequence for (F•,WB• ) degenerating at E1 abuts to WB of Corollary
10.2 which in this case is the same filtration as the WB of Corollary 10.1. Fur-
thermore the construction W 7→ WB is multiplicative: if (F•,W•) and (G•,W•)
are D-mixed twistor complexes then

WB
• (F• ⊗ G•)

is the tensor product filtration of WB• on F• and WB• on G•.

Proof. Unfortunately the E0 term for WB doesn’t coincide with the E1 term for
W , instead there is an extra acyclic complex there. This is just Proposition 1.3.4
of [32] applied to the abelian category of sheaves of OP1-modules, but we write
things out more explicitly. See also the discussion of Lemma 1.3.15 of [32], as
well as certainly other more recent references.

We have

Ek,l
0 (F•,WB

• ) =
WB
−kFk+l

WB
−k−1Fk+l

=
ker

(
d : W−2k−lFk+l → W−2k−lFk+l+1/W−2k−l−1

)

ker (d : W−2k−l−1Fk+l → W−2k−l−1Fk+l+1/W−2k−l−2)
.

In particular there is a natural projection

Ek,l
0 (F•,WB• )→Hk+l(GrW

−2k−lF•) = E2k+l,−k
1 (F•,W•)

=
ker(d:W−2k−lFk+l/W−2k−l−1→W−2k−lFk+l+1/W−2k−l−1)
im(d:W−2k−lFk+l−1/W−2k−l−1→W−2k−lFk+l/W−2k−l−1)

.

Let Uk,l be the kernel, that is we have an exact sequence

0 → Uk,l → Ek,l
0 (F•,WB

• ) → E2k+l,−k
1 (F•,W•) → 0.

In the above expressions, look at the subobject of WB
−kFk+l/WB

−k−1 determined
by the image of W−2k−l−1. This subobject is contained in Uk,l, and is of the
form W−2k−l−1Fk+l/ker(d) which is naturally isomorphic to the image, denoted
by im(GrW

−2k−l−1(d
k+l), of

d : GrW
−2k−l−1Fk+l → GrW

−2k−l−1Fk+l+1.

On the other hand,

WB
−kFk+l

W−2k−l−1Fk+l
= ker

(
d : GrW

−2k−lFk+l → GrW
−2k−lFk+l+1

)
.
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The kernel of the projection from here to Hk+l(GrW
−2k−lF•) is by definition the

image denoted im(GrW
−2k−l(d

k+l−1) of

d : GrW
−2k−lFk+l−1 → GrW

−2k−lFk+l

This leads to an exact sequence

0 → im(GrW
−2k−l−1(d

k+l)) → Uk,l → im(GrW
−2k−l(d

k+l−1)) → 0.

On the other hand, note that

d : W−2k−l−1Fk+l−1 → {0} ⊂ Ek,l
0 (F•,WB

• )

so d induces a map

GrW
−2k−l−1Fk+l−1 → Uk,l.

The kernel of d : GrW
−2k−l−1Fk+l−1 → GrW

−2k−l−1Fk+l maps to zero in Uk,l in
view of the original expression for Ek,l

0 (F•,WB• ). Thus d induces a map

im(GrW
−2k−l−1(d

k+l−1) → Uk,l.

This splits the previous exact sequence, so we get a direct sum decomposition

Uk,l = im(GrW
−2k−l−1(d

k+l))⊕ im(GrW
−2k−l(d

k+l−1)).

The differential

d0 : Ek,l
0 (F•,WB

• ) → Ek,l+1
0 (F•,WB

• )

sends Uk,l to Uk,l+1 and on there it is equal to the splitting map defined above,
identifying

im(GrW
−2k−l(d

k+l−1) ⊂ Uk,l

with

im(GrW
−2k−l(d

k+l−1) ⊂ Uk,l+1.

It follows that the complex

· · · d0→ Uk,l−1 d0→ Uk,l d0→ · · ·

is acyclic. The map

Ek,l
0 (F•,WB

• ) → E2k+l,−k
1 (F•,W•)

which is compatible with the differential d0 on the left and d1 on the right, so for
k fixed it induces a map of complexes. The kernel of this map of complexes is
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the acyclic complex formed by the Uk,l. We get an isomorphism on cohomology,
which is to say an isomorphism between the next terms in the spectral sequence:

Ek,l
1 (F•,WB

• )
∼=→ E2k+l,−k

2 (F•,W•).

Using our hypothesis that (F•,W•) is a D-mixed twistor complex, recall from
Corollary 10.1 that E2k+l,−k

2 (F•,W•) are semistable vector bundles of slope −k

on P1. We get the same property for

Ek,l
1 (F•,WB

• ) = Hk+l(GrW B

−k F•),

which is exactly the property required to say that (F•,WB• ) is a B-mixed twistor
complex. The remaining statements of the lemma may be verified from the above
discussion. ¤

Let MTCD (resp. MTCB) be the category of D-mixed (resp. B-mixed) twistor
complexes. Notice that a complex in the category MTS in the category of mixed
twistor structures, is in particular a B-mixed twistor complex. Thus we have a
functor

Cpx(MTS) → MTCB,

and Beilinson shows that this gives an equivalence of derived categories. There
isn’t a natural lift along the functor Dec : MTCD → MTCB, but Dec also
induces an equivalence of derived categories.

The difference between MTCD and MTCB may be seen in the loss of informa-
tion going from MTCD to MTCB: a D-mixed twistor complex yields the asso-
ciated E2k+l,−k

1 terms of the spectral sequence, which are themselves semistable
bundles of slope −k on P1. However, the Ek,l

0 -terms of the spectral sequence for
the associated B-mixed twistor complex are extensions of these bundles by terms
Uk,l of an acyclic complex. From here, one cannot in general recover the E2k+l,−k

1

term of the original D-mixed twistor complex. It is a question of taste, how much
one wants to consider this extra information as a part of the geometrical struc-
ture. For a given singular variety, if we choose different simplicial resolutions,
the Deligne E2k+l,−k

1 -terms might be different. On the other hand, Deligne’s E2

terms, which are the same as Beilinson’s E1 terms, are invariant as may be stated
in the following corollary.
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Corollary 10.4. Suppose (F•,W•)
φ→ (G•,W•) is a morphism of D-mixed twistor

complexes. Suppose that φ induces an isomorphism (resp. injection, resp. sur-
jection) on cohomology φ : H i(F•) ∼= H i(G•). Then the map induced by φ

Ek,l
2 (F•,W•) → Ek,l

2 (G•,W•)

is an isomorphism (resp. injection, resp. surjection) of pure vector bundles on
P1.

Suppose (F•,WB• )
φ→ (G•,WB• ) is a morphism of B-mixed twistor complexes.

Suppose that φ induces an isomorphism (resp. injection, resp. surjection) on
cohomology φ : H i(F•) ∼= H i(G•). Then the map induced by φ

Ek,l
1 (F•,W•) → Ek,l

1 (G•,W•)

is an isomorphism (resp. injection, resp. surjection) of pure vector bundles on
P1.

Proof. In both cases, the indicated terms of the spectral sequence are equal to
the associated graded pieces of the mixed twistor structure given by Corollaries
10.1 and 10.2. Strictness for maps between mixed twistor structures [100] says
that injectivity and surjectivity pass to the associated-graded pieces. ¤

Suppose we are given a functor

G : ∆ → MTCD

denoted by k 7→ (G•(k),W•). Then Deligne defines the total complex

tot(G)j :=
⊕

i+k=j

Gi(k)

with weight filtration

WDec1
m tot(G)j :=

⊕

i+k=j

Wm−kG
i(k).

The differentials of tot(G)• are obtained by combining the differentials of G•(k)
with the alternating sums of the simplicial face maps.

If we are given a functor

G : ∆ → MTCB, k 7→ (G•(k),WB
• )
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then Beilinson considers the same total complex with differential

tot(G)j :=
⊕

i+k=j

Gi(k)

but with weight filtration

WB
mtotB(G)j :=

⊕

i+k=j

WmGi(k).

Proposition 10.5. For a cosimplicial D-mixed twistor complex G, the total com-
plex (tot(G)•,WDec1• ) is again a D-mixed twistor complex, inducing a mixed
twistor structure on H i(tot(G)•).

For a cosimplicial B-mixed twistor complex G, the total complex (tot(G)•,WB• )
is again a B-mixed twistor complex, which in turn induces a mixed twistor struc-
ture on H i(tot(G)•).

If we start with a cosimplicial D-mixed twistor complex G and let WBG(k)
be the filtration of G•(k) considered in Lemma 10.3, varying functorially in k to
give a cosimplicial B-mixed twistor complex. Both of these induce the same mixed
twistor structure on H i(tot(G)•).

Proof. As in [33]. ¤

Remark 10.6. Given a cosimplicial D-mixed twistor complex G, we get a D-
mixed twistor complex (tot(G),WDec1• ) from the first paragraph of the proposition,
then a B-mixed twistor complex by Lemma 10.3. On the other hand, applying
the construction of Lemma 10.3 levelwise we get a cosimplicial B-mixed twistor
complex, which also gives a B-mixed twistor complex by the second paragraph of
the proposition. These will not in general be the same; the third paragraph of
the proposition says that they still induce the same weight filtration on the total
cohomology.

Suppose X is a smooth projective variety. A polarizable pure variation of
twistor structure of weight w (VTS) is just a semisimple local system L on X.
The weight w may be chosen arbitrarily, and determines the realization of L into
a family of twistor structures parametrized by x ∈ X, which we denote by Lw.
See [100] [88].

Given a VTS Lw of weight w, we obtain a D-mixed twistor complex denoted by
(A•tw(X, Lw),W•), as follows. The weight filtration will be trivially concentrated
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in degree w, that is to say

(10.2) WmAi
tw(X, Lw) =

{
Ai

tw(X, Lw) m ≥ w

0 m < w.

So we just have to define the complex A•tw(X, Lw). Let L be the C∞ bundle
underlying the local system, and put

Ai
tw(X, Lw) := Ai(X, L)⊗C OP1(w + i).

Since L is semisimple, it has a structure of harmonic bundle [28] [37], giving a
decomposition of the flat connection d on L into

d = ∂ + ∂ + θ + θ

in the notations of [96]. Let λ, µ : OP1 → OP1(1) denote the two sections vanishing
respectivly at 0 and ∞. Then

dtw := λ(∂ + θ) + µ(∂ + θ) = λD′ + µD′′

defines an operator

dtw : Ai(X, L)⊗C OP1(w + i) → Ai+1(X, L)⊗C OP1(w + i + 1)

which is to say a differential for A•tw(X, Lw).

The variation of twistor structure on L corresponds to a prefered section of
the twistor moduli stackMDH(X, GL(n)), and the above complex is the Deligne-
Hitchin glueing of the complexes calculating cohomology of λ-connections on X

and X, see [88] [100].

Lemma 10.7. The complex (A•tw(X, Lw), dtw) together with the weight filtration
W• of (10.2) concentrated trivially in degree w, is a D-mixed twistor complex.

Proof. See [100]. Recall from [96] that the cohomology of d is the same as that
of (ker(∂ + θ), ∂ + θ) or symmetrically (ker(∂ + θ), ∂ + θ), these cohomologies are
isomorphic to the spaces of harmonic forms, and in fact there is a D′D′′-lemma.
From these, the cohomology bundle H i(A•tw(X, Lw), dtw) is isomorphic to the
cohomology of the sequence

Ai−2(X, L) D′D′′→ Ai(X, L)
(D′,D′′)→ Ai+1(X, L)⊕Ai+1(X, L),

all tensored with OP1(w + i). Hence

H i(A•tw(X, Lw), dtw) = H i(X, L)⊗OP1(w + i).
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The D-mixed twistor property follows immediately. ¤

We now complete the twistor analogue of the main construction of Hodge III
[33]. If L• is a local system on a simplicial smooth projective variety X• such
that each Lk is a semisimple local system on Xk, then for any integer w L• has
a structure of polarizable variation of pure twistor structure of weight w denoted
Lw• .

Corollary 10.8. In the above situation, the cohomology H i(X•, Lw• ) has a nat-
ural mixed twistor structure whose underlying bundle over P1 is obtained by the
Deligne-Hitchin glueing.

This mixed twistor structure is functorial for morphisms between local sys-
tems, compatible with cup-product, and contravariantly functorial for morphisms
of simplicial varieties in the following way. Suppose f : X• → Y• is a morphism
of simplicial smooth projective varieties, and that L• is a local system on Y• with
each Lk semisimple. Fix a weight w. Then f induces a map of mixed twistor
structures

H i(Y•, Lw
• ) → H i(X•, f∗(L)w

• ).

If the map on cohomology is an isomorphism then it is an isomorphism of mixed
twistor structures.

Proof. The D-mixed twistor complexes of Lemma 10.7 are contravariantly functo-
rial, so they fit together into a cosimplicial D-mixed twistor complex. (Complexes
of forms on simplicial manifolds are discussed in [39] [55].) By Proposition 10.5
this gives a total D-mixed twistor complex inducing a mixed twistor structure
on cohomology. Functoriality follows from the construction and the last phrase
comes from the strictness property for mixed twistor structures [100]. ¤

Corollary 10.9. Suppose X is a connected smooth proper DM-stack. If L is
semisimple local system considered as a pure variation of twistor structure of
weight w, then the mixed twistor structure on H i(X, L) is pure of weight i + w.

Proof. Choose a dominant morphism from a smooth projective variety p : Z → X.
By Corollary 9.11, the morphism on cohomology

H i(X, L) → H i(Z, p∗(L))
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is injective. This is a morphism of mixed twistor structures and the one on the
right is pure, so the one on the left is pure too. ¤

It would clearly be interesting to develop a theory of variations of mixed twistor
structures over simplicial varieties, leading to a mixed twistor structure on the
total cohomology. This would go beyond our present scope; but see [100] for a
discussion of VMTS on a single smooth variety.

11. Finite group actions

In this section, we discuss some examples which may be obtained by considering
finite group actions.

Suppose Φ is a finite group acting on a connected smooth projective variety
X, and G is a complex linear algebraic group. Then Φ acts on the moduli stacks
Mη(X, G) preserving all of the various structures.

Lemma 11.1. In the above situation, the substack of stacky fixed points is iden-
tified with the moduli stack for the quotient Y = X//Φ:

Mη(X, G)Φ ∼= Mη(Y, G).

Proof. A stacky fixed point in Mη(X, G) is defined as an object together with a
compatible action of Φ covering the action on X, which is exactly the same as
an object with descent data down to Y . ¤

One can observe that for a global quotient stack, the fundamental group is
also the fundamental group of a smooth projective variety, and the fixed point
stack of the preceding lemma can be interpreted in this way. This observation
was already present in Daskalopoulos-Wentworth [29].

Proposition 11.2. If Y = X//Φ is a global quotient stack for a group Φ acting
on a connected smooth projective variety X, then we can construct a connected
smooth projective variety Z and a map f : Z → Y inducing an isomorphism
π1(Z, z) ∼= π1(Y, f(z)). In particular, Mη(Y, G) ∼= Mη(Z, G).

Proof. Indeed, there exists a smooth projective variety U with π1(U) = G by
Serre’s construction [92], see also Browder and Katz [22]. Let P be the universal
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cover of U , so P is simply connected and has a free action of G. Now put

Z := Y × P/G.

This is a smooth projective variety provided with a map f : Z → Y which
is a fiber bundle in the etale topology of Y . The fiber P is simply connected
fiber, so the long exact sequence of homotopy groups implies that f induces an
isomorphism on π1. ¤

A more subtle question concerns the quotient of the group action. The group
action preserves all of the structure on the moduli stack, hence for example
the subset of smooth points of the moduli space quotient Mη(X, G)/Φ admits a
hyperkähler structure. This suggests that Mη(X, G)//Φ should itself be viewed
as a kind of “nonabelian 1-motive”. We look at how to realize it as a connected
component of a moduli stack.

Consider first the case where a finite group Φ acts on a group G but acts
trivially on X. Let H = G o Φ be the semidirect product fitting into the split
exact sequence

1 → G → H → Φ → 0.

This induces a sequence of maps of moduli stacks

Mη(X, G) →Mη(X, H) →Mη(X, Φ).

The trivial Φ-torsor has Φ as group of automorphisms, so it corresponds to a map

BΦ →Mη(X, Φ).

Lemma 11.3. With the above notations we have a cartesian square of moduli
stacks for η = B,DR,H . . . refering to any type of local system

Mη(X, G)//Φ→Mη(X, H)
↓ ↓

BΦ →Mη(X, Φ).

Suppose now that Φ acts on our smooth projective variety X with DM-stack
quotient Y := X//Φ; in fact X could also be a DM-stack itself.

Let G o Φ denote the wreath product (these have been used for geometry,
cf [114]), that is the semidirect product of Φ with its permutation action on∏

Φ G. Elements are denoted (v, (gw)w∈Φ). There is a canonically split projection
G o Φ → Φ, which induces a map on moduli spaces.
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There is an action of Φ on G o Φ, combining its adjoint action on itself, its
translation action on

∏
w∈Φ G, and its given action on G. The formula is

ϕ ∈ Φ : (v, (gw)w∈Φ) 7→ (ϕvϕ−1, (ϕ(gϕ−1w))w∈Φ).

Let H := (G o Φ)o Φ be the semidirect product for this action.

The covering X → Y is a Φ-torsor which induces a point denoted

[X] = ∗ →Mη(Y, Φ)

in any of the moduli spaces of Φ-local systems over Y , which all parametrize
Φ-torsors since Φ is a finite group.

Use first this torsor and the group G o Φ to transform the action of Φ on
Mη(X, G) to an action on the group only, the case of Lemma 11.3.

Proposition 11.4. Let Y := X//Φ be the DM-stack quotient. Then for any type
of local system η we have a cartesian diagram of moduli stacks

Mη(X, G)→Mη(Y, G o Φ)
↓ ↓

[X] → Mη(Y, Φ).

This is compatible with the action of Φ, given on X and G, thereby induced on
G o Φ, and by the adjoint action on Φ for the lower right corner.

Proof. If P is a principal G-bundle over X, a group element w ∈ Φ tranlates it to
a new one w∗P defined by (w∗P )x := Pw−1x. We get a principal

∏
w∈Φ G-bundle

over X ∏

w∈Φ

w∗P → X,

but Φ also acts on this bundle so it may be considered as a principal G oΦ-bundle
over Y . This construction respects structures of flat λ-connection or a structure
of topological local system, so it defines a map

Mη(X, G) →Mη(Y, G o Φ).

The image under the map G o Φ → Φ which in our notations is just projection
to the first coordinate, is naturally isomorphic to the covering X considered as
a Φ-torsor. This completes the construction of the commutative square in the
proposition. It is compatible with the various actions of Φ.
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To finish the proof we have to show that it is cartesian. Suppose Q is a G oΦ-
bundle over Y , projecting to a Φ-torsor provided with an isomorphism to X.
This gives a map Q → X which is a

∏
w∈Φ G-torsor over X. Changing structure

group by the projection at the identity element
∏

w∈Φ

G → G, (gw)w∈Φ 7→ g1

yields a G-torsor P over X. This construction provides the required isomorphism
between Mη(X, G o Φ) and the fiber product in the cartesian square. ¤

The semidirect product H = (G o Φ)o Φ fits into an exact sequence

1 →
∏

w∈Φ

G → H → (Φo Φ) → 1

where the quotient is the semidirect product made using the adjoint action of Φ
on itself. The Φ-torsor X yields by extension of structure group a Φ o Φ-torsor
X ×Φ (Φ o Φ) which projects to the trivial Φ-torsor under the quotient map
ΦoΦ → Φ. The group Φ acts by automorphisms on X×Φ (ΦoΦ), giving a map
to the moduli stack

(11.1) BΦ →Mη(X, Φo Φ).

Corollary 11.5. If Φ acts on G and X, setting Y := X//Φ and H := (G oΦ)oΦ,
we have a cartesian square of algebraic stacks

Mη(X, G)//Φ→ Mη(Y, H)
↓ ↓

BΦ →Mη(X, Φo Φ).

Proof. Proposition 11.4 allows us to express the action of Φ on the moduli stack
Mη(X, G) as coming from an action on the group GoΦ only, for local systems over
the DM-stack quotient Y = X//Φ. Lemma 11.3 then gives the stack quotient of
the moduli space as a pullback over BΦ. Combining the two pullbacks amounts
to taking the pullback over the map (11.1). ¤

This corollary motivates the introduction of DM-stacks for looking at group
actions on the moduli of local systems over a smooth projective variety X.
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Question 11.6. What are the properties of the induced square

Mη(X, G)/Φ→ Mη(Y, H)
↓ ↓
∗ →Mη(Y, Φo Φ).

of coarse moduli spaces?

The moduli space Mη(X, ΦoΦ) is discrete. It would be good to be able to say
that Mη(X, G)/Φ is identified as an irreducible component of Mη(Y, H) but that
seems to be a perhaps somewhat delicate question about character varieties.

12. Fundamental groups of irreducible varieties

Many years ago, Domingo Toledo asked the following question: is every finitely
presented group the fundamental group of an irreducible singular variety? In this
section we give a streamlined argument to show that the answer is ‘yes’.

Take note of the following construction. Suppose X is quasiprojective, Z a
closed subscheme, and r : Z → Y a finite morphism. Then there is a scheme
W obtained by “contracting along r”. More precisely, W is provided with a
morphism p : X → W and a factorization

Z ↪→ X

↓ ↓
Y →W

which is universal, that is to say it is a cocartesian square in the category of
schemes. Furthermore Y ↪→ W is a closed embedding, the above square is also
cartesian, W is separated of finite type over C, and the morphism p is finite. The
coproduct may be denoted by

W = X/r = X ∪Z Y.

The associated diagram of topological spaces

Ztop ↪→ Xtop

↓ ↓
Y top →W top

is also cocartesian and cartesian.
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From this we get the Brown-Van Kampen statement: that for any 0 ≤ n ≤ ∞
the diagram of n-groupoids

Πn(Ztop)→ Πn(Xtop)
↓ ↓

Πn(Y top)→Πn(W top)

is cocartesian in the n+1-category of n-groupoids. For n = ∞ this just says that
the previous diagram of spaces is a homotopy pushout.

For n = 1, the diagram of fundamental groupoids

Π1(Ztop)→ Π1(Xtop)
↓ ↓

Π1(Y top)→Π1(W top)

is a cocartesian diagram in the 2-category of groupoids.

Theorem 12.1. Suppose Υ is a finitely presented group. Then there is an irre-
ducible projective variety W with π1(W top) ∼= Υ.

Proof. Suppose Υ is a finitely presented group. It may be realized as the funda-
mental group of a 2-dimensional simplicial complex A. Here A consists of a set of
vertices, plus a subset of pairs of vertices called the edges, and a subset of triples
of vertices called the triangles, such that the edges of the triangles are contained
in the set of edges. Such a complex A is realized into a topological space |A| in
an obvious way.

We furthermore may assume that every vertex is contained in some edge, every
edge is contained in some triangle, and the set of triangles is connected by the
adjacency relation (two triangles being adjacent if they share the same edge).

Let G be the dual graph whose points are the triangles, and whose edges are the
edges common to two triangles. Choose a maximal tree T ⊂ G. This determines
a set of edges of A. Define the unfolding of A along T denoted by Ã to be the
simplicial complex formed by the triangles of A joined together along only those
edges corresponding to elements of T .

Observe that the topological realization |Ã| is simply connected, being a union
of triangles inductively joined along single edges according to the tree pattern.
On the other hand, the 1-skeleta are 1-dimensional simplicial complexes provided
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with a map preserving the structure of simplicial complex

Ã1 → A1

which induces a map on realizations

|Ã1| → |A1|.

The diagram of spaces

|Ã1|→ |Ã|
↓ ↓
|A1|→ |A|

is cocartesian, so the corresponding diagram of fundamental groupoids

Π1(|Ã1|)→Π1(|Ã|)
↓ ↓

Π1(|A1|)→Π1(|A|)

is cocartesian. Note however that Π1(|Ã|) = ∗ is trivial and Π1(|A|) is equivalent
to the group Υ. Thus Υ is expressed as the homotopy contraction of Π1(|A1|)
along Π1(|Ã1|).

Now A1 and Ã1 are just graphs and the map preserves the edge structure.
Hence there are configurations of lines Y and Z, that is to say Y =

⋃
Yi and

Z =
⋃

Zj with Yi
∼= P1 and Zj

∼= P1, such that the Yi correspond to edges of
A1 meeting at points corresponding to the vertices of A1, and the Zj correspond
to edges of Ã1 meeting at points corresponding to the vertices of Ã1. The map
Ã1 → A1 corresponds to a finite map Z → Y . We obtain a commutative diagram

Π1(|Ã1|)→Π1(Ztop)
↓ ↓

Π1(|A1|)→Π1(Y top)

where the horizontal arrows are equivalences of groupoids.

Embedd now Z in a projective space X, and let W be the quotient obtained
by contracting X along Z → Y . As Π1(Xtop) ∼ ∗, it follows that the diagram

Π1(Ztop)→ Π1(Xtop)
↓ ↓

Π1(Y top)→Π1(W top)
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is the same as
Π1(|Ã1|)→ Π1(|Ã|) ∼ ∗

↓ ↓
Π1(|A1|)→Π1(|A|) ∼ Υ.

Thus π1(W top) ∼= Υ, and W is irreducible by construction. ¤

Question 12.2. Is it possible to construct an irreducible variety W with π1(W ) ∼=
Υ, such that the singularities of W are normal crossings?
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Math. 265 Birkhäuser (2008), 439-485.

[55] L. Jeffrey. Group cohomology construction of the cohomology of moduli spaces of flat

connections on 2-manifolds. Duke Math. J. 77 (1995), 407-429.

[56] Y. Kawamata. Characterization of abelian varieties. Compositio Math. 43 (1981), 253-

276.

[57] Y. Kawamata. A generalization of Kodaira-Ramanujam’s vanishing theorem. Math. Ann.

261 (1982), 43-46.

[58] S. Keel, S. Mori. Quotients by groupoids. Ann. of Math. 145 (1997), 193-213.



Local Systems 1757

[59] D. Knutson. Algebraic spaces. M.I.T. thesis, Springer Lectures Notes in Math. 203

(1971).

[60] H. Konno. Construction of the moduli space of stable parabolic Higgs bundles on a

Riemann surface. J. Math. Soc. Japan 45 (1993), 253-276.

[61] A. Kresch. On the geometry of Deligne-Mumford stacks. Algebraic geometry (Seattle

2005). AMS Proc. Sympos. Pure Math. 80 Part 1 (2009), 259-271.

[62] A. Kresch, A. Vistoli. On coverings of Deligne-Mumford stacks and surjectivity of the

Brauer map. Bull. London Math. Soc. 36 (2004), 188-192.

[63] G. Laumon, L. Moret-Bailly. Champs algébriques. Ergebnisse der Mathematik und
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