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1. Introduction

The purpose of this paper is to describe the family of complex K3 surfaces
with automorphisms of order 11 and apply this to classify log Enriques surfaces
of global canonical index 11 (see [18] for the definition). We note that any auto-
morphism of order 11 of a K3 surface is necessarily non-symplectic, that is, acts
on the space of the global two forms non-trivially [9].

Throughout this paper, we consider a pair (X, G) consisting of a complex
projective K3 surface X and a finite group G of automorphisms on X which fits
in the exact sequence:

1 → GN → G
ρ→ µ11n = 〈ζ11n〉 → 1,

where the last map ρ is the natural representaion of G on the space H2,0(X) =
CωX and n is some positive integer. It is known that n ≤ 6 ([9], [5]; see also [7]).
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We fix an element g ∈ G with ρ(g) = ζ11, i.e.,

g∗ωX = ζ11ωX

and set
M = H2(X,Z)g.

For simplicity of description, we also assume that G is maximal in the sense
that if (X, G′) also satisfies the same conditon as above for some n′ and G ⊆ G′

then G = G′.

In order to state our main Theorem, we first construct three types of examples
of such pairs. We denote by U and U(m) the lattices defined respectively by the
Gram matrix (

0 1
1 0

)
,

(
0 m

m 0

)
.

Denote by A∗, D∗, E∗ the negative definite lattices given by the Dynkin diagrams
of the indicated types.

Example 1.1. ([5], [7]) Let S66 be the K3 surface given by the Weierstrass
equation y2 = x3 + (t11 − 1), and σ66 the automorphism of S66 given by

σ∗66(x, y, t) = (ζ22
66x, ζ33

66y, ζ12
66 t).

Then the pair (S66, 〈σ66〉) gives an example of (X, G) with n = 6 and GN = {1},
i.e., G ' µ66 and with M ' U .

Example 1.2. ([5]) Consider the rational, fibered threefold ϕ : X → C defined
by

y2 = x3 + x + (t11 − s)

and its order 22 automrphism σ given by

σ∗(x, y, t, s) = (x,−y, ζ11t, s)

where s is the coordinate of C. Then ϕ is a morphism smooth over s 6= ±
√
−4/27

and
X√−4/27

(' X−√−4/27
)

has a unique singular point of type A10.

The pair (X0, 〈σ44〉), where

σ∗44(x, y, t) = (ζ22
44x, ζ11

44y, ζ34
44 t)
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gives an example of (X, G) with n = 4 and GN = {1}, i.e., G ' µ44 and with
M = U . (The minimal resolution of) (Xs, 〈σ〉) with s 6= 0 gives an example
of (X, G) with n = 2 (and GN = {1}), i.e., G ' µ22 and with M = U (resp.
U ⊕A10) if

s 6= 0,±
√
−4/27 ( resp. if s = ±

√
−4/27 )

(cf. Remark 1.3 and the proof of Claim 2.6 below for the calculation of M and
G).

The following remark will help to verify the calculation of G and M in Examples
1.1 and 1.2 above.

Remark 1.3. (1) Let (X, G) be any of the pairs in Examples 1.1 and 1.2 above
and let g be the unique order 11 element in G satisfying g∗ωX = ζ11ωX . The
natural G-stable (hence g-stable) Jacobian elliptic fibration f : X → P1, with t

as the inhomogeneous coordinate of the base space, is the only g-stable elliptic
fibration on X (cf. the first paragraph in the proof of Proposition 2.3 below.)

(2) The fixed locus (point wise) Xg is equal to the union of a smooth rational
curve in the type I11 fiber Xt=0 and two points on the type II fiber Xt=∞ (resp.
the union of the smooth fiber Xt=0 and two points on the type II fiber Xt=∞),
when X is equal to X√−4/27

(resp. any of other cases in Examples 1.1 and 1.2).

(3) For any s 6= 0,±
√
−4/27, four surfaces

S66, X0, X√−4/27
, Xs

are not isomorphic to one another.

Example 1.4. Let us consider the following three series of rational Jacobian
elliptic surfaces:

(1) j(1) : J (1) → P1, defined by the Weierstrass equation

y2 = x3 + (t− 1)

whose singular fibers are J
(1)
1 of Kodaira’s type II and J

(1)
∞ of Kodaira’s type

II∗;

(2) j(2) : J (2) → P1, defined by the Weierstrass equation

y2 = x3 + x + (t− s)
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with s 6= ±
√
−4/27, whose singular fibers are J

(2)
α , J

(2)
β of Kodaira’s type I1, and

J
(2)
∞ of Kodaira’s type II∗, where t = α, β are two distinct non-zero roots of the

discriminant ∆(t) = 4 + 27(t− s)2; and

(3) j(3) : J (3) → P1, defined by the Weierstrass equation

y2 = x3 + x + (t− s)

with s =
√
−4/27 whose singular fibers are J

(3)
0 , J

(3)
2s of Kodaira’s type I1, and

J
(3)
∞ of Kodaira’s type II∗.

Let p(i,e) : P (i,e) → P1 be a non-trivial principal homogeneous space of j(i) :
J (i) → P1 given by an element e of order 11 in (J (i))0. (For the basic results on
the principal homogeneous space of rational Jacobian elliptic fibrations, see [3,
Chapter V, Section 4].) Then p(i,e) : P (i,e) → P1 is a rational elliptic surface with
a multiple fiber of multiplicity 11 over 0 (of type I0 in the cases i = 1, 2 and of
type I1 in the case i = 3).

Let Z(i,e) be the log Enriques surface of index 11 obtained by the composite
of the blow up at the intersection of the components of multiplicities 5 and 6
in (P (i,e))∞, which is of Kodaira’s type II∗, and the blow down of the proper
transform of (P (i,e))∞. Let X(i,e) be the global canonical cover of Z(i,e) and G(i,e)

the Galois group of this covering. Then, each of these pairs (X(i,e), G(i,e)) gives an
example of (X, G) with n = 1 and GN = {1}, i.e., G ' µ11 and with M = U(11)
(see Lemma 2.9 below to verify the calculation of G and M).

Our main result is as follows:

Theorem 1.5 (Main Theorem). Under the notation above, the following are
true.

(1) We have GN = {1} so that G ' µ11n and g is unique and of order 11.
(2) M is isomorphic to either one of U , U ⊕A10 or U(11).
(3) In the case where M ' U or U ⊕ A10, (X, G) is isomorphic to either

(S66, 〈σ66〉), (X0, 〈σ44〉), or (Xs, 〈σ〉) (s 6= 0) in Examples 1.1 and 1.2.
Moreover, M ' U ⊕A10 if and only if (X, 〈g〉) is isomorphic to

(X√−4/27
, 〈σ2〉) (' (X−√−4/27

, 〈σ2〉) ).

(4) In the case where M ' U(11), (X, G) is isomorphic to one of (X(i,e), G(i,e))
in Example 1.4.
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Combining the main Theorem 1.5 with Remark 1.3, we obtain the following,
where a log Enriques surface is maximal if, by definition, any birational morphism
Z ′ → Z from another log Enriques surface Z ′ must be an isomorphism.

Corollary 1.6. Maximal log Enriques surfaces of global index 11 are isomorphic
to either a Z(i,e) in Example 1.4 or X√−4/27

/〈g〉, where X√−4/27
is the surface

obtained from the surface X√−4/27
in Example 1.2 with the unique g-fixed curve

contracted.

Remark 1.7. (1) In the main Theorem 1.5 (3) and (4) and Examples 1.2 and
1.4, the pairs (X, G) parametrized by s and −s, are isomorphic to each other. In
particular, the pair (X, G) with M ' U ⊕A10 is unique up to isomorphisms.

(2) By the main Theorem 1.5, the pairs (X, G) are not finitely many any more
and move in a 1-dimensional (non-isotrivial) family, which is one of the main
difference from the previous works [7], [12], [16], [5] [6] concerning larger non-
symplectic group actions. Indeed, calculating the J−invariant and combining
with the fact that the pair (X, G) with ord(G) = 40 and its elliptic fiber space
structure are both unique [7], we find that the family ϕ : X → C given in Example
1.2 is not isotrivial. Similarly, the uniqueness of the Jacobian elliptic fiber space
structure on a rational surface shows that the family given in Example 1.4 is also
not isotrivial.

(3) One can also explain the reason why (X, G)’s form a 1-dimensional fam-
ily from the view point of the period mapping. Since for generic (X, G), the
transcendental lattice TX is of rank 20 and isomorphic to either U2 ⊕ E2

8 or
U ⊕ U(11) ⊕ E2

8 ; further, the eigenspace with respect to the eigenvalue ζ11 of
the action g on TX ⊗ C in which the period CωX should lie is two dimensional.
Conversely a generic one dimensional subspace in this eigen space gives periods
of K3 surfaces with order 11 automorphisms g by the surjectivity of the period
mapping [1].

(4) In our classification, we make use of the invariant part M of the g-action
on H2(X,Z), instead of the Neron Severi lattice SX which always contains M

and certainly equals M if X is generic in the family. However, for special X,
SX is probably larger than M . So, in our classification, the determination of
the Neron Severi lattice [15], which is one of the hardest and most important
problems concerning algebraic surfaces, remains unsettled. The reason why we
describe the result according to M rather than SX is that on the one hand, the
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Neron Severi lattices are quite unstable under deformations, for instance, in the
case of the family of quartic K3 surfaces, and on the other hand, it turns out that
the invariant part M is fairly stable under deformation at least in our case.

A group G is called a K3 group, if G ≤ Aut(X) for some complex K3 surface
X.

Proposition 1.8. No sporadic finite simple group which is different from the
Monster group M, contains all finite K3 groups as its subgroups.

Question 1.9. Can we embed every finite K3 group into the Monster simple
group M?

Remark 1.10. After this work was done and motivated by Mukai’s embedding
of all finite symplectic K3 groups into the sporadic simple Mathieu group M23

(≤ M) and the observation in Proposition 1.8, the above Question 1.9 crossed
our minds. We planned to solve this question and include the current paper as
part of the new project [13]. However, this project is unexpectedly complicated
and we have not yet completed it. So we decide to publish the current paper as
an independent paper.

After the current paper was written in 1999, there have been much progress,
especially in positive characteristic, among which is the very significant work of
Dolgachev-Keum [4] where the authors successfully extended Mukai’s classifica-
tion of finite symplectic K3 groups to positive characteristics. See also [19] for a
partial survey.

Acknowledgement. This paper is finalized during the second author’s visits
to Japan in June 1998 and March 1999, and appeared as arXiv:math/9907020.
The first named author is supported by JSPS Program 22340009 and KIAS
Scholar Program, and the second named author is supported by an ARF of NUS.
The authors are very thankful to the JSPS-NUS programme for the financial
support, and the referee for pointing out an error and typos.

2. Proof of the main Theorem

We now prove the main Theorem 1.5. We employ the same notation introduced
in §1 freely. Let N be the orthogonal lattice of M in H2(X,Z). Then N is
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g−stable and TX ⊆ N and M ⊆ SX . For a lattice L, we denote by L∗ the
dual (over) lattice Hom(L,Z). For a positive integer I, we denote by ϕ(I) the
cardinality of the multiplicative group (Z/I)×.

Lemma 2.1. We have GN = {1}. In particular, g is unique and is of order 11.

Proof. Suppose the contrary that |GN | ≥ 2. Since ϕ(11) | rankTX , rankTX is
either 10 or 20. According [17, the list] and its notation,

rank TX = rankTY ≤ 22− (c + 1)

with c ≥ 8 (resp. c ≥ 12) when |GN | ≥ 2 (resp. |GN | ≥ 3). Thus |GN | = 2 and
rank TX = 10. Hence rank SX = 12.

Write GN = 〈ι〉 ' Z/2. Then |G| = 22. Since GN C G, we have G = 〈h〉 '
Z/22. We may assume that g = h2 and ι = h11. By the topological Lefschetz
fixed point formula, we have the diagonalization ι∗|(SX ⊗ C) = diag[I4,−I8],
relative to some basis. By considering minimal polynomial of ζ11 over Q, we have
either g∗|SX ⊗ C = I12 (identity matrix), or

g∗|SX ⊗ C = diag[ζ11, ζ
2
11, . . . , ζ

10
11 , 1, 1].

If the second case for g∗ occurs, then simultaneously diagonalize g∗ and ι∗ on
SX ⊗C, we would get a diagonalization of (g ◦ ι)∗ whose diagonal entries consist
of a few ±1 and between 6 and 8 entries of 22nd primitive roots of the unity,
which is impossible because g ◦ ι is of order 22 and the Euler number ϕ(22) = 10.

If the first case for g∗ occurs, then we get the following diagonalizations, relative
to two possibly different bases (up to re-ordering):

(g ◦ ι)∗|(SX ⊗ C) = diag[I4,−I8], (g ◦ ι)∗|(TX ⊗ C) = diag[ζ11, ζ
2
11, . . . , ζ

10
11 ].

Thus χtopol(Xg◦ι) = −3 by the topological Lefschetz fixed point formula. In
particular, Xg◦ι contains a curve. On the other hand, since (g ◦ ι)11 = ι, we have
Xg◦ι ⊆ Xι, so that Xg◦ι consists of finitely many points, a contradiction.

¤

Lemma 2.2. M is isomorphic to either U , U(11) or U ⊕A10.

Proof. Since M is a primitive sublattice of the unimodular lattice H2(X,Z), we
have a natural isomorphism M∗/M ' N∗/N . Noting that Ng∗ = {0}, we can
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apply the same argument as in [7, Lemmas (1.1), (3.2)] and [12, Lemmas (1.2),
(1.3)] for the pair (M, N) (instead of (SX , TX) there) to get ϕ(11) = 10 | rankN

and

M∗/M ' N∗/N ' (Z/11)⊕s

for some integer s with 0 ≤ s ≤ rankN/10. Since rankN ≤ 21, we have

(rank(M),det(M)) = (22− rank(N),−11s) =

(2,−1), (2,−11), (2,−112), (12,−1), (12,−11).

By the classification of indefinite unimodular even lattices, the case (rank(M),
det(M)) = (12,−1) is impossible and in the case (rank(M),det(M)) = (2,−1)
we have M = U .

By [14], a p-elementary (p > 2) even hyperbolic lattice of rank > 2, is de-
termined uniquely by its rank and discriminant. So, M = U ⊕ A10 when
(rank(M),det(M)) = (12,−11).

Suppose that rank M = 2. Write M = (aij), where a11 = 2a, a22 = 2c, a12 =
a21 = b for integers a, b, c. Then detM ≡ 0,−1 (mod 4) and hence the case
(rank(M),det(M)) = (2,−11) is impossible. We consider the case where (rank(M),
det(M)) = (2,−112). Note that M∗ is generated by a Z-basis

(ε1 ε2) = (e1 e2)M−1 = (e1 e2)(−1/112)(bij)

where

b11 = 2c, b22 = 2a, b12 = b21 = −b.

Here ei’s form the basis of M with (aij) as the intersection matrix. Since M∗/M =
(Z/11)⊕s, each bij (and hence each aij) is divisible by 11. So M = M1(11) with
an indefinite even unimodular lattice M1. Thus M = U(11) under a suitable
basis.

¤

Proposition 2.3. Assume that M ' U . Then (X, G) is isomorphic to either
(S66, 〈σ66〉), (X0, 〈σ44〉), or (Xs, 〈σ〉) (s 6= 0,±

√
−4/27) in Examples 1.1 and 1.2.

Proof. If n ≥ 3, the result follows from [7, Main Theorem]. Let us consider the
case n ≤ 2. Since M ' U , X admits a g−stable Jacobian fibration f : X → P1

by [10]. Let E and C be a general fiber of f and the unique g−stable section of
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f . Here the uniqueness of the g−stable section follows from the fact that if C ′ is
also a g−stable section then [C ′] = a[C] + b[E] and

((aC + bE).E) = 1, (aC + bE)2 = −2.

We see then these equalities imply a = 1 and b = 0.

Let g be the automorphism of the base space P1 induced by g. Since there are
no elliptic curves admitting Lie automorphism of order 11, g is also of order 11.
We may then adjust an inhomogeneous coordinate t of P1 so that (P1)g = {0,∞}.
We note that X0 and X∞ are both irreducible, because the irreducible component
R of X0 meeting C is g−stable so that rankM ≥ 3 unless R = X0.

Since g∗ωX = ζ11ωX , an easy local coordinate calculation shows that neither
of X0, X∞ is of Kodaira’s type I1. Moreover, noting that g permutes the other
singular fibers, we have

24 = χtopol(X) = χtopol(X0) + χtopol(X∞) + 11m

for some positive integer m. Thus after suitable change of inhomogeneous coor-
dinate t if necessary, (X0, X∞) is of type (I0, II) and the set of the other singular
fibers is either

(1) {Xζi
11
|0 ≤ i ≤ 10}, all of Kodaira’s type II,

(2) {Xζi
11

, X
ζj
11α
|0 ≤ i, j ≤ 10} (α /∈ µ11), all of Kodaira’s type I1, or

(3) {Xζi
11
|0 ≤ i ≤ 10}, all of Kodaira’s type I2.

¤

Claim 2.4. The case (3) can not happen.

Proof. Assuming the contrary that Case(3) occurs, we denote by R the irreducible
component of X1 meeting C. Since

S :=
∑

0≤i≤10

gi(R)

is g−stable, we have [S] = a[C] + b[E]. Now (S.E) = 0 implies that a = 0 and
hence S = b[E]. This leads to

−22 = (S)2 = (bE)2 = 0

which is a contradiction.
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¤

Claim 2.5. The case (1) can not happen under the assumption that n ≤ 2.

Proof. Assuming the contrary that Case (1) happens, we will determine the
Weierstrass equation

y2 = x3 + a(t)x + b(t)

of f : X → P1. Since the singular fibers of f are all of type II, the J−function

J(t) := 4a(t)3/(4a(t)3 + 27b(t)2) = 0

as a rational function. Thus, a(t) = 0 and the equation is y2 = x3 + b(t).

Let us consider the discriminant divisor

∆(t) = 27b(t)2.

Since the singular fibers of f over t 6= ∞ are Xζi
11

and these are all of type II,
we have ∆(t) = c(t11 − 1)2 for some nonzero constant c. Then b(t) = c′(t11 − 1)
for some nonzero constant c′. Changing x, y by suitable multiples, we finally find
that f is given by the equation

y2 = x3 + (t11 − 1)

which is isomorphic to S66 in Example 1.1. In particular, G ' µ66 by [7]. Thus
n = 6, a contradiction. The argument above is similar to [5, (5.1)]; we keep
this argument for readers’ convenience, and thank the referee for pointing this
out. ¤

Claim 2.6. Assume that f : X → P1 satisfies the condition of the case (2) and
M ' U and n ≤ 2. Then f : X → P1 is isomorphic to a Jacobian elliptic
fibration given by a Weierstrass equation

y2 = x3 + x + (t11 − s)

for some s 6= 0,±
√
−4/27, and under this isomorphism, we have G ' 〈σ〉, where

σ∗(x, y, t) = (x,−y, ζ11t).

In particular, n = 2.



K3 Surfaces with Order 11 Automorphisms 1667

Proof. Again we will determine the Weierstrass equation

y2 = x3 + a(t)x + b(t)

of f : X → P1, where a(t), b(t) are polynomials in t. First note that deg a(t) ≤ 8
and deg b(t) ≤ 12 by the canonical bundle formula. Since f has singular fibers

{Xζi
11

, X
ζj
11α

| 0 ≤ i, j ≤ 10}
of type I1, the discriminant divisor ∆(t) is equal to

δ(t11 − α11)(t11 − 1)

for some non-zero constant δ. Since the J−function

J(t) = 4a(t)3/∆(t)

is g−invariant, a(t) (and hence b(t)) are also g−semi invariant. Thus

a(t) = Atm, b(t) = tn(B1 + B2t
11)

where A,Bi are constants, m ≤ 8, n ≤ 12, and n ≤ 1 when B2 6= 0. Comparing
coefficients of the equality

∆(t) = 4a(t)3 + 27b(t)2

we see that
a(t) = A, b(t) = B1 + B2t

11.

Noting that A 6= 0 because of the existence of singular fibers of type I1. We have
also B2 6= 0, otherwise, X is birational to a product of a fibre and the parameter
space P1 and hence is not a K3 surface, absurd! We can, by a suitable coordinate
change, normalize the Weierstrass equation of X as

X = Xs : y2 = x3 + x + (t11 − s).

Here s is a constant, and s 6= 0 for otherwise n = 4 by [7].

Conversely, by the standard algorithm to finding out the singular fibers [8], we
see that this elliptic surface Xs has 22 singular fibers of type I1 and a singular fiber
of type II if and only if s 6= ±

√
−4/27. Moreover, Xs admits an automorphism

gs of order 11 given by
g∗s(x, y, t) = (x, y, ζ11t).

Since g and gs make the fibration f and the section C stable and satisfy

g∗ωX = g∗sωX = ζ11ωX
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we have g = gs. Now the condition that n ≤ 2 implies that n = 2 and G ' µ22,
by the maximality of G and by considering

Gs = 〈gs, ιs〉 ' µ22

where

ι∗s(x, y, t) = (x,−y, t)

acts on f as the involution around C.

Write G = 〈g, ι〉 with an involution ι. Since ι ◦ g = g ◦ ι, we see that C and
f are both ι−stable, and 0 and ∞ are two ι-fixed points. In other words, ι does
not switch 0 and ∞, because the fibres X0 and X∞ are of different types: I0, II.
If ι acts on the base space P1 as an involution, G permutes the 22 singular fibers
of type I1 as well as the 22 roots of the discriminant divisor

∆(t) = 4 + 27(t11 − s)2

whence s = 0, a contradiction. Thus, ι is the involution of f around C, i.e.,
ι = ιs. This means G = Gs and we are done. ¤

This completes the proof of Proposition 2.3.

Next we consider the case where M ' U ⊕ A10. In this case, M = SX

and rankTX = ϕ(11) = 10. So (X, G) is equivariantly isomorphic to the pair
(X√−4/27

, 〈σ〉) in Example 1.2, by [12, Theorem 2] and by making use of the
maximality of G as in the previous paragraph. This also proves the main Theorem
1.5 in the case of M = U or U ⊕A10.

Finally we consider the case where M ' U(11). As before, since U(11) repre-
sents zero, X admits a g−stable elliptic fibration f : X → P1 and the induced
action g on the base space is of order 11. We adjust an inhomogeneous coordinate
t of the base so that (P1)g = {0,∞}. We need further coordinate change later,
but we always keep this condition.

Lemma 2.7. After a suitable coordinate change, f satisfies either one of the
following three cases.

(1) X0 is smooth and g|X0 is a translation of order 11; the remaining singular
fibers are Xζk

11
(0 ≤ k ≤ 10) and these are all of type II.
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(2) X0 is smooth and g|X0 is a translation of order 11; the remaining singular
fibers are Xζk

11
and Xζk

11
α (0 ≤ k ≤ 10 and α /∈ µ11) and these are all of

type I1.
(3) X0 is of Type I11 and g|X0 is a translation of order 11 (which permutes

the fiber components cyclically); the remaining singular fibers are Xζk
11

and these are all of type I1.

Moreover, in all three cases, X∞ is of type II with Xg = (X∞)g = {P1, P2},
where P1 is the singular point of X∞. The action of g around Pi is of type
1/11(5, 7) if i = 1 and 1/11(2, 10) if i = 2.

Proof. The proof is almost identical to the situation where M ⊇ U , except that
f does not admit g−stable sections and we use the assumption that M ' U(11)
and the fact that Xg is smooth. The type of the action is determined by an
elementary local coordinate calculation of the normalization of X∞ and the fact
that g∗ωX = ζ11ωX . Actually, we have one more possible case in which X0 is
smooth with g|X0 = id and X∞ is of type II with (X∞)g = {P1, P2}. But then
the relatively minimal model of X/〈g〉 → P1/〈g〉 is a rational elliptic surface with
no multiple fibers and hence has a section C. Now the pullback on X of C is a
g-stable section, which contradicts M ' U(11). ¤

Note that the fibration f on X induces an elliptic fibration f ′ : X/〈g〉 → P1/〈g〉
on the quotient surface, a log Enriques surface of index 11. Let S → X/〈g〉 be
the minimal resolution. Then the proper transform D0 of X∞/〈g〉 is a (−1)-curve
on S. This is because that the total transform D of X∞/〈g〉 is a non-relatively
minimal fibre of an elliptic fibration on the smooth surface S; to be precise, every
irreducible component Di (6= D0) of this fibre D is a curve with self-intersection
≤ −2, and at least one curve say D1 has D2

1 ≤ −3 since P1 (and also P2) is not
a rational double point.

We let c : S → T be the contraction of this (−1) curve and f : T → P1 the
induced relatively minimal rational elliptic fibration. We immediately get the
following lemma from the construction.

Lemma 2.8. According to the cases (1), (2), (3) in Lemma 2.7, the singular fibers
of f are:

(1) T0 of type 11I0, T∞ of type II∗, and T1 of type II.
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(2) T0 of type 11I0, T∞ of type II∗, and T1 and Tα11 of type I1.
(3) T0 of type 11I1, T∞ of type II∗, and T1 of type I1.

Note that we can recover (X, f) in Lemma 2.7 easily from (T, f) in Lemma
2.8. Indeed, let f : T → P1 be a relatively minimal rational elliptic surface with
one of the properties (1), (2) and (3) in Lemma 2.8. Blow up the point of the
intersection of the components of multiplicities 5 and 6 in T∞ and then contract
the two connected components of the proper transform of T∞. We now get a
rational elliptic surface f ′ : S → P1 with two singular points of types 1/11(5, 7)
and 1/11(2, 10) and with 11KS linearly equivalent to 0. Let X → S be the
global canonical Z/11-cover of S. Then (X, f), where f is induced from f , fits
corresponding cases in Lemma 2.7.

Moreover, if we let F be the Galois group Gal(X/S), then we have:

Lemma 2.9. (X, F ) satisfies the condition in the second paragraph of the Intro-
duction. Further, M ' U(11) and F is maximal. In particular, in the situation
of Lemma 2.7, one has (X, F ) = (X, 〈g〉).

Proof. The first assertion is clear. We use the notation, like g, M in the Intro-
duction for F .

If M 6' U(11), then M is either U or U ⊕ A10 by Lemma 2.2. However, then
Xg contains a curve by the main Theorem 1.5 (proved already when M ⊇ U)
and Remark 1.3, which contradicts the fact that the canonical covering map is
étale in codimension one. Thus M ' U(11).

Next, we show that F is maximal. Assume that F ⊂ H and H also satisfies
the condition in the Introduction. By Lemma 2.1, HN = {1}. By [7], it is enough
to eliminate the case where H = 〈h〉 ' Z/22.

Assume the contrary that this case happens. We may assume that the order
11 element g := h2 is as in the Introduction. Since rank M = 2, FN = {1} and
rankTX is either 10 or 20, we have either

h∗|TX ⊗ C = diag[−ζj
11|1 ≤ j ≤ 10]

and h∗|SX ⊗ C equals one of:

diag[1,±1, ζj
11|1 ≤ j ≤ 10], diag[1,±1,−ζj

11|1 ≤ j ≤ 10]
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in the case where rank TX = 10, or

h∗|TX ⊗ C = diag[−ζj
11|1 ≤ j ≤ 10]⊕2, h∗|SX ⊗ C = diag[1,±1]

in the case where rank TX = 20.

Since h(Xg) = Xg and Xh ⊆ Xg, we have Xh = {P1, P2}, noting that the
actions of g around two points Pi are different. Thus the topological Lefschetz
formula shows that the only possible case is:

h∗|TX ⊗ C = diag[−ζj
11|1 ≤ j ≤ 10], h∗|SX ⊗ C = diag[1,−1, ζj

11|1 ≤ j ≤ 10].

Let ι := h11. Then,

ι∗|TX ⊗ C = −I10, ι∗|SX ⊗ C = diag[I11,−1].

In particular, χtop(Xι) = 2. This, together with the fact that ι∗ωX = −ωX ,
implies that Xι consists of smooth curves and at least one of them is a smooth
rational curve, say C. Write the (disjoint) irreducible decomposition of Xι as

Xι = C ∪ E1 ∪ ... ∪ Em.

Since g ◦ ι = ι ◦ g, the g acts on the set {C, E1, ..., Em}.
First assume that g(C) 6= C. Then gi(C) would be mutually disjoint 11 rational

curves with
Q〈gi(C)〉 ⊆ Sι∗

X ⊗Q
where both sides of the inclusion are of rank 11, whence they are equal. However,
Sι∗

X then contains no ample classes, a contradiction. Thus g(C) = C and P1, P2 ∈
C. But, this can not happen, because the action of g around Pi are of types
1/11(5, 7) if i = 1 and 1/11(2, 10) if i = 2, and there are no a ∈ {5, 7}, b ∈ {2, 10}
with a + b ≡ 0 (mod 11). Therefore, F is maximal and Lemma 2.9 is proved. ¤

Now the only remaining task is to describe rational elliptic surfaces with the
property (1), (2), or (3) in Lemma 2.8. However, each of these is obtained as a
principal homogeneous space of a Jacobian rational elliptic surface j : J → P1

whose singular fiber type is equal to one of the three types in Example 1.4. Now a
similar (and easier) calculation shows that the Weierstrass equation of j : J → P1

is the same as one of those in Example 1.4. This completes the proof of the main
Theorem 1.5.

2.10. Proof of Proposition 1.8
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Let I be either 54 or a prime number ≤ 19, then the order-I cyclic group
µI acts purely non-symplectically on some K3 surface and hence is a K3 group
(cf. [7, Main Theorem 3]). Among the 26 sporadic simple groups in [2], only
the Monster M contains all such µI as subgroups (neither the baby Monster
B nor the Mathieu group M23 contains µ54 as its subgroup). This proves the
proposition.
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