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Introduction

In this paper we continue our study of Enriques manifolds started in [23].
By definition, an Enriques manifold is a connected complex space Y that is not
simply connected and whose universal covering X is a hyperkähler manifold.
The notion of hyperkähler manifolds was first investigated by Beauville [2], and
denotes simply connected compact Kähler manifolds with H2,0(X) generated
by a symplectic form. Such spaces were intensively studied by Huybrechts and
others (see to [13] for an introduction). Hyperkähler and Enriques manifolds are
the natural generalizations of K3 and Enriques surfaces to higher dimensions.
Enriques varieties were introduced independently in [4].

Using punctual Hilbert schemes, moduli spaces of stable sheaves, and gener-
alized Kummer varieties, we constructed several examples of Enriques manifolds
[23]. The basic numerical invariant for an Enriques manifold Y called the in-
dex is the order d ≥ 2 of its fundamental group, which is necessarily a finite
cyclic group. Most constructions yield index d = 2 and are related to Enriques
surfaces. However, there are also examples with index d = 3, 4 coming from
bielliptic surfaces.

The goal of this paper is to study periods for Enriques manifolds, that is, linear
algebra data coming from Hodge theory, which shed some light on deformations
and moduli. Throughout, we build on the vast theory of periods for K3 surfaces,
Enriques surfaces, and hyperkähler manifolds. The first main result of this paper
is a Local Torelli Theorem for Enriques manifolds: Roughly speaking, the base
of the Kuranishi family for an Enriques manifold is biholomorphic to some open
subset of a bounded symmetric domain. It turns out that the bounded symmetric
domains in question are of type IV for index d = 2. In contrast, for d ≥ 3 we
have domains of type I that are biholomorphic to complex balls.

Our notion of marking for Enriques manifolds depends on two simple obser-
vations: First, the fundamental group π1(Y ) can be canonically identified with
the group of complex roots of unity µd(C), via the trace of the representation on
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H2,0(X). Second, complex representations of µd(C) correspond to weight decom-
positions V =

⊕
Vi, which are indexed by the character group Z/dZ. Thus our

period domains will be of the form

DL = {[σ] ∈ P(LC,1) | (σ, σ) = 0 and (σ, σ) > 0} ,

where LC,1 is the weight space for the identity character of the complexification
of a certain lattice L endowed with an orthogonal representation of G = µd(C),
and a marking of an Enriques manifold Y is an isomorphism φ : H2(X,Z) → L,
where H2(X,Z) is the Beauville–Bogomolov lattice endowed with the canonical
representation of G = π1(Y ).

As an application of the Local Torelli Theorem, we shall prove that any small
deformation of the known Enriques manifolds

Hilbn(S)/G and MH(ν)/G and Kmn(A)/G,

which come from punctual Hilbert schemes, moduli spaces of stable sheaves, and
generalized Kummer varieties, is of the same form. Note that the situation for
hyperkähler manifolds is rather different.

We also show that birationally equivalent Enriques manifolds have identical
periods. Examples of birational maps are given by Mukai flops of Hilbn(S),
where S is a K3 surface arising as a universal covering of an Enriques surface,
and the Mukai flop are given with respect to certain Pn = Hilbn(C), where
C ⊂ S are (−2)-curves. We give a detailed study of Mukai flops defined on
generalized Kummer varieties Kmn(A) ⊂ Hilbn+1(A) for certain abelian surfaces
A admiting fibrations ϕ : A → E onto elliptic curves. Here the Mukai flops are
defined with the help of relative Hilbert schemes Hilbn+1(A/F ). Along the way,
we obtain new examples of nonkähler manifolds with trivial canonical class that
are bimeromorphic to hyperkähler manifolds.

This paper is dedicated to the memory of Eckart Viehweg. We both learned a
lot from him: about moduli and many other things.

Acknowledgement. The first author is supported by JSPS Program 22340009
and by KIAS Scholar Program. We thank the referee for careful reading, correc-
tions and suggestions.
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1. Enriques manifolds and Kuranishi family

Recall that a hyperkähler manifold X is a compact complex Kähler manifold
that is simply connected, with H2,0(X) = H0(X, Ω2

X) generated by a 2-form
that is everywhere nondegenerate. The dimension of such manifolds is even,
and usually written as dim(X) = 2n. An Enriques manifold is a connected
complex manifold Y that is not simply connected, and whose universal covering
X is hyperkähler. Such manifolds are necessarily projective. The trace of the
representation of G = π1(Y ) on H2,0(X) gives a homomorphism G → C×, which
induces a canonical bijection G → µd(C) with the multiplicative group of d-th
complex roots of unity (see [23], Section 2, and [3], Section 4). Throughout, we
identify the groups

G = π1(Y ) = µd(C).

The integer d ≥ 2 is called the index of the Enriques manifold Y .

Recall that the group of characters µd(C) → C× is cyclic of order d, and
contains a canonical generator, the identiy character ζ 7→ ζ. Throughout, we
use the identification Hom(µd(C),C×) = Z/dZ. A finite-dimensional complex
representation of G is nothing but a finite-dimensional complex vector space
V endowed with a weight decomposition V =

⊕
Vi indexed by the characters

i ∈ Z/dZ. Explicitely, the weight spaces Vi ⊂ V is the set of vectors where each
group element ζ ∈ G acts via multiplication by the complex number ζi ∈ C. Note
that V0 ⊂ V is the G-invariant subspace, and V1 ⊂ V is the subspace where the
action of each ζ is multiplication by itself.

Now let Y be an Enriques manifold of index d ≥ 2, and X → Y be its
universal covering, such that X is a hyperkähler manifold. The fundamental
group G = π1(Y ) = µd(C) acts on H1(X, ΘX), such that we have an weight
decomposition of cohomology vector spaces

Hq(X, ΘX) =
⊕

i∈Z/dZ
Hq(X, ΘX)i

indexed by the characters of π1(Y ) = µd(C). Recall that Hq(X, ΘX)0 is nothing
but the G-invariant part.

Proposition 1.1. The group of global vector fields H0(Y, ΘY ) vanishes, and we
have H1(Y,ΘY ) = H1(X, ΘX)0 ' H1,1(X)1.
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Proof. Choose a nonzero σX ∈ H2,0(X). Then δ 7→ (δ′ 7→ σX(δ, δ′)) yields
an isomorphism ΘX → Ω1

X . By definition, each group element ζ ∈ G acts
via multiplication with the complex number ζ ∈ C on H2,0(X). In turn, our
isomorphism induces a bijection H1(X, ΘX)0 → H1,1(X)1 between weight spaces.

The projection h : X → Y is finite and étale, such that the canonical map
Ω1

Y ⊗OY
h∗(OX) → h∗(Ω1

X) is bijective. Taking duals into h∗(OX) and using
canoncial identifications, we obtain a bijection h∗(ΘX) → ΘY ⊗OY

h∗(OX), and
the equality Hq(Y, ΘY ) = Hq(X, ΘX)0 follows. Now H0(X, ΘX) = 0 ensures
H0(Y, ΘY ) = 0. ¤

Let Y → B be a Kuranishi family of Y = Y0, that is, a deformation of Y = Y0

that is versal and has the property that dimH1(Y, ΘY ) equals the embedding
dimension of 0 ∈ B.

Proposition 1.2. After shrinking B if necessary, the Kuranishi family Y → B

of an Enriques manifold Y of index d ≥ 2 is universal, the base is smooth, and
each fiber Yb is an Enriques manifold of index d.

Proof. This is a special case of general results due to Fujiki ([10], Lemma 4.14) and
Ran ([25], Corollary 2). We recall the arguments, since the explicit construction
will be useful later. Let X′ → D′ be the Kuranishi family of X = X′0. After
shrinking D′ if necessary, we may assume that the family is universal, has smooth
base, and all its fibers are hyperkähler manifolds (see [15]). By universality, the
fundamental group G = π1(Y ) acts on this family, such that the origin 0 ∈ D′

is fixed. Since the G-fixed locus in X′ is closed and the projection X′ → D′ is
proper, we may also assume that G acts freely on X′. It is well-known that there
is a regular system of parameters u1, . . . , ur ∈ O∧D′,0 so that the generator of

G acts via ui 7→ e2π
√−1ni/dui, for certain exponents ni (see, for example, [26],

Lemma 5.4). This implies that the G-fixed locus D ⊂ D′ is smooth of dimension
dimH1(X, ΘX)0 = dim H1(Y, ΘY ). Consider the induced family X = X′ ×D′ D.
Then G acts fiberwise on X, and we obtain a family of Enriques manifolds X/G →
D of index d. We have a commutative diagram

(1)

H1(Y, Θ) −−−−→ H1(X, Θ)x
x

ΘD(0) −−−−→ ΘD′(0)
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where the vertical maps are the Kodaira–Spencer maps. The map on the right is
bijective, and the map on the left is the induced map on G-invariant subspaces.
Consequently, the Kodaira–Spencer map for Y → D is bijective as well. It follows
that Y/G → D is versal, and even universal because H0(Y,ΘY ) = 0. ¤

2. Period domains and local Torelli

Our next task is to define period domains and period maps for Enriques man-
ifolds, in analogy to the case of Enriques surfaces (for the letter, we refer to [1],
Chapter VIII, Section 19). To this end we need a suitable notion of marking.
Let Y be an Enriques manifold and X be the universal covering, and H2(X,Z)
be the Beauville–Bogomolov lattice, which is endowed with the primitive and
integral Beauville–Bogomolov form (see [13], Section 23) and an orthogonal rep-
resentation of G = π1(Y ) = µd(C). Note that these forms and lattices are also
called Beauville–Bogomolov–Fujiki forms and lattices. On the complexification
H2(X,C), we denote by (σ, σ′) the induced bilinear form, such that (σ, σ′) is the
induced Hermitian form. A little care has to be taken not to confuse bilinear and
Hermitian extensions. In the following, we find it practical to say that a nonde-
generate lattice or hermitian form has signature of type (p, ∗) if its signature is
(p, q) for some integer q ≥ 0. Our starting point is the following observation:

Lemma 2.1. The lattice H2(X,Z) is nondegenerate with signature of type (3, ∗).
The Hermitian form on the weight space H2(X,C)1 is nondegenerate, and has
signature of type (2, ∗) for d = 2, and (1, ∗) for d ≥ 3.

Proof. According to [2], Theorem 5, the Beauville–Bogomolov lattice H2(X,Z)
is nondegenerate and has signature (3, ∗). Since the G-action is orthogonal, the
eigenspace decomposition on H2(X,C) is orthogonal, whence the restriction of
the Beauville–Bogomolov form to each eigenspace remains nondegenerate.

In the case d ≥ 3, the weight space H2(X,C)1 contains H2,0(X), but is orthog-
onal, with respect to the Hermitian form, to H0,2(X) and the ample class coming
from Y , whence has signature of type (1, ∗). In case d = 2, we have 1 = −1
in the character group Z/dZ, such that the weight space contains also H0,2(X).
Consequently, the signature is of type (2, ∗). ¤

Now let L be an abstract nondegenerate lattice with signature of type (3, ∗),
endowed with an orthogonal representation of the cyclic group G = µd(C). We
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further impose the condition that the Hermitian form on the weight space LC,1

is nondegenerate, with signature of type (2, ∗) in case d = 2, and (1, ∗) for d ≥ 3.

An L-marking for an Enriques manifold Y of index d ≥ 2 is an equivariant
isometry φ : H2(X,Z) → L, where X is the universal covering of Y and H2(X,Z)
is the Beauville–Bogomolov lattice for the hyperkähler manifold X, endowed with
the canonical action of G = π1(Y ) = µd(C). We now define the period domain
DL for L-marked Enriques manifolds as

DL = {[σ] ∈ P(LC,1) | (σ, σ) = 0 and (σ, σ) > 0} ,

where σ denotes complex conjugation inside the complexification LC. Note that
for d = 2, the weight space LC,1 ⊂ LC is invariant under complex conjugation.
On the other hand, for d ≥ 3, each σ ∈ LC,1 satisfies (σ, σ) = (ζσ, ζσ) = ζ2(σ, σ)
for all ζ ∈ G, whence the weight space LC,1 ⊂ LC is totally isotropic; now the
period domain is actually given by

DL = {[σ] ∈ P(LC,1) | (σ, σ) > 0} .

Clearly, our period domains inside P(LC,1) are locally closed with respect to the
classical topology, whence inherit the structure of a complex manifold.

It turns out that DL is a bounded symmetric domain. By results of E. Car-
tan [5], each bounded symmetric domain is the product of irreducible bounded
symmetric domains, and the irreducible bounded symmetric domains fall into six
classes. The first four are called Cartan classical domain, and in Siegel’s notation
([27], Chapter XI, §48) are denoted by I, II, III, IV. Recall that the Cartan classi-
cal domains of type Im,n consists of complex matrices A ∈ Matm×n(C) so that the
Hermitian matrix Em − AA

t is positive definite. The Cartan classical domains
of type IVn is a connected component of the set of all nonzero z ∈ Cn+2 with
ztHz = 0 and z̄tHz > 0, up to nonzero scalar factors, where H is a Hermitian
form of signature (2, n). One should bear in mind that the symmetric bounded
domain of type IV2 is not irreducible, rather biholomorphic to H×H.

Proposition 2.2. Set q = dim(LC,1). For d = 2, the period domain DL is
the disjoint union of two copies of bounded symmetric domains of Type IVq−1

of dimension q − 1. For d ≥ 3, the period domains DL are bounded symmetric
domains of type I1,q−1, whence biholomorphic to the complex ball of dimension
q − 1.
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Proof. By our assumptions on L, the weight space LC,1 has signature (2, q − 2)
in case d = 2, so the first statement holds. Now suppose d ≥ 3. Now LC,1 has
signature (1, q − 1), and we may identify DL with the set of

{
(z0 : . . . : zq−1) ∈ Pq−1 | z0z0 −

q−1∑

i=1

zizi > 0

}
,

which obviously coincides with the complex ball
{

(z1, . . . , zq−1) ∈ Cq−1 |
q−1∑

i=1

zizi < 1

}
.

The assertion follows. ¤

Remark 2.3. For d = 4, such constructions already appeared in Kondo’s study
of periods for nonhyperelliptic curves of genus three ([16], §2).

Let (Y, φ) be an L-marked Enriques manifold of index d ≥ 2, with universal
covering X. Let σX ∈ H2,0(X) be a nonzero form, which is unique up to scalar
factors. Considered as a class in H2(X,Z), we have

(σX , σX) = 0 and (σX , σX) > 0 and σX ∈ H2(X,C)1.

We thus define the period point of our L-marked Enriques manifold as the induced
point [φ(σX)] ∈ DL.

Now let f : Y → B be a flat family of Enriques manifolds, say over some
simply connected complex space B. It follows from Proposition 1.2 that each
fiber Yb is an Enriques manifold of index d. Moreover, the universal covering
X → Y is fiber wise the universal covering, and we obtain a flat family X → B

of hyperkähler manifolds.

Suppose we have an L-marking φ : H2(X,Z) → L, where X = X0 is the
universal covering of Y = Y0. Since the local system R2φ∗ZX is constant, our
L-marking of Y uniquely extends to an L-marking φ : R2φ∗ZX → LB of the flat
family of Enriques manifolds. In turn, we obtain a period map

p : B −→ DL, b 7−→ [φ(σXb
)].

of the marked family. Such period maps are holomorphic, according to general
results of Griffiths [11]. It turns out that the Local Torelli Theorem holds:
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Theorem 2.4. Let Y be an L-marked Enriques manifold and Y → B be the
Kuranishi family of Y = Y0. Then the period map p : B → DL is a local
isomorphism at 0 ∈ B.

Proof. Since both B and D are smooth, it suffices to check that the differential of
the period map at 0 ∈ B is injective and that B and D have the same dimension.
By the Local Torelli Theorem for hyperkähler manifolds ([2], Theorem 5), the
differential of the period map b 7→ [φ(σXb

)] for the Kuranishi family of X is
bijective. In light of the commutative diagram (1), the differential of the period
map for the Kuranishi family of Y is injective as well.

It remains to compute vector space dimensions. The tangent space at 0 ∈ B

is isomorphic to H1(Y, ΘY ) = H1(X, ΘX)0 = H1,1(X)1. Let us first consider the
case d ≥ 3. Then DL ⊂ P(LC,1) is an open subset, with respect to the classical
topology, and the tangent space at the period point is

Hom(Cφ(σX), LC,1/Cφ(σX)) = Hom(CσX ,H2(X,C)1/CσX).

The Hodge decomposition of H2(X,C) is invariant with respect to automorphisms
of X, such that

H2(X,C)1 = H0,2(X)1 ⊕H1,1(X)1 ⊕H2,0(X)1.

The first summand vanishes, because H0,2(X) = H0,2(X)−1 and 1 6= −1 in the
character group Z/dZ. It follows that H1,1(X)1 and Hom(CσX ,H2(X,C)1/CσX)
have the same dimensions.

We finally treat the case d = 2. Now the period domain DL is an open part of
a quadratic (σ, σ) = 0 inside P(LC,1), so the tangent space at the period point is
given by

Hom(CσX , V/CσX),

where V ⊂ H2(X,C)1 is the orthogonal complement of σX ∈ H2(X,C). Clearly,
we have

H2(X,C)1 = H1,1(X)1 ⊕ CσX ⊕ CσX .

Taking into account that the Beauville–Bogomolov form has (σX , σX) = 0 and
(σX , σX) > 0, the orthogonal complement in question is V = H1,1(X)1 ⊕ CσX ,
and the argument concludes as in the preceding paragraph. ¤
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Let ML be the set of isomorphism classes of L-marked Enriques manifolds.
Using the Local Torelli Theorem as in [13], Definition 25.4, we conclude that
there is a unique topology and complex structure on ML making all the period
maps defined on the bases of the Kuranishi family holomorphic. We thus have a
coarse moduli space ML of L-marked Enriques manifolds, and the global period
map

p : ML −→ DL

is étale. Note, however, that ML is not Hausdorff, as we shall see in Section 4.
We note in passing that the automorphism group of a marked Enriques manifold
is finite, since the same holds for hyperkähler manifolds ([15], Section 9).

3. Applications of Local Torelli

Let S′ be an Enriques surface. Then G = π1(S′) is cyclic of order two, and the
universal covering S is a K3 surface. Let n ≥ 1 be an odd number. According
to [23], Proposition 4.1, the induced G-action on X = Hilbn(S) is free, and
Y = X/G is an Enriques manifold of index d = 2. Using period maps, we now
show that any small deformation of Y is of the same form.

Let Y → B be the Kuranishi family of the Enriques manifold Y = Y0, and
denote by S′ → B′ the Kuranishi family of the Enriques surface S′ = S′

0. We
may assume that the base spaces B and B′ are smooth and contractible. Recall
that dim(B′) = 10. Let S → S′ be the universal covering, such that S → B′ is
a flat family of K3 surfaces. The relative Hilbert scheme, or rather the relative
Douady space [24], gives a deformation Hilbn(S/B′)/G → B′ of the Enriques
manifold Y , which in turn yields a classifying map h : B′ → B.

Proposition 3.1. The classifying map h : B′ → B is a local isomorphism at the
origin 0 ∈ B′. In other words, any small deformation of the Enriques manifold
Y = Hilbn(S)/G is again of this form.

Proof. Let L = H2(X,Z) be the Beauville–Bogomolov lattice, endowed with
the canonical G-action. Recall that Beauville [2] defined an injection of Hodge
structure

i : H2(S,Z) −→ H2(X,Z)

compatible with the G-action, where the Beauville–Bogomolov form restricts to
the cup product. The cokernel is generated by the class of the exceptional divisor
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of the Hilbert–Chow map Hilbn(S) → Symn(S), which is G-invariant. It follows
that we obtain an identification H2(S,C)1 = H2(X,C)1 of weight spaces.

Now set L = H2(X,Z), and define L′ ⊂ L as the image of i. In this way we
obtain a marking of the Enriques manifold Y and the Enriques surface S′. These
marking extends uniquely to markings of the families Y → U and S′ → U′. Now
recall that the period domain for L-marked Enriques manifolds is

D = {[σ] ∈ P(LC,1) | (σ, σ) = 0 and (σ, σ) > 0} .

This coincides with the period domain for L′-marked Enriques surfaces as de-
scribed in [1], Chapter VIII, Section 19, because we have an equality of weight
spaces L′C,1 = LC,1. Now consider the diagram

B′ h //

p′ ÃÃA
AA

AA
AA

B

pÄÄ~~
~~

~~
~

D
where p′, p are the period maps for the marked families of Enriques surfaces and
Enriques manifolds, respectively. By the Local Torelli Theorems, both period
maps are local isomorphisms at the origins. It thus remains to check that the
diagram is commutative. But this follows from the very definition of the period
map and the fact that the map i of local systems sends the lines H2,0(Sb) to
H2,0(Xb). ¤

Remark 3.2. According to [9], every small deformation of a punctual Hilbert
scheme of an Enriques surface is of the same form, and our Enriques manifolds
Y = Hilbn(S)/G show the same behavior. The situation for the hyperkähler
manifold X = Hilbn(S) is different: Its Kuranishi family has a 21-dimensional
base, whereas the Kuranishi family for the K3 surface has only dimension 20.
As explained in [2], Theorem 6, a very general small deformation of X is not
isomorphic to a punctual Hilbert scheme.

Keeping the previous assumptions, we now additionally assume that our En-
riques surface S′ is general in the sense that the K3 surface S has the minimal
possible Picard number ρ(S) = 10. Let ν = (r, l, χ−r) ∈ Hev(S,Z) be a primitive
Mukai vector, with l ∈ Pic(S) and ν2 ≥ 0 and χ odd, and H ∈ NS(S) a very
general polarization. Then the moduli space of X = MH(v) of H-stable sheaves
on S with Mukai vector ν(F) = ν is a hyperkähler manifold of dimension ν2 + 2.
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According to [23], Theorem 5.3, the canonical G-action leaves this moduli space
invariant and acts freely on it, such that Y = X/G is an Enriques manifold of
index d = 2. We shall see that any small deformation of Y is of the same form.

Let Y → B be the Kuranishi family of the Enriques manifold Y = Y0, and
S′ → B′ be the Kuranishi family of the Enriques surface S′ = S0. Then we have
a relative moduli space MH(ν) for the induced family S → B′ of K3 surfaces,
where H now denotes a very general relative polarization. The fiber wise G-action
on MH(ν) is free, according to [23], Proposition 5.2, and we obtain a flat family
MH(ν)/G → B′ of Enriques manifolds. Let h : B′ → B be the classifying map.

Proposition 3.3. The classifying map h : B′ → B is a local isomorphism at the
origin 0 ∈ B′. In other words, any small deformation of the Enriques manifold
Y = MH(ν)/G is again of this form.

Proof. Mukai (see [19] and [18]) defined a homomorphism

θ : ν⊥ −→ H2(MH(ν),C)

where ν⊥ ⊂ Hev(S,C) denotes the orthogonal complement with respect to the
Mukai pairing, and O’Grady [21] showed in full generality that it is bijective, or-
thogonal, and respects the integral structure as well as the Hodge structure. The
function θ(α) can be defined on the full Mukai lattice as a Künneth component
of

1
σ

pr2∗(ch(Q)(1 + pr∗1[S]) pr∗1(α))

where pr1 : S ×MH(ν) → S and pr2 : S ×MH(ν) → MH(ν) are the projections
and Q is a quasitautological bundle, that is, a coherent sheaf on S×MH(ν) whose
restrictions to S×{[F ]} are isomorphic to F⊕σ for some σ ≥ 1, and satisfying the
obvious universality property. On the orthogonal complement ν⊥, the expression
θ(α) does not depend on the choice of the quasitautological bundle. From this
one infers that θ : ν⊥ → H2(MH(ν),C) is natural, in particular, equivariant with
respect to the canonical action of G. Since the Mukai vector ν ∈ Hev(S,Z) is
G-fixed, we have H2(S,C)1 ⊂ ν⊥, and this yields an identification H2(S,C)1 =
H2(MH(ν),C)1. Now the argument concludes as in the previous proof. ¤

Remark 3.4. Let S → B be the flat family of K3 surfaces induced from the
Kuranishi family S′ → B of the Enriques surface S′. According to [22], every
neighborhood of the origin 0 ∈ B contains points b so that the fiber Sb has Picard
number ρ > 10. Hence there are Enriques manifolds of the form MH(ν) arising
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from Enriques surfaces S′ that are more special than the general ones considered
in [23], Section 5.

Now suppose that S is a bielliptic surface, such that ωS ∈ Pic(S) has order
d ∈ {2, 3, 4, 6} and that the corresponding canonical covering A is an abelian
surface. Then A → S is an étale Galois covering, with Galois group G = µd(C).
Let n ≥ 2 be an integer with d | n + 1, and consider the generalized Kummer
variety Kmn(A) ⊂ Hilbn+1(A) comprising those zero cycles mapping to the origin
0 ∈ A under the summation map. According to the results of [23], Section 6,
with a suitable choice of the origin 0 ∈ A and with d 6= 6 and with one exception
for d = 3, the generalized Kummer variety Kmn(A) ⊂ Hilbn+1(A) is invariant
under the canonical G-action on Hilbn+1(A) and the induced G-action on the
hyperkähler manifold X = Kmn(A) is free, such that Y = X/G is an Enriques
manifold. Using similiar arguments as for Proposition 3.1, one shows:

Proposition 3.5. Any small deformation of the Enriques manifold Y = Kmn(A)/G

is of the same form.

Remark 3.6. One may show that the period domain of marked Y = Kmn(A)/G

is a bounded symmetric domain of type I1,2 for d = 2, whence biholomorphic to
H×H, and of type I1,1 for d = 3, 4, 6, whence biholomorphic to H. In both cases,
it coincides with the period domain of the originial biellliptic surface S, and one
may use periods of elliptic curves to describe the period map explicitely.

The results of this section trigger several questions:

Question 3.7. Are the Enriques manifolds of the form Hilbn(S)/G and MH(ν)/G

with index d = 2 and same dimension 2n = ν2 + 2 deformation equivalent? This
is actually true for the universal covering hyperkähler manifolds by the work of
Yoshioka ([28], Theorem 8.1, under some technical assumptions; see also the dis-
cussion after [17], Theorem 2.3.), but the techniques of deforming through elliptic
surfcaes do not seem to carry over to an equivariant setting.

More strongly, one may ask whether each Enriques manifold of the form
MH(ν)/G is birational to an Enriques manifold of the form Hilbn+1(S)/G. See
Huybrechts work [14] for results on hyperkähler manifolds.

Question 3.8. What can be said about the image of the global period map
p : ML → DL? This is particularly interesting for marked Enriques manifolds of
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the form Hilbn(S)/G and MH(ν)/G of index d = 2 coming from Enriques surface.
In contrast to K3 surfaces, the image of the period map for Enriques surfaces is
not surjective, since it misses the classes [σ] ∈ P(LC,1) orthogonal to some of the
l ∈ LC,1 with l2 = −2.

On the other hand, the global period map for marked Enriques manifolds of
the form Kmn(A)/G is surjective, as is the case for bielliptic surfaces.

4. Birational Enriques manifolds

We shall next study birational Enriques manifolds and show that they have
identical periods. Let Y be an Enriques manifold of index d ≥ 2, and X be its
universal covering. Set L = H2(X,Z), and let φ : L → H2(X,Z) be the identity
map, regarded as an L-marking of Y .

Theorem 4.1. Let Y ′ be another Enriques manifold that is birational to Y , with
universal covering X ′. Then Y ′ also has index d, and there is an L-marking
φ′ : L → H2(X ′,Z) so that (Y, φ) and (Y ′, φ′) have the same period point in the
period domain DL.

Proof. The fundamental group is a birational invariant for smooth compact com-
plex manifolds. Let ϕ : Y 99K Y ′ be a birational map, π : X → Y and
π′ : X ′ → Y ′ be the universal covering maps of Y and Y ′ respectively. Then
ϕ ◦ π is a rational map from X to Y ′. Let ν : Z → X be a Hironaka’s resolu-
tion of indeterminacy of ϕ ◦ π. Similarly, we choose a Hironaka’s resolution of
indeterminacy ν ′ : Z ′ → X ′ of the rational map ϕ−1 ◦ π′. Since Z is smooth
and birational to X, it follows that Z is simply connected. The same is true for
Z ′. Thus, the morphism ϕ ◦ π ◦ ν : Z → Y ′ can be lifted to a morphism to X ′,
say % : Z → X ′. Similarly, we have a morphism %′ : Z ′ → X which is a lift of
ϕ−1 ◦ π′ ◦ ν ′. By (1), % and %′ are both birational. Thus

f := % ◦ ν−1 : X 99K X ′

is a birational map. Note that f is isomorphic in codimension 1. This is because
KX and KX′ are both trivial. Thus, we can naturally pull back the 2-form on X ′

to X. Thus, we can choose a generator σX of H2(X, Ω2
X) and a generator σX′

of H2(X ′,Ω2
X′) such that σX = f∗σX′ . Moreover, by [13], Proposition 25.14 (see

also Pages 213–214), f naturally induces a Hodge isometry with respect to the
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Beauville–Bogomolov form:

f∗ : H2(X ′,Z) ' H2(X,Z) .

On the other hand, by the construction, we have ϕ◦π = π′◦f . Thus, f ◦g = g◦f .
Here g is a generator of π1(Y ) = µd(C) = π1(Y ′). Hence f∗ induces a bijection
of weight spaces:

H2(X ′,C)1 ' H2(X,C)1.

Hence, by f∗, the period of Y and the period of Y ′ become the same point. ¤

To give examples of birationally equivalent Enriques manifolds, we have to
recall certain birational transformations for hyperkähler manifolds. Let X be a
hyperkähler manifold of dimension dim(X) = 2n, with n ≥ 2. Suppose there is a
closed subspace P ⊂ X with P ' Pn. As described in [14], the Mukai flop X̌ of
X with respect to P ⊂ X is defined via a commutative diagram

(2) X̃

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÂÂ?
??

??
??

X

ÂÂ?
??

??
??

? X̌

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

X̄

Here X̃ → X is the blowing-up with center P ⊂ X. Its exceptional divisor
is isomorphic to the incidence scheme E ⊂ P × P̌ , where P̌ denotes the dual
projective space, and X̃ → X contracts E along the first projection of P × P̌ .
The morphism X̃ → X̌ is defined as the contraction of E along the second
projection, which is also the blowing-up of P̌ ⊂ X̌. Moreover, the morphisms
X → X̄ and X̌ → X̄ are the contractions of P and P̌ , respectively. Note that the
Mukai flop is simply connected and H2,0(X̌) is generated by a symplectic form,
such that X̌ is hyperkähler if and only if it is Kähler. Given several disjoint
copies P1, . . . , Pd ⊂ X, we may also perform a Mukai flop X̌ with respect to
P1 ∪ . . . ∪ Pd ⊂ X simultaneously.

Now let X be the universal covering of an Enriques manifold Y of index d ≥ 2,
and suppose there is a copy Q ⊂ Y of Pn. Since X → Y is a local isomorphism
on a small neighborhood of Pi ⊂ X with respect to the classical topology, we
obtain a Mukai flop Y̌ of Y with respect to Q ⊂ Y , whose universal covering is
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the Mukai flop X̌ of X with respect to P1 ∪ . . .∪Pd ⊂ X. Note, however, that it
is in general not so easy to determine whether or not the Mukai flops are Kähler,
such that Y̌ is indeed an Enriques manifold.

Here is an example: Let S′ be an Enriques surface, with universal covering S,
and n ≥ 0 be an odd number. Then the induced action of G = π1(S′) on the
punctual Hilbert scheme X = Hilbn(S) is free, such that Y = X/G is an Enriques
manifold of index d = 2. Suppose furthermore that S′ is nodal, that is, there is
a curve C ′ ⊂ S′ of arithmetic genus zero. Then C ′ ' P1 and C ′2 = −2, that is,
C ′ ⊂ S′ is a (−2)-curve. The preimage C1 ∪ C2 ⊂ S is a union of two disjoint
(−2)-curves. In turn, we obtain two disjoint copies

Pi = Hilbn(Ci) ⊂ Hilbn(S) = X, i = 1, 2

of Pn = Symn(P1) = Hilbn(P1) inside the hyperkähler manifold, which are inter-
changed by the G-action. Set Q = (P1 ∪ P2)/G ⊂ Y .

Proposition 4.2. Assumptions as above. Then the Mukai flop Y̌ of Y with
respect to Q ⊂ Y is projective, whence an Enriques manifold birational to Y .

Proof. This is a variation of an argument of Debarre [6], where maps to Grass-
mannians are exploited. To carry it out, we have to verify that there is some
L′ ∈ Pic(S′) with the following properties: L′ ·C ′ = 1 and both L′ and its preim-
age L ∈ Pic(S) are very ample. In other words, C ′ and C1, C2 become lines under
suitable embeddings into projective spaces. To see this, consider the contraction
S′ → S̄′ of the (−2)-curve C ′. Then the proper normal surface S̄′ is projective.
Let D1 be the pullback of some ample line bundle. Since the intersection form
on NS(S′) is unimodular, there is a divisor D2 with D2 · C ′ = 1. Consider the
invertible sheaf L′ = OS′(nD1 + D2). Then L′(−C ′ − KS′) is relatively ample
over S̄′, whence ample for n À 0, such that H1(S′,L′(−C ′)) = 0 by Kodaira
Vanishing. Arguing similarly on S, we easily infer that L′ has the desired prop-
erties for n À 0. Increasing n if necessary, we furthermore achieve that C ′ ⊂ S′

and C1, C2 ⊂ S are the only lines with respect to L′ and L, respectively. Using
maps to Grassmannians as in [6], Section 3.2, we see that the Mukai flop X̌ is
indeed projective, and this then holds for Y̌ as well. ¤

Remark 4.3. As discussed in [15], Section 2.4, the existence of such Mukai flops
implies that the coarse moduli space of L-marked Enriques manifolds ML is
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not Hausdorff: any two birationally equivalent Enriques manifolds give rise to
nonseparated points of the moduli space.

Of course, it is another matter whether or not a Mukai flop Y 99K Ŷ yields
Enriques manifolds that are nonisomorphic. Examples of bimeromorphic yet non-
isomorphic hyperkähler manifolds were constructed by Debarre [6]. Namikawa
[20] even found hyperkähler manifolds having the same periods that are not
bimeromorphic. Both constructions, however, use nonprojectivity in an essential
way, and apparently do not apply to Enriques manifolds.

5. Rational maps to Grassmannians

Recall that the geometry of the punctual Hilbert scheme Hilbn+1(E) = Symn+1(E)
of an elliptic curve E is very simple: The canonical map

Hilbn+1(E) −→ Picn+1(E), [Z] 7−→ OE(Z)

is a fibration whose fiber Hilbn+1
N (E) over an invertible sheaf N ∈ Picn+1(E) is

isomorphic to the projectivization of H0(E,N ). Whence Hilbn+1(E) → Picn+1(E)
is a Pn-bundle. Moreover, we have a commutative diagram

Hilbn+1(E)
+

zzuuuuuuuuuu

''NNNNNNNNNNN

E Picn+1(E)oo

where the map on the left is the composition of Hilbert–Chow addition map, and
the horizontal map makes this diagram commutative. The latter is bijective (and
not just an isogeny), because both diagonal arrows have connected fibers. Note
that it sends the invertible sheaf associated to the divisor (n + 1)0 ⊂ E to the
origin 0 ∈ E.

Beauville [3] and Debarre [6] exploited that maps to Grassmannians yield inter-
esting contractions of punctual Hilbert schemes for K3 surfaces. We now continue
this line of thought in the following situation: Let A be an abelian surface, and
consider the Hilbert scheme of points Hilbn+1(A) for some fixed integer n ≥ 1.
Given an ample L ∈ Pic(A), we obtain for each closed subscheme Z ⊂ A of length
n + 1 a restriction map

H0(A,L) −→ H0(Z,LZ),
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where the vector space H0(Z,LZ) is (n + 1)-dimensional. By the Kodaira Van-
ishing Theorem, H0(A,L) has dimension c2

1(L)/2 and H1(A,L) = 0. Whence
the restriction map is surjective if and only if H1(A, IZ⊗L) = 0, where IZ ⊂ OA

is the ideal of Z ⊂ A. The set of such [Z] ∈ Hilbn+1(A) is open an non-empty,
and we get a rational map

r = rL : Hilbn+1(A) 99K Grass(V, n + 1), [Z] 7−→ (H0(A,L) → H0(Z,LZ))

into the Grassmannian of (n + 1)-dimensional quotients of V = H0(A,L). We
say that this rational map is defined at [Z] ∈ Hilbn+1(A) if H1(A, IZ ⊗ L) = 0.
Now the basic observation is:

Lemma 5.1. Suppose E ⊂ A is an elliptic curve and N ∈ Picn+1(E) satisfies
N 6= LE and L · E = n + 1 and H1(A,L(−E)) = 0. Then the rational map
r : Hilbn+1(A) 99K Grass(V, n + 1) is defined in a neighborhood of Hilbn+1

N (E),
and maps Hilbn+1

N (E) to a point.

Proof. The exact sequence

H0(A,L) −→ H0(E,LE) −→ H1(A,L(−E))

shows that the restriction map H0(A,L) → H0(E,LE) is surjective. To check
that the rational map is defined in a neighborhood of Hilbn+1

N (E), it suffices to
verify that for any closed subscheme Z ⊂ E of length n+1 with N ' OE(Z), the
restriction map H0(E,LE) → H0(Z,LZ) is surjective. Indeed, the outer terms
in the long exact sequence

H0(E,LE(−Z)) −→ H0(E,LE) −→ H0(Z,LZ) −→ H1(E,LE(−Z))

vanish, because the invertible sheaf LE(−Z) has degree zero but is nontriv-
ial. Thus the rational map is defined at the point [Z]. Furthermore, the re-
striction map H0(A,L) → H0(Z,LZ) factors over the bijection H0(E,LE) −→
H0(Z,LZ), which means that the image r([Z]) does not depend on the point
[Z] ∈ Hilbn+1

N (E). ¤

For the rest of this section, we assume that our abelian surface A is endowed
with a homomorphism ϕ : A → F onto an elliptic curve F , such that its fibers are
elliptic curves. Fix an integer n ≥ 1, and consider the inclusion of the relative into
the absolute Hilbert scheme Hilbn+1(A/F ) ⊂ Hilbn+1(A). The relative Hilbert
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scheme comes along with the structure map Hilbn+1(A/F ) → F , which factors
over the canonical map

Hilbn+1(A/F ) −→ Picn+1(A/F ),

and the latter is a Pn-bundle. Throughout, we denote by Picn+1(A/F ) ⊂ Pic(A)
the subset of invertible sheaves L that have degree n+1 on the fibers of ϕ : A → F ,
and by Hilbn+1

L (A/F ) the family of zero cycles Z on fibers E = ϕ−1(f) with
OE(Z) ' LE .

Proposition 5.2. For each L ∈ Picn+1(A/F ), the rational map r : Hilbn+1(A) 99K
Grass(V, n + 1) is not defined on the closed subset Hilbn+1

L (A/F ).

Proof. Let E = ϕ−1(f) be a fiber and Z ⊂ E be a divisor of length n + 1 with
OE(Z) ' LE . The restriction map H0(A,L) −→ H0(Z,LZ) factors over the map
on the left of the exact sequence

H0(E,LE) −→ H0(Z,LZ) −→ H1(E,L(−Z)) −→ 0.

Using that H1(E,L(−Z)) 6= 0, we conclude that the restriction map is not sur-
jective. ¤

Proposition 5.3. For all ample L′ ∈ Picn+1(A/F ) and each N ∈ Pic(F ) of
degree deg(N ) ≥ n2 + 1, the rational map r : Hilbn+1(A) 99K Grass(V, n + 1)
given by L = L′ ⊗ ϕ∗(N ) is defined on the complement of Hilbn+1

L (A/F ).

Proof. Let Z ⊂ A be a subscheme of length n + 1 with [Z] 6∈ Hilbn+1
L (A/F ).

First, suppose that Z ⊂ E = ϕ−1(f) is contained in a fiber, and OE(Z) 6' LE .
Since L = L′⊗ϕ∗(N (−f)) is ample, we have H1(A,L(−E)) = 0, whence Lemma
5.1 tells us that the rational map is defined at [Z].

Now assume that Z is not contained in any fiber of ϕ : A → F . We have
do distinguish two cases: To start with, suppose that Z is reducible, and de-
compose Z = Z1 + . . . + Zr, 2 ≤ r ≤ n into parts whose support is contained
in pairwise different fibers Ei = ϕ−1(fi). The sheaf L(−n(E1 + . . . + Er)) =
L′⊗ϕ∗(N (−n(f1 + . . .+fr))) is ample, whence the term on the right in the exact
sequence

H0(A,L) −→
r⊕

i=1

H0(nEi,LnEi) −→ H1(A,L(−n(E1 + . . . + Er)))
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vanishes. Thus it suffices to check that for each zero cycle W ⊂ A of length
≤ n whose support is contained in a fiber E = ϕ−1(f), the restriction map
H0(nE,L) → H0(W,LW ) is surjective. To this end, set Wi = W ∩ iE, 1 ≤ i ≤ n.
Then W1 ⊂ W2 ⊂ . . . ⊂ Wn is a sequence of zero cycles with W1 ⊂ E and
Wn = W . Clearly, the restriction map H0(E,LE) → H0(W1,LW1) is surjective,
because deg(W1) < deg(LE). Let I ⊂ OWi+1 be the ideal of Wi ⊂ Wi+1. The
commutative diagram

0 −−−−→ OE(−E) −−−−→ O(i+1)E −−−−→ OiE −−−−→ 0y
y

y
0 −−−−→ I −−−−→ OWi+1 −−−−→ OWi −−−−→ 0

shows that I is isomorphic toOD for some divisor D ⊂ E of length≤ n. Tensoring
with L, using OE(−E) ' OE and taking cohomology, we obtain a commutative
diagram with exact rows

0 −−−−→ H0(E,LE) −−−−→ H0((i + 1)E,L(i+1)E) −−−−→ H0(iE,LiE) −−−−→ 0y
y

y
0 −−−−→ H0(D,LD) −−−−→ H0(Wi+1,LWi+1) −−−−→ H0(Wi,LWi) −−−−→ 0.

The vertical map on the left is surjective because deg(D) < deg(LE), and
the vertical map on the right is surjective by induction. We conclude that
H0(nE,L) → H0(W,LW ) is surjective.

It remains to treat the case that Z ⊂ A is irreducible, say with support con-
tained in E = ϕ−1(f), but not contained in E as a subscheme. We then argue
as in the preceding paragraph, taking into account that Z1 = Z ∩ E has length
≤ n. ¤

Proposition 5.4. For all ample L′ ∈ Picn+1(A/F ) and each N ∈ Pic(F ) of
degree deg(N ) ≥ n2 + 2, the rational map r : Hilbn+1(A) 99K Grass(V, n + 1)
given by L = L′ ⊗ ϕ∗(N ) is injective on the complement of Hilbn+1(A/F ).

Proof. Let Z, Z ′ ⊂ A be two different zero cycles of length n + 1, none of them
contained in fibers of ϕ : A → F . We have to find some section s ∈ H0(A,L)
vanishing on one but not on both cycles, for then the kernels of the two surjections
H0(A,L) → H0(Z,LZ) and H0(A,L) → H0(Z ′,LZ′) are different.

Suppose that we can find a zero cycle Z ⊂ W ⊂ Z∪Z ′ with length(W ) = n+2
so that the intersection W ∩ ϕ−1(f) with every fiber has length ≤ n. Arguing
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as in the preceding proof, one can infer that the restriction map H0(A,L) →
H0(W,LW ) is surjective, and we are done.

It remains to treat the case that there is no such zero cycle in neither Z ⊂ Z∪Z ′

nor Z ′ ⊂ Z ∪ Z ′. Then it easily follows that some fiber E = ϕ−1(f) intersects
Z in length n, and this fiber intersects Z ′ in length n as well, and Z, Z ′ are
supported on E. We are done if W1 = (Z ∪ Z ′) ∩E has length ≥ n + 2, because
a nonzero section of LE cannot vanish on a subscheme of length greater than
deg(LE) = n+1. It remains to treat the case that W1 has length n+1. We then
argue on the infinitesimal neighborhood 2E as in the preceding proof. Details
are left to the reader. ¤

6. Mukai flops of generalized Kummer varieties

Let X be a hyperkähler manifold of dimension dim(X) = 2n, this time with
n ≥ 2. Recall that for each closed subspace P ⊂ X with P ' Pn, the diagram

(3) X̃

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÂÂ?
??

??
??

X

ÂÂ?
??

??
??

? X̌

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

X̄

defines the Mukai flop X̌ of X with respect to P ⊂ X, and that the Mukai flop X̌

is hyperkähler provided that it is Kähler. The following two results, important
in the sequel, are well-known:

Lemma 6.1. Assume that the Mukai flop X̌ is Kähler. Then X̌ is projective if
and only if X is projective.

Proof. If X is projective, then X̌ is Moishezon. Being Kähler, it must be projec-
tive. The reverse implication holds by symmetry. ¤

Now let P, P ′ ⊂ X be two copies of Pn. We say that P, P ′ ⊂ X are numerically
equivalent if deg(LP ) = deg(LP ′) for all L ∈ Pic(X).
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Proposition 6.2. Assume that P, P ′ ⊂ X are two disjoint copies of Pn that are
numerically equivalent. Then the Mukai flop X̌ of X with respect to P ⊂ X is
not projective. If X is projective, X̌ is not even Kähler.

Proof. Seeking a contradiction, we assume that X̌ is projective. Then X is projec-
tive as well, by Proposition 6.1. Choose an ample Ľ ∈ Pic(X̌), and let L ∈ Pic(X)
be its strict transform. Then

deg(LP ) = deg(LP ′) = deg(ĽP ′) > 0,

where we regard P ′ ⊂ X r P = X̌ r P̌ also as a closed subspace of the Mukai
flop. It follows that L is relatively ample for the contraction h : X → X̄, and
obviously Ľ is relatively ample for ȟ : X̌ → X̄. Using that P ⊂ X and P̌ ⊂ X̌

have codimension n ≥ 2, the equality X r P = X̌ r P̌ induces an identification
⊕

i≥0

h∗(L⊗i) =
⊕

i≥0

ȟ∗(Ľ⊗i)

ofOX̄ -algebras. Taking the relative homogeneous spectra, we see that the rational
map X 99K X̌ extends to a X̄-isomorphism X → X̌. In turn, the pullbacks of L
and Ľ to X̃ become isomorphic, which gives a contradiction.

Finally, suppose that X is projective. If X̌ is Kähler, then it is also projective.
But Proposition 6.2 tells us that it is not projective. ¤

Now let A be again an 2-dimensional complex torus endowed with a homo-
morphism ϕ : A → F onto some elliptic curve. The punctual Hilbert scheme
Hilbn+1(A) contains the generalized Kummer variety Kmn(A), which is defined
as the cartesian diagram

Kmn(A) −−−−→ Hilbn+1(A)y
y+

0 −−−−→ A,

and the relative Hilbert scheme Hilbn+1(A/F ).

Proposition 6.3. The intersection Kmn(A) ∩Hilbn+1(A/F ) inside Hilbn+1(A)
is the disjoint union of (n + 1)2 copies of Pn.

Proof. Let Z ⊂ E = ϕ−1(f) be a zero cycle of length n + 1 contained in a fiber,
and write Z =

∑n+1
i=1 zi with zi ∈ E. Applying ϕ : A → F to the sum of Z in A,
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we obtain (n + 1)f ∈ F . Thus [Z] ∈ Kmn(A/F ) implies that f ∈ F [n + 1], hence
there are only (n + 1)2 possibilities for f .

Now suppose that f ∈ F [n + 1], and set E = ϕ−1(f). Consider the map

hf : Hilbn+1(E) −→ ker(ϕ)

that sends a zero cycle Z ⊂ E into its sum in A. Clearly, Kmn(A)∩Hilbn+1(A/F )
is the disjoint union of the preimages h−1

f (0), whence it is the disjoint union of
(n + 1)2 copies of Pn. ¤

Proposition 6.4. The (n+1)2 components of Kmn(A)∩Hilbn+1(A/F ) ⊂ Kmn(A)
are pairwise numerically equivalent.

Proof. According to [2], Section 7, the restriction map

H2(Hilbn+1(A),Q) → H2(Kmn(A),Q)

is surjective. It follows that each invertible sheaf on Kmn(A) has a multiple that
is the restriction of an invertible sheaf on Hilbn+1(A). The latter have constant
degree on the fibers of the flat family Hilbn+1(A/F ) → Picn+1(A/F ), and our
Pi ⊂ Kmn(A) are fibers of this family. ¤

Let us write Pi ⊂ Kmn(A), 1 ≤ i ≤ (n + 1)2 for these copies of Pn, and
PI = ∪i∈IPi for the disjoint union for a given subset I ⊂ {

1, . . . , (n + 1)2
}
.

Theorem 6.5. Let I $
{
1, . . . , (n + 1)2

}
be a proper subset. Then the Mukai

flop X̂I of X = Kmn(A) along PI ⊂ X is not Kähler.

Proof. This follows from Proposition 6.4 and Proposition 6.2. ¤

Remark 6.6. Yoshioka constructed first examples of nonkähler manifolds with
trivial canonical class bimeromorphic to hyperkähler manifolds, using Mukai flops
of moduli spaces of stable sheaves on abelian surfaces ([28], Section 4.4). Note
also that Guan [12] has used primary Kodaira surface, which are not in class C,
to construct compact symplectic manifolds that are not in class C.

On the other hand, the results of the previous section give a projectivity state-
ment:



1654 Keiji Oguiso and Stefan Schröer

Theorem 6.7. Let X̂ be the simultaneous Mukai flop of X with respect to the full
intersection Kmn(A)∩Hilbn+1(A/F ) = P1 ∪ . . .∪P(n+1)2. If the homomorphism
ϕ : A → F admits a section, then the Mukai flop X̂ is projective.

Proof. Write A = E×F with E = ker(ϕ). Choose some divisor D1 ⊂ E of degree
n + 1 not linearly equivalent to (n + 1)0, and some D2 ⊂ E of degree ≥ n2 + 2.
Consider the invertible sheaf L = OA(D1 × F + E ×D2) and the rational map

r : Hilbn+1(A) 99K Grass(V, n + 1), Z 7−→ (H0(A,L) → H0(Z,LZ))

studied in the previous section. According to Proposition 5.3, this rational map is
defined on some neighborhood of Kmn(A) ⊂ Hilbn+1(A). Furthermore, it sends
P1, . . . , P(n+1)2 to points, and is injective on the complement, by Lemma 5.1 and
Proposition 5.4. Hence the Stein factorization of r : Kmn(A) → Grass(V, n)
factors over the contraction X → X̄, such that X̄ is projective. Using that X̃ is
projective, one easily infers that the resolution X̌ → X̄ is relatively projective.
The upshot is that X̌ is projective. ¤

Now let A = E × F be a product of two elliptic curves, on which G = µ2(C)
acts freely via the involution

(e, f) 7−→ (e + 1/2,−f + z)

as explained in [23]. Suppose n ≥ 2 is an odd integer, and z ∈ F is a point
with (n + 1)z = 0 but (n + 1)/2 · z 6= 0. According to loc. cit., Theorem 6.4, the
G-action on Hilbn+1(A) leaves the subset Kmn(A) invariant and acts freely there,
such that Y = Kmn(A)/G is an Enriques manifold of index d = 2. The group G

permutes the (n + 1)2 copies Pi of Pn inside X = Hilbn+1(A) considered above,
whence the Mukai flop X̄ with respect to any G-invariant union PI induces a
Mukai flop Ȳ of our Enriques manifold Y . The upshot is:

Theorem 6.8. There are Enriques manifolds Y admitting Mukai flops that are
nonkähler (whence not Enriques manifolds in the strict sense, rather “nonkähler
Enriques manifolds”), and other Mukai flops Ŷ that are Kähler (so again true
Enriques manifolds).

Question 6.9. Is such Ŷ isomorphic to Y as an abstract complex space?
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espace analytique donné. Ann. Inst. Fourier16 (1966), 1–95.

[8] H. Esnault, E. Viehweg: Lectures on vanishing theorems. DMV Seminar 20. Birkhäuser
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[24] G. Pourcin: Théorème de Douady au-dessus de S. Ann. Scuola Norm. Sup. Pisa 23

(1969), 451–459.

[25] Z. Ran: Deformations of manifolds with torsion or negative canonical bundle. J. Alge-

braic Geom. 1 (1992), 279–291.
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