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Introduction

In this paper we want to study a certain weak form of the André-Oort conjecture
extending our previous work with Viehweg [19]. In order to explain our results
we first want to introduce the required notation.
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Notation. Let Ag := A
[N ]
g denote a fine moduli scheme of principally polar-

ized abelian varieties of dimension g with a level N -structure, for some N ≥ 3.
We choose in addition a smooth toroidal compactification Ag as constructed by
Mumford et al. [1, chap. III], such that S = ∂Ag is a divisor with normal cross-
ings. We denote by f : X → Ag the universal family of abelian varieties and
by V = R1f∗Q the local system attached to it. There is a polarized variation
of Hodge structures (VHS) defined over Q with underlying local system V which
we also denote by V. The assumption N ≥ 3 implies that the monodromies of
V around all components of S are unipotent. We consider a smooth projective
subvariety Y ⊂ Ag meeting S transversely and define Y 0 := Y ∩Ag. Throughout
this paper we denote subvarieties contained in the locally symmetric part Ag of
Ag with a superscript 0.

Write (GSp2g,Hg) for the pure Shimura datum defining Ag = A
[N ]
g with level

structure given by the compact open subgroup K(N) of GSp2g(Af ). By spe-
cial subvariety of Ag we mean, as is defined in [10] and [18, 6.2], a geometri-
cally irreducible component of a Hecke translate of the image of some morphism
ShK(G,X) → Ag = ShK(N)(GSp2g,Hg), which is defined by an inclusion of
Shimura subdatum (G,X) ⊂ (GSp2g,Hg) together with some compact open
subgroup K ⊂ G(Af ) such that K ⊂ K(N). More concretely, we abuse the
notation Ag = Γ(N)\H+

g for a fixed connected component of ShK(N)(GSp2g, X),
and we mainly work with subvarieties of Ag that are of the form Γ\X+, where
for some Shimura subdatum (G,X) one has X+ a connected component of X,
and Γ = G(Q)+ ∩ Γ(N). Note that the center of G(R) acts on X trivially, and
X+ is homogeneous under Gad(R)+.

Typical cases of special subvarieties are given by moduli subschemes of Ag that
classify abelian varieties with PEL data. We refer the readers to [11, Section
4, 5] and [14, Section 8, 8.14, 8.15, 8.17, etc.] for more details. Following the
notations in [14], the subdatum (G,X) ⊂ (GSp2g,Hg) can be given as follows.
Consider B a simple Q-algebra endowed with a positive anti-involution ∗, and
(V, ψ) a symplectic (B, ∗)-module. Let G be the linear Q-group of B-linear sym-
plectic similitudes of V . The following moduli problem of tuples (A, s, i, ηK) is
representable:

(i) A is a complex abelian variety, with ±s a polarization of the Hodge structure
H1(A,Q);
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(ii) i a homomorphism B → End(A) ⊗Q Af , η : V ⊗Q Af ' H1(A,Q) ⊗Q Af

a B ⊗Q Af -linear isomorphism sending ψ to an A×f -multiple of s, and ηK is a
K-orbit of η, K being some compact open subgroup of G(Af ), which is assumed
to be sufficiently small so as to preserve a level N structure on H1(A,Q);

(iii) there exists a B-linear isomorphism a : H1(A,Q) → V sending s to a Q×-
multiple of ψ.

The moduli problem is represented by a Shimura variety ShK(G,X), with its
canonical map into Ag.

In order to obtain special subvarieties of unitary type, one may take B to be a
central simple E-algebra, with E some CM extension of a totally real number
field F , such that the restriction of ∗ to E gives the complex conjugation fixing
F . In particular, if one takes V = B as a Q-vector space, with ψ given by some
some element q ∈ B× such that ψ(x, y) = trB/Q(xqy∗) (e.g. q is in E such that
c(q) = −q). Then Gder is a Q-form of ResF/QSLm, with m =

√
dimE B, and

G(R) is a product of unitary groups, whose signatures depend on the signatures
of q along different embeddings F → R. In order to make X+ an Hermitian
symmetric space associated to SU(m− 1, 1), one should choose the data in such
a way that G(R) is the product of a unitary group of signature (m − 1, 1) with
other unitary groups of signature (m, 0).

In [9, 10.2] a Shimura subdatum (GSpin(V ), X) ⊂ (GSp(C+(V ),H(C+(V ))) of
orthogonal type is constructed. Note that the special subvarieties obtained from
this subdatum are of the form Γ\X+, with X+ the Hermitian symmetric domain
associated to SO(n − 2, 2)R ' (GSpin(V ))ad

R . This reformulates the results in
[5, Section 4, 5], which is inspired by [13], where Kuga and Satake constructed
a morphism from the moduli variety of K3 surfaces to the Siegel moduli variety
of abelian varieties (for n = 21). Deligne’s construction in [5] exactly fits into
the formalism of Shimura data axiomized later in [6], except that it follows the
traditional convention of signs for Hodge types.

On the special subvariety defined by (GSpin(V ), X) ⊂ (GSp(C+(V )),H(C+(V )))
there exists a polarized Q-VHS of type {(−2, 0), (−1,−1), (0,−2)}, with Hodge
numbers h−2,0 = h0,−2 = 1, h−1,−1 = n − 2. Recall that in [5, 4,5], from the
Shimura datum (SO(V ) ' SO(n − 2, 2), D) and the natural representation of
ρ : SO(V ) → GL(V ), one gets, for any x ∈ D, a polarized Q-HS (V, ρ◦x) of type
{(−1, 1), (0, 0), (1,−1)} with Hodge numbers h−1,1 = h1,−1 = 1, h0,0 = n − 2.
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Note that in ρ ◦ x : S → GL(VR), the real multiplicative group Gm ⊂ S acts
trivially. Now lift ρ to the natural representation ρ′ : GSpin(V ) → GL(V ). Since
the center of GSpin(V ) conincides with that of GL(V ) and that GSpin(V ) is the
central extension of SO(V ) by Gm, we deduce that for any x ∈ X with respect
to the Shimura datum (GSpin(V ), X), (V, ρ′ ◦ x) is a polarized Q-HS with types
and Hodge numbers prescribed as in the beginning of the paragraph, namely
shifted from the ones in [5] by (−1,−1). Consequently, from ρ′ one obtains a
polarized Q-VHS on the special subvariety defined by (GSpin(V ), X), with the
same Hodge numbers as (V, ρ′ ◦ x), ∀x ∈ X.

Interested readers may also consider more general cases of indefinite quadratic
spaces over a totally real number field, as studied in [12].

Let us explain some notation used in the statement of the following two theorems
even if more details can be found in the subsequent sections. In this paper, the
symbol SZ always denotes the divisor at infinity for any compactified subvariety
Z ⊂ Ag, i.e., the intersection SZ = Z ∩ S where S = ∂Ag is the boundary of Ag,
whereas the ”open” part Z \SZ is denoted by Z0. In all considerations and proofs
in this paper we will always make the following general assumption: All divisors
SZ = Z ∩S which arise from intersections of images of subvarieties Z ⊂ Ag with
S = ∂Ag are divisors with normal crossings, i.e., the intersections are transverse.
In particular we can speak about logarithmic differential forms on Z with poles
in SZ . Many of our results may hold with weaker assumptions. However, we
want to work out the principles here, and do not strive for maximal generality.

Let Y ⊂ Ag be a smooth subvariety and W ⊂ Y a subvariety of Y satisfying the
above transversality as assumptions. We denote by

NW/Y = TY (− log SY )/TW (− log SW )

the logarithmic normal bundle of W in Y . Let ρ be the Picard number of Y and
δ the number of crossings of S ∩ Y . Let i : M0 ↪→ Ag be a special subvariety for
the orthogonal group SO(2, n), where i is the so-called Kuga-Satake embedding
[13], and such that its toroidal compactification M also is embedded into Ag. On
M0 there is a natural polarized VHS V′ of weight two and rank n+2 coming from
the standard representation of SO(2, n) in GL(n + 2). There is a natural proper
inclusion V′ ⊂ i∗V⊗2 as a polarized sub VHS which is explained for example in
[5]. The local monodromy of V′ around SM is assumed to be unipotent as well.
The (canonical) Deligne extension V ′ of V ′ := V′ ⊗ OM0 to M carries a natural
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Hodge filtration, i.e., a descending filtration

V ′ = F 0 ⊃ F 1 ⊃ · · ·
by subvector bundles and a logarithmic Gauss-Manin connection ∇ : V ′ → V ′ ⊗
Ω1

M (log SM ) extending ∇ : V ′ → V ′ ⊗ Ω1
M . The graded object associated to

this filtration together with the graded logarithmic Gauss-Manin connection ϑ is
the corresponding logarithmic Higgs bundle (E = E2,0 ⊕ E1,1 ⊕ E0,2, ϑ) under
the Simpson correspondence [23, Main Theorem]. Note that only for VHS this
correspondence is so simple. Griffiths’ transversality for V ′ translates into the
fact that ϑ is given by maps

ϑ2,0 : E2,0 −→ E1,1 ⊗ Ω1
M (log SM ), ϑ1,1 : E1,1 '−→ E0,2 ⊗ Ω1

M (log SM )

and ϑ0,2 = 0. Integrability of ∇ implies ϑ ∧ ϑ = 0.

The Griffiths-Yukawa coupling ϑ
(2)
Z on a smooth subvariety i : Z ↪→ M intersect-

ing SM transversely in SZ is defined as the composition

ϑ
(2)
Z := ϑ1,1 ◦ ϑ2,0 : i∗E2,0 −→ i∗E1,1 ⊗ Ω1

Z(log SZ) −→ i∗E0,2 ⊗ Ω1
Z(log SZ)⊗2.

Note that ϑ(2) lands in S2Ω1
Z(log SZ) as the image in i∗E0,2⊗Ω2

Z(log SZ) is zero
by the condition ϑ ∧ ϑ = 0.

In the following statements, the degree of a vector bundle F with respect to
a line bundle L on a smooth projective variety Y of dimension d is defined as
degL(F ) := c1(L)d−1c1(F ). The slope is defined as µL(F ) := degL(F )/rank(F ).

Previous and new results. The André-Oort conjecture asserts that an irre-
ducible subvariety Y 0 ⊂ Ag is special if and only if it contains a dense set of CM
points. Klingler and Yafaev [10] have announced a proof of it using results of
Ullmo and Yafaev and had to assume a generalized Riemann hypothesis.

Our methods in this paper are not very sensitive to CM points versus non-CM
points. However, the André-Oort conjecture would also imply that the closure of
any union of positive dimensional special subvarieties is again special.

Our main goal therefore is to prove the following consequence of the André-Oort
conjecture: Let Y 0 ⊂ Ag be a subvariety containing sufficiently many special
subvarieties of dimension ≥ 1. Then Y 0 is special.
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The notion ”sufficiently many” can be expressed for example in the following
way. In [19, Thm. 4.4] we used special divisors W 0

i ⊂ Y 0 satisfying Hirzebruch-
Höfer proportionality (HHP) with i ∈ I, a finite index set. Condition (HHP) is
an equality condition arising from an inequality which in turn has its origin in
natural stability conditions for Higgs bundles. We refer to [19] for the history of
this condition.

In [19] we then showed that Y 0 is special if ]I exceeds some effective bound:

Theorem (Thm. 4.4 in [19]). Let Y ⊂ M ⊂ Ag be a subvariety of Ag contained in
a toroidal compactification M of a Shimura subvariety M0 ⊂ Ag of type SO(2, d).
We assume that Y and M intersect the boundary S of Ag transversely, and
require that Ω1

Y (log SY ) is nef and ωY (SY ) is ample with respect to Y 0. Assume
dim(Y ) ≥ 2 and Wi ⊂ Y (i ∈ I = finite set) are pairwise distinct divisors such
that W 0

i ⊂ M0 is special.

(i) If all W 0
i are of orthogonal type, if all Wi satisfy condition

(HHP ) :
degωWi

(SWi
)(NWi/Y )

rankNWi/Y
=

degωWi
(SWi

)(TWi(− log SWi))

rankTWi(− log SWi)
,

and if #I ≥ ς(Y ) := (ρ + δ)2 + ρ + δ + 1, then Y 0 ⊂ M0 is a special
subvariety of orthogonal type.

(ii) Assume that the Griffiths-Yukawa coupling vanishes on Y . If the W 0
i are

special subvarieties of unitary type, if condition (HHP) holds

(HHP ) :
degωWi

(SWi
)(NWi/Y )

rankNWi/Y
=

degωWi
(SWi

)(TWi(− log SWi))

d + 1
,

and if #I ≥ ς(Y ), then Y 0 ⊂ M0 is a special subvariety of unitary type.
(iii) Let Y be a surface and I = {1, 2}. Assume that

σ1(W1) ∩ σ2(W2) 6= ∅
and deg NWi/Y = 0 for i = 1, 2. Then Y 0 is the product of two Shimura
curves.

In the following main result in this paper we remove the divisor hypothesis and
obtain necessary and sufficient conditions supporting the André-Oort conjecture.

We need some additional notation to explain the theorem: We say that Y can
be covered by a smoothing of a cycle

∑
i aiCi of compactified special curves
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C0
i ⊂ Y 0 satisfying (HHP), if there are finitely many embedded special curves

C0
i ⊂ Y 0 satisfying (HHP) such that their compactifications Ci ⊂ Y admit a

linear combination
∑

i aiCi with integer coefficients which can be deformed as
embedded cuves in Y in a family, such that the general deformation is smooth.
Condition (HHP) in this case is given by equality in the following inequality:

(HHP) deg NC/Y ≤
rank(N1

C/Y ) + rank(N0
C/Y )

2
· deg TC(− log SC).

Here N•
C/Y is the Harder-Narasimhan filtration on the logarithmic normal bundle

NC/Ag
intersected with NC/Y . We also fix C1 and a base point y0 ∈ C1. With

the notation for the Higgs bundle E on M restricted to Y we then define the
following vector spaces: Wy0∈Y is the subspace of vectors in E1,1

y0 vanishing unter
ϑ at the base point y0 and Wy0∈Y,R ⊂ Wy0∈Y the real subspace of real vectors in
Wy0∈Y .

Theorem 3.6. Let Y ⊂ M ⊂ Ag be a subvariety of Ag contained in a toroidal
compactification M of a Shimura subvariety M0 ⊂ Ag of type SO(2, n). We
assume that Y and M intersect the boundary S of Ag transversely, and that Y

can be covered by a smoothing of a cycle
∑

i aiCi of compactified special curves
C0

i ⊂ Y 0 satisfying (HHP). Then:
(a) If Wy0∈Y = Wy0∈Y,R ⊗ C for some y0 ∈ C1 then Y 0 ⊂ M0 is a special
subvariety of orthogonal type.
(b) If the Griffiths-Yukawa couplings along all Ci do not vanish then Y 0 ⊂ M0

is a special subvariety of orthogonal type.
(c) If the Griffiths-Yukawa coupling along Y vanishes then Y 0 ⊂ M0 is a special
subvariety of unitary type, i.e., a ball quotient.

In the assertions (a) and (b) of this theorem one may replace the assumption on
the smoothing of the cycle

∑
i aiCi of special curves Ci ⊂ Y satisfying (HHP) by

the following: Assume that there is a connected union C1∪· · ·∪Cl of compactified
special curves satisfying (HHP) and such that the image π1(

⋃
C0

i , ∗) under the
natural map in π1(Y 0, ∗) is big in the sense that the image of π1(

⋃
C0

i , ∗) under
the monodromy representation restricted to Y 0

π1(
⋃

C0
i , ∗) −→ π1(Y 0, ∗) ρ→ SO(2, n)
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is Zariski dense in the algebraic monodromy group H(Y 0), i.e., the Q-algebraic
closure of the monodromy representation ρ. We note that this is a subgroup of
Hermitian type in SO(2, n). This is nicely explained, for example, in [17, Sect.
1.3]. Hermitian subgroups of SO(2, n) like H(Y 0) can be classified. Besides the
obvious orthogonal and unitary subgroups which are Q-simple there are SL2 ×
SL2 and quaternionic versions [21, Thm. 5.2.3.]. In the non-Q-simple cases we
therefore have dim(Y ) = 2 and Y 0 is uniformized by a product H × H of upper
half planes.

Acknowledgements. This work naturally continues the results in [19]. To-
gether with Eckart Viehweg we have thought about thickenings of Higgs bundles
during a stay at Fudan University in the summer of 2007. Thickenings play an
essential role in this paper which therefore should be considered as joint work
with Eckart.
We thank Ke Chen for explanations on Shimura data. We also thank Michael
Harris for enlightening discussions about special cycles and the referee for several
helpful remarks.

1. Basic Setup

In this section we will use the Simpson correspondence for curves [23, Main Thm.].
It is a natural equivalence between the category of direct sums of stable filtered
regular Higgs bundles of degree zero and the category of direct sums of stable
filtered local systems of degree zero. We will need this correspondence only in
the case when the local system V has unipotent local monodromies. In that case
the filtration on the Higgs bundle is trivial and deg(V) is automatically zero. We
refer the reader to [25, sect. 1] for additional results and explanations on Higgs
bundles on curves building up on Simpson’s work.

Consider a non-singular projective curve C and a non-constant morphism

ϕ : C → Y ⊂ Ag,

where Y ⊂ Ag is a smooth projective subvariety as in the introduction. We set
C0 := ϕ−1(Y 0) 6= ∅, where Y 0 = Y ∩Ag denotes the ”open” part.

In the following we consider the situation where C0 is a Shimura curve and
SC := C \C0 is the set of cusps. We also denote by SY the intersection of Y with
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S = ∂Ag and we assume that the intersection is transversal such that SY is a
divisor with normal crossings. We assume that the restriction ϕ : C0 → Y 0 ⊂ Ag

is an étale morphism of Shimura varieties. Let f : X → C0 denote also the family
obtained by pullback via ϕ.

The main goal of this paper is to find new criteria when Y 0 itself is a special
subvariety in Ag, for example if ”sufficently many” such curves C with certain
properties map to Y . In such a situation, by [25, Prop. 1.4] and [16, Thm. 0.9],
after replacing C0 by an étale cover, the local system VC0 := ϕ∗R1f∗CX admits
a decomposition

VC0 = L⊗ T⊕ U

as a polarized complex variation in the sense of Deligne, i.e., a polarized C-VHS
in the sense of Simpson [23] on C0. Note that this étale cover of C0 is necessary,
however, all our proofs below are insensitive to such étale base change even if we
apply this construction to a finite number of curves simultaneously later. Here L
is of weight one and rank two with the logarithmic Higgs bundle

(L ⊕ L−1, τ : L ' L−1 ⊗ Ω1
C(log SC)

)
,

T is concentrated in bidegree (0, 0) and selfdual, whereas U is of weight one and
decomposes in two local subsystems

U = U1,0 ⊕ U0,1, U1,0 = U0,1∨.

Note that the local systems T, U1,0 and U0,1 are unitary and the local mon-
odromies around SC are unipotent, hence the local monodromies are in fact
trivial. Hence T, U1,0 and U0,1 can be extended as local systems to C. Writing
(T = T⊗OC , 0) and (U = U1,0⊗OC , 0)⊕(U∨ = U0,1⊗OC , 0) for the correspond-
ing Higgs bundles, then the Higgs bundle corresponding to VC0 decomposes in
the form

(1.1) (E1,0 ⊕ E0,1, θ) = (L ⊕ L−1, τ)⊗ (T , 0)⊕ (U , 0)⊕ (U∨, 0).

The line bundle L has positive degree, since L is the pullback of some positive
power of the automorphic line bundle on Ag via ϕ : C → Ag. Since ϕ : C0 → Ag

is not constant and the automorphic line bundle is positive on Ag it follows that
deg(L) is positive. Via the isomorphism τ we identify TC(− log SC) = L−2.
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The Hodge metric VC0 comes from the tensor product of the Hodge metrics on
L, T, U1,0 and U0,1, which, by [24, Sect. 4] and [23], coincide with the Hermitian-
Yang-Mills metrics on the corresponding logarithmic Higgs bundles. The Hodge
metrics on E1,0 and E0,1 are tensor products of the Hodge metrics on L±, T , U1,0

and U0,1.

In general, a Hodge bundle with Hodge metric of any Schur functor S(VC0) is
obtained in a similar way from the Hodge metrics on L±, T , U1,0 and U0,1.

Let f : X → Ag denote the universal family, V := R1f∗CX and E := E1,0 ⊕E0,1

the logarithmic Higgs bundle corresponding to Deligne’s canonical extension of
V⊗OAg on the toroidal compactification Ag ⊃ Ag. It comes with the logarithmic
Higgs map

θ : E1,0 → E0,1 ⊗ Ω1
Ag

(log S).

Since V is a polarized VHS, there is a natural isomorphism End(E) '→ E⊗2. Then
it is well-known [7, p. 339] that the composition

TAg
(− log S) θ→ End(E) '→ E⊗2 → S2(E0,1),

identifies TAg
(− log S) with S2(E0,1). The derivatives of the maps

C
ϕ→ Y

i→ Ag

induce the following commutative diagramm

(1.2) 0 → TC(− log SC)
dϕ

// ϕ∗TY (− log SY )
Ä _

di
²²

// NC/Y → 0
Ä _

²²
0 → TC(− log SC)

d(i◦ϕ)
// (i ◦ ϕ)∗TAg

(− log SY ) // NC/Ag
→ 0

,

where NC/Y is the (logarithmic) normal bundle of ϕ : C → Y and NC/Ag
is the

(logarithmic) normal bundle of i ◦ ϕ : C → Ag.

On the curve C one has

(i◦ϕ)∗TAg
(− log S) = (i◦ϕ)∗S2(E0,1) =

(L−2 ⊗ S2(T )
)⊕(L−1 ⊗ T ⊗ U∨)⊕S2(U∨),



A Characterization of Special Subvarieties... 1609

where the decomposition on the right side is induced by (1.1) and is orthogonal
with respect to the Hodge metric.

All three summands are polystable by the main theorem in [23], but, as deg(L) >

0, with different slopes

−2 degL, −degL and 0.

Consider the inclusion

TC(− log SC)
dϕ→ ϕ∗TY (− log SY ) di→ (i ◦ ϕ)∗TAg

(− log S) =

=
(L−2 ⊗ S2(T )

)⊕ (L−1 ⊗ T ⊗ U∨)⊕ S2(U∨),

As the derivative dϕ can be identified with the Higgs map θ and θ on C preserves
the direct sum decomposition in (1.1) and vanishes on the second summand, the
image of TC(− log SC) is contained in L−2 ⊗ S2(T ).

For the convenience of the reader we recall the following definition.

Definition 1.1. A holomorphic subbundle i : F ↪→ E of a Hodge bundle E of a
polarized complex variation of Hodge structure is called a direct summand of E

and orthogonal with respect to the Hodge metric if there exists an isomorphism
E ' F ⊕ G between holomorphic vector bundles, such that the first summand
defines the inclusion i and the decomposition is orthogonal with respect to the
Hodge metric.

Lemma 1.2. The line subbundle

TC(− log SC) ⊂ L−2 ⊗ S2(T )

induces a holomorphic decomposition of L−2 ⊗ S2(T ), which is orthogonal with
respect the Hodge metric, i.e., there exists a holomorphic subbundle

TC(− log SC)⊥ ⊂ L−2 ⊗ S2(T )

such that

L−2 ⊗ S2(T ) = TC(− log SC)⊕ TC(− log SC)⊥,

and such that this decomposition is orthogonal with respect to the Hodge metric.

Proof. We note first that the Hodge metric on L−2 ⊗ S2(T ) comes from the
corresponding tensor product of the Hodge metrics on the polarized C−VHS
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L, T and U. The Hodge metric on the corresponding Higgs bundle T is the
Hermitian-Yang-Mills metric by [23]. Consider the subbundle

TC(− log SC) ⊂ L−2 ⊗ S2(T ).

Since

τ : L ' L−1 ⊗ Ω1
C(log SC),

we have TC(− log SC) = L−2, hence

L−⊗2 ⊂ L−2 ⊗ S2(T ).

Dividing both sides by the factor L−⊗2 we get

OC ⊂ S2(T ).

Note that the Higgs bundle S2(T ) has zero Higgs field. Hence OC is a Higgs sub
bundle of S2(T ) with slope equality µ(OC) = 0 = µ(S2(T )). Applying Simpson’s
Higgs polystability, there exists a holomorphic decomposition

S2(T ) = OC ⊕O⊥C ,

which is orthogonal w.r.t. the Hermitian-Yang-Mills metric on S2(T ). Tensor-
ing with L−⊗2 on both sides of the above decomposition, we obtain the desired
decomposition as claimed. ¤

The decomposition in Lemma 1.2 induces the following decompostion

(i◦ϕ)∗TAg
(− log SY ) = TC(− log SC)⊕

(
TC(− log SC)⊥ ⊕ (L−1 ⊗ T ⊗ U∨)⊕ S2(U∨)

)
.

Let p denote the projection to the first summand, then the composition

TC(− log SC)
dϕ→ ϕ∗TY (− log SY ) di→ (i ◦ ϕ)∗TAg

(− log S)
p→ TC(− log SC)

is the identity. This shows that both horizontal short exact sequences in diagram
(1.2) split in the form

(1.3) ϕ∗TY (− log SY )
Ä _

di
²²

TC(− log SC)⊕

NC/Ag

NC/YÄ _

²²(i ◦ ϕ)∗TAg
(− log SY ) TC(− log SC)⊕
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such that

NC/Ag
= TC(− log SC)⊥ ⊕ (L−1 ⊗ T ⊗ U∨)⊕ S2(U∨).

Remark 1.3. The holomorphic and orthogonal splitting

TC(− log S)
d(i◦ϕ)→ (i ◦ ϕ)∗TAg

(− log S)

for a special curve i ◦ ϕ : C0 → Ag in (1.3) holds also true in general if C0 is
replaced by any special subvariety, see the proof for ii) in Proposition 1.5. In
diagram (1.3) we obtain an explicit description of the logarithmic normal bundle
NC/Ag

.

We shall now describe the Harder-Narasimhan filtration on NC/Ag
. Let

N0
C/Ag

:= TC(− log SC)⊥,

N1
C/Ag

:= TC(− log SC)⊥ ⊕ L−1 ⊗ T ⊗ U∨

and

N2
C/Ag

:= NC/Ag
.

Then the filtration

0 ⊂ N0
C/Ag

⊂ N1
C/Ag

⊂ N2
C/Ag

= NC/Ag

is the Harder-Narasimhan filtration on NC/Ag
. In our situation, the graded sum-

mands

N i
C/Ag

/N i−1
C/Ag

, for 0 ≤ i ≤ 2

are polystable vector bundles of slopes deg TC(− log SC), 1
2 deg TC(− log SC) , and

0. One has

N1
C/Ag

= N0
C/Ag

⊕N1
C/Ag

/N0
C/Ag

,

N2
C/Ag

= N1
C/Ag

⊕N2
C/Ag

/N1
C/Ag

.

Taking the induced filtration on NC/Y ⊂ NC/Ag
obtained by intersection with

N i
C/Ag

0 ⊂ N0
C/Y ⊂ N1

C/Y ⊂ N2
C/Y = NC/Y ,

one finds subbundles

N i+1
C/Y /N i

C/Y ⊂ N i+1
C/Ag

/N i
C/Ag

.

We arrive at the following definition:
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Definition 1.4. ϕ : C → Y satisfies relative Hirzebruch-Höfer proportionality
(HHP) if the slope inequalities

µ(N i+1
C/Y /N i

C/Y ) ≤ µ(N i+1
C/Ag

/N i
C/Ag

), i = 0, 1, 2

are equalities. One has

µ(N2
C/Ag

/N1
C/Ag

) = µ(S2(U∨)) = 0,

µ(N1
C/Ag

/N0
C/Ag

) = µ(L−1 ⊗ T ⊗ U∨) =
1
2

deg TC(− log SC),

µ(N0
C/Ag

) = µ(TC(− log SC)⊥) = deg TC(− log SC).

Hence, we obtain a set of inequalities

µ(N2
C/Y /N1

C/Y )≤ 0,

µ(N1
C/Y /N0

C/Y )≤ 1
2

deg TC(− log SC),

µ(N0
C/Y )≤ deg TC(− log SC).

Using µ = deg
rank and adding all three inequalities we obtain a single inequality

(1.4) deg NC/Y ≤
rank(N1

C/Y ) + rank(N0
C/Y )

2
· deg TC(− log SC).

It satisfies equality if and only if (HHP) holds.

These conditions are called (HHP) since Hirzebruch [8], in part with Höfer [3],
has studied embedded curves on ball quotients and Hilbert modular surfaces and
studied proportionality inequalities involving intersection numbers that attain
equality if and only if the curve is the compactification of a Shimura curve.
Hirzebruch’s inequalities together with our proof of them can also be found in
[19, Thm. 0.1].

Proposition 1.5.
(i) If ϕ : C → Y satisfies (HHP), then ϕ∗TY (− log SY ) is a direct summand of
an orthogonal decomposition of ϕ∗TAg

(− log S) with respect to the Hodge metric.
(ii) If Y 0 ⊂ Ag is a special subvariety, then ϕ∗TY (− log SY ) is a direct summand
of an orthogonal decomposition of ϕ∗TAg

(− log S) with respect to the Hodge metric
and ϕ : C → Y satisfies (HHP).
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Proof. (i) Assuming (HHP), the slope of the sub bundle

N i+1
C/Y /N i

C/Y ⊂ N i+1
C/Ag

/N i
C/Ag

is equal to the slope of N i+1
C/Ag

/N i
C/Ag

. Since N i+1
C/Ag

/N i
C/Ag

is polystable, N i+1
C/Y /N i

C/Y

is a direct summand of an orthogonal decomposition of N i+1
C/Ag

/N i
C/Ag

w.r.t the

Hermitian-Yang-Mills metric, which is the induced Hodge metric on N i+1
C/Ag

/N i
C/Ag

.

Claim: The sub bundle N i
C/Y ⊂ N i

C/Ag
, 0 ≤ i ≤ 2 is a direct summand and

orthogonal.

Proof of the claim. For i = 0. Since

N0
C/Y /N−1

C/Y = N0
C/Y , N0

C/Ag
/N−1

C/Ag
= N0

C/Ag
,

we have shown above

N0
C/Y ⊂ N0

C/Ag

is a direct summand and of an orthogonal decomposition of N0
C/Ag

w.r.t.the

Hodge metric. Let p : N0
C/Ag

→ N0
C/Y denote the projection.

For i = 1, we consider the following commutative diagramm

0 −→ N0
C/Y

//
Ä _

²²

N1
C/Y

//
Ä _

²²

N1
C/Y /N0

C/Y −→ 0
Ä _

²²
0 −→ N0

C/Ag
// N1

C/Ag
// N1

C/Ag
/N0

C/Ag
−→ 0

N0
C/Ag

⊕N1
C/Ag

(p,0)
²²

N0
C/Ag

Since the composition map

N0
C/Y → N1

C/Y → N1
C/Ag

→ N0
C/Ag

p→ N0
C/Y

is the identity, the short exact sequence

0 → N0
C/Y → N1

C/Y → N1
C/Y /N0

C/Y → 0
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splits, and

N1
C/Y = N0

C/Y ⊕N1
C/Y /N0

C/Y ⊂ N0
C/Ag

⊕N1
C/Ag

/N0
C/Ag

= N1
C/Ag

.

Since N0
C/Y ⊂ N0

C/Ag
and N1

C/Y /N0
C/Y ⊂ N1

C/Ag
/N0

C/Ag
are direct summands

and orthogonal, N1
C/Y ⊂ N1

C/Ag
is a direct summand and orthogonal.

Finally, replacing N0 by N1/N0, N1 by N2 and N1/N0 by N2/N1 in the above
diagramm, we obtain NC/Y ⊂ NC/Ag

is a direct summand and orthogonal. The
claim is thus proven.

We are now in the position to finish i). Since by diagram (1.3)

ϕ∗TY (− log SY ) = TC(− log SC)⊕NC/Y ⊂ TC(− log SC)⊕NC/Ag
= (i◦ϕ)∗TAg

(− log S),

and by the above claim NC/Y ⊂ NC/Ag
is a direct summand and orthogonal,

ϕ∗TY (− log SY ) ⊂ (i ◦ ϕ)∗TAg
(− log S)

The proof of i) is thus complete.

(ii) Let i : Y 0 ↪→ Ag be a special subvariety. Then Y 0 is a locally symmetric
subvariety of the locally symmetric varity Ag and the vector subbundle di : TY 0 ↪→
i∗TAg is a locally homogenous subbundle of the locally homogenous bundle i∗TAg

in the sense of Mumford [20, Sect. 3]. As a locally homogenous bundle can be
decomposed as direct sum of irreducible locally homogenous subbundles and this
decomposition is orthogonal w.r.t. the invariant metric, di : TY 0 ↪→ i∗TAg is a
direct summand and orthogonal. Note that the Deligne extension of the sheaf of
differential 1-forms is the sheaf of differential 1-forms with logarithmic poles at
infinity. By the uniqueness of Deligne’s extension we get that di : TY (− log SY ) ↪→
i∗TAg

(− log S) is a direct summand and orthogonal. Thus,

di : ϕ∗TY (− log SY ) ⊂ (i ◦ ϕ)∗TAg
(− log S)

is a direct summand and orthogonal. (The argument here was pointed out by
the referee.)
Since ϕ : C0 → Ag is a morphism of Shimura varieties, one has the decomposition

(i ◦ ϕ)∗TAg
(− log S) ' S2(E0,1) = L−2 ⊗ S2(T )⊕ L−1 ⊗ T ⊗ U∨ ⊕ S2(U∨)

of polystable subbundles which can be decomposed further as the direct sum of
irreducible stable subbundles.

(i ◦ ϕ)∗TAg
(− log S) = K1 ⊕ · · · ⊕Kl.
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By a theorem of Atiyah [2] the category of vector bundles over any compact com-
plex manifold is Krull-Schmidt, i.e., in our case if there is a second decomposition

(i ◦ ϕ)∗TAg
(− log S) = K ′

1 ⊕ · · · ⊕K ′
l′

of irreducible subbundles, then up to a permutation one has

Ki ' K ′
i′ .

This shows that (i ◦ ϕ)∗TY (− log SY ) is the direct sum of some direct factors of
L−2⊗S2(T ), L−1⊗T ⊗U∨ and S2(U∨) and therefore the relative proportionality
inequality (1.4) is an equality. ¤

In the proof of Proposition 1.5 we see that the inclusion

ϕ∗TY (− log SY ) ⊂ (i ◦ ϕ)∗TAg
(− log S)

is compatible with the decompositions

ϕ∗TY (− log SY ) = TC(− log SC)⊕NC/Y = TC(− log SC)⊕ ⊕1
i=0 N i+1

C/Y /N i
C/Y↪→ ||

↪→ ||

↪→

(i ◦ ϕ)∗TAg
(− log S) = TC(− log SC)⊕NC/Ag

= TC(− log SC)⊕⊕1
i=0 N i+1

C/Ag
/N i

C/Ag
.

Example 1.6. If Y is a Shimura surface, then NC/Y is a line bundle and there
are three cases in which we write (HHP) in terms of more familiar intersection
numbers, see [3] and [19, Thm. 0.1]:
(i) Y is a Hilbert modular surface:

NC/Y = N0
C/Y ⊂ L−2 ⊗ S2(T )/L−2, (HHP ) : ωY (S) · C + 2C2 = 0.

(ii) Y is a Picard modular surface:

NC/Y
∼= N1

C/Y /N0
C/Y ⊂ L−1 ⊗ T ⊗ U∨, (HHP ) : ωY (S) · C + 3C2 = 0.

(iii) Y is product of two Shimura curves:

NC/Y
∼= N2

C/Y /N1
C/Y ⊂ S2(U∨), (HHP ) : C2 = 0,

and C lies in the fibres of one of the projections.

Question 1.7. Does the (HHP) for a single compactified Shimura curve C to-
gether with ϕ : C → Y ⊂ Ag as above imply that Y 0 ⊂ Ag is a special subvariety,
if we assume that the algebraic monodromy group H(Y 0) (see introduction) is
Q-simple ?
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This question seems to be very optimistic and at the same time difficult to an-
swer. However, we are not aware of any counterexamples if H(Y 0) is Q-simple.

It is our goal in the rest of the paper to show that the existence of ”many” special
curves, e.g. a dense subset of such satisfying (HHP) forces Y 0 to be a special
subvariety.

Remark 1.8. Consider the same situation ϕ : C → Y ⊂ Ag, where Y 0 ⊂ Ag is a
special subvariety and C an arbitrary curve, not necessarily Shimura. Then one
obtains an inequality opposite to (1.3), see for example [19, Thm. 0.3 and Thm.
2.3].

2. Thickening of the Higgs field

We use the same notation as in the previous section. In particular C is a com-
pactified Shimura curve together with a non-constant morphism ϕ : C → Y ⊂ Ag

factoring over a smooth projective subvariety Y such that S = ∂Ag intersects Y

and the image of C transversely. In the previous section we showed that under
these assumptions there is a canonical splitting

ϕ∗Ω1
Y (log SY ) ∼= Ω1

C(log SC)⊕N∨
C/Y ,

see (1.3). Also we denote by E = E1,0 ⊕ E0,1 the (logarithmic) Higgs bundle
on Ag associated to the local system VC = R1f∗C, where f : X → Ag is the
universal family over Ag. Its restriction to Y or C will be denoted by the same
symbol. We also make use of the complex vector bundle V := V ⊗ OAg or its
restrictions to Y 0 and C0. The following definition is new in the literature and
goes back to our discussions with Viehweg. It enables us to include the normal
direction to C in Y into our considerations.

Definition 2.1. We define the thickening of the Higgs field θ on C in the normal
direction NC/Y as the pullback of the Higgs bundle on Y via ϕ : C → Y :

θC/Y := ϕ∗θ : E1,0 → E0,1 ⊗ ϕ∗Ω1
Y (log SY ) = E0,1 ⊗ (Ω1

C(log SC)⊕N∨
C/Y ).

In the same way we define the thickening of the Higgs field in a point p ∈ C in
the normal direction Np/Y as

θp/Y := θC/Y |p : E1,0|p → E0,1|p⊗ϕ∗Ω1
Y (log SY )|p = E0,1|p⊗(Ω1

C(log SC)|p⊕N∨
C/Y |p).
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Consider the k-fold tensor product (E, θ)⊗k of the Higgs bundle (E, θ) on Y . It
decomposes as a direct sum

E⊗k =
⊕

p+q=k

Ep,q

where

Ep,q =
⊕

Ep1,q1 ⊗ · · · ⊗ Epk,qk

and where the sum ranges over pi + qi = 1,
∑k

i=1 pi = p,
∑k

i=1 qi = q. The Higgs
field, again denoted by θ, decomposes as

θ : Ep,q → Ep−1,q+1 ⊗ Ω1
Y (log SY ),

where

Ep1,q1 ⊗ · · · ⊗Epk,qk
θ−→

k⊕

i=1

Ep1,q1 ⊗ · · · ⊗Epi−1,qi+1 ⊗ · · · ⊗Epk,qk ⊗Ω1
Y (log SY )

satisfies the Leibniz rule

θ|Ep1,q1⊗···⊗Epk,qk =
k∑

i=1

id⊗ · · · ⊗ θ1,0 ⊗ · · · ⊗ id.

In the same way as in the definition above we define the thickening (E, θC/Y )⊗k

and (E, θp/Y )⊗k.

Assume for a moment that Y 0 is a locally symmetric quotient of a bounded
symmetric domain. Then it is well-known that Ω1

Y 0 , and all Hodge bundles Ep,q
Y 0

are locally homogeneous vector bundles in the sense of Mumford [20, Sect. 3].
Furthermore, the Higgs map θp,q : Ep,q

Y 0 → Ep−1,q+1|Y 0 ⊗ Ω1
Y 0 is an equivariant

morphism between locally homogeneous vector bundles. We decompose Ep,q
Y 0 as

the direct sum of irreducible locally homogeneous subbundles

Ep,q
Y 0 =

⊕

i

Ep,q
Y 0,i

.

Then we take Mumford’s canonical extensions Ep,q
Y,i [20, Sect. 3], which agrees

with Deligne’s extension by [15, Lemma 2.4] of those irreducible locally homoge-
neous subbundles, and we use the same symbols

Ep,q
Y =

⊕

i

Ep,q
Y,i
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for the extended decomposition by uniqueness of good extensions. Complex con-
jugation

VC
−→ VC

induces also a complex conjugation on the Deligne extensions of V|C0 = V⊗OC0

and sends Ep,q
Y to Eq,p

Y (' Ep,q∨
Y ), hence Ep,q

Y,i to Eq,p

Y,i
(' Ep,q∨

Y, i ).

Given a base point y ∈ Y (y could lie on the boundary SY ) we consider

θp,p
y∈Y : Ep,p

y → Ep−1,p+1
y ⊗ Ω1

Y (log SY )y,

where Ep,p
y carries the induced real structure from V⊗k. Its real structure is

induced from VR = VQ ⊗ R.

Definition 2.2. Let y ∈ Y be a base point:
(a) Wy∈Y := {t ∈ Ep,p

y | θy∈Y (t) = 0}.
(b) A tensor t ∈ Ep,p

y ∩V⊗k
R,y is called a real Hodge tensor at the base point y ∈ Y .

(c) Wy∈Y,R := {t ∈ Ep,p
y ∩ V⊗k

R,y | θy∈Y (t) = 0}.

Remark 2.3. It is clear that Wy∈Y,R ⊗ C ⊂ Wy∈Y , but in general they are not
equal.

Proposition 2.4 (Parallel Transport). There exists a unitary subsystem W ⊂
V⊗k of pure Hodge type (p, p), which naturally extends to Y , carries an induced
real structure from V⊗k and such that WR,y = Wy∈Y,R for all y ∈ Y .

Proof. From the above discussion we know that Ep,p
Y decomposes as direct sum

of good extensions of irreducible locally homogeneous subbundles

Ep,p
Y =

⊕

i

Ep,p
Y,i .

Since θp,p : Ep,p → Ep−1,p+1⊗Ω1
Y (log SY ) is a morphism between good extensions

of locally homogeneous vector bundles, ker(θp,p) is again a direct sum of good
extensions of locally homogeneous subvector bundles, which are Higgs subbundles
(with trivial Higgs field) of (E, θ)⊗k. By Simpson’s polystability all of them have
non-positive slopes. We decompose (as holomorphic vector bundles)

ker(θp,p) = ker(θp,p)0 ⊕ ker(θp,p)<0,

where ker(θp,p)0 is the direct sum of good extensions of locally homogenous sub-
vector bundles of slope zero and ker(θp,p)<0 is the direct sum of good extensions
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of locally homogeneous subvector bundles of negative slopes. By Simpson’s cor-
respondence ker(θp,p)0 underlies a unitary local subsystem W ⊂ V⊗k of type
(p, p). ker(θp,p)0 is invariant under complex conjugation induced by the real
structure on V⊗k. This can be seen as follows: the complex conjugate ker(θp,p)0
corresponds to the complex conjugate W of W, which is again a unitary sublo-
cal system of type (p, p). Hence it vanishes under the Higgs field θp,p, i.e.,
ker(θp,p)0 ⊂ ker(θp,p). Note that ker(θp,p)0 is again the direct sum of some good
extensions of locally homogeneuos subvector bundles of slope zero, hence we ob-
tain ker(θp,p)0 ⊂ ker(θp,p)0. Clearly for all real vector t ∈ ker(θp,p)0,y we have
θp,p
y (t) = 0, so t ∈ Wy∈Y,R. Conversely, let t ∈ Wy∈Y,R. Then t is a real vector

in ker(θp,p)y. There are no vectors in ker(θp,p)<0,y fixed by complex conjugation,
because complex conjugation takes negative slopes to positive slopes. Therefore
t is a real vector in ker(θp,p)0,y. Thus we have shown

WR,y = Wy∈Y,R.

Since V⊗k has unipotent local monodromies around SY and W is unitary, the
local monodromies of W are trivial around SY . Hence W extends across SY . ¤

Remark 2.5. For a rational Hodge tensor t ∈ Wy∈Y , t is contained in a unitary
local subsystem with a Z−structure. Hence the orbit

{ρ(γ)(t) | γ ∈ π1(Y 0, y)}

is finite.

For a Shimura curve C0 mapping to Ag via ϕ as above we can describe the above
decomposition more precisely. For the Higgs bundle E one has from section 1

E1,0 = L ⊗ T ⊕ U , E0,1 = L−1 ⊗ T ⊕ U∨,

where L⊗T and L−1⊗T are polystable of slopes degL and −degL respectively.
Moreover if U 6= 0 then U and U∨ are both polystable of slope zero. So one
obtains immediately:

Lemma 2.6. The sheaves Ep,q are direct sums of polystable sheaves Ep,q
ι of slopes

µ(Ep,q
ι ) = ι degL and one has:

(a) If U = 0, then Ep,q
ι 6= 0 if and only if ι = p− q, and Ep,q = Ep,q

ι .

(b) If U 6= 0, then Ep,q
ι 6= 0 if and only if ι ∈ {−q, . . . , p}. In this case Ep,q

ι is a
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direct sum of sheaves of the form
⊕

m−l=ι

(L ⊗ T )⊗m ⊗ (L−1 ⊗ T )⊗l ⊗ U⊗(p−m) ⊗ U∨⊗(q−l).

(c) The sheaf Ep,p
ι is dual to Ep,p

−ι .

Consider the decomposition (1.3)

ϕ∗TY (− log SY ) = NC/Y ⊕ TC(− log SC).

The assumption that ϕ : C → Y satisfies (HHP) implies the decomposition in
the proof of Proposition 1.2

NC/Y = N0
C/Y ⊕N1

C/Y /N0
C/Y ⊕N2

C/Y /N1
C/Y

such that

N0
C/Y ⊂ N0

C/Ag
= L−2 ⊗ S2(T )/L−2 ⊂ Hom(L ⊗ T ,L−1 ⊗ T )/L−2,

N1
C/Y /N0

C/Y ⊂ N1
C/Ag

/N0
C/Ag

= L−1 ⊗ T ⊗ U∨ = Hom(L ⊗ T ,U∨)

and

N2
C/Y /N1

C/Y ⊂ N2
C/Ag

/N1
C/Ag

= S2(U∨) ⊂ Hom(U ,U∨)

are direct polystable factors of slopes −2 degL, respectively −degL, respectively
0. In this way we may decompose the thickening θC/Y in the form

θC/Y = θC + θNC/Y
= θC + θN0

C/Y
+ θN1

C/Y
/N0

C/Y
+ θN2

C/Y
/N1

C/Y
.

Using that decomposition we obtain:

Lemma 2.7. The thickening θC/Y on Ep,q
ι can be decomposed as a direct sum of

morphisms:

Ep,q
ι

θC+θ
N0

C/Y−−−−−−−→ Ep−1,q+1
ι−2 ⊗ (Ω1

C(log SC)⊕N0 ∨
C/Y ),

Ep,q
ι

θ
N1

C/Y
/N0

C/Y−−−−−−−−→ Ep−1,q+1
ι−1 ⊗ (N1

C/Y /N0
C/Y )∨

and

Ep,q
ι

θ
N2

C/Y
/N1

C/Y−−−−−−−−→ Ep−1,q+1
ι ⊗ (N2

C/Y /N1
C/Y )∨.

between polystable sheaves of the same slopes.
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Proof. Write

E1,0 = L ⊗ T ⊕ U , E0,1 = L−1 ⊗ T ⊕ U∨,

then θC/Y : E1,0 → E0,1 ⊗ ϕ∗Ω1
Y (log SY ) decomposes into the following terms:

L ⊗ T θC−→ L−1 ⊗ T ⊗ Ω1
C(log SC),

L ⊗ T
θ
N0

C/Y−−−−→ L−1 ⊗ T ⊗N0∨
C/Y ,

L ⊗ T
θ
N1

C/Y
/N0

C/Y−−−−−−−−→ U∨ ⊗ (N1
C/Y /N0

C/Y )∨

and

U
θ
N2

C/Y
/N1

C/Y−−−−−−−−→ U∨ ⊗ (N2
C/Y /N1

C/Y )∨.

This proves the lemma for the case k = 1. In general, one reduces the cases k ≥ 2
to the case k = 1 using the fact that the thickening θ⊗k

C/Y is defined by the Leibniz
rule. ¤

3. Parallel transport of real Hodge tensors on connected cycles

of special curves

In this section let Y ⊂ Ag be a smooth projective subvariety, which meets S =
∂Ag transversely. Assume Y contains a connected cycle

∑
i Ci of finitely many

compactified embedded special curves, such that each component Ci meets SY =
S ∩ Y transversely and satisfies (HHP). Using base points yi ∈ C0

i and notations
from the previous section we introduce the following subspaces:

Wyi∈Y := {t ∈ Ep,p
yi | θyi∈Y (t) = 0},

∩
Wyi∈Ci := {t ∈ Ep,p

yi | θyi∈Ci(t) = 0}
and the real spaces

Wyi∈Y,R := {t ∈ Ep,p
yi ∩ V⊗k

R |yi | θyi∈Y (t) = 0},
∩

Wyi∈Ci,R := {t ∈ Ep,p
yi ∩ V⊗k

R |yi | θyi∈Ci(t) = 0}.
Fixing a base point y1 ∈ C0

1 we now need to study the parallel transport of real
vectors in Wy1∈Y,R along paths in the connected subspace

⋃
i Ci.
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Proposition 3.1. (a) The real subspace Wy1∈Y,R ⊂ V⊗k
R is invariant under the

monodromy action ρ⊗k(π1(
⋃

i C
0
i , y1)).

(b) Assume that Ep,p
Ci

is polystable of slope zero for all Ci. Then Wy1∈Y is invari-
ant under the monodromy action ρ⊗k(π1(

⋃
i C

0
i , y1)).

Proof. (a) We have the decomposition

θy1/Y = θy1/C1
⊕ θNC1/Y ,y1 .

Hence,

Wy1∈Y,R = { t ∈ Wy1∈C1,R | θNC1/Y ,y1 = 0 }.
By Proposition 2.4 there exists a unitary subsystem WC1 ⊂ V⊗k

R of Hodge type
(p, p) such that Wy1∈C1,R =WC1,y1 .

Let WC1 ⊂ Ep,p
C1

denote the polystable subbundle of slope zero corresponding to
WC1 . Then by Lemma 2.7

θNC1/Y
: WC1 → θNC1/Y

(WC1)

is a morphism between polystable bundles of slope zero. Hence the kernel

ker(θNC1/Y
: WC1 → θNC1/Y

(WC1)) =: W ′
C1

is a polystable subbundle of WC1 of slope zero. Therefore it underlies a unitary
subsystem W′

C1
⊂WC1 ⊗ C. From the construction of W′

C1
we see that

Wy1∈Y,R ⊂W′
C1,y1

.

We start with a real vector t1 ∈ Wy1∈Y,R and denote by t2 the parallel transport
of t1 as a vector in the fibre of the local system V⊗k

R,y1
along some path in C0

1

from y1 to y2 ∈ C0
1 ∩ C0

2 . Since t1 is contained in the fibre of the subsystem
W′

C1
⊂ V⊗k

C,C1
at y1, t2 is a real vector (because of the real structure on V⊗k) and

contained in the fibre of W′
C1

at y2. By the construction of W′
C1

, we see that
θy2/C1

(t2) = 0 and θNC1/Y ,y2(t2) = 0, i.e., t2 ∈ Wy2∈Y,R.

Regarding y2 ∈ C0
2 we repeat the above argument and continue the parallel

transport of t2 along some path in C0
2 from y2 to y3 ∈ C2∩C3 etc.. This shows that

Wy1∈Y,R ⊂ V⊗k
R,y1

is invariant under the monodromy action ρ⊗k(π1(
⋃

i C
0
i , y1)).

(b) Since Ep,p
C1

is polystable of slope zero, ker(θp,p
C1

) is a Higgs subbundle of slope
zero (with trivial Higgs field) and it corresponds to an (extended) unitary local
system WC1 ⊂ V⊗k

C1
with an induced real structure, and such that WC1,y =
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Wy∈C1 for all y ∈ C1. Since Wy1∈Y = {t ∈ Wy1∈C1 | θNC1/Y ,y1(t) = 0 }, by the
same argument as in (a) we find a unitary subsystem W′

C1
⊂ WC1 such that

W′
C1,y = Wy∈Y for all y ∈ C1. The rest of the proof is exactly the same as in

(a). ¤

Definition 3.2. We say that Y 0 can be covered by a smoothing of a cycle
∑

i aiCi

of special curves Ci satisfying (HHP), if there is a suitable linear combination∑
i aiCi of compactified special curves Ci ⊂ Y satisfying (HHP) which can be

deformed into a generically smooth family of curves ∪z∈ZCz filling out Y , i.e.,
such that

∑
i aiCi is a degenerate fibre of a generically smooth family of curves

∪z∈ZCz over some parameter scheme Z.

Proposition 3.3. Assume that the algebraic monodromy group H(Y 0) of Y 0

(defined in the introduction) is Q-simple and that Y 0 can be covered by a smooth-
ing of a cycle

∑
i aiCi of special curves Ci satisfying (HHP). We fix a base point

y0 ∈ C0
1 .

(a) Then Wy1∈Y,R ⊂ V⊗k
R,y1

is ρ⊗k(π1(Y 0, y0))-invariant.
(b) Under the assumption in Prop. 3.1 (b), Wy0∈Y ⊂ V⊗k

C,y1
is ρ⊗k(π1(Y 0, y0))-

invariant.

The following Lemma is Proposition 2.2.2 in [26]. It will be used below.

Lemma 3.4. Let X be a smooth complex quasi-projective variety, k a field of
characteristic 0, G an almost simple k-algebraic group and

ρ : π1(X, ∗) → G(k)

be a Zariski dense representation. Then the following holds:

(1) If π : X ′ → X is a surjective and generically finite morphism, and X ′ is
smooth, then π∗(ρ) is again Zariski dense.
(2) If f : X → Y is a surjective morphism to a smooth quasi-projective variety
Y with connected fibres, and if f−1(y) ⊂ X is a smooth fibre, then there are two
possibilities:
either
(i) the restriction ρ|f−1(y) is again Zariski dense, or

(ii) ρ|f−1(y) has finite image.

Proof. (Proposition 3.3) (a) Fix a smooth curve Cz in the family ∪z∈ZCz and a
base point ∗ ∈ Cz. Then C0

z deformes to
∑

i aiC
0
i and ∗ moves to y0 ∈

∑
i C

0
i
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along a path γ∗y0 . This implies that any loop lying on C0
z with base point ∗ is

homotopic to some loop lying on
∑

i C
0
i with base point y0. By Proposition 3.1

the induced representation

ρC0
z

: π1(C0
z , ∗) → π1(Y 0, ∗) ρ⊗k

→ V⊗k
∗

stabilizes the real subspace of W∗ ⊂ Ep,p
R,∗ which is the parallel transport of Wy0∈Y

along the path γ−1∗yo
.

By assumption, the algebraic monodromy group H(Y 0) is Q−simple. The cov-
ering family is given by a correspondence in Y × Z and can be chosen such that
there are finitely many curves through a generic point of Y . Therefore, after
taking a generically finite base change Y 0′ → Y 0, we may assume that the family
gives rise to a surjective map g : Y 0 → Z0 with connected fibres, and such that
C0

z ⊂ Y 0 is a smooth fibre of g. Note that this modification does not change the
algebraic monodromy group H(Y 0) by (1) in Lemma 3.4.

By (2) in Lemma 3.4 there are two possibilities: either (i): H(C0
z ) = H(Y 0), or

(ii): H(C0
z ) is a finite group. The case (ii) is impossible. Otherwise the restricted

representation ρC0
z

: π1(C0
z∗) → Sp(2g,Q) would have finite image, which implies

that the restricted period map ϕ : C0
z → Ag is constant. A contradiction.

So we obtain H(C0
z ) = H(Y 0). Since ρ⊗k

C0
z

stabilizes W∗, which is indeed an
algebraic condition for the monodromy matrices of ρC0

z
, the representation H(C0

z )
in V⊗k∗ also stabilizes W∗. This shows that ρ⊗k(π1(Y 0, ∗)) stabilizes W∗. Now
by moving the base point ∗ along the path γ∗y0 to y0 we obtain that Wy0∈Y,R is
ρ⊗k(π1(Y 0, y0))-invariant. The proof of (b) is the same as the one of (a). ¤

Corollary 3.5. Assume Wy0∈Y carries a Q-structure from V⊗k. Then the sub-
system Up,p

Y 0 has finite monodromy and Wy0∈Y extends to a subspace of sections
of V⊗k

Y 0 .

We assume now Y 0 is contained in a Shimura subvariety M0 ⊂ Ag of type
SO(2, n) with toroidal compactification M ⊂ Ag. Then V⊗2

M0 contains a sub-VHS
of Hodge structures V′, whose corresponding Higgs bundle has the form

E = E2,0 ⊕ E1,1 ⊕ E0,2, θ2,0 : TM (− log SM )⊗ E2,0 ' E1,1, θ1,1 = θ2,0∨.

The Griffiths-Yukawa coupling for E along any subvariety Z ⊂ M meeting SM

transversely is the iterated Kodaira-Spencer derivative

E2,0 −→ E0,2 ⊗ S2Ω1
Z(log SZ).
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The following statements and proofs will use this notation.

Theorem 3.6. Let Y ⊂ Ag be as above. Assume that Y 0 is contained in a
Shimura subvariety M0 ⊂ Ag of type SO(2, n). We assume that Y and M inter-
sect the boundary S of Ag transversely, and that Y can be covered by a smoothing
of a cycle

∑
i aiCi of special curves Ci ⊂ Y satisfying (HHP). Then:

(a) If Wy0∈Y = Wy0∈Y,R ⊗ C for some y0 ∈ C1 then Y 0 ⊂ M0 is a special subva-
riety of orthogonal type.
(b) If the Griffiths-Yukawa couplings along all Ci do not vanish then Y 0 ⊂ M0

is a special subvariety of orthogonal type.
(c) If the Griffiths-Yukawa coupling along Y vanishes then Y 0 ⊂ M0 is a special
subvariety of unitary type, i.e., a ball quotient.

Remark 3.7. It is not hard to show that the assumptions of the theorem are
necessary, since by Borcherds’ results [4] any Shimura variety of type SO(2, n)
contains sections of powers of automorphic line bundles which are unions of or-
thogonal special subvarieties and components of SM .

One can show that Ω1
Y (log SY ) is nef on Y , and ωY (SY ) is ample with respect to

Y 0. This follows from our transversality assumptions.

In the assertions (a) and (b) of the theorem one may replace the assumption on
the smoothing of the cycle

∑
i aiCi of special curves Ci ⊂ Y satisfying (HHP)

by the following: Assume that there is a connected union C1 ∪ · · · ∪Cl of special
curves satisfying (HHP) and such that the image of

π1(
⋃

C0
i , ∗) −→ π1(Y 0, ∗)

has finite index for some basepoint ∗.

Proof. Y 0 is contained in M0, which is a Shimura variety for SO(2, n) without
compact factors. All Hermitian type subgroups of SO(2, n) except G = SL2×SL2

and quaternionic versions (see main theorem in [21]) are Q-simple for rank rea-
sons and either orthogonal or unitary. Hence H(Y 0) will be Q-simple unless
dim(Y ) = 2. In that case it follows that Y 0 is uniformized by a product H×H of
upper half planes. For the rest of the proof we may therefore assume that H(Y 0)
is Q-simple and dim(Y ) ≥ 3.
(a) By Prop. 3.3 (a) the real subspace Wy0∈Y,R is ρ⊗2(π1(Y 0, y0))-invariant.
Hence Wy0∈Y,R⊗C defines a unitary subsystem U of the local system V′Y,C under-
lying the Higgs bundle E (see introduction) and a corresponding decomposition
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of Higgs bundles
(E2,0

Y ⊕ E1,1′
Y ⊕ E0,2

Y , θY )⊕ (E1,1′′
Y , 0).

Note that θY : E1,1
Y → E0,2

Y ⊗ Ω1
Y (log SY ) is surjective, since the pair (Y, SY ) is

transversely embedded in (Ag, S). Therefore we have rankE1,1′
Y = dim Y , and

rankE1,1′′
Y = dim Wy0∈Y,R ⊗ C = dim Wy0∈Y = dim M − dimY.

This implies that
θY : TY (− log SY )⊗ E2,0

Y → E1,1′
Y

is an isomorphism. Hence the image of Y 0 in Ag is a locally symmetric quotient
of the period domain D of orthogonal type associated to the complement U⊥ of
U in V′. As a consequence, Y 0 ↪→ M0 is a totally geodesic embedding. Together
with the rigidity of Y 0 ⊂ M0, which follows from dim(Y ) ≥ 2 [19, Lemma 1.5], we
obtain that Y 0 ⊂ M0 is a special subvariety of orthogonal type by the arguments
in loc. cit..
(b) We will give two proofs. First Proof: The non-vanishing of the Griffiths-
Yukawa coupling along Ci implies that

V′Ci
= V′′ ⊕ U1,1,

where V′′ is a sub-VHS with rank one Hodge bundles

E2,0
Ci
⊕ E1,1′

Ci
⊕ E0,2

Ci
:= E2,0

Ci
⊕ θ(E2,0

Ci
)⊕ θ2(E2,0

Ci
),

and U1,1
Ci

is a sub-VHS of pure Hodge type (1, 1). Hence E1,1
Ci

is polystable of
slope zero. Fix a base point y0 ∈ C0

1 . Then by Proposition 3.3 (b) the subspace
Wy0∈Y ⊂ V′C,y0

is ρ⊗2(π1(Y 0, y0))-invariant. Hence the Higgs bundle E associated
to V′Y 0 decomposes as

(E2,0
Y ⊕ E1,1′

Y ⊕ E0,2
Y , θY )⊕ (E1,1′′

Y , 0),

where the Higgs subbundle (E1,1′′
Y , 0) corresponds to the unitary subsystem of

rank equal to dimM − dimY defined above. This implies that

θY : TY (− log SY )⊗ E2,0
Y → E1,1′

Y

is an isomorphism. As in (a), Y 0 ⊂ M0 is a totally geodesic embedding and the
rigidity of Y 0 ⊂ M0 implies that Y 0 ⊂ M0 is a special subvariety of orthogonal
type.
Second proof for (b): Let (FY , θY ) ⊂ (E2,0

Y ⊕ E1,1
Y ⊕ E0,2

Y , θY ) denote the unique
saturated Higgs subsheaf generated by E2,0

Y and θY . Then F 2,0
Y = E2,0

Y and F 0,2
Y =
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E0,2
Y , since the Griffiths-Yukawa coupling does not vanish. The non-vanishing of

the Griffiths-Yukawa coupling along Ci implies that

V′Ci
= V′′ ⊕ U1,1,

where V′′ is a sub-VHS with rank one Hodge bundles

E2,0
Ci
⊕ E1,1′

Ci
⊕ E2,0

Ci

as above and U1,1
Ci

is a sub-VHS of pure Hodge type (1, 1). Using condition (HHP)
for Ci ⊂ Y we see that

F 1,1
Y |Ci = θCi(TCi(− log SCi)⊗ E2,0

Ci
)⊕ θNCi/Y

(NCi/Y ⊗ E2,0
Ci

)

= E1,1′
Ci

⊕ θNCi/Y
(NCi/Y ⊗ E2,0

Ci
),

where θNCi/Y
(NCi/Y ⊗E2,0

Ci
) is a direct factor of U1,1

Ci
. In particular det(F 1,1

Y )·Ci =

0. Hence, det(F 1,1
Y )·Cz = 0, where Cz is a smooth curve in the family ∪z∈ZCz and

meets SY transversely. Note that deg FCz = 0, and by Simpson’s polystability for
the logarithmic Higgs subsheaf FCz , θCz ⊂ (E2,0

Cz
⊕ E1,1

Cz
⊕ E0,2

Cz
, θCz) we obtain a

corresponding sub-VHS V′′′Cz
⊂ V′Cz

. Since H(Y 0) is Q-simple, the same argument
as in the first proof of (b) shows that V′′′Cz

extends to a sub-VHS over Y 0, which
uniformizes Y 0 as a special subvariety of orthogonal type.
(c) The vanishing of the Griffiths-Yukawa coupling on Y implies that the Higgs
subsheaf generated by E2,0

Y and θY has the form

(FY , θY ) = (E2,0
Y ⊕ θY (TY (− log SY )⊗ E2,0

Y ), θY ).

Therefore one has

θY (TY (− log SY )⊗E2,0
Y )⊗OCi = θCi(TCi(− log SCi)⊗E2,0

Ci
)⊕θNCi/Y

(NCi/Y⊗E2,0
Ci

).

Note that in this case

E2,0
Ci

= L, E1,1
Ci

= L−1 ⊕ L⊕ U1,1,

where U1,1 is polystable of degree zero and such that

θCi : TCi(− log SCi)⊗ L '−→L−1, with L−1 = θCi(TCi(− log SCi)⊗ E2,0
Ci

).

The condition (HHP) for all Ci just means that θNCi/Y
(NCi/Y ⊗E2,0

Ci
) is a direct

factor of U1,1, hence it has degree zero, too. That implies that det FY ·Ci = 0. By
the same argument as in (b) we obtain that (FY , θY ) corresponds to a sub-VHS
over Y 0, which uniformizes Y 0 as a special subvariety of unitary type. ¤
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[15] M. Möller, E.Viehweg and K. Zuo: Stability of Hodge bundles and a numerical

characterization of Shimura varieties, see arXiv:0706.3462 (2007).
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