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Introduction

Let k be a perfect field of characteristic different from two. A fundamental
theorem of Morel [8, 11] states that the endomorphism ring of the motivic sphere
spectrum Sk ∈ SH(k) is naturally isomorphic to the Grothendieck-Witt ring of
quadratic forms over k, GW(k). This result follows from Morel’s calculation [8,
corollary 3.43] of the corresponding bi-graded homotopy sheaves of Sn ∧ G∧q

m in
the unstable motivic homotopy category H•(k) as the Milnor-Witt sheaves (see
theorem 7.7 for details), which after stabilizing yields the partial computation of
π∗,∗Sk as

πm+p,p(Sk) ∼=




KMW
p for m = 0,

0 for m < 0.

The unstable result also yields the computation of the homotopy sheaf πp,pΣ∞s G
∧q
m

(in the S1-stable homotopy category SHS1(k)) as KMW
q−p , for all q ≥ 1, p ≥ 0.

In another direction, Voevodsky [15] has defined natural towers in SH(k) and
SHS1(k), which are analogs of the classical Postnikov tower in SH; we call each
of these towers the Tate Postnikov tower (in SH(k) or SHS1(k), as the case
may be). Just as the classical Postnikov tower measures the Sn-connectivity of a
spectrum, the Tate Postnikov tower measures the S∗,n connectivity of a motivic
spectrum.

In particular, the tower for Sk

. . . → fn+1Sk → fnSk → . . . → f0Sk = Sk

gives a filtration on the sheaf π0,0Sk by

Fn
Tateπ0,0Sk := im(π0,0fnSk → π0,0Sk).

We have a similarly defined filtration on πp,pΣ∞s G
∧q
m , determining Fn

Tateπ0,0Sk by

Fn
Tateπ0,0Sk := lim−→

q

Fn+q
Tateπq,qΣ∞s G∧q

m (k).
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Our main result is the computation of Fn
Tateπp,pΣ∞s G

∧q
m , and thereby Fn

Tateπ0,0Sk

(on perfect fields). We first describe the T -stable results.

Theorem 1. Let k be a perfect field of characteristic 6= 2 and let F be a perfect
field extension of k. Let I(F ) ⊂ GW(F ) ∼= KMW

0 (F ) be the augmentation ideal.
1. Via the identification given by Morel’s isomorphism π0,0Sk(F ) ∼= GW(F ), we
have

Fn
Tateπ0,0Sk(F ) = I(F )n

for all n ≥ 0. For n < 0, Fn
Tateπ0,0Sk = π0,0Sk as sheaves.

2. More generally, let n, p ≥ 0, q ≥ 1 be integers. Let N(a, b) = max(0,min(a, b)).
Then via the identification given by Morel’s isomorphism πp,pΣ

q
Gm
Sk

∼= KMW
q−p ,

we have

Fn
Tateπp,pΣ

q
Gm
Sk(F ) = KMW

q−p (F )I(F )N(n−p,n−q), n, p, q ∈ Z.

The stable result follows from the unstable version.

Theorem 2. Let k be a perfect field of characteristic 6= 2 and let F be a perfect
field extension of k. Let n, p ≥ 0, q ≥ 1 be integers. Then via the identification
given by Morel’s isomorphism πp,pΣ∞s G

∧q
m
∼= KMW

q−p , we have

Fn
Tateπp,pΣ∞s G∧q

m (F ) = KMW
q−p (F ) · I(F )N(n−p,n−q).

See theorem 7.13, corollary 7.14 and corollary 7.15 for details.

Remark 1. In case k is a field of characteristic 0, we have a finer result, namely
the identities stated in theorem 1 and theorem 2 extend to identities on the
corresponding sheaves, for example

Fn
Tateπp,pΣ∞s G∧q

m = KMW
q−p · IN(n−p,n−q).

Of course, one can more generally consider the filtration F ∗
Tateπa,bE on the

homotopy sheaves πa,bE induced by the Tate Postnikov tower for an arbitrary
T -spectrum E ∈ SH(k). In general, we cannot say anything about this filtration,
but assuming a certain connectedness condition, we can compute the filtration
on the first non-vanishing homotopy sheaves, evaluated on perfect fields.
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Theorem 3. Let k be a perfect field of characteristic 6= 2 and let F be a perfect
field extension of k. Take E ∈ SH(k) and suppose that πa+b,bE = 0 for a < 0,
b ∈ Z. Then for n > p,

Fn
Tateπp,pE(F ) = [πn,nE ·KMW

n−p ]Tr(F ).

For n ≤ p, we have the identity of sheaves

Fn
Tateπp,pE = πp,pE .

To explain the notation: The canonical action of π∗,∗Sk on π∗,∗E gives, for each
finitely generated field extension L of k, a right KMW−∗ (L)-module structure on
π∗,∗E(L), giving us the subgroup πn,nE(L) ·KMW

n−p (L) of πp,pE(L). This extends
to arbitrary field extensions of k by taking the evident colimit. Also, for each
closed point w ∈ An

F , we have a canonically defined transfer map

TrF (w)∗ : πa,bE(F (w)) → πa,bE(F )

(see §5 for details). [πn,nE ·KMW
n−p ]Tr(F ) is the subgroup of πp,pE(F ) generated

by the subgroups TrF (w)∗(πn,nE(F (w)) · KMW
n−p (F (w))), as w runs over closed

points of An
F . See theorem 7.11 for details.

Theorem 2 is an easy consequence of theorem 3: one uses Morel’s unstable
computations of the maps Sa,b ∧ Spec F+ → Sm,n to reduce theorem 2 to its
T -stable version and then one uses the explicit presentation of KMW∗ to compute

[KMW
q−n ·KMW

n−p ]Tr(F ) = KMW
q−p (F )IN(n−p,n−q)(F ).

Morel’s results on strictly A1-invariant sheaves allow us to go from the statement
on functions fields to the one for the sheaves (in characteristic zero).

The restriction to perfect fields arises from a separability assumption needed
to compute the action of transfers on our selected generators for Fn

Tateπp,pE . We
avoid characteristic two so as to have a description of the homotopy sheaves of
the sphere spectrum in terms of Milnor-Witt K-theory.

The paper is organized as follows. After setting up our notation and going
over some background material on motivic homotopy theory in section 1, we
recall some basic facts about the Tate Postnikov tower in section 2. In section 3
we prove some connectedness results for the terms fnE, snE in the Tate Postnikov
tower for an S1-spectrum E and give a description of generators for the subgroup
Fn

Tateπ0E(F ), all under a certain connectedness assumption on E. In section 4,
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we follow a suggestion of the referee and rewrite our generators in cubical form.
The generators are then factored into a product of two terms, one depending on
E, the other only on the choice of a closed point of (∆1

F \ ∂∆1
F )n. We analyze

the second term in sections 6, having first introduced in section 5 a construction
of transfers to allow us to pass from the case of an F -point to an arbitrary closed
point separable over F . In this direction, our main result is a description of this
term as a “symbol map” associated to units u1, . . . , un ∈ F×. It is then relatively
simple to feed this result into our description of the generators for Fn

Tateπ0E(F ) to
prove theorems 1 and 3 in section 7; we conclude in section 8 with some remarks
on the convergence of the Tate Postnikov tower.

I thank the referee for making several helpful suggestions and for pointing out
a number of errors, including an incorrect formulation of theorem 3, in an earlier
version of this paper. Finally, I wish to thank the editors for giving me the
opportunity of contributing to this volume. As a small token of my gratitude to
Eckart for all of his aid and support over many years, I dedicate this article to
his memory.

1. Background and notation

Unless we specify otherwise, k will be a fixed perfect base field, without restric-
tion on the characteristic. For details on the following constructions, we refer the
reader to [3, 4, 5, 8, 9, 11, 12].

We write [n] := {0, . . . , n} (including [−1] = ∅) and let ∆ be the category with
objects [n], n = 0, 1, . . ., and morphisms [n] → [m] the order-preserving maps of
sets. Given a category C, the category of simplicial objects in C is as usual the
category of functors ∆op → C.

Spc will denote the category of simplicial sets, Spc• the category of pointed
simplicial sets, H := Spc[WE−1] the classical unstable homotopy category and
H• := Spc•[WE−1] the pointed version. We denote the suspension operator
−∧ S1 by Σs. Spt is the category of suspension spectra and SH := Spt[WE−1]
the classical stable homotopy category.

The motivic versions are as follows: Sm/k is the category of smooth finite type
k-schemes. Spc(k) is the category of Spc-valued presheaves on Sm/k, Spc•(k)
the Spc•-valued presheaves, and SptS1(k) the Spt-valued presheaves. These



1548 Marc Levine

all come with “motivic” model structures (see for example [5]); we denote the
corresponding homotopy categories by H(k), H•(k) and SHS1(k), respectively.
Sending X ∈ Sm/k to the sheaf of sets on Sm/k represented by X (also denoted
X) gives an embedding of Sm/k to Spc(k); we have the similarly defined embed-
ding of the category of smooth pointed schemes over k into Spc•(k). All these
categories are equipped with an internal Hom, denoted Hom.

Let Gm be the pointed k-scheme (A1 \ 0, 1). In H•(k) we have the objects
Sa+b,b := Σa

sG∧b
m , for b ≥ 1, Sn,0 := Sn = Σn

s Spec k+. If X is a scheme with a
k-point x, we write (X, x) for the corresponding object in Spc•(k) or H•(k). For
a cofibration Y → X in Spc(k), we usually give the quotient X/Y the canonical
base-point Y/Y, but on occasion, we will give X/Y a base-point coming from a
point x ∈ X (k); we write this as (X/Y, x).

We let T := A1/(A1 \ {0}) and let SptT (k) denote the category of T -spectra,
i.e., spectra in Spc•(k) with respect to the T -suspension functor ΣT := − ∧ T .
SptT (k) has a motivic model structure (see [5]) and SH(k) is the homotopy
category. We can also form the category of spectra in SptS1(k) with respect
to ΣT ; with an appropriate model structure the resulting homotopy category is
equivalent to SH(k). We will ignore the subtleties of this distinction and simply
identify the two homotopy categories.

Both SHS1(k) and SH(k) are triangulated categories with suspension functor
Σs. We have the triangle of infinite suspension functors Σ∞ and their right
adjoints Ω∞

H•(k)
Σ∞s

//

Σ∞T %%KKKKKKKKK
SHS1(k)

Σ∞T
²²

SH(k)

H•(k) SHS1(k)
Ω∞s

oo

SH(k)

Ω∞T

OO

Ω∞T

eeKKKKKKKKK

both commutative up to natural isomorphism. These are all left, resp. right
derived versions of Quillen adjoint pairs of functors on the underlying model
categories. We note that the suspension functor ΣGm is invertible on SH(k).

For X ∈ H•(k), we have the bi-graded homotopy sheaf πa,bX , defined for b ≥ 0,
a− b ≥ 0, as the Nisnevich sheaf associated to the presheaf on Sm/k

U 7→ HomH•(k)(Σ
a−b
s Σb

Gm
U+,X ).
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These extend in the usual way to bi-graded homotopy sheaves πa,bE for E ∈
SHS1(k), b ≥ 0, a ∈ Z, and πa,bE for E ∈ SH(k), a, b ∈ Z, by taking the
Nisnevich sheaf associated to

U 7→ HomSHS1 (k)(Σ
a−b
s Σb

Gm
Σ∞s U+, E) or U 7→ HomSH(k)(Σ

a−b
s Σb

Gm
Σ∞T U+, E),

as the case may be. We write πn for πn,0; for e.g. E ∈ SptS1(k) fibrant, πnE is
the Nisnevich sheaf associated to the presheaf U 7→ πn(E(U)).

For F a finitely generated field extension of k, we may view Spec F as the
generic point of some X ∈ Sm/k. Thus, for a Nisnevich sheaf S on Sm/k, we
may define S(F ) as the stalk of S at Spec F ∈ X. For an arbitrary field extension
F of k (not necessarily finitely generated over k), we define S(F ) as the colimit
over S(Fα), as Fα runs over subfields of F containing k and finitely generated over
k. For a finitely generated field F over k, we consider objects such as Spec F , or
An

F as pro-objects in Spc(k) by the usual system of finite-type models; the same
holds for related objects such as SpecF+ in H•(k) or SHS1(k), etc. We extend
this to arbitrary field extensions of k by taking the system of finitely generated
subfields. We will usually not explicitly insert the “pro-” in the text, but all
such objects, as well as morphisms and isomorphisms between them, should be
so understood.

2. The homotopy coniveau tower

Our computations rely heavily on our model for the Tate Postnikov tower in
SHS1(k), which we briefly recall (for details, we refer the reader to [6]). We start
by recalling the Tate Postnikov tower in SHS1(k) and introducing some notation.

Fix a perfect base-field k. Let

ΣT : SHS1(k) → SHS1(k)

be the T -suspension functor. For n ≥ 0, we let Σn
TSHS1(k) be the localizing

subcategory of SHS1(k) generated by infinite suspension spectra of the form
Σn

T Σ∞s X+, with X ∈ Sm/k. We note that Σ0
TSHS1(k) = SHS1(k). The inclusion

functor in : Σn
TSHS1(k) → SHS1(k) admits, by results of Neeman [13], a right

adjoint rn; define the functor fn : SHS1(k) → SHS1(k) by fn := in ◦ rn. The
unit for the adjunction gives us the natural morphism

ρn : fnE → E
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for E ∈ SHS1(k); similarly, the inclusion Σm
T SHS1(k) ⊂ Σn

TSHS1(k) for n < m

gives the natural transformation fmE → fnE, forming the Tate Postnikov tower

. . . → fn+1E → fnE → . . . → f0E = E.

We complete fn+1E → fnE to a distinguished triangle

fn+1E → fnE → snE → fn+1E[1];

this turns out to be functorial in E. The object snE is the nth slice of E.

There is an analogous construction in SH(k): For n ∈ Z, let

Σn
TSHeff (k) ⊂ SH(k)

be the localizing category generated by the T -suspension spectra Σn
T Σ∞T X+, for

X ∈ Sm/k. As above, the inclusion in : Σn
TSHeff (k) → SH(k) admits a left

adjoint rn, giving us the truncation functor fn and the Postnikov tower

. . . → fn+1E → fnE → . . . → E .

Note that this tower is in general infinite in both directions. We define the layer
snE as above.

By [6, theorem 7.4.1] the 0-space functor Ω∞T maps Σn
TSHeff (k) to Σn

TSHS1(k).
This fact, together with the universal properties of the truncation functors fn in
SHS1(k) and SH(k), plus the fact that Ω∞T is a right adjoint, gives the canonical
isomorphism for n ≥ 0

(2.1) fnΩ∞T E ∼= Ω∞T fnE .

Indeed, it follows from [6, theorem 7.4.1] that Ω∞T fnE is in Σn
TSHS1(k) and thus

we need only show that Ω∞ρn : Ω∞T fnE → Ω∞T E satisfies the universal property
of fnΩ∞T E → Ω∞T E . But for G ∈ SHS1(k), we have

HomSHS1 (k)(Σ
n
T G, Ω∞T fnE) ∼= HomSH(k)(Σ

∞
T Σn

T G, fnE)
∼= HomSH(k)(Σ

n
T Σ∞T G, fnE)

∼
ρn∗

// HomSH(k)(Σ
n
T Σ∞T G, E)

∼= HomSH(k)(Σ
∞
T Σn

T G, E)
∼= HomSHS1 (k)(Σ

n
T G, Ω∞T E).

It is easy to check that this sequence of isomorphisms is induced by (Ω∞T ρn)∗.
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Furthermore, for E ∈ SHS1(k), we have (by [6, theorem 7.4.2]) the canonical
isomorphism

(2.2) ΩGmfnE = fn−1ΩGmE.

As ΩGm : SH(k) → SH(k) is an auto-equivalence, and restricts to an equivalence

ΩGm : Σn
TSHeff (k) → Σn−1

T SHeff (k),

the analogous identity in SH(k) holds as well.

Definition 2.1. For a ∈ Z, b ≥ 0, E ∈ SHS1(k), define the filtration Fn
Tateπa,bE,

n ≥ 0, of πa,bE by

Fn
Tateπa,bE := im(πa,bfnE → πa,bE).

Similarly, for E ∈ SH(k), a, b, n ∈ Z, define

Fn
Tateπa,bE := im(πa,bfnE → πa,bE).

The main object of this paper is to understand Fn
Tateπ0E for suitable E. For

later use, we note the following

Lemma 2.2. 1. For E ∈ SHS1(k), n, p, a, b ∈ Z with n, p, b, n− p, b− p ≥ 0, the
adjunction isomorphism πa,bE ∼= πa−p,b−pΩ

p
Gm

E induces an isomorphism

Fn
Tateπa,bE ∼= Fn−p

Tateπa−p,b−pΩ
p
Gm

E.

Similarly, for E ∈ SH(k), n, p, a, b ∈ Z, the adjunction isomorphism πa,bE ∼=
πa−p.b−pΩ

p
Gm
E induces an isomorphism

Fn
Tateπa,bE ∼= Fn−p

Tateπa−p,b−pΩ
p
Gm
E .

2. For E ∈ SH(k), a, b, n ∈ Z, with b, n ≥ 0, we have a canonical isomorphism

ϕE,a,b,n : πa,bfnE → πa,bfnΩ∞T E ,

inducing an isomorphism Fn
Tateπa,bE ∼= Fn

Tateπa,bΩ∞T E.

Proof. (1) By (2.2), adjunction induces isomorphisms

Fn
Tateπa,bE := im(πa,bfnE → πa,bE)

∼= im(πa−p,b−pΩ
p
Gm

fnE → πa−p,b−pΩ
p
Gm

E)

= im(πa−p,b−pfn−pΩ
p
Gm

E → πa−p,b−pΩ
p
Gm

E)

= Fn−p
Tateπa−p,b−pΩ

p
Gm

E.
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The proof for E ∈ SH(k) is the same.

For (2), the isomorphism ϕE,a,b,n arises from (2.1) and the adjunction isomor-
phism

HomSHS1 (k)(Σ
∞
s Σa−b

s Σb
Gm

U+, fnΩ∞T E) ∼= HomSHS1 (k)(Σ
∞
s Σa−b

s Σb
Gm

U+,Ω∞T fnE)

∼= HomSH(k)(Σ
∞
T Σa−b

s Σb
Gm

U+, E).

¤

We now turn to a discussion of our model for fnE(X), X ∈ Sm/k. We
start with the cosimplicial scheme n 7→ ∆n, with ∆n the algebraic n-simplex
Spec k[t0, . . . , tn]/

∑
i ti−1. The cosimplicial structure is given by sending a map

g : [n] → [m] to the map g : ∆n → ∆m determined by

g∗(ti) =





∑
j,g(j)=i tj if g−1(i) 6= ∅

0 else.

A face of ∆m is a closed subscheme F defined by equations ti1 = . . . = tir = 0;
we let ∂∆n ⊂ ∆n be the closed subscheme defined by

∏n
i=0 ti = 0, i.e., ∂∆n is

the union of all the proper faces.

Take X ∈ Sm/k. We let S(q)
X (m) denote the set of closed subsets W ⊂ X×∆m

such that codimX×F W ∩X × F ≥ q for all faces F ⊂ ∆m (including F = ∆m).
We make S(q)

X (m) into a partially ordered set via inclusions of closed subsets.
Sending m to S(q)

X (m) and g : [n] → [m] to g−1 : S(q)
X (m) → S(q)

X (n) gives us the
simplicial poset S(q)

X .

Now take E ∈ SptS1(k). For X ∈ Sm/k and closed subset W ⊂ X, we
have the spectrum with supports EW (X) defined as the homotopy fiber of the
restriction map E(X) → E(X \W ). This construction is functorial in the pair
(X, W ), where we define a map f : (Y, T ) → (X, W ) as a morphism f : Y → X

in Sm/k with f−1(W ) ⊂ T .

Define

E(q)(X, m) := hocolim
W∈S(q)

X (m)

EW (X ×∆m).

The fact that m 7→ S(q)
X (m) is a simplicial poset, and (Y, T ) 7→ ET (Y ) is a

functor from the category of pairs to spectra shows that m 7→ E(q)(X, m) defines
a simplicial spectrum. We denote the associated total spectrum by E(q)(X).
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For q ≥ q′, the inclusions S(q)
X (m) ⊂ S(q′)

X (m) induces a map of simplicial posets
S(q)

X ⊂ S(q′)
X and thus a morphism of spectra iq′,q : E(q)(X) → E(q′)(X). We have

as well the natural map

εX : E(X) → Tot(E(X ×∆∗)) = E(0)(X),

which is a weak equivalence if E is homotopy invariant. Together, this forms the
augmented homotopy coniveau tower tower

E(∗)(X) := . . . → E(q+1)(X)
iq−→ E(q)(X)

iq−1−−→ . . . E(1)(X) i0−→ E(0)(X) εX←− E(X)

with iq := iq,q+1. Thus, for homotopy invariant E, we have the homotopy
coniveau tower in SH
E(∗)(X) := . . . → E(q+1)(X)

iq−→ E(q)(X)
iq−1−−→ . . . E(1)(X) i0−→ E(0)(X) ∼= E(X).

Letting Sm//k denote the subcategory of Sm/k with the same objects and
with morphisms the smooth morphisms, it is not hard to see that sending X to
E(∗)(X) defines a functor from Sm//kop to augmented towers of spectra.

On the other hand, for E ∈ SptS1(k), we have the (augmented) Tate Postnikov
tower

f∗E := . . . → fq+1E → fqE → . . . → f0E ∼= E

in SHS1(k), which we may evaluate at X ∈ Sm/k, giving the tower f∗E(X) in
SH, augmented over E(X).

As a direct consequence of our main result (theorem 7.1.1) from [6] we have

Theorem 2.3. Let E be a quasi-fibrant object in SptS1(k) for the A1-model
structure (see e.g. [5] or [11]), and take X ∈ Sm/k. Then there is an isomor-
phism of augmented towers in SH

(f∗E)(X) ∼= E(∗)(X)

over the identity on E(X), which is natural with respect to smooth morphisms in
Sm/k.

In particular, we may use the explicit model E(q)(X) to understand (fqE)(X).

Remark 2.4. For X, Y ∈ Sm/k with given k-points x ∈ X(k), y ∈ Y (k), we have
a natural isomorphism in SHS1(k)

Σ∞s (X ∧ Y )⊕ Σ∞s (X ∨ Y ) ∼= Σ∞s (X × Y )
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i.e. Σ∞s (X ∧ Y ) is a canonically defined summand of Σ∞s (X × Y ). In particular
for E a quasi-fibrant object of SptS1(k), we have a natural isomorphism in SH
Hom(Σ∞s (X ∧ Y ), E) ∼= hofib (E(X × Y ) → hofib(E(X)⊕ E(Y ) → E(k)))

where the maps are induced by the evident restriction maps. In particular, we
may define E(X ∧Y ) via the above isomorphism, and our comparison results for
Tate Postnikov tower and homotopy coniveau tower extend to values at smash
products of smooth pointed schemes over k.

3. Connectedness and generators for π0

As in section 2, our base-field k is perfect. We fix S1-spectrum E ∈ SptS1(k)
that is quasi-fibrant for the A1-model structure, that is, E is A1-homotopy in-
variant and satisfies Nisnevich excision.

Lemma 3.1. Let F be a finitely generated field extension of k, x ∈ An
F a closed

point. Then for every m > 0, the map

i0∗ : E(x,0)(An × Am
F ) → E(x×FAm

F )(An × Am
F )

induced by the map of pairs

idAn×Am : (An × Am
F , x× Am

F ) → (An × Am
F , (x, 0))

is the zero-map in SH. In particular, the induced map on homotopy groups is
the zero map.

Proof. The referee suggested the following simple argument: The map i0∗ is in-
duced by applying the functor H(−) := HomHSptS1 (k)(Σ∞s (−), E) to the quotient
map

q : An
F × Am/(An

F × Am \ x× Am) → An
F × Am/(An

F × Am \ {(x, 0}),
where the homotopy category HSptS1(k) is with respect to the presheaf model
structure on SptS1(k), i.e., weak equivalences are objectwise. But E is homotopy
invariant, and hence the inclusion

i1 : (An
F × 1, x× 1) → (An

F × Am, x× Am)

induces an isomorphism

i∗1 : H(An
F × Am/(An

F × Am \ x× Am)) → H(An
F /(An

F × 1 \ x× 1)
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But clearly q◦i1 factors through the map to the base-point, hence q∗ is the 0-map
on H. ¤

We have the re-indexed homotopy sheaves Πn,m(E) := πn+m,m(E). We have
as well the sheaf πnE := πn,0E; we call E m-connected if πn(E) = 0 for all
n ≤ m.

Since E(n)(X) = Tot[m 7→ E(n)(X, m)], we have the strongly convergent spec-
tral sequence

(3.1) E1
p,q(X) = πqE

(n)(X, p) =⇒ πp+qE
(n)(X),

Now take X = Spec F , F a finitely generated field over k. For dimensional
reasons, we have S(n)

F (p) = ∅ for p < n, and we therefore have an edge homomor-
phism

ε−n : πq−nE(n)(X, n) → πqE
(n)(X).

Furthermore, S(n)
F (n) is the set of closed points w ∈ ∆n

F \ ∂∆n
F , so ε−n can be

written as
ε−n : ⊕w∈(∆n

F \∂∆n
F )(n)πq−nEw(∆n

F ) → πqE
(n)(F );

here Y (a) denotes the set of codimension a points on a scheme Y .

Via the weak equivalence E(n)(F ) ∼= fnE(F ), we have the canonical map

ε−n : ⊕w∈(∆n
F \∂∆n

F )(n)πq−nEw(∆n
F ) → πqfnE(F ).

Similarly, composing with fnE → snE, we have the canonical map

ε−n : ⊕w∈(∆n
F \∂∆n

F )(n)πq−nEw(∆n
F ) → πqsnE(F ).

Proposition 3.2. Let E ∈ SptS1(k) be quasi-fibrant for the A1-model structure.
Suppose Πa,∗E(F ) = 0 for all a < 0 and for all finitely generated field extensions
F of k. Then for n ≥ 0:

1. Πa,∗fnE and Πa,∗snE are zero for all a < 0. In particular, fnE and snE

are −1-connected.

2. For each finitely generated field F over k, the edge homomorphisms

ε−n : ⊕w∈(∆n
F \∂∆n

F )(n)π−nEw(∆n
F ) → π0(fnE)(F )

ε−n : ⊕w∈(∆n
F \∂∆n

F )(n)π−nEw(∆n
F ) → π0(snE)(F )

are surjections.
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Proof. Using the distinguished triangle

fn+1E → fnE → snE → Σsfn+1E

we see that it suffices to prove the statements for fnE.

Using the isomorphism (2.2), we see that for (1), it suffices to show that fnE is
−1-connected. By a theorem of Morel [11, lemma 3.3.6], it suffices to show that
fnE(F ) is −1-connected for all finitely generated field extensions F of k.

We first show that, for each p ≥ n,

a. πqE
(n)(F, p) = 0 for q < −p

b. The natural map

⊕
W∈S(n)

F (p),w∈W∩(∆p
F )(p) π−pE

w(∆p
F ) → π−pE

(n)(F, p)

is surjective.

For (a), let W ⊂ ∆p
F be a closed subset. We have the Gersten spectral sequence

Ea,b
1 = ⊕w∈W∩(∆p

F )(a)π−a−bE
w(SpecO∆p

F ,w) =⇒ π−a−bE
W (∆p

F ).

Since E is quasi-fibrant, and ∆p
F is smooth over k, we have an isomorphism (via

Morel-Voevodsky purity [12, Theorem 3.2.23])

πm(Ew(SpecO∆p
F ,w)) ∼= πm(E(w+ ∧ S2a,a)),

where a = codim∆p
F
w. But

πm(E(w+ ∧ S2a,a)) = (πm+2a,aE)(F (w))

which is zero for m + a < 0. Since 0 ≤ a ≤ p, we see that, for m < −p,

πmEW (∆p
F ) = 0.

As E(n)(F, p) is a colimit over EW (∆p
F ) with W ∈ S(n)

F (p), it follows that
πmE(n)(F, p) = 0 for m < −p, proving (a).

The same computation shows that π−p(Ew(SpecO∆p
F ,w)) = 0 if codim∆p

F
w <

p, so (b) follows from the Gersten spectral sequence.

Using the strongly convergent spectral sequence (3.1), we see that (a) implies
that πqE

(n)(F ) = 0 for q < 0.
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Next, we show that

c. π−pE
(n)(F, p) = 0 for p > n.

For this, it suffices by (b) to show that for w ∈ W ∩ (∆p
F )(p) with W ∈ S(n)

F (p)
and with p > n, the map

(3.2) π−pE
w(∆p

F ) → π−pE
(n)(F, p)

is the zero map. To see this, note that W does not intersect any face T of ∆p
F

having dimF T < n. Thus, there is a linear W ′ ∼= Ap−n
F ′ ⊂ ∆p

F containing w (for
F ′ some extension field of F contained in F (w)) with W ′ ∈ S(n)

F (p): for a suitable
degeneracy map σ : ∆p → ∆n one takes W ′ = σ−1(σ(w)). By lemma 3.1, the
map Ew(∆p

F ) → EW ′
(∆p

F ) is the zero map in SH; passing to the limit over all
W ′′ ∈ S(n)

F (p), we see that (3.2) is the zero map, as claimed.

In the spectral sequence (3.1), we have E1
p,−p = 0 for p > n; we also have

E1
p,−p = 0 for p < n since S(n)

F (p) = ∅ if p < n for dimensional reasons. Thus,
the only term contributing to π0E

(n)(F ) is E1
n,−n. As the spectral sequence

is strongly convergent, the edge homomorphism in the spectral sequence (3.1)
induces a surjection

⊕
w∈S(n)

F (n)
π−nEw(∆n

F ) → π0E
(n)(F ).

Combining this with theorem 2.3 gives us the surjection

⊕
w∈S(n)

F (n)
π−nEw(∆n

F ) → π0(fnE(F )).

Similarly, the vanishing πpE
(n)(F ) = 0 for p < 0 shows that fnE(F ) is -1 con-

nected. ¤

We thus have generators ⊕w∈(∆n
F \∂∆n

F )(n)π−nEw(∆n
F ) for π0fnE(F ), and hence

for our main object of study, Fn
Tateπ0E(F ).

4. Cubical generators

As pointed out by the referee, it is much more convenient to work with a
cubical type of generator for Fn

Tateπ0E(F ). We first look at the generators for
F 1

Tateπ0E(F ), to put these in a simpler form, which we then extend to give the
cubical generators for Fn

Tateπ0E(F ) by a simple induction.
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For F a finitely generated field extension of k, the contractibility of ∆1 gives
us the canonical isomorphism in H•(k)

σ1
F : Σs Spec F+ → ∆1

F /∂∆1.

Let w = (w0, w1) be an F -rational point of ∆1 \ ∂∆1. Writing

∆1 := Spec k[t0, t1]/(t0 + t1 − 1),

we map ∆1
F to A1

F by the function

Xw :=
t1 − w1

w0
: ∆1

F → A1
F .

Clearly

Xw(1, 0) = −w1

w0
, Xw(0, 1) = 1, Xw(w) = 0.

Thus Xw induced a map of diagrams in Spc•(k)

(4.1) Spec F+ ∨ Spec F+

0∨1
²²

−w1/w0∨1
// (−w1/w0)+ ∨ 1+

i
²²

(∆1
F \ w, (0, 1))

Xw

//

j

²²

Gm,w

j

²²

(∆1
F , (0, 1))

Xw

// (A1
w, 1),

giving us the induced map on the quotients

∆1
F /{(0, 1), (1, 0)} πw−−→ ∆1

F /∆1
F \ {w} Xw−−→ A1

w/A1
w \ {0w}.

In H•(k), this gives us the sequence of maps

(4.2) Σs Spec F+
σ1

F−−→ ∆1
F /∂∆1

F
πw−−→ ∆1

F /∆1
F \ {w} Xw−−→ Σsw+ ∧Gm

with Xw and σ1
F isomorphisms.

In case w is separable over F , let

pw : ∆1
F (w) → ∆1

F

be the projection, and let w ∈ ∆1
F (w) be the point given the the maps w → ∆1

F ,
w = Spec F (w). By Nisnevich excision, pw induces an isomorphism

pw : ∆1
F (w)/∆1

F (w) \ {w} → ∆1
F /∆1

F \ {w},
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giving us the sequence of maps in H•(k), this gives us the sequence of maps

Σs Spec F+
πw−−→ ∆1

F /∆1
F \ {w}

p−1
w−−→ ∆1

F (w)/∆1
F (w) \ {w}

Xw−−→ Σsw+ ∧Gm

with Xw an isomorphism. We let

MVw : ∆1
F /∆1

F \ {w} → Σsw+ ∧Gm

denote the isomorphism Xw ◦ p−1
w , and we write

(w) : Spec F+ → w+ ∧Gm

for the map (in SHS1) Σ−1(MVw ◦ πw ◦ σ1
F ).

For α ∈ π0((ΩGmE)(w)), we let α′ : w+ ∧ Gm → E denote the corresponding
morphism in SHS1(k). Noting that ΩGmf1E ∼= f0ΩGmE ∼= ΩGmE, we let α′′ :
w+ ∧Gm → f1E denote the morphism corresponding to α′.

Lemma 4.1. Let E ∈ SptS1(k) be quasi-fibrant. Suppose Πa,∗E(F ) = 0 for all
a < 0 and for all finitely generated field extensions F of k. Let F be the perfect clo-
sure of a finitely generated field F0 over k. Then sending α ∈ π0((ΩGmf1E)(w))
to the composition α′′ ◦ (w):

Spec F+
Σ−1πw−−−−→ Σ−1∆1

F /∆1
F \ {w} Σ−1MVw−−−−−−→ w+ ∧Gm

α′′−→ f1E(w)

determines a surjection

ε̃−1 : ⊕w∈(∆1
F \∂∆1

F )(1)π0((ΩGmf1E)(w)) → π0(f1E(F )).

Proof. The edge homomorphism ε−1 of proposition 3.2 sends β ∈ π−1(Ew(∆1
F )

to the composition

ΣSpec F+
∼= ∆1

F /{(0, 1), (1, 0)} πw−−→ ∆1
F /∆1

F \ {w}
β′−→ ΣE

where β′ is the morphism given by the identity

π−1(Ew(∆1
F ) ∼= HomSHS1 (k)(∆

1
F /∆1

F \ {w},ΣE).

Applying Σ−1 and inserting id = MV −1
w ◦MVw, we may rewrite the above com-

position as

Spec F+
∼= Σ−1∆1

F /{(0, 1), (1, 0)} Σ−1πw−−−−→ Σ−1∆1
F /∆1

F \ {w}
MVw−−−→ w+ ∧Gm

Σ−1β′◦MV −1
w−−−−−−−−−→ E
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By the universal property of f1E → E, we may factor the map Σ−1β′ ◦MV −1
w

uniquely as

w+ ∧Gm
α′−→ f1E → E

giving us the corresponding element α ∈ π0((ΩGmf1E)(w)). It is easy to check
that for α ∈ π0((ΩGmf1E)(w)) corresponding to β ∈ π−1(Ew(∆1

F ), we have

ε−1(β) = ε̃−1(α),

Clearly we may reverse this process. ¤

We extend this description of the generators for π0(f1E) to π0(fnE) be a simple
induction. Let U ⊂ X and V ⊂ Y be open subschemes of smooth schemes X, Y

over k. We have a canonical isomorphism in HNis• (k),

(4.3) αX,Y ;U,V : X ×k Y/U × Y ∪X × V → (X/U) ∧ (Y/V ),

induced by the Mayer-Vietoris isomorphism

U × Y ∪X × V ∼= U × Y qU×V X × V.

Applying this to an F -point w = (w1, . . . , wn) ∈ (∆1
F \ ∂∆1

F )n gives us the
isomorphism

(∆1
F \ ∂∆1

F )n/
(
(∆1

F \ ∂∆1
F )n \ {w})

Xw:=(Xw1 ,...,Xwn )−−−−−−−−−−−−→ Spec F+ ∧ (ΣGm)∧n ∼= Σn Spec F+ ∧G∧n
m .

As in the case n = 1, for a closed point w of ((∆1
F \ ∂∆1

F )n, separable over F ,
we have the Nisnevich excision isomorphism

pw : (∆1
F (w) \ ∂∆1

F (w))
n/

(
(∆1

F (w) \ ∂∆1
F (w))

n \ {w}
)

→ (∆1
F \ ∂∆1

F )n/
(
(∆1

F \ ∂∆1
F )n \ {w}) ,

giving us the isomorphism in H•(k)

MVw : (∆1
F \ ∂∆1

F )n/
(
(∆1

F \ ∂∆1
F )n \ {w}) → w+ ∧ ΣnG∧n

m ;

MVw := Xw ◦ p−1
w .
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This gives us the sequence of morphisms in H•(k)

Σn
s Spec F+

σn
F

∼
// Spec F+ ∧ (∆1/∂∆1)∧n

πw−−→ (∆1
F )n/

(
(∆1

F )n \ {w}) MVw

∼
// w+ ∧ ΣnG∧n

m

with σn
F and MVw isomorphisms and πw the quotient map.

As above, we let

(w) : Spec F+ → w+ ∧G∧n
m

be the shifted composition Σ−n(MVw ◦ πw ◦ σn
F ) in SHS1(k).

For α ∈ π0((Ωn
Gm

E)(w)), we let α′ : w+ ∧G∧n
m → E denote the corresponding

morphism in SHS1(k). We note that

Ωn
Gm

fnE ∼= f0Ωn
Gm

E = Ωn
Gm

E;

for α ∈ π0((Ωn
Gm

E)(w)) we write α′′ : w+ ∧ G∧n
m → fnE for the morphism

corresponding to α′ : w+ ∧G∧n
m → E.

Proposition 4.2. Let E ∈ SptS1(k) be quasi-fibrant. Suppose Πa,∗E(F ) = 0 for
all a < 0 and for all finitely generated field extensions F of k. Let F be the perfect
closure of a finitely generated field F0 over k. Then sending α ∈ π0((Ωn

Gm
E)(w)),

w a closed point of (∆1
F \ ∂∆1

F )n, to the composition α′′ ◦ (w),

Spec F+
Σ−nπw◦σn

F−−−−−−−→ Σ−n∆1
F /

(
(∆1

F )n \ {w}) Σ−nMVw−−−−−−→ w+ ∧G∧n
m

α′′−→ fnE(w)

determines a surjection

ε̃−n : ⊕w∈(∆1
F \∂∆1

F )n)(n)π0((Ωn
Gm

E)(w)) → π0(fnE(F )).

Proof. We proceed by induction on n, the case n = 1 being lemma 4.1. So,
take n > 1 and assume the result is true for n = 1 and for n − 1. Since
f1fn

∼= fn, we have generators for π0(fnE)(F ) of the form ε̃−1(α), with α ∈
π0((ΩGmf1(fnE))(wn)), and wn a closed point of ∆1

F \ ∂∆1
F . But we have the

isomorphism

σ : ΩGmf1(fnE) → ΩGmfnE → fn−1ΩGmE

so by induction we can write σ◦α as a sum of elements of the form ε̃−(n−1)(β), with
β ∈ π0((Ωn−1

Gm
E)((w1, . . . , wn−1)), (w1, . . . , wn−1) a closed point of (∆1

(F (wn) \



1562 Marc Levine

∂∆1
F (wn))

n−1. Thus, π0(fnE)(F ) is generated by compositions in the diagram

Spec F+

(wn)
// wn

+ ∧Gm
α

//

(w1,...,wn−1)∧idGm
²²

fnE

Spec F (wn)(w1, . . . , wn−1)+ ∧G∧n−1
m ∧Gm

(σ−1β)′′

44jjjjjjjjjjjjjjjjjj

We have the canonical k-isomorphism

i : (w1, . . . , wn−1, wn) → Spec F (wn)(w1, . . . , wn−1),

so we can fill in this diagram to give the commutative diagram

Spec F+

(wn)
//

(w1,...,wn)
²²

wn
+ ∧Gm

α
//

(w1,...,wn−1)∧idGm
²²

fnE

(w1, . . . , wn)+ ∧G∧n
m i∧id

// Spec F (wn)(w1, . . . , wn−1)+ ∧G∧n−1
m ∧Gm.

(σ−1β)′′

44jjjjjjjjjjjjjjjjjjj

This expresses ε̃−1(α) as a sum of elements of the form γ′′ ◦ (w1, . . . , wn), with
γ ∈ π0((Ωn

Gm
E)(w1, . . . , wn)), and (w1, . . . , wn) a closed point of (∆1

F \ ∂∆1
F )n,

as desired. ¤

Composing the map ε̃−n with the canonical map f̃nE → E yields our descrip-
tion of generators for Fn

Tateπ0E(F ).

Proposition 4.3. Let F be a perfect field extension of k and let E ∈ SptS1(k)
be quasi-fibrant.

1. Let w be a closed point of (∆1
F \ ∂∆1

F )n, and take αw ∈ π0(Ωn
Gm

E(w)). Then
α′w ◦ (w) is in Fn

Tateπ0E(F ).

2. Suppose that Πa,∗E = 0 for all a < 0. Then Fn
Tateπ0E(F ) is generated by

elements of the form α′w ◦ (w), αw ∈ π0(Ωn
Gm

E(w)), as w runs over closed points
of (∆1

F \ ∂∆1
F )n.
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5. Transfers and P1-suspension

We define a transfer map adapted to our situation. The contractibility of A1

gives the isomorphism in H•(k)

A1/A1 \ {0} ∼= ΣsGm;

putting this together with the isomorphisms (4.3) gives us inductively the iso-
morphism

α̃n : An/An \ {0} → (ΣsGm)∧n.

Combining with the “shuffle” isomorphism (ΣsGm)∧n → Σn
sG∧n

m defines the iso-
morphism

αn : An/An \ {0} → Σn
sG∧n

m

in H•(k); for U ∈ Sm/k, this gives us

αn,U : An
U/An

U \ {0U} → Σn
sG∧n

m ∧ U+

via the canonical isomorphism An
U/An

U \ {0U} ∼= An/An \ {0} ∧ U+. For F a
finitely generated field extension of k, this yields the isomorphism

αn,F : An
F /An

F \ {0F } → Σn
sG∧n

m ∧ Spec F+

in H•(k).

Let F be a finitely generated field extension of k, and w ∈ An
F a closed point,

with F (w) separable over F . The maps idw, iw : w → An
F induce the canonical

point ĩw : w → An
F (w). We let

p : An
F (w) → An

F

be the projection. We let
Tw : An

F (w) → An
F (w)

denote translation by w.

We define an isomorphism

(5.1) αw : An
F /An

F \ w → Σn
sG∧n

m ∧ w+

as the composition

An
F /An

F \ w ∼
p

oo An
F (w)/A

n
F \ ĩw(w)

T−w−−−→ An
F (w)/A

n
F (w) \ 0

αn,F−−−→ Σn
sG∧n

m ∧ w+.

Here p : An
F (w)/A

n
F \ ĩw(w) → An

F /An
F \w is an isomorphism by Nisnevich excision.
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Let j : An → Pn be the standard open immersion identifying An with the open
subscheme X0 6= 0, and let H ⊂ Pn be the complement X0 = 0. We note that
the quotient map

π′0 : Pn/H → Pn/Pn \ 0

is an isomorphism in H•(k), as the linear projection from 0 makes Pn \ 0 → H

an A1-bundle. The transfer map

TrF (w) : Σn
sG∧n

m ∧ Spec F+ → Σn
sG∧n

m ∧ w+

is defined as the composition

Σn
sG∧n

m ∧ Spec F+ ∼
α0

oo An
F /An

F \ 0

∼
j

// Pn
F /Pn

F \ 0

∼
π′0

oo Pn
F /HF

π′w
// Pn

F /Pn
F \ w

∼
j

oo An
F /An

F \ w

∼
αw

// Σn
sG∧n

m ∧ w+,

with π′w the quotient map. We let βn
F denote the isomorphism

α0 ◦ j ◦ π′0 : Σn
sG∧n

m ∧ Spec F+ → Pn
F /HF .

in H•(k), and let MV ′
w : Pn

F /Pn
F \ w → Σn

sG∧n
m ∧ w+ denote the isomorphism

αw ◦ j : Pn
F /Pn

F \ w → Σn
sG∧n

m ∧ w+

in H•(k).

For w an F -rational point of An
F , the projection to SpecF defines a canonical

isomorphism q : w → Spec F .

Lemma 5.1. For w ∈ An(F ), the map

(id ∧ q) ◦ TrF (w) : Σn
sG∧n

m ∧ Spec F+ → Σn
sG∧n

m ∧ Spec F+

is the identity.
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Proof. For w = 0, this follows directly from the definition. In general, the trans-
lation map Tw, extends canonically to the morphism T̄w : (Pn,H) → (Pn,H),
and it suffices to show that T̄w : Pn

F /HF → Pn
F /HF is the identity in H•(k). This

follows from the fact that we may form the A1 family of morphisms T̄w(t) := T̄t·w,
with T̄w(0) = id, T̄w(1) = T̄w. ¤

6. Computing the collapse map

In this section we consider the “Pontryagin-Thom collapse map” (4.2)

PTF (w) := MVw ◦ πw ◦ σn
F : Σn

s Spec F+ → w+ ∧ Σn
sG∧n

m ,

defined in section 4 for w a closed point of (∆1
F \ ∂∆1

F )n, separable over F . We
first consider the case of an F -rational point, and n = 1.

For w ∈ F×, we have the corresponding morphism w : Spec F → A1 \ {0} and
the map (id, w) : Spec F → Spec F ×k A1 \ {0}. This latter map induces the
morphism

[w] : Spec F+ → Spec F+ ∧Gm

in H•(k).

Lemma 6.1. For w = (w0, w1) an F -point of ∆1 \ ∂∆1, we have

PTF (w) = Σs[−w1/w0].

Proof. The coboundary maps δ0, δ1 : ∗ = Spec k → ∆1 have

δ0(∗) = (0, 1), δ1(∗) = (1, 0)

so the canonical isomorphism σ1
F : Σs Spec F+ → Spec F+ ∧∆1/∂∆1 is induced

by an isomorphism

([0, 1], 0, 1) → (∆1, (0, 1), (1, 0))

in H•(k). Referring to the diagram (4.1), we see that the composition (4.2) is
equal to the suspension of the map

[−w1/w0] : Spec F+ → Spec F+ ∧Gm,

as claimed. ¤

This extends easily to the n-variable case.
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Proposition 6.2. Let w = (w1, . . . , wn) be an F -point of (∆1 \ ∂∆1)n, with
wi = (wi

0, w
i
1). Suppose that F (w) is separable over F . Then

PTF (w) = Σn
s ([−w1

1/w1
0] ∧F . . . ∧F [−wn

1 /wn
0 ]).

Here, the iterated ∧F means the composition of the smash product of the maps
[−w1

1/w1
0]∧ . . .∧ [−wn

1 /wn
0 ] with the diagonal Spec F+ → Spec F+∧ . . .∧Spec F+.

Proof. Since w is F -rational, MVw = Xw. By construction of the maps Xw and
σn

F , we have

MVw ◦ πw ◦ σn
F = (MVw1 ◦ πw1 ◦ σ1

F ) ∧F . . . ∧F (MVwn ◦ πwn ◦ σ1
F ).

Thus, the result follows directly from lemma 6.1. ¤

For w ∈ (∆1
F \∂∆1

F )n, separable over F , there is in general no nice formula for
the composition MVw ◦ πw ◦ σn

F , however, using the construction of transfers in
section 5, we have a suitable extension of our computation.

To simplify the notation, we write Sa+b,b for Σa
sG∧b

m , so for instance S2n,n =
Σn

sG∧n
m , Sn,0 = Σn

s Spec k+ = Sn.

Let ρ1 : ∆1 \ ∂∆1 → A1 be the open immersion

ρ1(t0, t1) = − t1
t0

,

identifying ∆1 \ ∂∆1 with A1 \ {0, 1}. Taking the n-fold product of the ρ1 gives
us the open immersion

ρn : (∆1 \ ∂∆1)n → An.

Proposition 6.3. Let w = (w1, . . . , wn) be a closed point of (∆1
F \ ∂∆1

F )n, sep-
arable over F . Write wi = (wi

0, w
i
1). Then the S2n,n-suspension of PTF (w):

idS2n,n ∧ PTF (w) : S2n,n ∧ Spec F+ ∧ Sn,0 → S2n,n ∧ w+ ∧ S2n,n

is equal to the map

Σn
s

(
(idS2n,n ∧ [−w1

1/w1
0] ∧F (w) . . . ∧F (w) [−wn

1 /wn
0 ]) ◦ TrF (ρn(w))

)
.

Proof. Write ∗F for Spec F and w′ for ρn(w). We identify the points w and w′

by the isomorphism ρ, but avoid writing in the ρ to simplify the notation. We
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have the commutative diagram

S2n,n ∧ ∗F+ ∧ Sn,0

βn
k∧id∧σn

k

²²

TrF (w′)∧id
// S2n,n ∧ w+ ∧ Sn,0

id∧σn
k

²²

Pn/H ∧ ∗F+ ∧ (∆1/∂∆1)∧n

id∧πw

²²

πw′∧id

**UUUUUUUUUUUUUUUU
S2n,n ∧ w+ ∧ (∆1/∂∆1)∧n

id∧πw

¨¨

Pn/(Pn \ w′) ∧ (∆1/∂∆1)∧n

id∧πw

²²

MV ′
w′∧id

55kkkkkkkkkkkkkkk

Pn/H ∧ (∆1
F )n/

(
(∆1

F )n \ w
) π′

w′∧id
//

id∧MVw

²²

Pn/(Pn \ w′) ∧ (∆1
F )n/

(
(∆1

F )n \ w
)

MV ′
w′∧id ))SSSSSSSSSSSSSS

id∧MVw

²²

Pn/H ∧ w+ ∧ S2n,n

π′
w′∧id **UUUUUUUUUUUUUUUU

(βn
k )−1∧id

²²

S2n,n ∧ w+ ∧ (∆1
F )n/

(
(∆1

F )n \ w
)

id∧MVw

²²

Pn/(Pn \ w′) ∧ w+ ∧ S2n,n

MV ′
w′∧id

))SSSSSSSSSSSSSSS

S2n,n ∧ w+ ∧ S2n,n S2n,n ∧ w+ ∧ S2n,n

the commutativity follows either by definition of TrF (w), or by identities of the
form (a ∧ 1) ◦ (1 ∧ b) = (1 ∧ b) ◦ (a ∧ 1), or (in the bottom square) lemma 5.1.
The composition along the left-hand side is idS2n,n ∧ PTF (w); along the right-
hand side we have idS2n,n ∧PTF (w)(w)]. Since w is F (w)-rational, we may apply
proposition 6.2 to complete the proof. ¤

7. Conclusion

We can now put all the pieces together. For E ∈ SptS1(k) fibrant, we have
the associated fibrant object Ωn

T E := HomSpt(k)(S2n,n, E), that is, Ωn
T E is the

presheaf (Ωn
T E)(X) := E(X+ ∧ S2n,n). For each n ≥ 1, we have the canonical

map
ιn : E → Ωn

T Σn
T E.

Replacing S2n,n with Sn,n = G∧n
m , we have the fibrant object

Ωn
Gm

E := HomSpt(k)(S
n,n, E),
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defined as the presheaf (Ωn
Gm

E)(X) := E(X+ ∧G∧n
m ).

Let Vn denote the product (∆1 \ ∂∆1)n. Recall the open immersion

ρn : Vn → An

identifying Vn with (A1 \ {0, 1})n ⊂ An. As before, we denote ρn(w) by w′ and
identify w and w′ via ρn.

Given a closed point w ∈ VnF , we define the map

TrF (w)∗ : πm(Ωn
T E(w)) → πm(Ωn

T E(F ))

as the composition

πm(Ωn
T E(w)) = HomSHS1 (k)(Σ

∞
s (S2n,n ∧ w+),Σ−m

s E)

Σ∞s (TrF (w′)))∗−−−−−−−−−−→ HomSHS1 (k)(Σ
∞
s (S2n,n ∧ Spec F+),Σ−m

s E)

= πm(Ωn
T E(F )).

Definition 7.1. Take E ∈ SHS1(k) and let n ≥ 1 be an integer. An n-fold
T -delooping of E is an an object ω−n

T E of SHS1(k) and an isomorphism ιn : E →
Ωn

T ω−n
T E in SHS1(k).

Given an n-fold T -delooping of E, ιn : E → Ωn
T ω−n

T E, the map TrF (w)∗ for
Ωn

T ω−n
T E induces the “transfer map”

ι−1
n ◦ TrF (w)∗ ◦ ιn : πm(E(w)) → πm(E(F )),

which we write simply as TrF (w)∗.

Remarks 7.2. 1. The transfer map TrF (w)∗ : πm(E(w)) → πm(E(F )) may pos-
sibly depend on the choice of n-fold T -delooping, we do not have an example,
however.

2. An n− b-fold T -delooping of E gives rise to an n-fold T -delooping of Ωb
Gm

E.
Thus, via the adjunction isomorphism

Πa,bE ∼= πaΩb
Gm

E

we have a transfer map

TrF (w)∗ : Πa,bE(w) → Πa,bE(F )
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for w a closed point of VnF , separable over F .

3. If E = Ω∞T E for some E ∈ SH(k), then E admits canonical n-fold T -deloopings,
namely

ω−n
T E := Ω∞T Σn

TE .

Indeed, in SH(k), ΣT is the inverse to ΩT and Ω∞T commutes with ΩT .

For a morphism ϕ : Σ∞s w+ → E, we have the suspension Σn
T ϕ : Σn

T Σ∞s w+ →
Σn

T E, the composition

Σn
T ϕ ◦ Σ∞s TrF (w)∗ : Σn

T Σ∞s Spec F+ → Σn
T E

and the adjoint morphism

(Σn
T ϕ ◦ Σ∞s TrF (w)∗)′ : Σ∞s Spec F+ → Ωn

T Σn
T E.

Suppose we have an n-fold de-looping of E, ιn : E → Ωn
T ω−n

T E. This gives us
the adjoint

ι′n : Σn
T E → ω−n

T E

and

Ωn
T ι′n : Ωn

T Σn
T E → Ωn

T ω−n
T E.

Let δn : E → Ωn
T Σn

T E be the unit for the adjunction.

Lemma 7.3. 1. ιn = Ωn
T ι′n ◦ δn

2. ι−1
n ◦ Ωn

T ι′n ◦ (Σn
T ϕ ◦ Σ∞s TrF (w))′ = TrF (w)∗(ϕ).

Proof. The two assertions follow from the universal property of adjunction. ¤

Before proving our main results, we show that the transfer maps respect the
Postnikov filtration F ∗

TateπmE.

Lemma 7.4. Suppose E admits an n-fold T -delooping ιn : E → Ωn
T ω−n

T E. Then
for each finitely generated field F over k and each closed point w ∈ An

F separable
over F , we have

TrF (w)∗(F q
TateπmE(w)) ⊂ F q

TateπmE(F ).
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Proof. Take q ≥ 0, and let τq : fqE → E be the canonical morphism. As above,
let ι′n : Σn

T E → ω−n
T E be the adjoint of ιn and let δn : E → Ωn

T Σn
T E be the unit

of the adjunction. By lemma 7.3, we have the factorization of ιn as

E
δn−→ Ωn

T Σn
T E

Ωn
T ι′n−−−→ Ωn

T ω−n
T E.

This gives us the commutative diagram

fqE

δn

²²

τq
// E

ιn
²²

Ωn
T Σn

T fqE
τ ′q

// Ωn
T ω−n

T E,

where τ ′q := Ωn
T ι′n ◦ Ωn

T Σn
T τq. Since ιn : E → Ωn

T ω−n
T E is an isomorphism, the

composition

ιn ◦ τq : fqE → Ωn
T ω−n

T E

satisfies the universal property of fqΩn
T ω−n

T E → Ωn
T ω−n

T E. By [6, theorem 7.4.1],
Ωn

T Σn
T fqE is in Σq

TSHS1(k), hence there is a canonical morphism

θ : Ωn
T Σn

T fqE → fqE

extending our first diagram to the commutative diagram

fqE

ιn

²²

τq
// E

ιn
²²

Ωn
T Σn

T fqE
τ ′q

//

θ

OO

Ωn
T ω−n

T E.

ι−1
n

OO

Using the universal property of τq, we see that θ ◦ ιn = idfqE , i.e.,

Ωn
T Σn

T fqE = fqE ⊕R

and the restriction of τ ′q to R is the zero map. We define the transfer map

TrF (w)∗ : πmfqE(w) → πmfqE(F )

by using the transfer map for Ωn
T Σn

T fqE and this splitting.
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The second diagram thus gives rise to the commutative diagram

πmfqE(w)

TrF (w)∗

²²

τq
// πmE(w)

TrF (w)∗

²²

πmfqE(F )
τq

// πmE(F ),

which yields the result. ¤

Remark 7.5. One can define transfer maps in a more general setting, that is, for
a closed point w ∈ An

F and any choice of parameters for mw ⊂ OAn,w. The same
proof as used for lemma 7.4 shows that these more general transfer maps respect
the filtration F ∗

TateπmE.

Theorem 7.6. Let E ∈ Spt(k) be fibrant, and let F be a field extensions of k.

1. For each w = (w1, . . . , wn) ∈ Vn(F ), wi = (wi
0, w

i
1), and each ρ ∈ π0Ωn

Gm
E(F ),

the element

ρ ◦ Σ∞s ([−w1
1/w1

0] ∧F . . . ∧F [−wn
1 /wn

0 ]) : Σ∞s Spec F+ → E

is in Fn
Tateπ0E(F ).

2. Suppose that E admits an n-fold T -delooping ιn : E → Ωn
T ω−n

T E. Then
forw = (w1, . . . , wn), wi = (wi

0, w
i
1), a closed point of VnF , separable over F , and

ρw ∈ π0Ωn
Gm

E(w)

(7.1) TrF (w)∗[ρw ◦ Σ∞s ([−w1
1/w1

0] ∧F . . . ∧F [−wn
1 /wn

0 ])]

is in Fn
Tateπ0E(F ).

3. Suppose that E admits an n-fold T -delooping ιn : E → Ωn
T ω−n

T E. and that
Πa,∗E = 0 for all a < 0. Suppose further that F is perfect. Then Fn

Tateπ0E(F ) is
generated by elements of the form (7.1), as w runs over closed point of VnF and
ρw over elements of π0Ωn

Gm
E(w).

Proof. (1) follows directly from proposition 4.3 and proposition 6.2.

For (2), the fact that this element is in Fn
Tateπ0(E(F )) follows from (1) and

lemma 7.4.
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For (3), that is, to see that these elements generate, take one of the generators
γ := α′w ◦ (w) of Fn

Tateπ0E(F ), as given by proposition 4.3. Here w is a closed
point of VnF , αw is in π0(Ωn

T E(w)) and α′ : w+ ∧ G∧n
m → E is the morphism in

SHS1(k) adjoint to α. Since F is perfect, w is separable over F . Take the n-fold
T -suspension of γ

Σn
T γ : Σ∞s (Σn

T Spec F+) → Σn
T E,

giving by adjunction and composition with Ωn
T (ι′n) the morphism

Ωn
T (ι′n) ◦ (Σn

T γ)′ : Σ∞s Spec F+ → Ωn
T ω−nE.

It follows from the universal properties of adjunction that

(Σn
T γ)′ = δn ◦ γ,

hence by lemma 7.3 we have

(7.2) Ωn
T (ι′n) ◦ (Σn

T γ)′ = Ωn
T (ι′n) ◦ δn ◦ γ = ιn ◦ γ.

Write

Σn
T γ = (Σn

T α′w) ◦ (Σ∞s Σn
T (w)).

By proposition 6.3 we have

Σn
T (w) =

(
Σn

T [−w1
1/w1

0] ∧F . . . ∧F [−wn
1 /wn

0 ] ◦ TrF (w)
)
,

and thus

Σn
T γ = Σn

T (α′w ◦ [−w1
1/w1

0] ∧F . . . ∧F [−wn
1 /wn

0 ]) ◦ TrF (w).

Using (7.2) and lemma 7.3, we have

ιn ◦ γ = Ωn
T (ι′n) ◦ (Σn

T γ)′

= Ωn
T (ι′n) ◦ [Σn

T (ξw ◦ Σn
s [−w1/w0] ∧F . . . ∧F [−wn/w0]) ◦ Σn

s TrF (w)]′

= ιn ◦ TrF (w)∗(α′w ◦ [−w1
1/w1

0] ∧F . . . ∧F [−wn
1 /wn

0 ]),

or

γ = TrF (w)∗[α′w ◦ Σ∞s ([−w1
1/w1

0] ∧F . . . ∧F [−wn
1 /wn

0 ])].

¤
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We now assume that E = Ω∞T E for some fibrant T -spectrum E ∈ SptT (k). Let
Sk denote the motivic sphere spectrum in SptT (k), that is, Sk is a fibrant model of
the suspension spectrum Σ∞T S0

k . We proceed to re-interpret theorem 7.6 in terms
of the canonical action of π0Ω∞T Sk(F ) on π0E(F ), which we now recall, along with
some of the fundamental computations of Morel relating the Grothendieck-Witt
group with endomorphisms of the motivic sphere spectrum.

We recall the Milnor-Witt sheaves of Morel, KMW
n (see [8, section 2] for de-

tails). The graded sheaf KMW
∗ := ⊕n∈ZKMW

n has structure of a Nisnevich sheaf
of associative graded rings. For a field F , the graded ring KMW∗ (F ) := KMW

∗ (F )
has generators [u] in degree 1, for u ∈ F×, and an additional generator η in degree
−1, with relations

• η[u] = [u]η
• [u][1− u] = 0 (Steinberg relation)
• [uv] = [u] + [v] + η[u][v]
• η(2 + η[−1]) = 0.

For u ∈ F×, let <u> denote the quadratic form uy2 in the Grothendieck-Witt
group GW(F ). Sending [u]η to <u> − 1 extends to an isomorphism [8, lemma
2.10]

ϑ0 : KMW
0 (F ) → GW(F ).

In addition, for n ≥ 1, the image of ×ηn : KMW
n (F ) → KMW

0 (F ) is an ideal
ηnKMW

n (F ) in KMW
0 (F ) and ϑ0 maps ηnKMW

n (F ) isomorphically onto the ideal
I(F )n, where I(F ) ⊂ GW(F ) is the augmentation ideal of quadratic forms of
virtual rank zero.

For each u ∈ F×, we have the corresponding morphism

[u] : Spec F+ → Gm

We have as well the canonical projection η′ : A2 \{0} → P1. Using a construction
similar to the one we used to show that P2/H ∼= Σ2

sG∧2
m , one constructs a canonical

isomorphism in H•(k), (A2 \ {0}, 1) ∼= Σ1
sG∧2

m , and thus η′ yields the morphism

η : Σ1
sG∧2

m → Σ1
sGm

in H•(k).



1574 Marc Levine

For E, F ∈ SptS1(k), let Hom(E, F ) denote the Nisnevich sheaf associated to
the presheaf

U 7→ HomSHS1 (k)(U+ ∧ E, F ).

We have the fundamental theorem of Morel:

Theorem 7.7 ([8, corollary 3.43]). Suppose char k 6= 2. Let m, p, q ≥ 0, n ≥ 2
be integers. Then sending [u] ∈ KMW

1 (F ) to the morphism [u] and sending
η ∈ KMW

−1 (F ) to the morphism η yields isomorphisms

HomH•(k)(Spec F+ ∧ Sm ∧G∧p
m , Sn ∧G∧q

m ) ∼=




0 if m < n

KMW
q−p (F ) if m = n and q > 0.

As we will be relying on Morel’s theorem, we assume for the rest of the paper
that the characteristic of k is different from two.

Passing to the S1-stabilization, theorem 7.7 gives

Π0,pΣ∞s G∧q
m = KMW

q−p for p ≥ 0, q ≥ 1,(7.3)

Πa,pΣ∞s G∧q
m = 0 for p ≥ 0, q ≥ 1, a < 0.

Passing to the T -stable setting, Morel’s theorem gives

πp,pΣ
q
Gm
Sk
∼= KMW

q−p for p, q ∈ Z(7.4)

πa+p,pΣ
q
Gm
Sk = 0 for p, q ∈ Z, a < 0.

Composition of morphisms gives us the (right) action of the bi-graded sheaf
of rings π∗,∗Sk on π∗,∗E for each T -spectrum E , and thus, the action of KMW

−∗ on
π∗,∗E . If we let E be the S1-spectrum Ω∞T E , then Πa,bE = πa+b,bE for all b ≥ 0.
Thus, via lemma 2.2(2) we thus have the right multiplication

Πa,b−mE ⊗KMW
−m → Πa,bE.

Let I ⊂ KMW
0 be the sheaf of augmentation ideals. The KMW

−∗ -module struc-
ture on Πa,∗E gives us the filtration Fn

MW Πa,bE of Πa,bE, defined by

Fn
MW Πa,bE := im[Πa,nE ⊗KMW

n−b → Πa,bE]; n ≥ 0.
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Lemma 7.8. Suppose E = Ω∞T E for some E ∈ SH(k). For integers n, b, p ≥ 0,
with n− p, b− p ≥ 0, the adjunction isomorphism Πa,bE ∼= Πa,b−pΩ

p
Gm

E induces
an isomorphism

Fn
MW Πa,bE ∼= Fn−p

MW Πa,b−pΩ
p
Gm

E.

Proof. This follows easily from the fact that the adjunction isomorphism

Πa,∗E ∼= Πa,∗−pΩ
p
Gm

E

is a KMW
∗ -module isomorphism. ¤

Definition 7.9. Let E = Ω∞T E for some E ∈ SH(k), F a field extension of k.
Take integers a, b, n with n, b ≥ 0. Following remark 7.2(2), we have the transfer
maps

TrF (w) : Πa,bE(F (w)) → Πa,bE(F )

for each closed point w ∈ VnF , separable over F .

1. Let Fn
MW TrΠa,bE(F ) denote the subgroup of Πa,bE(F ) generated by elements

of the form
TrF (w)∗(x); x ∈ Fn

MW Πa,bE(F (w))

as w runs over closed points of An
F , separable over F .

2. Let [Πa,bE · In]Tr(F ) denote the subgroup of Πa,bE(F ) generated by elements
of the form

TrF (w)∗(x · y); x ∈ Πa,bE(F (w)), y ∈ I(F (w))n,

as w runs over closed points of An
F , separable over F .

Remark 7.10. It follows directly from the definitions that, for w a closed point of
VnF , x ∈ KMW

n−b (F ), y ∈ Πa,nE(F (w)), we have

TrF (w)∗(y · p∗x) = TrF (w)∗(y) · x,

where p∗x ∈ KMW
n−b (F (w)) is the extension of scalars of of x. In particular, [Πa,bE ·

In]Tr(F ) is a KMW
0 (F )-submodule of Πa,bE(F ) containing Πa,bE(F )I(F )n.

Theorem 7.11. Let k be a perfect field of characteristic 6= 2. Let E = Ω∞T E for
some E ∈ SH(k) with Πa,bE = 0 for all a < 0, b ≥ 0. Let n > p ≥ 0 be integers
and let F be a perfect field extension of k. Then

Fn
TateΠ0,pE(F ) = Fn

MW TrΠ0,pE(F ).
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For p ≥ n ≥ 0, we have the identity of sheaves Fn
TateΠ0,pE = Π0,pE.

Proof. First suppose n > p. By lemma 2.2 and lemma 7.8, we reduce to the case
p = 0.

The fact that we have an inclusion of KMW
0 (F )-submodules of Π0,0E(F ),

Fn
TateΠ0,0E(F ) ⊂ Fn

MW TrΠ0,0E(F ),

follows from theorem 7.6. Indeed, as F is perfect, each element of the form (7.1)
is of the form TrF (w)(ρw · z), with ρw ∈ Π0,nE(w), z ∈ KMW

n (F (w)), hence in
Fn

MW TrΠ0,0E(F ).

To show the other inclusion, it suffices by lemma 7.4 and theorem 7.6 to show
that, for each field K finitely generated over k, the elements [−u1

1/u1
0] · . . . ·

[−un
1/un

0 ], with (u1, . . . , un) ∈ Vn(K), ui = (ui
0, u

i
1), generate KMW

n (K) as a mod-
ule over KMW

0 (K). But this is clear, as KMW
n (K) is generated as a KMW

0 (K)-
module by elements [t1]·. . .·[tn], with ti ∈ K×. Taking ui

0 = (1−ti)−1, ui
1 = 1−ui

0,
gives this generator in the desired form.

If p ≥ n ≥ 0, the universal property of fnE → E gives us the isomorphism for
U ∈ Sm/k

HomSHS1 (k)(Σ
∞
s Σp

Gm
U+, E) ∼= HomSHS1 (k)(Σ

∞
s Σp

Gm
U+, fnE),

since Σ∞s Σp
Gm

U+ is in Σp
TSHS1(k) for U ∈ Sm/k. As these groups of morphisms

define the presheaves whose respective sheaves are Π0,pE(F ) and Π0,pfnE, the
map Π0,pfnE → Π0,pE is an isomorphism, hence Fn

TateΠ0,pE = Π0,pE. ¤

Remark 7.12. The reader may object that the collection of transfer maps used
to define Fn

MW TrΠ0,pE(F ) is rather artificial. However, the fact that the gen-
eral transfer maps mentioned in remark 7.5 respect the filtration F ∗

TateπmE, to-
gether with theorem 7.11, shows that, if we were to allow arbitrary transfer maps
in our definition of Fn

MW TrΠ0,pE(F ), we would arrive at the same subgroup of
Π0,mE(F ).

Our main result for a T -spectrum, theorem 3, follows easily from theorem 7.11:

Proof of theorem 3. Using lemma 2.2, we reduce to the case p = 0. Essentially
the same argument as used at the end of the proof of theorem 7.11 proves the
part of theorem 3 for n ≤ 0.



The Slice Filtration and Grothendieck-Witt Groups 1577

If n > 0, then for b ≥ 0, we have

πa,bE ∼= πa,bΩ∞T E (lemma 2.2)

πa,bfnE ∼= πa,bΩ∞T fnE ∼= πa,bfnΩ∞T E (lemma 2.2) and (2.1)

Thus, in case n > 0, theorem 3 for E is equivalent to theorem 7.11 for Ω∞T E ,
completing the proof. ¤

Finally, we can prove our main result for the motivic sphere spectrum, theo-
rem 1. Let E = Σq

Gm
Sk. Then Morel’s isomorphism (7.4) and lemma 2.2 give

Πa,bΩ∞T E =





KMW
q−b for a = 0, b ≥ 0

0 for a < 0, b ≥ 0.

Theorem 7.13. Let k be a perfect field of characteristic 6= 2.
1. For all n > p ≥ 0, q ∈ Z, and all perfect field extensions F of k, we have

Fn
TateΠ0,pΩ∞T Σq

Gm
Sk(F ) = KMW

q−p (F )I(F )N ⊂ KMW
q−p (F ),

where N = N(n− p, n− q) := max(0,min(n− p, n− q)). In particular,

Fn
Tateπ0,0Sk(F ) = I(F )n ⊂ GW(F ).

2. For n ≤ p, we have the identity of sheaves Fn
TateΠ0,pΩ∞T Σq

Gm
Sk = KMW

q−p .

3. In case k has characteristic zero, we have the identity of sheaves

Fn
TateΠ0,pΩ∞T Σq

Gm
Sk = KMW

q−p IN ⊂ KMW
q−p .

with N as above.

Proof. Let N be as defined in the statement of the theorem. We first note (3)
follows from (1), in fact, from (1) for all fields extensions F finitely generated
over k. Indeed, Fn

TateΠ0,pΩ∞T Σq
Gm
Sk is the image of the map

Π0,pfnΩ∞T Σq
Gm
Sk → Π0,pΩ∞T Σq

Gm
Sk

induced by the canonical morphism fnΩ∞T Σq
Gm
Sk → Ω∞T Σq

Gm
Sk. By results of

Morel [9, theorem 3 and lemma 5], both homotopy sheaves are strictly A1-
invariant sheaves of abelian groups. But the category of strictly A1-invariant
sheaves of abelian groups is abelian [9, lemma 6.2.13], hence Fn

TateΠ0,pΩ∞T Σq
Gm
Sk

is also strictly A1-invariant. It follows, e.g., from Morel’s isomorphism

π0Ω∞T Σm
Gm
S ∼= π−m,−mS ∼= KMW

m
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that the sheaves KMW
m are strictly A1-invariant; as KMW

q−p IN is the image of the
map

×ηM :KMW
q−p+M → KMW

q−p ,

where M = N if q − p ≥ 0, M = p− q + N if q − p < 0, it follows that KMW
q−p IN

is strictly A1-invariant as well. Our assertion follows from the fact that a strictly
A1-invariant sheaf F is zero if and only F(k(X)) = 0 for all X ∈ Sm/k, which
in turn is an easy consequence of [11, lemma 3.3.6].

Next, suppose n− p ≤ 0. Then N = 0 and

Fn
TateΠ0,pΩ∞T Σq

Gm
Sk = Fn−p

TateΠ0,0Ω
p
Gm

Ω∞T Σq
Gm
Sk (lemma 2.2)

= Π0,0Ω
p
Gm

Ω∞T Σq
Gm
Sk (n− p < 0)

= Π0,pΩ∞T Σq
Gm
Sk (adjunction)

= KMW
q−p (Morel’s theorem)

proving (2); we may thus assume n− p > 0.

By (7.4), we may apply theorem 7.11, which tells us Fn
TateΠ0,pΩ∞T Σq

Gm
Sk(F )

is the subgroup of Π0,pΩ∞T Σq
Gm
Sk(F ) = KMW

q−p (F ) generated by elements of the
form TrF (w)∗(y · x) with

y ∈ Π0,nΩ∞T Σq
Gm
Sk(F (w)) = KMW

q−n (F (w))

x ∈ KMW
n−p (F (w)).

Suppose that n − q < 0, so N = 0. Then q − n ≥ 0 and n − p > 0, and thus
the product map

µn−p,q−n : KMW
n−p (F (w))⊗KMW

q−n (F (w)) → KMW
q−p (F (w)) = Π0,pΩ∞T Σq

Gm
Sk(F (w))

is surjective. Since the map TrF (w) is an isomorphism for w ∈ Vn(F ), we see
that

Fn
TateΠ0,pΩ∞T Σq

Gm
Sk(F ) = Π0,pΩ∞T Σq

Gm
Sk(F ).

Suppose n− q ≥ 0. Then

×ηn−q : KMW
0 (F (w)) → KMW

q−n (F (w))

is surjective. If n − p ≥ n − q, then the image of µn−p,q−n is the same as the
image of the triple product

KMW
q−p (F (w))⊗KMW

n−q (F (w))⊗KMW
q−n (F (w)) → KMW

q−p (F (w));
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as the image of

µn−q,q−n : KMW
n−q (F (w))⊗KMW

q−n (F (w)) → KMW
0 (F (w))

is I(F (w))n−q, we see that the image of µn−p,q−n is KMW
q−p (F (w))I(F (w))n−q and

thus
Fn

TateΠ0,pΩ∞T Σq
Gm
Sk(F ) = [Π0,pΩ∞T Σq

Gm
SkIN ]Tr(F ).

Similarly, if n− q ≥ n− p, then the image of µn−p,q−n is the same as the image
of the triple product

KMW
q−p (F (w))⊗KMW

n−p (F (w))⊗KMW
p−n (F (w)) → KMW

q−p (F (w))

which is KMW
q−p (F (w))I(F (w))n−p. Thus

Fn
TateΠ0,pΩ∞T Σq

Gm
Sk(F ) = [Π0,pΩ∞T Σq

Gm
SkIN ]Tr(F )

in this case as well.

Thus, to complete the proof, it suffices to show that, for w a closed point of
VnF , and N ≥ 0 an integer, we have

(7.5) TrF (w)∗
(
KMW

q−p (F (w))I(F (w))N
) ⊂ KMW

q−p (F )I(F )N .

First suppose that q − p ≥ 0. Take a closed point w ∈ VnF and elements
x1, . . . , xN ∈ F (w)×, y ∈ KMW

q−p (F (w)). We have

TrF (w)∗(y · [x1]η · . . . · [xN ]η) = TrF (w)∗(y · [x1] · . . . · [xN ]ηN )

= TrF (w)∗(y · [x1] · . . . · [xN ]) · ηN .

where we use remark 7.10 in the last line. Since q−p ≥ 0, KMW
q−p (F )I(F )N is the

image in KMW
q−p (F ) of the map

−× ηN : KMW
q−p+N (F ) → KMW

q−p (F ),

which verifies (7.5).

In case q − p < 0, write y = y0η
p−q, with y0 ∈ KMW

0 (F (w)). As above, we
have

TrF (w)∗(y · [x1]η · . . . · [xN ]η) = TrF (w)∗(y0 · [x1] · . . . · [xN ]) · ηp−q+N ,

which is in ηp−q · [KMW
N (F )ηN ] = KMW

q−p (F )I(F )N , as desired. ¤

Theorem 7.13 yields the main result for the S1-spectra Σ∞s G
∧q
m by using the

S1-stable consequences of Morel’s unstable computations, theorem 7.7.
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Corollary 7.14. Let k be a perfect field of characteristic 6= 2.
1. For all n > p ≥ 0, q ≥ 1, and all perfect field extensions F of k, we have

Fn
TateΠ0,pΣ∞s G∧q

m (F ) = KMW
q−p (F )I(F )N(n−p,n−q) ⊂ KMW

q−p (F ),

with N(n− p, n− q) as in theorem 7.13.

2. For n ≤ p, we have Fn
TateΠ0,pΣ∞s G

∧q
m = Π0,pΣ∞s G

∧q
m .

3. If char k = 0, we have the identity of sheaves

Fn
TateΠ0,pΣ∞s G∧q

m = KMW
q−p IN(n−p,n−q) ⊂ KMW

q−p .

Proof. As in the proof of theorem 7.13, it suffices to prove (1).

The main point is that Morel’s unstable computations show that the Gm-
stabilization map

HomSHS1 (k)(Σ
m
s Σ∞s G∧p

m ∧ Spec F+,Σ∞s G∧q
m )

→ HomSHS1 (k)(Σ
m
s Σ∞s G∧p+1

m ∧ Spec F+,Σ∞s G∧q+1
m )

is an isomorphism for all m ≤ 0, p ≥ 0 and q ≥ 1.

Let E(p, q) = Ωp
Gm

Σ∞s G
∧q
m , and let

E(q − p) = Ω∞T Σ−p
Gm

Σ∞T G∧q
m = Ω∞T Σq−p

Gm
Sk.

Then

πaE(p, q) = Πa,pΣ∞s G∧q
m .

Thus Πa,∗E(p, q) = 0 for m < 0 and so we may apply proposition 4.3 to give
generators of the form ξw ◦ Σ∞s QF (w) for

Fn−p
TateΠ0,0Ω

p
Gm

Σ∞s G∧q
m (F ) = Fn

TateΠ0,pΣ∞s G∧q
m (F ).

But ξw is in

π−n+pΩ
n−p
T E(p, q)(w) = π0,n−pE(p, q)(w).

Similarly, we have generators ξ′w ◦ Σ∞s QF (w) for Fn−p
Tateπ0E(p− q)(F ), with

ξ′w ∈ π0,n−pE(p− q)(w).

But the stabilization map

π0,n−pE(p, q)(w) → π0,n−pE(p + 1, q + 1)(w)
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is an isomorphism, and hence we have an isomorphism from the generators for
Fn−p

Tateπ0E(p, q)(F ) to the generators for

Fn−p
Tateπ0E(q − p)(F ) = lim−→

m

Fn−p
Tateπ0E(p + m, q + m)(F ).

As the map

π0E(p, q)(F ) → π0E(q − p)(F ) = KMW
q−p (F )

is an isomorphism, it follows that the surjection

Fn−p
Tateπ0E(q − p)(F ) → Fn−p

Tateπ0E(q − p).

is an isomorphism as well. By theorem 7.13, we have

Fn−p
Tateπ0E(q − p) = KMW

q−p (F )I(F )N ⊂ KMW
q−p (F ),

completing the proof. ¤

Theorem 7.13 also gives us the T -stable version

Corollary 7.15. Let k be a perfect field of characteristic 6= 2. For n, p, q ∈ Z,
and F a perfect field extensions of k, we have

Fn
Tateπp,pΣ

q
Gm
Sk(F ) = KMW

q−p (F )I(F )N(n−p,n−q) ⊂ KMW
q−p (F )

For n ≤ p, we have Fn
Tateπp,pΣ

q
Gm
Sk = KMW

q−p . If char k = 0, we have

Fn
Tateπp,pΣ

q
Gm
Sk = KMW

q−p IN(n−p,n−q) ⊂ KMW
q−p .

Proof. Using lemma 2.2 and lemma 7.8 as in the proof of theorem 7.11 we have

Fn
Tateπp,pΣ

q
Gm
Sk = Fn−p+r

Tate πr,rΣ
q−p+r
Gm

Sk

for all integers r. As our assertion is also stable under this shift operation, we
may assume that p, q ≥ 0. We note that Sk is in SHeff (k), hence so are all
Σq
Gm
Sk for q ≥ 0, and thus

Fn
Tateπp,pΣ

q
Gm
Sk = πp,pΣ

q
Gm
Sk

for n < 0, p, q ≥ 0. The truncation functors fn, n ≥ 0, on SH(k) and SHS1(k)
commute with Ω∞T , and πa,pΩ∞T E = πa,pE for E ∈ SH(k), p ≥ 0. This reduces
us to computing computing Fn

Tateπp,pΩ∞T Σq
Gm
Sk for n, p, q ≥ 0, which is theo-

rem 7.13. ¤
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8. Epilog: Convergence questions

Voevodsky has stated a conjecture [14, conjecture 13] that would imply that for
E = Σ∞T X+, X ∈ Sm/k, the Tate Postnikov tower is convergent in the following
sense: for all a, b, n ∈ Z, one has

∩mFm
Tateπa,bfnE = 0.

Our computation of Fn
Tateπp,pΣ∞T G

∧q
m gives some evidence for this convergence

conjecture.

Proposition 8.1. Let k be a perfect field with char k 6= 2. For all p, q ≥ 0, and
all perfect field extensions F of k, we have

∩nFn
Tateπp,pΣ∞T G∧q

m (F ) = 0.

Proof. In light of theorem 7.13, the assertion is that the I(F )-adic filtration on
KMW

q−p (F ) is separated. By [10, théorème 5.3], for m ≥ 0, KMW
m (F ) fits into a

cartesian square of GW(F )-modules

KMW
m (F ) //

²²

KM
m (F )

Pf

²²

I(F )m
q

// I(F )m/I(F )m+1,

where KM
m (F ) is the Milnor K-group, q is the quotient map and Pf is the map

sending a symbol {u1, . . . , um} to the class of the Pfister form <<u1, . . . , um>>

mod I(F )m+1. For m < 0, KMW
m (F ) is isomorphic to the Witt group of F ,

W (F ), that is, the quotient of GW(k) by the ideal generated by the hyperbolic
form x2 − y2. Also, the map GW(F ) → W (F ) gives an isomorphism of I(F )r

with its image in W (F ) for all r ≥ 1. Thus

KMW
m (F )I(F )n =





I(F )n ⊂ W (F ) for m < 0, n ≥ 0

I(F )n+m ⊂ GW(F ) for m ≥ 0, n ≥ 1.

The fact that ∩nI(F )n = 0 in W (F ) or equivalently in GW(F ) is a theorem of
Arason and Pfister [1]. ¤

Remarks 8.2. 1. The proof in [10] that KMW
m (F ) fits into a cartesian square as

above relies the Milnor conjecture.
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2. Voevodsky’s conjecture [loc. cit.] asserts the convergence for a wider class of
objects in SH(k) than just the T -suspension spectra of smooth k-schemes. The
selected class is the triangulated category generated by Σn

T Σ∞T X+, X ∈ Sm/k,
n ∈ Z and the taking of direct summands. However, as pointed out to me by
Igor Kriz, the convergence fails for this larger class of objects. In fact, take E to
be the Moore spectrum Sk/` for some prime ` 6= 2. Since Πa,qSk = 0 for a < 0,
proposition 3.2 shows that Πa,qfnSk = 0 for a < 0, and thus we have the right
exact sequence for all n ≥ 0

π0,0fnSk
×`−→ π0,0fnSk → π0,0fnE → 0.

In particular, we have

Fn
Tateπ0,0E(k) = im (Fn

Tateπ0,0Sk(k) → π0,0Sk(k)/`) = im (I(k)n → GW(k)/`) .

Take k = R. Then GW(R) = Z⊕Z, with virtual rank and virtual index giving the
two factors. The augmentation ideal I(R) is thus isomorphic to Z via the index
and it is not hard to see that I(R)n = (2n−1) ⊂ Z = I(R). Thus π0,0E = Z/`⊕Z/`

and the filtration Fn
Tateπ0,0E is constant, equal to Z/` = I(R)/`, and is therefore

not separated.

The convergence property is thus not a “triangulated” one in general, and
therefore seems to be quite subtle. However, if the I-adic filtration on GW(F )
is finite (possibly of varying length depending on F ) for all finitely generated F

over k, then our computations (at least in characteristic zero) show that the fil-
tration F ∗

Tateπp,pΣ∞T G
∧q
m is at least locally finite, and thus has better triangulated

properties; in particular, for ` 6= 2,

π0,0(Sk/`) = Z/`, Fn
Tateπ0,0(Sk/`) = 0 for n > 0,

as the augmentation ideal in GW(F ) is purely two-primary torsion, and thus
Iπ0,0Sk/` = 0. One can therefore ask if Voevodsky’s convergence conjecture is
true if one assumes the finiteness of the I(F )-adic filtration on GW(F ) for all
finitely generated fields F over k.
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