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The Slice Filtration and Grothendieck-Witt Groups
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Abstract: Let k£ be a perfect field of characteristic different from two. We
show that the filtration on the Grothendieck-Witt group GW (k) induced by
the slice filtration for the sphere spectrum in the motivic stable homotopy

category is the I-adic filtration, where I is the augmentation ideal in GW (k).
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INTRODUCTION

Let k be a perfect field of characteristic different from two. A fundamental
theorem of Morel [8, 11] states that the endomorphism ring of the motivic sphere
spectrum S € SH(k) is naturally isomorphic to the Grothendieck-Witt ring of
quadratic forms over k, GW(k). This result follows from Morel’s calculation |8,
corollary 3.43] of the corresponding bi-graded homotopy sheaves of S™ A Gpd in
the unstable motivic homotopy category He(k) as the Milnor-Witt sheaves (see
theorem 7.7 for details), which after stabilizing yields the partial computation of

Ty xO) aS
KZJQMW for m =0,

0 for m < 0.

>~

Tm-+p,p(Sk)

The unstable result also yields the computation of the homotopy sheaf Wp,pESOGQ@q

(in the S'-stable homotopy category SHg1(k)) as qu\/g;v’ forallg>1,p>0.

In another direction, Voevodsky [15] has defined natural towers in SH(k) and
SHgi(k), which are analogs of the classical Postnikov tower in SH; we call each
of these towers the Tate Postnikov tower (in SH(k) or SHgi(k), as the case
may be). Just as the classical Postnikov tower measures the S™-connectivity of a
spectrum, the Tate Postnikov tower measures the S™™ connectivity of a motivic
spectrum.

In particular, the tower for S;
.= fat1Sg = oSk — ... — foSk =Sk
gives a filtration on the sheaf my oS, by
F1tem0,05k = im(70 0 fnSk — m0,0Sk)-
We have a similarly defined filtration on wpypZSOG,Anq, determining F,;, m0,0Sk by

n N 1 n+q oo Aq
Fate™0,0Sk »= lm Frp i omg ¢ 377Gy (k).
q
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Our main result is the computation of Fgatewp,ngoGﬁf, and thereby F7{, 70,05k

(on perfect fields). We first describe the T-stable results.

Theorem 1. Let k be a perfect field of characteristic # 2 and let F' be a perfect
field extension of k. Let I(F) C GW(F) = K}MW(F) be the augmentation ideal.
1. Via the identification given by Morel’s isomorphism mo oSk (F) = GW(F), we
have

Fiyemo,oSk(F) = I(F)"

for alln > 0. Forn <0, F},, m,0Sk = m0,0S; as sheaves.

2. More generally, let n,p > 0, ¢ > 1 be integers. Let N(a,b) = max(0, min(a,b)).
KMW

Then via the identification given by Morel’s isomorphism Wp,pE%mSk =Ko,

we have

FlaemppEg,, Su(F) = KL (F)I(E)NCP=0, n,p g € Z.

The stable result follows from the unstable version.

Theorem 2. Let k be a perfect field of characteristic # 2 and let F' be a perfect
field extension of k. Let n,p > 0, ¢ > 1 be integers. Then via the identification

. . . A
giwen by Morel’s isomorphism mp ,X2°Gp)! = K(]]‘@g/, we have

FhloemppECol(F) = KT (F) - 1(F)Npn=d),

See theorem 7.13, corollary 7.14 and corollary 7.15 for details.

Remark 1. In case k is a field of characteristic 0, we have a finer result, namely
the identities stated in theorem 1 and theorem 2 extend to identities on the
corresponding sheaves, for example

n comAg _ oMW N(n—p,n—q)
FratemppXs Gy = Ky -1 ( )

Of course, one can more generally consider the filtration Fr;

ateTa,bé on the

homotopy sheaves 7, & induced by the Tate Postnikov tower for an arbitrary
T-spectrum £ € SH(k). In general, we cannot say anything about this filtration,
but assuming a certain connectedness condition, we can compute the filtration
on the first non-vanishing homotopy sheaves, evaluated on perfect fields.



1546 Marc Levine

Theorem 3. Let k be a perfect field of characteristic # 2 and let F' be a perfect
field extension of k. Take £ € SH(k) and suppose that w,4ppE = 0 for a < 0,
beZ. Then forn > p,

Frgempp (F) = [Tnn€ 'KnM—V;;/]TT(F)-
For n < p, we have the identity of sheaves

n _
FrraemppE = mpp€.

To explain the notation: The canonical action of 7, .Sy on 7, € gives, for each
finitely generated field extension L of k, a right KW (L)-module structure on
7. +E(L), giving us the subgroup m, (L) - KAW (L) of m,,E(L). This extends
to arbitrary field extensions of k by taking the evident colimit. Also, for each

closed point w € A'%, we have a canonically defined transfer map
TTF(w)* : 7"-aL,bg(F’(w)) - 7I-a,,bg(Fw)

(see §5 for details). [m, & - KM I/;,/]TT(F ) is the subgroup of 7, ,E(F) generated
by the subgroups Trp(w)*(mnn&(F(w)) - KMW(F(w))), as w runs over closed

points of A%. See theorem 7.11 for details.

Theorem 2 is an easy consequence of theorem 3: one uses Morel’s unstable
computations of the maps S*® A Spec F. — 8™ to reduce theorem 2 to its
T-stable version and then one uses the explicit presentation of KM"W to compute

[KMW . K]W_W]TT(F) — Ké\{‘;}V(F)IN(”—Pvn—Q) (F)

Morel’s results on strictly Al-invariant sheaves allow us to go from the statement
on functions fields to the one for the sheaves (in characteristic zero).

The restriction to perfect fields arises from a separability assumption needed
to compute the action of transfers on our selected generators for Fif,, mp,&. We
avoid characteristic two so as to have a description of the homotopy sheaves of
the sphere spectrum in terms of Milnor-Witt K-theory.

The paper is organized as follows. After setting up our notation and going
over some background material on motivic homotopy theory in section 1, we
recall some basic facts about the Tate Postnikov tower in section 2. In section 3
we prove some connectedness results for the terms f,, F, s, E in the Tate Postnikov
tower for an S'-spectrum E and give a description of generators for the subgroup

Fn

TateT0E (F), all under a certain connectedness assumption on E. In section 4,
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we follow a suggestion of the referee and rewrite our generators in cubical form.
The generators are then factored into a product of two terms, one depending on
E, the other only on the choice of a closed point of (AL \ OAL)". We analyze
the second term in sections 6, having first introduced in section 5 a construction
of transfers to allow us to pass from the case of an F-point to an arbitrary closed
point separable over F. In this direction, our main result is a description of this
term as a “symbol map” associated to units uq,...,u, € F*. It is then relatively
simple to feed this result into our description of the generators for Fi,, 7o E(F) to
prove theorems 1 and 3 in section 7; we conclude in section 8 with some remarks

on the convergence of the Tate Postnikov tower.

I thank the referee for making several helpful suggestions and for pointing out
a number of errors, including an incorrect formulation of theorem 3, in an earlier
version of this paper. Finally, I wish to thank the editors for giving me the
opportunity of contributing to this volume. As a small token of my gratitude to
Eckart for all of his aid and support over many years, I dedicate this article to

his memory.

1. BACKGROUND AND NOTATION

Unless we specify otherwise, k£ will be a fixed perfect base field, without restric-
tion on the characteristic. For details on the following constructions, we refer the
reader to [3, 4, 5, 8,9, 11, 12].

We write [n] := {0, ...,n} (including [-1] = 0) and let A be the category with
objects [n], n = 0,1,..., and morphisms [n] — [m] the order-preserving maps of
sets. Given a category C, the category of simplicial objects in C is as usual the
category of functors A°P? — C.

Spc will denote the category of simplicial sets, Spc, the category of pointed
simplicial sets, H := Spc[W E~1] the classical unstable homotopy category and
He := Spc,[WE™!] the pointed version. We denote the suspension operator
— A St by ¥,. Spt is the category of suspension spectra and SH := Spt[W E~!]
the classical stable homotopy category.

The motivic versions are as follows: Sm/k is the category of smooth finite type
k-schemes. Spc(k) is the category of Spe-valued presheaves on Sm/k, Spc, (k)
the Spc,-valued presheaves, and Sptgi(k) the Spt-valued presheaves. These
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all come with “motivic” model structures (see for example [5]); we denote the
corresponding homotopy categories by H(k), He(k) and SHg1(k), respectively.
Sending X € Sm/k to the sheaf of sets on Sm/k represented by X (also denoted
X) gives an embedding of Sm/k to Spc(k); we have the similarly defined embed-
ding of the category of smooth pointed schemes over k into Spc,(k). All these
categories are equipped with an internal Hom, denoted Hom.

Let Gy, be the pointed k-scheme (A \ 0,1). In H(k) we have the objects
Satbb .= $aGAb for b > 1, ™0 := S = ¥"Speck,. If X is a scheme with a
k-point z, we write (X, z) for the corresponding object in Spc, (k) or He (k). For
a cofibration ) — X in Spc(k), we usually give the quotient X' /) the canonical
base-point )/Y, but on occasion, we will give X' /) a base-point coming from a
point x € X (k); we write this as (X/Y, x).

We let T := Al/(A'\ {0}) and let Spt, (k) denote the category of T-spectra,
i.e., spectra in Spc, (k) with respect to the T-suspension functor ¥ := — A T.
Sptr(k) has a motivic model structure (see [5]) and SH(k) is the homotopy
category. We can also form the category of spectra in Sptgi(k) with respect
to Xp; with an appropriate model structure the resulting homotopy category is
equivalent to SH(k). We will ignore the subtleties of this distinction and simply
identify the two homotopy categories.

Both SHg1 (k) and SH(k) are triangulated categories with suspension functor
>s. We have the triangle of infinite suspension functors ¥°° and their right
adjoints 2°°

e} )

Ho(k) —s SHa1 (k) Ha(k) o SHgr (K)

Ly l QF

SH(k) SH(k)

both commutative up to natural isomorphism. These are all left, resp. right
derived versions of Quillen adjoint pairs of functors on the underlying model
categories. We note that the suspension functor ¥g,, is invertible on SH(k).

For X € H,o(k), we have the bi-graded homotopy sheaf 7, X, defined for b > 0,
a — b > 0, as the Nisnevich sheaf associated to the presheaf on Sm/k

U — Homyq, 1) (34"%8,, Uy, X).
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These extend in the usual way to bi-graded homotopy sheaves m,,F for E €
SHgi(k), b > 0, a € Z, and m,,E for € € SH(k), a,b € Z, by taking the
Nisnevich sheaf associated to

U — Homgyy, () (S"5E,, £2°Uy, E) or U — Homgy (52758, SFUL, €),

as the case may be. We write m, for m, ; for e.g. £ € Sptg:i (k) fibrant, 7, F is
the Nisnevich sheaf associated to the presheaf U — m,(E(U)).

For F' a finitely generated field extension of k, we may view Spec F' as the
generic point of some X € Sm/k. Thus, for a Nisnevich sheaf S on Sm/k, we
may define S(F') as the stalk of S at Spec F' € X. For an arbitrary field extension
F of k (not necessarily finitely generated over k), we define S(F) as the colimit
over S(Fy,), as F, runs over subfields of F' containing k and finitely generated over
k. For a finitely generated field F' over k, we consider objects such as Spec F', or
AL as pro-objects in Spc(k) by the usual system of finite-type models; the same
holds for related objects such as Spec Fy in He(k) or SHg1(k), etc. We extend
this to arbitrary field extensions of k£ by taking the system of finitely generated
subfields. We will usually not explicitly insert the “pro-” in the text, but all
such objects, as well as morphisms and isomorphisms between them, should be
so understood.

2. THE HOMOTOPY CONIVEAU TOWER

Our computations rely heavily on our model for the Tate Postnikov tower in
SHg1(k), which we briefly recall (for details, we refer the reader to [6]). We start
by recalling the Tate Postnikov tower in SH g1 (k) and introducing some notation.

Fix a perfect base-field k. Let
ZT . SHsl (k‘) — SHgl (k)

be the T-suspension functor. For n > 0, we let ¥}.SHg1(k) be the localizing
subcategory of SHg1(k) generated by infinite suspension spectra of the form
YAY*® X, with X € Sm/k. We note that 3SH g1 (k) = SHg1 (k). The inclusion
functor i, : ¥}SHg1(k) — SHg1(k) admits, by results of Neeman [13], a right
adjoint r,,; define the functor f, : SHg1(k) — SHgi(k) by fn := iy orn. The
unit for the adjunction gives us the natural morphism

P foE — FE
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for E € SHg1(k); similarly, the inclusion X'SHg1 (k) C X1.SHg1 (k) for n < m
gives the natural transformation f,,F — f,F, forming the Tate Postnikov tower

= o B — o — ... — foE=F.
We complete fr,+1F — fpE to a distinguished triangle
fa1E — foE — spB — fop1 E[1];
this turns out to be functorial in E. The object s, E is the nth slice of E.

There is an analogous construction in SH(k): For n € Z, let
SRSHY (k) ¢ SH(E)

be the localizing category generated by the T-suspension spectra X7.35° X, for
X € Sm/k. As above, the inclusion 4, : S2SH/ (k) — SH(k) admits a left
adjoint r,, giving us the truncation functor f, and the Postnikov tower

co = frnp1€ = € — ... = €&

Note that this tower is in general infinite in both directions. We define the layer
spé€ as above.

By [6, theorem 7.4.1] the 0-space functor Q5 maps S2.SH/ (k) to Z2.SH g1 (k).
This fact, together with the universal properties of the truncation functors f,, in
SHg1(k) and SH(k), plus the fact that QF is a right adjoint, gives the canonical
isomorphism for n > 0

(2.1) FadPE 2 QX fE.

Indeed, it follows from [6, theorem 7.4.1] that QF f,€ is in ¥}SHg1 (k) and thus
we need only show that 2%°p, : QF f,& — QFE satisfies the universal property
of [LOAPE — QFE. But for G € SHg1(k), we have

Homgy,, (1) (571G, QF fn€) = Homgy 1y (BT ETG, fof)
= Homgy ) (X727 G, fn€)
Pnsk 7 00
—— Homgy ) (X757 G, €)
= Homgy ) (BT 271G, E)

= Homgyy, (1) (276G, QT E).

It is easy to check that this sequence of isomorphisms is induced by (23 pp ).
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Furthermore, for E € SHgi(k), we have (by [6, theorem 7.4.2]) the canonical

isomorphism

(2.2) Og, fuB = fo1Qg, E.

As Qg,, : SH(k) — SH(k) is an auto-equivalence, and restricts to an equivalence
Qg,, : DRSH (k) — 22 ISHE T (k),

the analogous identity in SH(k) holds as well.

Definition 2.1. Fora € Z, b > 0, E € SHg1(k), define the filtration F{,, 7,4,
n > 0, of mq, E/ by

F"?ate"ra,bE = im(ﬁayban — Wa,bE)-
Similarly, for £ € SH(k), a,b,n € Z, define

F'?ate’]ra,bg = im(wa,bfng - Wa,bg)-

The main object of this paper is to understand F7,

toTol for suitable E. For
later use, we note the following

Lemma 2.2. 1. For E € SHq(k), n,p,a,b € Z with n,p,b,n —p,b—p >0, the

adjunction isomorphism mq [ = Wa—p,b—pQ%mE duces an isomorphism
n ~ pn—p P
FTateﬂ—CL,bE - FTateTr‘l*p’b*pQGmE'

Similarly, for € € SH(k), n,p,a,b € Z, the adjunction isomorphism 7, € =

ﬂ'a_p.b_pQ%mE mnduces an isomorphism
~ =P p
F?’ateﬂ.a,bg = FTateTra*p’b*pQGmg'
2. For & € SH(k), a,b,n € Z, with b,n > 0, we have a canonical isomorphism
PE.abn + 7"'a,bfng - 7"'a,bfng%oga

inducing an isomorphism F7,, 7w, ,& = Fi, 7 pUFE.

Proof. (1) By (2.2), adjunction induces isomorphisms
FrateTapE = 1im(mop fn BB — map E)
= im(ﬂ'a—p,b—pQg;m fnE — 7Ta—p,b—pQél[J;,mE)
= im(wa_pﬁb_pfn_pQ%mE — 7Ta_p7b_prém E)

_ n—p Y4
- FTate Tra—va—PQGm E.
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The proof for & € SH(k) is the same.

For (2), the isomorphism g 45, arises from (2.1) and the adjunction isomor-
phism

Homsy, (k) (2°885G,, Uy, fu05FE) = Homgyy , (1) (SOEL8G, Uy, OF o)
= Homgy() (SF 0 "SE,, Us, €)

O

We now turn to a discussion of our model for f,E(X), X € Sm/k. We
start with the cosimplicial scheme n — A", with A" the algebraic n-simplex
Specklto, ... tn]/ > ;ti—1. The cosimplicial structure is given by sending a map
g : [n] — [m] to the map g : A” — A™ determined by

Zigt=iti  HoTHD) # 0

g (ti) =
0 else.

A face of A™ is a closed subscheme F' defined by equations t;, = ... =t;, = 0;
we let OA™ C A™ be the closed subscheme defined by [["  t; = 0, i.e., OA™ is
the union of all the proper faces.

Take X € Sm/k. We let Sﬁ(q) (m) denote the set of closed subsets W C X x A™
such that codimxxrpW N X x F' > q for all faces F' C A™ (including F' = A™).
We make Sgg) (m) into a partially ordered set via inclusions of closed subsets.

) (9)

Sending m to SE? (m) and g : [n] — [m] to g~ ! : Sg?) (m) — Sy’ (n) gives us the

simplicial poset Sgg) .

Now take E € Sptgi(k). For X € Sm/k and closed subset W C X, we
have the spectrum with supports £ (X) defined as the homotopy fiber of the
restriction map E(X) — E(X \ W). This construction is functorial in the pair
(X, W), where we define a map f : (Y,7T) — (X,W) as a morphism f:Y — X
in Sm/k with f~Y(W) C T.

Define

EW(X,m):= hocolim EW (X x A™).
Wes (m)
The fact that m — Sg?)(m) is a simplicial poset, and (Y,T) — ET(Y) is a
functor from the category of pairs to spectra shows that m — E@ (X, m) defines
a simplicial spectrum. We denote the associated total spectrum by F () (X).
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For ¢ > ¢/, the inclusions Sg?) (m) C S)(?l) (m) induces a map of simplicial posets

Sg?) C Sg?l) and thus a morphism of spectra iy, : E(¥(X) — E@)(X). We have
as well the natural map

ex : B(X) — Tot(E(X x AY)) = EO(X),

which is a weak equivalence if F is homotopy invariant. Together, this forms the

augmented homotopy coniveau tower tower

EW(X):=... - E@t)(x) 2, plo(x) l2t gD (x) 2, BO(x) & pX)
with 4 := ig¢+1. Thus, for homotopy invariant E, we have the homotopy

coniveau tower in SH

EO(X) = ... — BE@)(x) ' g@(x) =L g0 (x) 2 O(x) > B(X).

Letting Sm//k denote the subcategory of Sm/k with the same objects and
with morphisms the smooth morphisms, it is not hard to see that sending X to
E®(X) defines a functor from Sm//k°? to augmented towers of spectra.

On the other hand, for E € Sptgi(k), we have the (augmented) Tate Postnikov
tower
B = .= feE— fi/ —...— foE=FE

in SHgq1(k), which we may evaluate at X € Sm/k, giving the tower f.E(X) in
SH, augmented over E(X).

As a direct consequence of our main result (theorem 7.1.1) from [6] we have

Theorem 2.3. Let E be a quasi-fibrant object in Sptgi (k) for the Al-model
structure (see e.g. [5] or [11]), and take X € Sm/k. Then there is an isomor-

phism of augmented towers in SH
(fB)(X) = EW(X)
over the identity on E(X), which is natural with respect to smooth morphisms in

Sm/k.

In particular, we may use the explicit model E@(X) to understand (f,F)(X).

Remark 2.4. For X,Y € Sm/k with given k-points z € X (k), y € Y (k), we have

a natural isomorphism in SHg1 (k)

LX(XAY)aEX(XVY)=EX(X xY)
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ie. X(X AY) is a canonically defined summand of 33°(X x Y). In particular
for E a quasi-fibrant object of Sptgi(k), we have a natural isomorphism in SH

Hom(EX(X AY), E) = hofib (E(X x Y) — hofib(E(X) @ E(Y) — E(k)))

where the maps are induced by the evident restriction maps. In particular, we
may define F(X AY) via the above isomorphism, and our comparison results for
Tate Postnikov tower and homotopy coniveau tower extend to values at smash

products of smooth pointed schemes over k.

3. CONNECTEDNESS AND GENERATORS FOR T

As in section 2, our base-field k is perfect. We fix S'-spectrum E € Sptg: (k)
that is quasi-fibrant for the A'-model structure, that is, F is A'-homotopy in-

variant and satisfies Nisnevich excision.

Lemma 3.1. Let I be a finitely generated field extension of k, x € A% a closed
point. Then for every m > 0, the map

i : E@O (A" x A) — E@XFAR)(A™ x AT
induced by the map of pairs
idgnwam @ (A" x AR 2 x AR) — (A" x A%, (2,0))
is the zero-map in SH. In particular, the induced map on homotopy groups is

the zero map.

Proof. The referee suggested the following simple argument: The map i, is in-
duced by applying the functor H(—) := Homyspt , (1) (35°(—), E) to the quotient
map

q: AR x AT /(AR x A™\ @ x A™) = A x AT /(AR x A"\ {(z,0}),
where the homotopy category HSptg: (k) is with respect to the presheaf model

structure on Sptgi(k), i.e., weak equivalences are objectwise. But E' is homotopy

invariant, and hence the inclusion
i1: (AR x Lz x1)— (AR x A" z x A™)
induces an isomorphism

i1 HAR X A" /(A x A"\ z x A™)) - H(AR /(A% x 1\ z x 1)
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But clearly qoi; factors through the map to the base-point, hence ¢* is the 0-map
on H. O

We have the re-indexed homotopy sheaves II,, j,(E) := Tptmm(E). We have
as well the sheaf m,F := m,0F; we call E m-connected if m,(E) = 0 for all
n <m.

Since B (X) = Tot[m — E™(X,m)], we have the strongly convergent spec-
tral sequence
(3.1) B! (X) = mE™(X,p) = 1y B (X),

Now take X = SpecF, F a finitely generated field over k. For dimensional
(n)

reasons, we have Sp.” (p) = 0 for p < n, and we therefore have an edge homomor-
phism
€ n: T nE™(X,n) — 1, E™(X).
Furthermore, S}n) (n) is the set of closed points w € A%\ 0A%, so e, can be
written as
€t Bue(ap\aap) 0 Tg-n B (AF) = mEM (F);

here Y(®) denotes the set of codimension a points on a scheme Y.
Via the weak equivalence E(™ (F) 2 f, E(F), we have the canonical map
€ p: @we(A’;\aA%)(nmq—nEw(A%) — Mg fnE(F).
Similarly, composing with f,E — s,FE, we have the canonical map
€n : Dyeamaan)mTg—nE" (AR) = mgsn E(F).

Proposition 3.2. Let E € Sptgi (k) be quasi-fibrant for the Al-model structure.
Suppose 11, +E(F) = 0 for all a < 0 and for all finitely generated field extensions
F of k. Then forn > 0:

1. Uguful and I, «sp 2 are zero for all a < 0. In particular, f,E and s, E

are —1-connected.
2. For each finitely generated field F' over k, the edge homomorphisms

€-n: Dyeanoan)mT-nEY(AR) — mo(fnE)(F)

€-n : Byean\oan)mT-nEY (AF) = mo(sn ) (F)

are surjections.
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Proof. Using the distinguished triangle
il — foE — sp B — Xsfn B
we see that it suffices to prove the statements for f,FE.

Using the isomorphism (2.2), we see that for (1), it suffices to show that f, FE is
—1-connected. By a theorem of Morel [11, lemma 3.3.6], it suffices to show that
fnE(F) is —1-connected for all finitely generated field extensions F' of k.

We first show that, for each p > n,
a. WqE(")(F,p) =0 for g < —p
b. The natural map
o T-p BV (ML) — 7, BT (F,p)

@Wes;")(p),wevvn(ag)

is surjective.

For (a), let W C A% be a closed subset. We have the Gersten spectral sequence
EP’ = &, cwniany@TabEY(Spec Opp ) = 7o o E" (AF).

Since F is quasi-fibrant, and A% is smooth over k, we have an isomorphism (via
Morel-Voevodsky purity [12, Theorem 3.2.23])

T (E" (Spec Opp o)) 2 mn(BE(wy A S2%)),
where a = codimA%w. But
T (B(ws A S*%)) = (42,0 ) (F (w))
which is zero for m + a < 0. Since 0 < a < p, we see that, for m < —p,
mmE" (AL) = 0.
As EM)(F,p) is a colimit over EW(AL) with W € Sfpn) (p), it follows that
T E™(F,p) = 0 for m < —p, proving (a).

The same computation shows that 7_,(E" (Spec ON},w)) = 0 if codimpr w <

p, so (b) follows from the Gersten spectral sequence.

Using the strongly convergent spectral sequence (3.1), we see that (a) implies
that 7,EM™ (F) = 0 for ¢ < 0.
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Next, we show that
c. ﬂ_pE(”)(F,p) =0 for p > n.

For this, it suffices by (b) to show that for w € W N (A%)®) with W € Sén) (p)
and with p > n, the map

(3.2) 7y BV (ML) — 7, B (F, p)

is the zero map. To see this, note that W does not intersect any face T of A’}
having dimp T' < n. Thus, there is a linear W/ = A%T" C AP, containing w (for
F’ some extension field of F' contained in F(w)) with W’ € Sl(mn) (p): for a suitable
degeneracy map o : AP — A" one takes W' = o~ !(o(w)). By lemma 3.1, the
map E¥(AL) — EW/(A%) is the zero map in SH; passing to the limit over all
w" e S}n) (p), we see that (3.2) is the zero map, as claimed.

In the spectral sequence (3.1), we have Ez%,—p = 0 for p > n; we also have

E}_, =0 for p < n since S}n) (p) = 0 if p < n for dimensional reasons. Thus,
the only term contributing to moE™ (F) is E,%ﬁw As the spectral sequence
is strongly convergent, the edge homomorphism in the spectral sequence (3.1)

induces a surjection

B )y T BV (AF) = moEC(F).

Combining this with theorem 2.3 gives us the surjection

&) T EY(AF) = mo(fnE(F)).

wesgb) (n)

Similarly, the vanishing 7, E((F) = 0 for p < 0 shows that f,F(F) is -1 con-
nected. U

We thus have generators @,,can\oan)m T—nE" (A%) for mo fr, E(F'), and hence
for our main object of study, Fi,, .m0 E(F).

4. CUBICAL GENERATORS

As pointed out by the referee, it is much more convenient to work with a
cubical type of generator for Fip, moE(F). We first look at the generators for
F%ateﬂoE(F), to put these in a simpler form, which we then extend to give the

3 3
cubical generators for i,

oMo E (F') by a simple induction.



1558 Marc Levine
For F a finitely generated field extension of k, the contractibility of Al gives

us the canonical isomorphism in He (k)

0% 1 XsSpec Fy — AL/OAL

Let w = (wp, w;) be an F-rational point of A\ JA!. Writing
Al = Spec k[to,tl]/(to +t—1),

we map A}, to A}, by the function

tp —w
Xy 1= 2 I:A%HA}T.
wo

Clearly

X,(1,0) = —Z—;

Thus X, induced a map of diagrams in Spc, (k)

, Xw(0,1) =1, X,(w)=0.

—w1/w0\/1

(4.1) Spec F'y V Spec Fy —— (—wq/wp)+ V 14

o ]

(Ap\w,(0,1)) ————— Gmw

)

|

w

giving us the induced map on the quotients
AR/{(0,1), (1,00} 25 AL/ARN {w} =2 AL/ALN {0,).
In He(k), this gives us the sequence of maps
(4.2)  S.Spec Fy T AL/OAL T AL AL fu} X2 S0, A G,
with X, and a}; isomorphisms.
In case w is separable over F', let
Dw - A}?(w) — Ap

be the projection, and let w € A},(w) be the point given the the maps w — AL,
w = Spec F'(w). By Nisnevich excision, p,, induces an isomorphism

w A /Ay \{w) — AL/AL {w),
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giving us the sequence of maps in He(k), this gives us the sequence of maps
n 1 /Al Pu’ Al 1 X

X Spec Fy == Ap/Ap \{w} == Ap)/Apey \ {w} == vy AGrp

with X, an isomorphism. We let
MV, : AL/ALN {w} — Sy AGy,
denote the isomorphism X,, o p,!, and we write
(w) : Spec Fy — wi A Gy

for the map (in SHg1) (M Vy 0 Ty 0 k).

For a € m((Qg,, F)(w)), we let o : wy A Gy, — E denote the corresponding
morphism in SHg1 (k). Noting that Qg,, iE = fo2,, F = Qg,, E, we let o :
wy A Gy, — f1E denote the morphism corresponding to o’

Lemma 4.1. Let E € Sptgi(k) be quasi-fibrant. Suppose 11, E(F) = 0 for all
a < 0 and for all finitely generated field extensions F' of k. Let F' be the perfect clo-
sure of a finitely generated field Fy over k. Then sending o € mo((Qg,, 1.E)(w))

to the composition " o (w):
1 —1 7
Spec Fy =% 571AL /AL {w} = wy A Gy > fLE(w)
determines a surjection

€11 Dye(at\oanymm0((Qg,, fiE)(w)) = mo(fLE(F)).

Proof. The edge homomorphism e_; of proposition 3.2 sends 3 € 7_1(EY(AL)

to the composition
S Spec Py = AR/{(0.1), (1,0)} 2 Ap/AR\ {w} & 2B
where (3 is the morphism given by the identity
m_1(EY(AF) = Homgy, ) (A /A \ {w}, 2E).

Applying ¥~! and inserting id = MV, o MV,,, we may rewrite the above com-
position as

Spec Fy = £1AL/{(0,1), (1,0)} 2™, 5-1AL /AL {w)
-13/4 —1
MVw, we A Gy, ————>E FoMVe E
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By the universal property of fiE — E, we may factor the map X! o MV, !
uniquely as

wy AGm % LE — E

giving us the corresponding element a € mo((Qg,, f/1F)(w)). It is easy to check
that for o € mo((Qg,, f1E)(w)) corresponding to 8 € m_1(E¥(AL), we have

e-1(8) = é-1(a),
Clearly we may reverse this process. O
We extend this description of the generators for mo(f1 E) to mo(fn E) be a simple

induction. Let U C X and V C Y be open subschemes of smooth schemes X,Y
over k. We have a canonical isomorphism in HY®(k),

(43) Ckxvy;UJ/:XX]{Y/UXYUXXVH(X/U)/\(Y/V),
induced by the Mayer-Vietoris isomorphism
UxYUXxVZUxYIyxy X xV.

Applying this to an F-point w = (w!,...,w") € (AL \ OAL)" gives us the

isomorphism

(AF\OAR)"/ (AR \OAR)"\ {w})

Xui=(X 150y X
Kot ) Spec Fiy A (G,)"™ = ¥" Spec F A GO

As in the case n = 1, for a closed point w of (AL \ AL)™, separable over F,

we have the Nisnevich excision isomorphism

w i By \ OA%)"/ (Aky \ 92k \ {w})
= (AR\OAR)/ (AR \ AR\ {w}),

giving us the isomorphism in H, (k)

MV, : (A \OAR)"/ ((Ap \ 0AR)" \ {w}) — wi AS G

MV, = X, op:ul.
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This gives us the sequence of morphisms in He(k)

X7 Spec Fy % Spec F A (Al/oANN

o (AR (AR \fw)) =2 w ATG
with o and MV, isomorphisms and 7,, the quotient map.
As above, we let
(w) : Spec Fy — wy AGp!
be the shifted composition X" (MV,, o 1y, 0 o) in SHg1 (k).

For o € mo((Q, E)(w)), we let o’ : wy A G — E denote the corresponding
morphism in SHg1(k). We note that

Og, fuE = foQg, B = Qg, E;
for a € m((Qg, E)(w)) we write o’ : wy A Gp' — f,E for the morphism

corresponding to o : wy A G — E.

Proposition 4.2. Let E € Sptgi (k) be quasi-fibrant. Suppose 1, +E(F) =0 for
all a < 0 and for all finitely generated field extensions F' of k. Let ' be the perfect
closure of a finitely generated field Fy over k. Then sending a € mo((2g, E)(w)),
w a closed point of (AL \ ALY, to the composition o o (w),

—n n
b TwOO

Spec ;. S AL/ (AR \ {w}) 22 w0 AGH 5 fuE(w)

determines a surjection

€-n : Bye(arroal)ymmm((QG,, B)(w)) — mo(fuE(F)).

Proof. We proceed by induction on n, the case n = 1 being lemma 4.1. So,
take n > 1 and assume the result is true for n = 1 and for n — 1. Since
fifn = fn, we have generators for mo(fn,E)(F) of the form é_;(a), with o €
70((Q,, f1(fnE))(w™)), and w™ a closed point of AL\ dAL. But we have the

isomorphism
g QGmf1<fTLE) - QGman - fn—lQGmE

so by induction we can write coa as a sum of elements of the form €_,, 1) (8), with
B e Wo((Q%;LlE)((’wl, coow™ ) (wh L w™ ) a closed point of (A%F(w”) \



1562 Marc Levine

8A}V(wn))n_1. Thus, mo(fnE)(F) is generated by compositions in the diagram

(w™) a

Spec Fy wli A Gy, y fnE

(wlv,.,w”—l)/\id@,ml /
15y

Spec F(w™)(w!,...,w" 1 AGI""L A Gy,

We have the canonical k-isomorphism

i (w'y . w w™) — Spec F(w™)(w?, ..., w"™t)

so we can fill in this diagram to give the commutative diagram

(w™)

Spec Fy wl A Gy,

(wlrn,wn)l (wl’“',wnl)/\id@ml /
(o’ 1[3)//

(wh, ..., w™) AGL? it Spec F(w™)(w!,...,w" ) AGA L AGyy,.
2/\1

«

fnE

This expresses ¢_1(a) as a sum of elements of the form 7" o (w!,...,w"), with

v E WO((Q&mE)(wl, ~oow™), and (wl, ..., w") a closed point of (AL \ 9AL)",
as desired. O

Composing the map €_, with the canonical map an — F yields our descrip-

tion of generators for Fif,, moE(F).

Proposition 4.3. Let F' be a perfect field extension of k and let E € Sptgi (k)
be quasi-fibrant.

1. Let w be a closed point of (AL \ OAL)", and take ony € mo(QE, E(w)). Then
o, o (w) is in Fi, moE(F).

2. Suppose that 11, ,E = 0 for all a < 0. Then F},, moE(F) is generated by

elements of the form aj, o (w), a € (g, E(w)), as w runs over closed points

of (Af \ OAL)™.
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5. TRANSFERS AND Pl-SUSPENSION

We define a transfer map adapted to our situation. The contractibility of Al
gives the isomorphism in He (k)

A1/Al \ {0} = YGm;
putting this together with the isomorphisms (4.3) gives us inductively the iso-
morphism
Gt A" JA™\ {0} — (Z:Gp)"
Combining with the “shuffle” isomorphism (3;G,,)"" — X7"G)" defines the iso-
morphism
an : A" JA™\ {0} — X"GH"
in He(k); for U € Sm/k, this gives us
e+ AT/ AD \ {00} — SIGN AU
via the canonical isomorphism A}, /A7 \ {0y} = A"/A™\ {0} AU4. For F a
finitely generated field extension of k, this yields the isomorphism
anr: AL/AL\ {0F} — SUG) A Spec Fy
in He(k).

Let F' be a finitely generated field extension of k, and w € A% a closed point,
with F'(w) separable over F. The maps idy, iy : w — AL induce the canonical
point iy : w — A’};(w). We let

p:Apyy — Af
be the projection. We let
denote translation by w.

We define an isomorphism
(5.1) P AR JAR N\ w — TGO A wy
as the composition

T_w Qn F

n n p n no\ - n n n n
AR/AE\w —— Ay /Ap \tw(w) = ALy /AR \ 0 == ZGL" Aws.

Here p : A%, JARN\ iy (w) — Al /A \w is an isomorphism by Nisnevich excision.
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Let 5 : A" — P™ be the standard open immersion identifying A™ with the open
subscheme Xy # 0, and let H C P™ be the complement Xg = 0. We note that
the quotient map

gy P"/H — P"/P"\ 0

is an isomorphism in He(k), as the linear projection from 0 makes P"\ 0 — H
an Al-bundle. The transfer map

Trr(w) : SPGH" A Spec Fly — SUGL A wy
is defined as the composition
SIGA™ ASpec Fy <o AZJARN O
—— PL/PE\O
— Pp/Pp\w
L AR/AP\w
—_— E?G%ﬂ A W,
with m, the quotient map. We let 5% denote the isomorphism
agojomy: XIGL A Spec Fy — Ph/Hp.
in He(k), and let MV, : P%/P%\ w — E"G)" A wy denote the isomorphism
Q0 j i PR/PE\ w— SUGL™ A wy

in He(k).

For w an F-rational point of A'L, the projection to Spec F' defines a canonical
isomorphism ¢ : w — Spec F.

Lemma 5.1. For w € A"(F), the map
(id A q) o Trp(w) : ZGN™ A Spec Fy — X"G)™ A Spec Fy

is the identity.
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Proof. For w = 0, this follows directly from the definition. In general, the trans-
lation map T, extends canonically to the morphism T, : (P*, H) — (P", H),
and it suffices to show that Ty, : P»/Hp — P /Hp is the identity in He(k). This
follows from the fact that we may form the A' family of morphisms T}, (t) := Ty,
with Ty, (0) = id, T, (1) = Ty O

6. COMPUTING THE COLLAPSE MAP

In this section we consider the “Pontryagin-Thom collapse map” (4.2)
PTp(w) :== MVyomy, ook : % Spec Fy — wi AXIG)",

defined in section 4 for w a closed point of (AL \ AL)" separable over F. We
first consider the case of an F-rational point, and n = 1.

For w € FX, we have the corresponding morphism w : Spec F' — A! \ {0} and
the map (id,w) : Spec F — Spec F' x; A\ {0}. This latter map induces the

morphism
[w] : Spec Fx — Spec Fy A Gy,
in He (k).
Lemma 6.1. For w = (wg,w1) an F-point of A1\ A, we have

PTp(w) = Xs[—wi Jwo).

Proof. The coboundary maps &g, 1 : * = Speck — Al have
do(x) = (0,1), 61(x) = (1,0)

so the canonical isomorphism a}; : ¥ Spec Fi — Spec Fy A A1/OA! is induced
by an isomorphism
([0,1],0,1) — (A%,(0,1),(1,0))

in He(k). Referring to the diagram (4.1), we see that the composition (4.2) is
equal to the suspension of the map

[—w1 /wo] : Spec F'y — Spec Fiy A Gy,

as claimed. H

This extends easily to the n-variable case.
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Proposition 6.2. Let w = (w!,...,w") be an F-point of (A \ OAY)", with

)

w' = (wi, w?). Suppose that F(w) is separable over F. Then

PTr(w) = £2([~wl/wb] Ar ... Ap [~} /f).

Here, the iterated N means the composition of the smash product of the maps
[—wi/wi] A A [—wl /w?] with the diagonal Spec Fy. — Spec Fiy A...ASpec F; .

Proof. Since w is F-rational, MV,, = X,,. By construction of the maps X,, and

o', we have
n o__ 1 1
MVyompoop=(MVypompoop)Ap... \p (MVyn omyn oop).

Thus, the result follows directly from lemma 6.1. O

For w € (AL\ OAL)", separable over F, there is in general no nice formula for
the composition MV, o m, o 0%, however, using the construction of transfers in

section 5, we have a suitable extension of our computation.

To simplify the notation, we write S+ for $2G/P, so for instance S?™" =
¥rGon, S™Y = 37 Specky = S™.

Let p1 : AL\ OA! — Al be the open immersion

tq

pi(to,t1) = ——,
to

identifying A\ OA! with A\ {0,1}. Taking the n-fold product of the p; gives

us the open immersion

pn s (AT\ 0AN)™ — A™

Proposition 6.3. Let w = (wl,...,w") be a closed point of (AL \ OAL)", sep-
arable over F. Write w' = (wl,w!). Then the S*"-suspension of PTr(w):

idg2amn A PTr(w) : S7™ A Spec Fy A S™Y — §201 A qp, A §207
1 equal to the map

¢ ((idsznn A [=wi /wg] Ap) - - Argw) [~} /wg]) o Tre(pa(w))) -

Proof. Write #p for Spec F' and w’ for p,(w). We identify the points w and w’
by the isomorphism p, but avoid writing in the p to simplify the notation. We
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have the commutative diagram

T "Aid
SQn,TL A *F+ A Sn,o 7’F‘(w) 1 SQn,n A wy A Sn,O
BrAidAcT Jidmﬁ
P*/H A*py A (AY/OAT) SQ" nAwy A (AL/oANN
idATy P /(P \ w') A (AL/OAN)N? \
idATw 1d/\7rw
1 1 ,/\1d
B /H A (AR (AR \ w) 5 BB\ w
JdAMV, \
MV, Aid
P*/H Awy A S*on idAMVy | S Awy A (AL
(Bp)~'nid P/ (P™ \ w') Awy A S?" idAMV,,
SZn,n A wo A SQn,n SQn,n A wy A S2n,n

the commutativity follows either by definition of Trp(w), or by identities of the
form (a A1)o (1 Ab) = (1ADb)o(aAl), or (in the bottom square) lemma 5.1.
The composition along the left-hand side is idg2n,n A PTr(w); along the right-
hand side we have idgzn.n A PTr,)(w)]. Since w is F'(w)-rational, we may apply
proposition 6.2 to complete the proof. O

7. CONCLUSION

We can now put all the pieces together. For E € Sptgi(k) fibrant, we have
the associated fibrant object Q}.E := Homspt(k)(SQ"’",E), that is, (U}.E is the
presheaf (QE)(X) := E(X4 A S?"). For each n > 1, we have the canonical
map

i B — QpYTE.
Replacing S?™" with S™" = G)\", we have the fibrant object
Q%mE = HomSpt(k)(Smn? E),
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defined as the presheaf (Qf FE)(X) := E(Xy AGp).
Let Vj, denote the product (A!\ A", Recall the open immersion
Pn 2 Vi — A"
identifying V;, with (A!\ {0,1})® C A"™. As before, we denote p,(w) by w’ and
identify w and w’ via p,.
Given a closed point w € V,,r, we define the map
Tre(w)” : mm(Qp E(w)) — mn (QpE(F))
as the composition
T (U E(w)) = Homgy, ) (B2°(S™" Awy ), 7™ E)
OOV, Homgyy,, () (E2°(S>™" A Spec i), ;™ E)
= Tm(QrE(F)).
Definition 7.1. Take E € SHgi(k) and let n > 1 be an integer. An n-fold

T-delooping of E is an an object w;." E of SHg1(k) and an isomorphism ¢, : £ —
Wwr"E in SHgi (k).

Given an n-fold T-delooping of F, ¢, : E — Qjw;"E, the map Trp(w)* for
Vw"E induces the “transfer map”
it o Trp(w)* oty : T (E(w)) — 7 (E(F)),
which we write simply as Trp(w)*.

Remarks 7.2. 1. The transfer map Trp(w)* : mp(E(w)) — T (E(F)) may pos-
sibly depend on the choice of n-fold T-delooping, we do not have an example,

however.
2. An n — b-fold T-delooping of F gives rise to an n-fold T-delooping of Q%ME .
Thus, via the adjunction isomorphism
M, E 27,0 E
we have a transfer map

Trp(w)* : g pE(w) — Hgp E(F)
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for w a closed point of V,,, separable over F'.

3. If E = Q& for some £ € SH(k), then E admits canonical n-fold T-deloopings,

namely
wp'E = QFXTE.
Indeed, in SH(k), X7 is the inverse to Q7 and Q3 commutes with Q.
For a morphism ¢ : X°wy — E, we have the suspension X7 : ¥2.3X°w —
Y E, the composition
Tpo X Trp(w)" : ¥3X° Spec Fy — YT E
and the adjoint morphism

(X o XXTre(w)*) : ¥ Spec Fy — QFYLE.

Suppose we have an n-fold de-looping of E, ¢, : E — Q}pw;"E. This gives us
the adjoint

ly, : SPE — wi"E
and
iy, - OPERE — Qpwi"E.

Let 6, : £ — Q7X7E be the unit for the adjunction.

Lemma 7.3. 1. ¢, = Q1] 00,
2. 1, o QL o (B o BT rp(w)) = Trp(w)*(p).
Proof. The two assertions follow from the universal property of adjunction. [

Before proving our main results, we show that the transfer maps respect the
Postnikov filtration Fi, . mmE.

Lemma 7.4. Suppose E admits an n-fold T-delooping v, : E — Qpw;"E. Then
for each finitely generated field F' over k and each closed point w € A% separable

over F', we have

Trp(w)* (Ff,, mmEw)) C F  mmE(F).
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Proof. Take ¢ > 0, and let 7, : f,£ — E be the canonical morphism. As above,
let v, : ¥} E — w;"E be the adjoint of ¢, and let 6, : £ — Q}X7.E be the unit
of the adjunction. By lemma 7.3, we have the factorization of ¢, as

n,/

5 e -
E 1 n n } :Tl E 1 T'n n n EI.
This gives us the commutative diagram

f,E—" . F

WRfoE —— Q" E,
q

/. n,/ n n 3 . n,,—n 3 3 iQ
where 7, := Q1 o QX7 Since v, : E — Qpwr"E is an isomorphism, the

composition
lnoTy: foF = Qpuwi"E

satisfies the universal property of f,Q7w,"E — Qlw " E. By [6, theorem 7.4.1],
QX0 foE is in 1.8H g1 (k), hence there is a canonical morphism

0: QX foE — foF

extending our first diagram to the commutative diagram

[ -l

QO30 f B T) Vrwi"E.
Using the universal property of 7, we see that 6 o ¢, =idy, g, i.e.,
¥t/ = f,EOR
and the restriction of Té to R is the zero map. We define the transfer map
Trp(w)* : mm feE(w) — T foE(F)

by using the transfer map for 737 f, E/ and this splitting.
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The second diagram thus gives rise to the commutative diagram

T feE(w) L) Tm B (w)

Trp(w)*l lTrp(w)*

TnfoB(F) —— mmE(F),
which yields the result. (|

Remark 7.5. One can define transfer maps in a more general setting, that is, for
a closed point w € A% and any choice of parameters for m,, C Ogn ,,. The same
proof as used for lemma 7.4 shows that these more general transfer maps respect
the filtration Fi . mmE.

Theorem 7.6. Let E € Spt(k) be fibrant, and let F be a field extensions of k.

1. For eachw = (w',...,w") € Vo(F), w' = (wh,w}), and each p € 7 E(F),
the element

po X2([~wl/we] AF ... Ap [~w] /wh]) : £ Spec Fy — E
is in Fi, moE(F).

2. Suppose that E admits an n-fold T-delooping v, : E — QUVjw;"E. Then

forw = (wh, ..., w"), w' = (wh,w?), a closed point of Vi, separable over F, and

pw € moSdg, E(w)
(7.1) Trp(w)*[pw o X ([~wi /wo] Ap ... Ar [~w] /wg))]

is in Fi, moE(F).

3. Suppose that E admits an n-fold T-delooping v, : E — QVjw;"E. and that
II,+E =0 for all a < 0. Suppose further that F' is perfect. Then FJ,, moE(F) is
generated by elements of the form (7.1), as w runs over closed point of V,r and
pw over elements of moQf, E(w).

Proof. (1) follows directly from proposition 4.3 and proposition 6.2.

For (2), the fact that this element is in Fi%, mo(E(F)) follows from (1) and
lemma 7.4.
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For (3), that is, to see that these elements generate, take one of the generators
v = a), o (w) of F}, moE(F), as given by proposition 4.3. Here w is a closed
point of Vy,p, ay is in mo(QE(w)) and o : wy A G)* — E is the morphism in
SHgi (k) adjoint to a. Since F is perfect, w is separable over F. Take the n-fold

T-suspension of ~
Byt S2°(S4 Spec Fy) — SHE,
giving by adjunction and composition with Q7.(:],) the morphism
(i) o (T4 : T Spec Fy — Q™ E.
It follows from the universal properties of adjunction that
(Z77) = dn o,
hence by lemma 7.3 we have
(7.2) W (en) © (B77)" = Qi) 0 dn oy = tn 0.
Write
Sy = (B700,) o (S5 (w)).
By proposition 6.3 we have
Yh(w) = (E%[—w%/wé] AF ... Ap [—w]/wg] o TrF(w)) ,
and thus
77 = Sy, o [~wi /w) Ap .. Ap [~wl Jwg]) o Trp(w).
Using (7.2) and lemma 7.3, we have

tn oy = (i) o (X)
=0 (i]) o [B1(&w 0 B0 [—w1 /wo] AF ... AR [—wn/wo]) 0 0Tre(w)]
= tn 0 Trp(w)*(ay, o [—wi /wg) Ap ... AF [—wf /wi)),

v = Tre(w)*ol, o B ([~wi /wg] A - A [~wi fw])].
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We now assume that £ = Q€ for some fibrant T-spectrum £ € Spt(k). Let
Sk denote the motivic sphere spectrum in Spt(k), that is, Sy, is a fibrant model of
the suspension spectrum E%OS,?. We proceed to re-interpret theorem 7.6 in terms
of the canonical action of moQF Sy (F') on moE(F"), which we now recall, along with
some of the fundamental computations of Morel relating the Grothendieck-Witt
group with endomorphisms of the motivic sphere spectrum.

We recall the Milnor-Witt sheaves of Morel, KMW (see [8, section 2] for de-
tails). The graded sheaf KMW := @,z K" has structure of a Nisnevich sheaf
of associative graded rings. For a field F, the graded ring KMW (F) := KMW(F)
has generators [u] in degree 1, for u € F*, and an additional generator n in degree
—1, with relations

nlu] = [uln

[u][1 — u] = 0 (Steinberg relation)
[uv] = [u] + [v] + nlu][v]

(2 +n[-1]) = 0.

For u € F*, let <u> denote the quadratic form uy? in the Grothendieck-Witt
group GW(F'). Sending [u|n to <u> — 1 extends to an isomorphism [8, lemma
2.10]

Vo : KMW(F) — GW(F).
In addition, for n > 1, the image of xn" : KMW(F) — K}W(F) is an ideal
M KMW(F) in KW (F) and 99 maps n" KMW (F) isomorphically onto the ideal
I(F)", where I(F) C GW(F) is the augmentation ideal of quadratic forms of

virtual rank zero.

For each u € F*, we have the corresponding morphism
[u] : Spec Fy — Gy,

We have as well the canonical projection 1’ : A%\ {0} — P!. Using a construction
similar to the one we used to show that P2/ H = $:2G/\2, one constructs a canonical
isomorphism in He(k), (A% \ {0},1) & $1G/2, and thus 1’ yields the morphism

n: %3G — SiGm

in He(k).
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For E, F € Sptgi(k), let Hom(E, F') denote the Nisnevich sheaf associated to
the presheaf

Uw— HomS'Hsl(k)(U-l— NE,F).
We have the fundamental theorem of Morel:

Theorem 7.7 ([8, corollary 3.43]). Suppose chark # 2. Let m,p,q > 0, n > 2
be integers. Then sending [u] € KMW(F) to the morphism [u] and sending
n € KMW(F) to the morphism 1 yields isomorphisms

ifm<n

HOH’IH. k (SpecF+ AS™ A Gﬁ\np,S” A GQ{]) =
® K(?{I;V(F) if m=mn and g > 0.

As we will be relying on Morel’s theorem, we assume for the rest of the paper
that the characteristic of k is different from two.

Passing to the S!-stabilization, theorem 7.7 gives

(7.3) o, S°Gpd = KW forp>0,9>1,
M, ,2G) =0 for p>0,¢g>1,a <0.

Passing to the T-stable setting, Morel’s theorem gives

(7.4) Topie Sk = KW for p,q € Z
Tatppig, Sk =0 for p,q € Z,a < 0.
Composition of morphisms gives us the (right) action of the bi-graded sheaf
of rings m, +«Sy, on 7, € for each T-spectrum &, and thus, the action of KKW on

T «E. If we let E be the S'-spectrum QFE, then 11, ,E = m4143E for all b > 0.
Thus, via lemma 2.2(2) we thus have the right multiplication

MopmBE @ KM — 11, ,F.

Let 7T C K, S/I W be the sheaf of augmentation ideals. The K %W—module struc-
ture on Il « F gives us the filtration Fy; 11, ,E of 11,y E, defined by

FlwlapE = im[[, B @ KMV —T,,E]; n>0.
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Lemma 7.8. Suppose E = QFE for some £ € SH(k). For integers n,b,p > 0,
with n —p,b—p > 0, the adjunction isomorphism I, ,E = Ha,b,pQ%mE induces
an isomorphism

FyiwlooE = Fypp, ppQF E.

m

Proof. This follows easily from the fact that the adjunction isomorphism

I, F = Ha,*_prémE
is a KMW_module isomorphism. O
Definition 7.9. Let E = Q€ for some £ € SH(k), F' a field extension of k.
Take integers a, b, n with n,b > 0. Following remark 7.2(2), we have the transfer
maps
Trp(w) : My E(F(w)) — Hgp E(F)

for each closed point w € V,,r, separable over F'.

1. Let Fy e

of the form

I, , E(F) denote the subgroup of II, , E(F') generated by elements

Tre(w)*(z); x¢€ FyyllypyB(F(w))

as w runs over closed points of A%, separable over F'.

2. Let [, ,E - Z"|T"(F) denote the subgroup of II, , E(F) generated by elements
of the form

Tre(w) (z-y); z€llapE(F(w),y € I(F(w)",
as w runs over closed points of A%, separable over F'.

Remark 7.10. It follows directly from the definitions that, for w a closed point of
Vor, * € KMW(F), y € 11, E(F(w)), we have

Tre(w)*(y - p'a) = Tre(w)*(y) - =,

where p*z € KMW (F(w)) is the extension of scalars of of z. In particular, [II, ,E-
7T (F) is a K} (F)-submodule of I1, , E(F) containing I1, , E(F)I(F)".

Theorem 7.11. Let k be a perfect field of characteristic # 2. Let E = QFE for
some € € SH(k) with I1,,E = 0 for alla < 0, b> 0. Let n > p > 0 be integers
and let F' be a perfect field extension of k. Then

F?‘ateHO,pE(F) = FJ\ZWTTHO,pE(F)'
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For p > mn >0, we have the identity of sheaves Fi , 1o pE =1y, E.

Proof. First suppose n > p. By lemma 2.2 and lemma 7.8, we reduce to the case

p=0.
The fact that we have an inclusion of K}MW (F)-submodules of Iy o E(F),
F’?ateHQOE(F) C FJ\TZWTTHO,UE(F)a

follows from theorem 7.6. Indeed, as F' is perfect, each element of the form (7.1)
is of the form Trp(w)(py - 2), with py, € g, E(w), 2 € KMW(F(w)), hence in

FTr oo B(F).

To show the other inclusion, it suffices by lemma 7.4 and theorem 7.6 to show
that, for each field K finitely generated over k, the elements [—ul/ul] - ... -
[—ul/uB], with (ul, ... u") € Vo (K), u' = (ud,u}), generate KXW (K) as a mod-
ule over KW (K). But this is clear, as KW (K) is generated as a KW (K)-
module by elements [t1]-. . .-[t,], with t; € K*. Taking uy = (1—t;)7!, u} = 1—u},
gives this generator in the desired form.

If p > n > 0, the universal property of f,E — E gives us the isomorphism for
UeSm/k

HomSHsl (k)(Z;’oEém U+, E) = HomSHsl (k)(ZgoEém U+, an),

since E?Eém Uy is in 38.8Hg1 (k) for U € Sm/k. As these groups of morphisms
define the presheaves whose respective sheaves are Iy, E(F) and Iy, f, E, the
map g, fr B — g, E is an isomorphism, hence Fif,, o, FE = Iy, E. O

Remark 7.12. The reader may object that the collection of transfer maps used
to define F{, .7, IlopE(F) is rather artificial. However, the fact that the gen-
eral transfer maps mentioned in remark 7.5 respect the filtration Fry,, mnE, to-
gether with theorem 7.11, shows that, if we were to allow arbitrary transfer maps
in our definition of F7

ywreHopE(F), we would arrive at the same subgroup of
Iy E(F).

Our main result for a T-spectrum, theorem 3, follows easily from theorem 7.11:

Proof of theorem 3. Using lemma 2.2, we reduce to the case p = 0. Essentially
the same argument as used at the end of the proof of theorem 7.11 proves the

part of theorem 3 for n < 0.
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If n > 0, then for b > 0, we have
TabE = T pUTE (lemma 2.2)
TabSnE = T pQUF o€ = T p [WQUTE (lemma 2.2) and (2.1)

Thus, in case n > 0, theorem 3 for & is equivalent to theorem 7.11 for QFE,
completing the proof. O

Finally, we can prove our main result for the motivic sphere spectrum, theo-

rem 1. Let £ = X, Sj. Then Morel’s isomorphism (7.4) and lemma 2.2 give

KEMW " fora=0,b>0

M, Q€ =¢ 47" -
0 fora < 0,0 > 0.

Theorem 7.13. Let k be a perfect field of characteristic # 2.
1. For alln >p >0, q € Z, and all perfect field extensions F' of k, we have

Fiollo ,QF S8 Sp(F) = KLY (F)I(F)Y < KLY (F),
where N = N(n — p,n — q) := max(0, min(n — p,n — q)). In particular,
F?‘ateﬂ(),OSk(F) = I(F)n (@ GW(F)

2. For n < p, we have the identity of sheaves F%ateﬂoypﬁ%’ﬁémgk = Ké\{‘;v.

3. In case k has characteristic zero, we have the identity of sheaves
MW N MW
F?MQHQPQ%OE%W”S]C = qup I C qup .

with N as above.

Proof. Let N be as defined in the statement of the theorem. We first note (3)
follows from (1), in fact, from (1) for all fields extensions F' finitely generated
over k. Indeed, F%ateﬂo’pQ%OZ%mSk is the image of the map

o fuQFEL Sy — o, QF5L Sy

induced by the canonical morphism f,Q¥¥¢ Sy — QFXE Si. By results of
Morel [9, theorem 3 and lemma 5], both homotopy sheaves are strictly Al-
invariant sheaves of abelian groups. But the category of strictly A'-invariant
sheaves of abelian groups is abelian [9, lemma 6.2.13], hence F%ateﬂo7p95’92éWLSk

is also strictly Al-invariant. It follows, e.g., from Morel’s isomorphism

TOFEE S = TS = K



1578 Marc Levine

that the sheaves K n]‘f W are strictly Al-invariant; as K é‘{ I;)VZN is the image of the
map

Moy g p+M — K tjzw 1;}17
where M = N if ¢q—p > 0, M:p—q—|—N1fq—p<0, it follows thath]\@g/IN
is strictly Al-invariant as well. Our assertion follows from the fact that a strictly
Al-invariant sheaf F is zero if and only F(k(X)) = 0 for all X € Sm/k, which

in turn is an easy consequence of [11, lemma 3.3.6].

Next, suppose n — p < 0. Then N =0 and

Flatello pQF B Sk = FroelooQg, QFEE Sk (lemma 2.2)
=Tlo o0, QFEE Sk (n—p<0)
= Tlo , Q7% Sk (adjunction)
=K (]IW Ig/ (Morel’s theorem)

proving (2); we may thus assume n —p > 0.

By (7.4), we may apply theorem 7.11, which tells us Fi, I ,QF%E Si(F)
is the subgroup of Tly,QFXE Si(F) = KMW(F) generated by elements of the
form T'rp(w)*(y - x) with

y € MonQFSE, Su(F(w)) = K35 (F(w))
x € K%_‘;}/(F(w))

Suppose that n —q < 0, so N =0. Then ¢ —n > 0 and n — p > 0, and thus
the product map
fn—pg—n : KLy (F(w)) @ KQUW (F(w)) — KL (F(w)) = HopQFSE Si(F(w))
is surjective. Since the map Trp(w) is an isomorphism for w € V,(F'), we see
that

FloellopQF BE Sp(F) = o pQF BE Si(F).
Suppose n — g > 0. Then
xaf' = KT (F(w)) — KLY (F(w))
is surjective. If n —p > n — ¢, then the image of ji,—p4—n is the same as the

image of the triple product
KUY (F(w)) @ KU (F(w) @ KUY (F(w)) — KUY (F(w));



The Slice Filtration and Grothendieck-Witt Groups 1579

as the image of
pn—gq—n : KL (F(w)) @ KL (F(w)) — Ko™ (F(w))

is I(F(w))"~%, we see that the image of fin—p q—n is K}V (F(w))I(F(w))"™4 and
thus
FielopQF S, Si(F) = Mo, Q7 8g ST (F).

Similarly, if n — ¢ > n — p, then the image of i, q—r is the same as the image

of the triple product
KLY (F(w)) © KL (F(w) © K5V (F(w)) — K@LY (F(w))
which is KW (F(w))I(F(w))"?. Thus
Fiollo yQF L Sp(F) = o, QF L STV (F)
in this case as well.

Thus, to complete the proof, it suffices to show that, for w a closed point of

Vor, and N > 0 an integer, we have
(7.5) Trp(w)* (K5 (F(w)I(F(w)N) c KMV (F)1(F)N.
First suppose that ¢ — p > 0. Take a closed point w € V,r and elements
z1,...,an € F(w)*, y € KMW(F(w)). We have
Tre(w) (y-[wn- .- [en]n) = Tre(w) (y - (=] .. - [z5]0")
= Trp(w)*(y-[z1] ... [zn]) - 0.
where we use remark 7.10 in the last line. Since ¢ —p > 0, K(%‘;V(F)I(F)N is the
image in K}W (F) of the map
—x N KM v (F) — KDY (F),

which verifies (7.5).

In case ¢ — p < 0, write y = yonP~ 9, with yo € KMW(F(w)). As above, we
have

Tre(w)*(y-[z1)n-...- [en]n) = Tre@w)*(yo - [#1] ... - [an]) - P~ 7,

which is in 9P~ - [KMW(F)n™N] = KMV(F)I(F)N, as desired. O

Theorem 7.13 yields the main result for the S'-spectra E?Gﬁ,\f by using the
Sl-stable consequences of Morel’s unstable computations, theorem 7.7.
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Corollary 7.14. Let k be a perfect field of characteristic # 2.
1. Foralln >p >0, g > 1, and all perfect field extensions F of k, we have

FioellopXGRI(F) = KLY (F)I(F)N=pn=0) ¢ )QTV(F),

with N(n —p,n — q) as in theorem 7.13.
2. Forn < p, we have F},, 1o ,X°Gn! = Iy , 220Gy

3. If char k = 0, we have the identity of sheaves

F?’ateHOaPEEOGQLq = K{?{‘;V_’Z'N(n—pﬁ—lﬂ C K‘]I\/fg/

Proof. As in the proof of theorem 7.13, it suffices to prove (1).

The main point is that Morel’s unstable computations show that the Gy,-

stabilization map
Homsﬂs1 (k)(EZ‘E?Gﬁf A Spec Fy , °GL9)
— Homgyy, (1) (5 SFGRP ! A Spec Py, Gt
is an isomorphism for all m <0, p > 0 and ¢ > 1.
Let E(p,q) = QF, %2Gp!, and let
E(g—p) = Q%OZ(E’ZZ%OGQHC’ = QOTOEg;;pSk.

Then
7TaE(pu Q) = Ha,pE:oG;\nq-

Thus II, +E(p,q) = 0 for m < 0 and so we may apply proposition 4.3 to give
generators of the form &, o X°Qr(w) for

FroelooQg, SEGH(E) = Firyllop S Gl (F).
But &, is in
TnipQp "E(p, ¢)(w) = Ton—pE (P, ¢) (w).
Similarly, we have generators ¢/, o X°Qr(w) for Ff PnoE(p — q)(F), with
& € Mon—pE(p = g)(w).
But the stabilization map

7-‘—O,H—Z)El(pa Q) (’U)) - WO,”_PE(p + 17 q-+ 1)<’LU)
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is an isomorphism, and hence we have an isomorphism from the generators for
Fi. PrnoE(p,q)(F) to the generators for

FraemE(q = p)(F) = lim Fr  {mo E(p + m, g + m)(F).

m
As the map

mE(p, q)(F) — m0E(q — p)(F) = KU} (F)

is an isomorphism, it follows that the surjection

Flatem0E(q — p)(F) = FryemoE(q — p)-

is an isomorphism as well. By theorem 7.13, we have
PrucmoBla —p) = KTy (IIR)Y < KT (F),

completing the proof. O

Theorem 7.13 also gives us the T-stable version

Corollary 7.15. Let k be a perfect field of characteristic # 2. For n,p,q € Z,

and F' a perfect field extensions of k, we have
FloemppSt Sp(F) = KMYW(F)1(F)Npn=a) ¢ gKMV(F)
For n <p, we have F?’ateﬂpyng}mgk = Ké\@g/. If char k = 0, we have

n q _ MW 4N (n—p,n—q MW
FTateﬂ-ﬂpZGmSk - qup N ) c qup :

Proof. Using lemma 2.2 and lemma 7.8 as in the proof of theorem 7.11 we have

n q __ pn—p+r q—p+r
FTateWPJ’ZGm Sk - FTate WT»TEGm Sk

for all integers r. As our assertion is also stable under this shift operation, we
may assume that p,q > 0. We note that S, is in SH®//(k), hence so are all
¥, S for ¢ > 0, and thus

n q _ q
F Tate”p,pz:@m Sk = Wp,pEGm Sk

for n < 0, p,q > 0. The truncation functors f,, n > 0, on SH(k) and SHgq1 (k)
commute with QF, and 7, ,QFE = 7, ,€ for € € SH(k), p > 0. This reduces
us to computing computing F{fateﬂp,pQ%OZg}mSk for n,p,q > 0, which is theo-
rem 7.13. O
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8. EPILOG: CONVERGENCE QUESTIONS

Voevodsky has stated a conjecture [14, conjecture 13] that would imply that for
E=3PX,, X € Sm/k, the Tate Postnikov tower is convergent in the following
sense: for all a,b,n € Z, one has

ﬂmFﬂteﬂa’ban =0.

. A . . .
Our computation of F}, m, ,35% Gy, gives some evidence for this convergence

a
conjecture.

Proposition 8.1. Let k be a perfect field with chark # 2. For all p,q > 0, and
all perfect field extensions F' of k, we have

mnF%ateWpapz%oG;\nq(F) =0.

Proof. In light of theorem 7.13, the assertion is that the I(F')-adic filtration on
K(%I;/(F) is separated. By [10, théoreme 5.3, for m > 0, KMW(F) fits into a
cartesian square of GW (F')-modules

K3W(F) ——— K3/(F)

J Jw

I(F)™ —— I(F)™/I(F)™*,

where KM (F) is the Milnor K-group, q is the quotient map and Pf is the map
sending a symbol {uq,...,un} to the class of the Pfister form <<uy,..., up,>>
mod I(F)™*1. For m < 0, KMW(F) is isomorphic to the Witt group of F,
W (F), that is, the quotient of GW (k) by the ideal generated by the hyperbolic
form 22 — y2. Also, the map GW(F) — W/(F) gives an isomorphism of I(F)"
with its image in W (F') for all » > 1. Thus

[(F)" c W(F for m < 0,n > 0
Ky = TS orm < 2
I(F)"t™ Cc GW(F) form >0,n > 1.

The fact that N, I(F)™ = 0 in W(F) or equivalently in GW(F) is a theorem of
Arason and Pfister [1]. O

Remarks 8.2. 1. The proof in [10] that KW (F) fits into a cartesian square as
above relies the Milnor conjecture.
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2. Voevodsky’s conjecture [loc. cit.] asserts the convergence for a wider class of
objects in SH(k) than just the T-suspension spectra of smooth k-schemes. The
selected class is the triangulated category generated by X7XF X, X € Sm/k,
n € Z and the taking of direct summands. However, as pointed out to me by
Igor Kriz, the convergence fails for this larger class of objects. In fact, take £ to
be the Moore spectrum Sy, /¢ for some prime ¢ # 2. Since I, ;S = 0 for a < 0,
proposition 3.2 shows that II, ,f,Sr = 0 for a < 0, and thus we have the right

exact sequence for all n > 0
70,0.fnSk X 70,0fnSK — m0,0/n€ — 0.
In particular, we have
Flatem0,0E (k) = im (Flyem0,0Sk(k) — m0,05k(k) /) = im (I(k)" — GW(k)/{).

Take k = R. Then GW(R) = Z®Z, with virtual rank and virtual index giving the
two factors. The augmentation ideal I(R) is thus isomorphic to Z via the index
and it is not hard to see that I(R)" = (2"~1) C Z = I(R). Thus 1o o€ = Z/{®Z/L
and the filtration F{,, .m0 0€ is constant, equal to Z/¢ = I(R)/¢, and is therefore
not separated.

The convergence property is thus not a “triangulated” one in general, and
therefore seems to be quite subtle. However, if the I-adic filtration on GW(F')
is finite (possibly of varying length depending on F') for all finitely generated F'
over k, then our computations (at least in characteristic zero) show that the fil-
tration F{atewpmili’?((}ﬁf is at least locally finite, and thus has better triangulated
properties; in particular, for ¢ # 2,

ﬂojo(Sk/ﬁ) = Z/f, Fr?ateﬂ(),o(Sk/e) =0 forn > 0,

as the augmentation ideal in GW(F') is purely two-primary torsion, and thus
Imo0Sk/¢ = 0. One can therefore ask if Voevodsky’s convergence conjecture is
true if one assumes the finiteness of the I(F')-adic filtration on GW(F) for all
finitely generated fields F' over k.
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