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Abstract: In this paper we construct new examples of stable bundles of
rank 2 of small degree with 4 sections on a smooth irreducible curve of
maximal Clifford index. The corresponding Brill-Noether loci have negative
expected dimension of arbitrarily large absolute value.
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1. Introduction

It has been apparent for some time that the classical Brill-Noether theory for
line bundles on a smoooth irreducible curve does not extend readily to bundles of
higher rank. Some aspects of this have been clarified recently by the introduction
of Clifford indices of higher rank [7]. An example of a stable rank-3 bundle with
Clifford index less than the classical Clifford index on a general curve of genus
9 or 11 is given in [8], disproving a conjecture of Mercat [9]. Very recently, it
was proved in [4] that there exist curves of any genus ≥ 11 for which the rank-2
Clifford index is strictly smaller than the classical Clifford index. In this paper
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we use the methods of [4] to present further examples of this, showing in par-
ticular that the difference between the two Clifford indices can be arbitrarily large.

We recall that the classical Clifford index γ1(C) of a smooth projective curve
of genus g ≥ 4 over an algebraically closed field of characteristic 0 is defined as

γ1(C) := min{d− 2(h0(L)− 1) | L ∈ Picd(C), d ≤ g − 1, h0(L) ≥ 2}.
It is a classical fact that γ1 ≤

[
g−1
2

]
with equality for the general curve of genus

g. More generally, for any positive integer n the rank-n Clifford index γ′n(C) is
defined as follows. For any vector bundle E of rank n and degree d on C define

γ(E) :=
1
n

(d− 2(h0(E)− n)).

Then

γ′n = γ′n(C) := min

{
γ(E)

∣∣∣ E semistable of rank n with
d ≤ n(g − 1) and h0(E) ≥ 2n

}
.

In particular γ1 = γ′1 and it is easy to see that γ′n ≤ γ1 for all n.

The gonality sequence (dr)r∈N is defined by

dr := min
L∈Pic(C)

{deg L | h0(L) ≥ r + 1}.

In classical terms dr is the minimum number d for which a gr
d exists. In the case

of a general curve we have for all r,

dr = g + r −
[

g

r + 1

]
.

According to [9], [7] a version of Mercat’s conjecture states that

γ′n = γ1 for all n.

As mentioned above, counterexamples in rank 3 and rank 2 are now known. For
the rest of the paper we concentrate on rank 2.

For γ1 ≤ 4 it is known that γ′2 = γ1 (see [7, Proposition 3.8]). In any case, we
have according to [7, Theorem 5.2]

γ′2 ≥ min
{

γ1,
d4

2
− 2

}
.

For the general curve of genus 11 we have γ1 = 5 and d4 = 13. So in this case,
γ′2 = 5 or 9

2 . It is shown in [4, Theorem 3.6] that there exist curves C of genus 11
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with γ1 = 5 and γ′2 = 9
2 , but this cannot happen on a general curve of genus 11 [4,

Theorems 1.6 and 1.7]. Counterexamples to the conjecture in higher genus were
also constructed in [4]. All examples E constructed in [4] have γ(E) = γ1 − 1

2 .

In this paper we use the methods of [4] to generalize these examples. Our main
result is the following theorem.

Theorem 1.1. Suppose d = g − s with an integer s ≥ −1 and

g ≥ max{4s + 14, 12}.
Suppose further that the quadratic form

3m2 + dmn + (g − 1)n2

cannot take the value −1 for any integers m,n ∈ Z. Then there exists a curve
C of genus g having γ1(C) =

[
g−1
2

]
and a stable bundle E of rank 2 on C with

γ(E) = g−s
2 − 2 and hence

γ1 − γ′2 ≥
[
g − 1

2

]
− g − s

2
+ 2 > 0.

In particular the difference γ1 − γ′2 can be arbitrarily large.

This statement can also be written in terms of the Brill-Noether loci B(2, d, 4)
which are defined as follows. Let M(2, d) denote the moduli space of stable
bundles of rank 2 and degree d on C. Then

B(2, d, 4) := {E ∈ M(2, d) | h0(E) ≥ 4}.
Theorem 1.1 says that under the given hypotheses B(2, g− s, 4) is non-empty. It
may be noted that the expected dimension of B(2, g − s, 4) is −4s− 11 < 0.

The key point in proving this theorem is the construction of the curves C,
which all lie on K3-surfaces and are therefore not general, although they do have
maximal Clifford index.

Theorem 1.2. Suppose d = g − s with an integer s ≥ −1 and

g ≥ max{4s + 14, 12}.
Then there exists a smooth K3-surface S of type (2, 3) in P4 containing a smooth
curve C of genus g and degree d with

Pic(S) = HZ⊕ CZ,
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where H is the polarization, such that S contains no divisor D with D2 = 0.
Moreover, if S does not contain a (−2)-curve, then C is of maximal Clifford
index

[
g−1
2

]
.

The proof of Theorem 1.2, which uses the methods of [3] and [4], is given in
Section 2. This is followed in Section 3 by the proof of Theorem 1.1.

2. Proof of Theorem 1.2

Lemma 2.1. Let d = g − s with g ≥ 4s + 14 and s ≥ −1. Then d2 − 6(2g − 2)
is not a perfect square.

Proof. If d2 − 6(2g − 2) = g2 − (2s + 12)g + s2 + 12 = m2 for some non-negative
integer m, then the discriminant

(s + 6)2 − (s2 + 12−m2) = 12s + 24 + m2

is a perfect square of the form (m + b)2 with b ≥ 2. Solving the equation g2 −
(2s + 12)g + (s2 + 12−m2) = 0 for g, we get

(2.1) g = s + 6± (m + b).

Now, since b ≥ 2, we have (m + b− 2)2 ≥ m2 and hence

4(m + b)− 4 = (m + b)2 − (m + b− 2)2 ≤ 12s + 24,

which gives m + b ≤ 3s + 7. So (2.1) implies g ≤ 4s + 13, which contradicts the
hypothesis. ¤

Proposition 2.2. Let g ≥ 4s + 14 with s ≥ −1. Then there exists a smooth
K3-surface S of type (2, 3) in P4 containing a smooth curve C of genus g and
degree d = g − s with

Pic(S) = HZ⊕ CZ,

where H is the polarization, such that S contains no divisor D with D2 = 0.

Proof. The conditions of [6, Theorem 6.1,2.] are fulfilled to give the existence of
S and C. Let

D ∼ mH + nC with m,n ∈ Z.

We want to show that the equation D2 = 0 does not have an integer solution.
Now

D2 = 6m2 + 2dmn + (2g − 2)n2.
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For an integer solution we must have that the discriminant d2 − 6(2g − 2) is a
perfect square and this contradicts Lemma 2.1. ¤

Lemma 2.3. Under the hypotheses of Proposition 2.2, the curve C is an ample
divisor on S.

Proof. We show that C · D > 0 for any effective divisor on S which we may
assume to be irreducible. So let D ∼ mH + nC be an irreducible curve on S. So

C ·D = m(g − s) + n(2g − 2).

Note first that, since H is a hyperplane, we have

(2.2) D ·H = 6m + (g − s)n > 0.

If m,n ≥ 0, then one of them has to be positive and then clearly C ·D > 0. The
case m,n ≤ 0 contradicts (2.2).

Suppose m > 0 and n < 0. Then, using (2.2) we have

C ·D = m(g − s) + n(2g − 2) > −n

(
(g − s)2

6
− (2g − 2)

)
.

So C ·D > 0 for g > s + 6 + 2
√

3s + 6, which holds, since g ≥ 4s + 14.

Finally, suppose m < 0 and n > 0. Then, since we assumed D irreducible,

nC ·D = −mD ·H + D2 ≥ −mD ·H − 2 ≥ −m− 2.

If m ≤ −3 , then nC ·D > 0. If m = −1, we have

C ·D = −(g − s) + n(2g − 2) ≥ g + s− 2 > 0.

The same argument works for m = −2, n ≥ 2. Finally, if m = −2 and n = 1, we
still get C ·D > 0 unless D ·H = 1 and D2 = −2. Solving these equations gives
s = 1, g = 14, contradicting the hypotheses. ¤

Theorem 2.4. Let the situation be as above with d = g − s, s ≥ −1 and

g ≥ max{4s + 14, 12}.
If S does not contain a (−2)-curve, then C is of maximal Clifford index

[
g−1
2

]
.

Note that a stronger form of this has been proved for s = −2 and g odd in [4,
Theorem 3.6] and for s = −1 and g even in [4, Theorem 3.7]. The proof follows
closely that of [3, Theorem 3.3], but, since some of the estimates are delicate and
our hypotheses differ, we give full details.
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Proof. Since C is ample by Lemma 2.3, it follows from [1, Proposition 3.3] that
γ1(C) is computed by a pencil. If γ1(C) <

[
g−1
2

]
, it then follows from [2] that

there is an effective divisor D on S such that D|C computes γ1(C) and satisfying

h0(S,D) ≥ 2, h0(S,C −D) ≥ 2 and deg(D|C) ≤ g − 1.

We consider the exact cohomology sequence

0 → H0(S,D − C) → H0(S,D) → H0(C, D|C) → H1(S,D − C).

Since C −D is effective, and not equivalent to zero, we get

H0(S,D − C) = 0.

By assumption S does not contain (−2)-curves, so |C −D| has no fixed compo-
nents. According to Proposition 2.2 the equation (C −D)2 = 0 has no solutions,
therefore (C −D)2 > 0 and the general element of |C −D| is smooth and irre-
ducible. It follows that

H1(S,D − C) = H1(S,C −D)∗ = 0

and
γ1(C) = γ(D|C) = D · C − 2 dim |D| = D · C −D2 − 2

by Riemann-Roch. We shall prove that

D · C −D2 − 2 ≥
[
g − 1

2

]
,

a contradiction.

Let D ∼ mH + nC with m,n ∈ Z. Since D is effective and S contains no
(−2)-curves, we have D2 > 0 and D · H > 2. Since C − D is also effective, we
have (C−D) ·H > 2, i.e. D ·H < d−2. These inequalities and deg(D|C) ≤ g−1
translate to the following inequalities

(2.3) 3m2 + mnd + n2(g − 1) > 0,

(2.4) 2 < 6m + nd < d− 2,

(2.5) md + (2n− 1)(g − 1) ≤ 0.

Consider the function

f(m,n) := D · C −D2 − 2 = −6m2 + (1− 2n)dm + (n− n2)(2g − 2)− 2,
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and denote by

a :=
1
6
(d +

√
d2 − 12(g − 1)) and b :=

1
6
(d−

√
d2 − 12(g − 1))

the solutions of the equation 6x2 − 2dx + 2g − 2 = 0. Note that d2 > 12(g − 1).
So a and b are positive real numbers.

Suppose first that n < 0. From (2.3) we have either m < −bn or m > −an.
If m < −bn, then (2.4) implies that 2 < n(d − 6b) < 0, because n < 0 and
d− 6b =

√
d2 − 12(g − 1) > 0, which gives a contradiction.

If n < 0 and m > −an, from (2.5) we get

−an < m ≤ (g − 1)(1− 2n)
d

<
(1− 2n)d

12
,

since d2 > 12(g − 1). For a fixed n, f(m,n) is increasing as a function of m for
m ≤ (1−2n)d

12 and therefore

f(m,n) > f(−an, n)

=
d2 − 12(g − 1) + d

√
d2 − 12(g − 1)

6
· (−n)− 2

≥ d2 − 12(g − 1) + d
√

d2 − 12(g − 1)
6

− 2

≥ g − 1
2

,

which gives a contradiction. Here the last inequality reduces to

d
√

d2 − 12(g − 1) ≥ 15g − 3− d2

which certainly holds if d2 ≥ 15g − 3. This is true under our hypotheses on g if
s ≥ 1. The inequality can be checked directly in the cases s = 0 and s = −1.

Now suppose n > 0. From (2.3) we get that either m < −an or m > −bn. If
m < −an, we get from (2.4), 2 < n(−6a + d) < 0, a contradiction.

When m > −bn, first suppose n = 1. Then (2.5) gives

(2.6) −b < m ≤ −g − 1
d

.

We claim that

(2.7) 1 < b <
4
3
.
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In terms of s we have

6b = g − s−
√

(g − s)2 − 12(g − 1)

= g − s−
√

(g − (s + 6))2 − 12s− 24

> g − s− (g − (s + 6)) = 6,

since s ≥ −1. This gives 1 < b. For the second inequality note that b = 4
3 gives

s = g−13
4 and b is a strictly increasing function of s in the interval

[
−1, g−13

4

]
.

Since certainly s < g−13
4 , we obtain b < 4

3 .

So there are no solutions of (2.6) unless d ≥ g − 1, i.e. s = 1, 0 or −1. For
these values of s we must have m = −1 and

f(m,n) = f(−1, 1) = d− 8.

So f(−1, 1) ≥
[

g−1
2

]
if and only if g ≥ 2s + 14.

Now suppose m > −bn and n ≥ 2. Then (2.5) gives

f(m,n) ≥ min
{

f

(
−(g − 1)(2n− 1)

d
, n

)
, f(−bn, n)

}
.

We have

f

(
−(g − 1)(2n− 1)

d
, n

)
=

g − 1
2

(
(2n− 1)2

(
1− 12(g − 1)

d2

)
+ 1

)
− 2.

It is easy to see that f
(
− (g−1)(2n−1)

d , n
)
≥ g−1

2 for n ≥ 2. Moreover,

f(−bn, n) = −bdn + n(2g − 2)− 2 = n(2g − 2− bd)− 2.

Note that

2g − 2− bd =

√
d2 − 12(g − 1)

6
(d−

√
d2 − 12(g − 1)) > 0.

So f(−bn, n) is a strictly increasing function of n. Hence it suffices to show that
f(−2b, 2) ≥ g−1

2 or equivalently

7(g − 1)− 4bd− 4 ≥ 0.

According to (2.7) we have b < 4
3 . So, since d ≤ g + 1, we have

7(g − 1)− 4bd− 4≥ 7(g − 1)− 16
3

d− 4

≥ 7g − 7− 16
3

g − 16
3
− 4 =

1
3
(5g − 49) > 0.

This completes the argument for m > −bn, n > 0.
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Finally, suppose n = 0. Then

f(m, 0) = −6m2 + dm− 2.

As a function of m this takes its maximum value at d
12 . By (2.5), m ≤ g−1

d ≤ d
12 .

So f(m, 0) takes its minimal value in the allowable range at m = 1. Since
f(1, 0) = d− 8, we require d− 8 ≥

[
g−1
2

]
or equivalently

g ≥ 2s + 14,

which is valid by hypothesis. ¤

This completes the proof of Theorem 1.2.

Remark 2.5. For s = 0 or −1 the assumptions of the theorem are best possible,
since in these cases γ(H|C) = γ((C − H)|C) = d − 8 would otherwise be less
than

[
g−1
2

]
. For s ≥ 1 the conditions can be relaxed. For example, if s ≥ 1

and g = 4s + 12, the only places where the argument can fail are in the proofs
of Lemma 2.1 and formula (2.7). In the first case, one can show directly that
d2 − 6(2g − 2) is not a perfect square; in the second, one can show that b < 3

2 ,
which is sufficient.

Remark 2.6. The condition that S does not contain a (−2)-curve certainly holds
if 3m2 + dmn+(g− 1)n2 = −1 has no solutions. We do not know precisely when
this is true, but it certainly holds if both g − 1 and g − s are divisible by 3. So
the conclusion of Theorem 2.4 holds for s ≡ 1 mod 3, if g ≥ 4s + 14 and g ≡ 1
mod 3. The conclusion also holds, for example, for g = 16 and s = 1 (see Remark
2.5).

3. Proof of Theorem 1.1

Lemma 3.1. Let C and H be as in Proposition 2.2 with d = g − s, s ≥ −1 and
suppose that S has no (−2)-curves. Then H|C is a generated line bundle on C

with h0(OC(H|C)) = 5 and

S2H0(OC(H|C)) → H0(OC(H2|C))

is not injective.

Proof. Consider the exact sequence

0 → OS(H − C) → OS(H) → OC(H|C) → 0.
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The divisor H − C is not effective, since (H − C) ·H = 6− d < 0. So we have

0 → H0(OS(H)) → H0(OC(H|C)) → H1(OS(H − C)) → 0.

Now

(C −H)2 = 2g − 2− 2d + 6 = 2s + 4 ≥ 2

and

H2(OS(C −H)) = H0(OS(H − C))∗ = 0.

So by Riemann-Roch h0(OS(C −H)) ≥ 3. Since S has no (−2)-curves, it follows
that the linear system |C − H| has no fixed components and hence its general
element is smooth and irreducible (see [10]). Hence h1(OS(H − C)) = 0 and
therefore h0(OC(H|C)) = h0(OS(H)) = 5. The last assertion follows from the
fact that S is contained in a quadric. ¤

Remark 3.2. Lemma 3.1 implies that H|C belongs to W 4
g−s. So g − s ≥ d4.

Since the generic value of d4 is g + 4− [g
5

]
, it follows that C has non-generic d4

if g < 5s + 20.

Lemma 3.3. Let C be a smooth irreducible curve and M a generated line bundle
on C of degree d < 2d1 with h0(M) = 5 and such that S2H0(M) → H0(M2) is
not injective. Then B(2, d, 4) 6= ∅.

The proof is identical with that of [5, Theorem 3.2 (ii)]. ¤

Theorem 3.4. Let C be as in Theorem 2.4. Then

(i) B(2, g − s, 4) 6= ∅;
(ii) γ′2(C) ≤ g−s

2 − 2 < γ1(C).

Proof. This follows from Theorem 2.4 and Lemmas 3.1 and 3.3. ¤

This completes the proof of Theorem 1.1, where the last assertion follows from
Remark 2.6.

Corollary 3.5. γ′2n(C) < γ1(C) for every positive integer n.

Proof. This follows from Theorem 3.4 and [7, Lemma 2.2]. ¤
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Remark 3.6. Under the conditions of Theorem 1.1, for any stable bundle E

of rank 2 and degree g − s on C with h0(E) = 4, it follows from [5, Proposi-
tion 6.1] that the coherent system (E, H0(E)) is α-stable for all α > 0. So the
corresponding moduli spaces of coherent systems are non-empty.
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