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The, by now classical, Kawamata–Viehweg vanishing theorem [Kaw82, Vie82]
says that global cohomologies vanish for divisorial sheaves which are Q-linearly
equivalent to a divisor of the form (nef and big) + ∆. In this note we prove that
local cohomologies vanish for divisorial sheaves which are Q-linearly equivalent
to a divisor of the form ∆. If X is a cone over a Fano variety, one can set up a
perfect correspondence between the global and local versions.

More generally, we study the depth of various sheaves associated to a log
canonical pair (X, ∆). The first significant result in this direction, due to [Elk81],
says that if (X, 0) is canonical then X has rational singularities. In particular,
OX is CM. The proof has been simplified repeatedly in [Fuj85], [Kol97, Sec.11]
and [KM98, 5.22]. Various generalizations for other divisorial sheaves and to the
log canonical case were established in [KM98, 5.25], [Kov00], [Ale08] and [Fuj09b,
Secs.4.2–3].
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Here we prove a further generalization, which, I believe, covers all the theorems
about depth mentioned above.

We work with varieties over a field of characteristic 0. For the basic definitions
and for background material see [KM98].

Definition 1. Let X be normal and D1, D2 two Q-divisors. We say that D1

is locally Q-linearly equivalent to D2, denoted by D1 ∼Q,loc D2, if D1 − D2 is
Q-Cartier. The same definition works if X is not normal, as long as none of the
irreducible components of the Di is contained in Sing X.

Note that this is indeed a local property. That is, if {Xi : i ∈ I} is an open
cover of X and D1|Xi ∼Q,loc D2|Xi for every i, then D1 ∼Q,loc D2.

The following can be viewed as a local version of the Kawamata-Viehweg van-
ishing theorem.

Theorem 2. Let (X, ∆) be dlt, D a (not necessarily effective) Z-divisor and
∆′ ≤ ∆ an effective Q-divisor on X such that D ∼Q,loc ∆′. Then OX(−D) is
CM.

Here dlt is short for divisorial log terminal [KM98, 2.37] and CM for Cohen–
Macaulay. A sheaf F is CM iff all its local cohomologies vanish below the maximal
dimension; that is, iff H i

x(X, F ) = 0 for i < codimX x for every point x ∈ X.
Similarly, depthx F ≥ j iff H i

x(X, F ) = 0 for i < j; see [Gro68, III.3.1] or [Har77,
Exrcs.III.3.3–5].

Examples illustrating the necessity of the assumptions are given in (4.5–10).

The proof of Theorem 2 also works in the complex analytic case. (Normally
one would expect that proofs of a local statement as above automatically work
for analytic spaces as well. However, many of the papers cited above use global
techniques, and some basic questions are still unsettled; see, for instance, (4.3).)

Weaker results hold for log canonical and semi log canonical pairs. For basic
definitions in the semi log canonical case (abbreviated as slc) see [K+92, Sec.12]
or [Fuj09b].

Theorem 3. Let (X, ∆) be semi log canonical and x ∈ X a point that is not a
log canonical center of (X, ∆).
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(1) Let D be a Z-divisor such that none of the irreducible components of D

is contained in Sing X. Let ∆′ ≤ ∆ be an effective Q-divisor on X such
that D ∼Q,loc ∆′. Then

depthxOX(−D) ≥ min{3, codimX x}.
(2) Let Z ⊂ X be any closed, reduced subscheme that is a union of lc centers

of (X, ∆). Then

depthxOX(−Z) ≥ min{3, 1 + codimZ x}.

In contrast with (2), my proof does not work in the complex analytic case; see
(17).

4 (Applications and examples).

(4.1) In (2) we can take ∆′ = 0. Then D can be any Q-Cartier divisor,
reproving [KM98, 5.25]. The D = ∆′ ≤ ∆ case recovers [Fuj09b, 4.13].

(4.2) The D = 0 case of (3.1) is a theorem of [Ale08, Fuj09b] which says
that if (X, ∆) is lc and x ∈ X is not a log canonical center then depthxOX ≥
min{3, codimX x}. This can fail if x is a log canonical center, for instance when
x ∈ X is a cone over an Abelian variety of dimension ≥ 2.

(4.3) If (X, ∆) is slc then KX + ∆ is Q-Cartier, hence −KX ∼Q,loc ∆. Then
OX

(−(−KX)
) ∼= ωX . Thus if x ∈ X is not a log canonical center then depthx ωX ≥

min{3, codimX x}. (Note that while OX is CM iff ωX is CM, it can happen that
OX is S3 but ωX is not; see [Pat10]. Thus (4.3) does not seem to be a formal
consequence of (4.2).)

Let f : (X, ∆) → C be a semi log canonical morphism to a smooth curve C

(cf. [KM98, 7.1]) and Xc the fiber over a closed point. None of the lc centers
are contained in Xc, thus if x ∈ Xc has codimension ≥ 2 then depthx ωX/C ≥ 3.
Therefore, the restriction of ωX/C to Xc is S2, hence it is isomorphic to ωXc .
More generally, ωX/C commutes with arbitrary base change. (When the general
fiber is klt, this follows from [Elk81]; for projective morphisms a proof is given in
[KK10], but the general case has not been known earlier. As far as I know, the
complex analytic case is still unproved.)

(4.4) Assume that (X, ∆) is slc. For any n ≥ 1, write

−nKX − bn∆c ∼Q −n
(
KX + ∆) +

(
n∆− bn∆c) ∼Q,loc n∆− bn∆c.
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Assume now that ∆ =
∑(

1 − 1
mi

)
Di with mi ∈ N ∪ {∞}. Then n∆ − bn∆c =∑

i
ci
mi

Di for some ci ∈ N where 0 ≤ ci < mi for every i. Thus ci ≤ mi − 1 for
every i, that is, n∆ − bn∆c ≤ ∆. Thus, if x ∈ X is not a log canonical center
then

depthxOX

(
nKX + bn∆c) ≥ min{3, codimX x}.

In particular, if f : (X, ∆) → C is a proper slc morphism to a smooth curve and
Xc is any fiber then the restriction of OX

(
nKX + bn∆c) to any fiber is S2 and

hence the natural map

OX

(
nKX + bn∆c)|Xc → OXc

(
nKXc + bn∆cc

)
is an isomorphism.

This implies that the Hilbert function of the fibers

χ
(
Xc,OXc

(
nKXc + bn∆cc

))

is deformation invariant. (Note that, because of the rounding down, the Hilbert
function is not a polynomial in the usual sense, rather a polynomial whose coef-
ficients are periodic functions of n. The period divides the index of (X, ∆), that
is, the smallest n0 ∈ N such that n0∆ is a Z-divisor and n0

(
KX +∆

)
is Cartier.)

(4.5) It is also worthwhile to note that while the assumptions of Theorem 2
depend only on the Q-linear equivalence class of D, being CM is not preserved
by Q-linear equivalence in general. For instance, let X be a cone over an Abelian
variety A of dimension ≥ 2. Let DA be a Z-divisor on A such that mDA ∼ 0
for some m > 1 but DA 6∼ 0. Let DX be the cone over DA. Then DX ∼Q,loc 0,
OX(DX) is CM but OX is not CM.

These assertions follow from the next easy characterization of CM divisorial
sheaves on cones:

(4.6) Claim. Let Y ⊂ Pn be projectively normal, H the hyperplane class on Y

and D a Cartier divisor on Y . Let X ⊂ An+1 be the cone over Y with vertex v

and DX the cone over D. Then

H i
v

(
X,OX(DX)

)
=

∑

m∈Z
H i−1

(
Y,OY (D + mH)

)
for i ≥ 2.

In particular, OX(DX) is CM iff

H i
(
Y,OY (D + mH)

)
= 0 ∀ m ∈ Z, ∀ 0 < i < dimY. ¤
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(4.7) Consider the quadric cone X := (x1x2 = x3x4) ⊂ A4 with vertex v =
(0, 0, 0, 0). It is the cone over the quadric surface Q ∼= P1 × P1 ⊂ P3. It contains
two families of planes with typical members A := (x1 = x3 = 0) and B := (x1 =
x4 = 0). By (4.6)

H2
v

(
X,OX(aA + bB)

)
=

∑
m∈ZH1

(
Q,OQ(a + m, b + m)

)

=
∑

0≤m≤|b−a|−2 H0
(
P1,OP1(m)

)⊗H0
(
P1,OP1(|b− a| − 2−m)

)
.

Thus we see that OX(aA + bB) is CM only if |b− a| < 2.

(4.8) As another application of (2), assume that (X,
∑

aiDi) is dlt and 1− 1
n ≤

ai ≤ 1 for every i for some n ∈ N. Then, for every m,

m
(
KX +

∑
iDi

)
=

∑
im(1− ai)Di + m

(
KX +

∑
iaiDi

)

∼Q,loc
∑

im(1− ai)Di.

If 1 ≤ m ≤ n − 1 then 0 ≤ m(1 − ai) ≤ ai, thus by (2) and by Serre duality we
conclude that

ω
[−m]
X (−m

∑
Di) and ω

[m+1]
X (m

∑
Di) are CM for 1 ≤ m ≤ n− 1.

(4.8.1)
If, in addition, KX is Q-Cartier, then m

∑
iDi ∼Q,loc

∑
im(1− ai)Di, hence

OX (−m
∑

Di) is CM for 1 ≤ m ≤ n− 1. (4.8.2)

Results like these are quite fragile. As an example, let X ⊂ A4 be the quadric
cone with the 2 families of planes |A| and |B|. Then

(
X, A1 + 1

2(B1 + B2)
)

and
(
X, 9

10(A1 + A2) + 6
10(B1 + B2 + B3)

)

are both dlt, giving that

OX (−A1 −B1 −B2) and OX (−A1 −A2 −B1 −B2 −B3) are CM.

Note, however, that the sheaves

OX (−B1 −B2) ,OX (−B1 −B2 −B3) and OX (−A1 −B1 −B2 −B3)

are not CM by (4.7).

(4.9) The following example shows that (4.8.2) fails in general if KX is not
Q-Cartier.

Let Q ⊂ A4 be the affine quadric (xy = zt). Let B1 = (x = z = 0) and
B2 = (y = t = 0) be 2 planes in the same family of planes on Y . For some ci (to
be specified later), consider the divisor c1B1+c2B2. (Note that KY +c1B1+c2B2
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is Q-Cartier only if c1 + c2 = 0, so one of the ci will have to be negative, but let
us not worry about it for now.)

Consider the group action τ : (x, y, z, t) 7→ (εx, y, εz, t) where ε is a primitive
nth root of unity. This generates an action of µn; let π : Y → Xn = Y/µn be
the corresponding quotient. Both of the Bi are τ -invariant; set B′

i = π(Bi) (with
reduced structure).

Note that the fixed point set of τ is B1 and π ramifies along B1 with ramification
index n. Thus KY = π∗

(
KXn + (1− 1

n)B′
1

)
hence

KY + c1B1 + c2B2 = π∗
(
KXn +

(
1− 1

n + c1
n

)
B′

1 + c2B
′
2

)
.

Now we see that even if c1 < 0, the coefficient of B′
1 could be positive. In

particular one computes that

KY −
(
1− 2

n+1

)
B1 +

(
1− 2

n+1

)
B2 = π∗

(
KXn +

(
1− 2

n+1

)(
B′

1 + B′
2

))
.

Thus
(
Xn,

(
1− 2

n+1

)(
B′

1 + B′
2

))
is klt but B′

1 + B′
2 consists of 2 normal surfaces

intersecting at a point, hence it is not S2. Therefore, OXn

(−B′
1 − B′

2

)
has only

depth 2 at the origin.

(4.10) With D as in (2), OX(−D) is CM. What about OX(D)?

On a proper variety, sheaves of the form OX(D) are quite different from ideal
sheaves, but being CM is a local condition. If X is affine, then there is always
a reduced divisor D′ such that OX(D) ∼= OX(−D′). Despite this, (2) does not
hold for OX(D).

To see such an example, let S := P1 × P1 and C := P1 × {(0:0)} a line on S.
Embed S into P5 by | − (KS + C)| and let X ⊂ A6 be the affine cone over S and
D ⊂ X the cone over C. Then (X, D) is canonical and so OX(−D) is CM.

Let Fi ⊂ X be cones over lines of the form {pi} × P1. Then D + F1 + F2 ∼ 0,
hence OX(D) is isomorphic to OX(−F1 − F2). Since F1 + F2 is not S2, OX(D)
is not CM.

The proof of Theorem 2 uses the method of two spectral sequences introduced
in [KM98, 5.22] in the global case and in [Fuj09b] in the local case.

5 (The method of two spectral sequences). Let f : Y → X be a proper morphism,
V ⊂ X a closed subscheme and W := f−1V ⊂ Y . For any coherent sheaf F on
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Y there is a Leray spectral sequence

H i
V

(
X, Rjf∗F

)⇒H i+j
W (Y, F ), (5.1)

where H i
V denotes cohomology with supports in V ; see [Gro68, Chap.1]. In

particular, if Rjf∗F = 0 for every j > 0 then the spectral sequence degenerates
and we get isomorphisms H i

V

(
X, f∗F

) ∼= H i
W (Y, F ).

Given a map of sheaves F → F ′ we get, for each i, a commutative diagram

H i
V

(
X, f∗F ′) α′i→H i

W

(
Y, F ′)

↑ ↑
H i

V

(
X, f∗F

) αi→H i
W

(
Y, F

)
.

(5.2)

The following simple observation will be a key ingredient in the proof of (2).

Claim 6. With the above notation, assume that for some i,

(1) f∗F = f∗F ′,
(2) H i

W

(
Y, F

)
= 0 and

(3) α′i is an injection.

Then H i
V

(
X, f∗F

)
= 0. ¤

For the cases i = 1, 2, somewhat weaker hypotheses suffice. First note that
H1

V

(
X, f∗F

)
↪→ H1

W

(
Y, F

)
is injective, thus, if i = 1, then (6.2) alone yields

H1
V

(
X, f∗F

)
= 0.

The i = 2 case is more interesting. If H2
W

(
Y, F

)
= 0 then α2 = 0. Together

with (6.1) this implies that α′2 = 0. On the other hand, α′2 sits in the exact
sequence

H0
V

(
X, R1f∗F ′) → H2

V

(
X, f∗F ′) α′2−→ H2

W

(
Y, F ′),

hence we get the following, first used in [Ale08].

Claim 7. With the above notation, assume that

(1) f∗F = f∗F ′,
(2) H2

W

(
Y, F

)
= 0 and

(3) H0
V

(
X, R1f∗F ′) = 0.

Then H2
V

(
X, f∗F

)
= 0. ¤



1484 János Kollár

8 (A special case). As a warm up we prove, following the methods of [KM98,
5.22] and [Fuj09b, 4.2.1.App], that if (X, ∆) is klt then X is CM and has rational
singularities.

We need to prove that H i
x(X, F ) = 0 for i < codimX x for every point x ∈ X.

We can localize at x; thus from now on assume that x is a closed point. Let f :
Y → X be a resolution such that W := f−1(x) is a divisor. Choose F := OY and
F ′ := OY (B) where B is an effective, f -exceptional divisor to be specified later.
Then f∗OY (B) = f∗OY = OX hence (6.1) holds and we have a commutative
diagram

H i
x

(
X,OX

) α′i→H i
W

(
Y,OY (B)

)

|| ↑
H i

x

(
X,OX

)→ H i
W

(
Y,OY

)
.

(8.1)

By (20), H i
W

(
Y,OY

)
= 0 for i < dimX, hence (6.2) also holds.

In order to prove (6.3), we finally use that (X, ∆) is klt. By definition, this
means than we can choose f : Y → X such that

KY ∼Q f∗(KX + ∆) + B −A (8.2)

where B is an effective, f -exceptional, Z-divisor, A is a simple normal crossing
divisor and bAc = 0. Then B ∼Q KY +A−f∗(KX +∆), hence we conclude from
(13) that Rif∗OY (B) = 0 for i > 0. Therefore the spectral sequence for OY (B)
degenerates and H i

x

(
X,OX

) ∼= H i
W

(
Y,OY (B)

)
for every i.

Thus, for i < dimX, the commutative diagram (8.1) becomes

H i
x

(
X,OX

) ∼= H i
W

(
Y,OY (B)

)

|| ↑
H i

x

(
X,OX

)→ 0.

(8.3)

This implies that H i
x

(
X,OX

)
= 0 for i < dimX, hence X is CM.

Next we prove that Rjf∗OY = 0 for j > 0. By induction on the dimension and
localization, we may assume that SuppRjf∗OY ⊂ {x} for j > 0. Then

H i
x

(
X, Rjf∗OY

)
= 0 unless i = 0 or (i, j) = (n, 0).

Since H i
W

(
Y,OY

)
= 0 for i < dimX, we conclude that Rjf∗OY = 0 for 0 < j <

n− 1 and we have an exact sequence

0 → Rn−1f∗OY → Hn
x

(
X,OX

) αn→ Hn
W

(
Y,OY

)
. (8.4)
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Note that αn also sits in the diagram

Hn
x

(
X,OX

) ∼= Hn
W

(
Y,OY (B)

)

|| ↑
Hn

x

(
X,OX

) αn→ Hn
W

(
Y,OY

) (8.5)

which implies that αn is injective. Thus Rn−1f∗OY = 0 as required. ¤

The proof of the general case is quite similar.

9 (Proof of Theorem 2).

We may assume that X is affine and x ∈ X is a closed point. Write ∆ =
∆′ + ∆′′. As in [KM98, 2.43], there are effective Q-divisors ∆′

1 ∼Q,loc ∆′ and
∆′′

1 ∼Q,loc ∆′′ such that
(
X, (1− ε)∆ + ε(∆′

1 + ∆′′
1)

)
is klt.

Furthermore, D ∼Q,loc ∆′ ∼Q,loc (1 − ε)∆′ + ε∆′
1. Thus we may assume that

(X, ∆) is in fact klt.

We need to prove that for every x ∈ X,

H i
x

(
X,OX(−D)

)
= 0 for i < codimX x.

We can localize at x, hence we may assume that x is a closed point.

Choose a log resolution f : Y → X of (X, ∆) such that W := f−1(x) is a
divisor and write

f∗
(
D −∆′) = f−1

∗ D − f−1
∗ ∆′ − F, (9.1)

where F is f -exceptional. Set DY := f−1∗ D − bF c and note that

DY = f−1
∗ ∆′ + {F}+ f∗

(
D −∆′).

Thus, from (12), we obtain that if BY is effective and f -exceptional, then f∗OY

(
BY−

DY

)
= OX(−D). Thus (6.1) holds and we have a commutative diagram

H i
x

(
X,OX(−D)

) α′i→H i
W

(
Y,OY (BY −DY )

)

|| ↑
H i

x

(
X,OX(−D)

)→ H i
W

(
Y,OY (−DY )

) (9.2)

By (9.1), DY ∼Q
(
f -nef)+

(
f−1∗ ∆′+{F}), thus, by (20), H i

W

(
Y,OY (−DY )

)
=

0 for i < dimX and so (6.2) is satisfied.
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Finally we need α′i to be an isomorphism. By the klt assumption,

KY + f−1
∗ ∆ ∼Q f∗(KX + ∆) + B −A (9.3)

where A,B are effective, f -exceptional, B is a Z-divisor, and bAc = 0. Write
B − A + {F} =: BY − AY where AY , BY are effective, f -exceptional, BY is a
Z-divisor, and bAY c = 0. Note that

BY −DY ∼Q B −A + {F}+ AY − f−1∗ ∆′ − {F} − f∗
(
D −∆′)

∼QKY + f−1∗ ∆ + AY − f−1∗ ∆′ − f∗
(
KX + ∆ + D −∆′)

∼QKY + f−1∗ ∆′′ + AY − f∗
(
KX + ∆ + D −∆′).

(9.4)

Thus Rif∗OY

(
BY −DY

)
= 0 for i > 0 by (13) and so α′i is an isomorphism.

These imply that H i
x

(
X,OX(−D)

)
= 0 for i < dimX hence OX(−D) is CM.

¤

10 (Proof of Theorem 3).

We start with (3.1) and first consider the case when X is normal, that is, when
(X, ∆) is lc. There are a few places where we have to modify the previous proof
(9).

We may assume that b∆c = 0. (If ∆ =
∑

diDi then we can replace ∆ by∑
(di/2)(D1i + D2i) where D1i, D2i are general members of the linear system

|Di|, cf. [KM98, 2.33].) Let f : Y → X be a log resolution of (X, ∆) and write

KY + f−1
∗ ∆ ∼Q f∗(KX + ∆) + B −A− E, (9.5)

where A,B, E are effective, f -exceptional, B,E are Z-divisors, E is reduced and
bAc = 0.

Pick DY as in (9.1). By (12), if BY is effective and f -exceptional, then
f∗OY

(
BY −DY

)
= OX(−D) and H i

W

(
Y,OY (−DY )

)
= 0 for i < dimX by (13).

It remains to check (7.3), that is, the vanishing of H0
x

(
X, R1f∗OY

(
BY −DY

))
.

To this end choose BY , AY , EY such that

BY −AY − EY = B −A− E + {F}.

where AY , BY , EY are effective, f -exceptional, BY , EY are Z-divisors, EY ≤ E is
reduced, bAY c = 0 and F as in (9.1). With this choice, as in (9.4),

BY −DY ∼Q KY + f−1
∗ ∆′′ + AY + EY − f∗

(
KX + ∆ + D −∆′).
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By assumption x is not a log canonical center, hence by (16) x is not an associated
prime of Rif∗OY (BY − DY ). Thus H0

x

(
X, R1f∗OY (BY − DY )

)
= 0 and hence

H2
x

(
X,OX(−D)

)
= 0.

The above proof should work without changes if X is not normal, that is, when
(X, ∆) is slc, but (16) is not stated for semi-resolutions in the references. We go
around this problem as follows.

By (18) there is a double cover π : (X̃, ∆̃) → (X, ∆), étale in codimension 1
such that every irreducible component of (X̃, ∆̃) is smooth in codimension 1. Set
D̃ := π−1(D). Then OX(−D) is a direct summand of π∗OX̃(−D̃), hence it is
enough to prove the depth bounds for OX̃(−D̃).

As in [Kol08, 20] we can construct a semi-resolution f̃ : (Ỹ , ∆̃Y ) → (X̃, ∆̃)
such that (Ỹ , ∆̃Y ) is an embedded simple normal crossing pair, as required in
(16). The rest of the proof works as before.

Next consider (3.2). The only interesting case is when codimZ x ≥ 2. Since x

is not a lc center, this implies that codimZi x ≥ 2 for every irreducible component
Zi ⊂ Z. (It is, however, possible that x has codimension 1 in some lc center that
is contained in Z.) By localizing, we may assume that x is a closed point.

If X is normal, let f : Y → X be a log resolution. If X is not normal, as
before, by first passing to a double cover (18) we may assume that there is a
semi log resolution f1 : Y1 → X to which (16) applies. We may also assume
that every irreducible component of Z is the image of some divisor Ej ⊂ Y with
discrepancy −1. We have to be more careful if Z contains one of the codimension
1 components of Sing X. In this case, we have a divisor Ej ⊂ Sing Y1 mapping to
Z. We blow up Ej to get f : Y → X and replace Ej with both of the irreducible
components of its preimage on Y . Set E =

∑
j Ej . By (11),

OX(−Z) = f∗
(OY (−E)

)
= f∗

(OY (B − E)
)

for any effective f -exceptional divisor B whose support does not contain any of
the Ej . As usual, write

KY ∼Q f∗(KX + ∆) + B − E − E′ −A.

By (19), H i
W

(
Y,OY (−E)

)
= 0 is dual to

(
Rn−if∗ωY (E)

)
x
. We have assumed

that dim f(Ej) ≥ 2 for every j and dim f(Ej ∩Ek) ≥ 1 for every j 6= k since x is
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not a lc center. Thus, by (15) and (19), H i
W

(
Y,OY (−E)

)
= 0 for i ≤ 2 and so

(7.2) holds.

From B −E ∼Q KY + E′ + A− f∗(KX + ∆) and (16) we conclude that every
associated prime of Rif∗OY (B − E) is an lc center of (X, ∆). Since x is not an
lc center, this implies that H0

x

(
X, R1f∗OY (B − E)

)
= 0, giving (7.3). Therefore

H2
x

(
X,OX(−Z)

)
= 0 and so OX(−Z) has depth ≥ 3 at x. ¤

Conditions for (6.1).

11. The assumption (6.1) is easy to satisfy in many cases. Let f : Y → X be a
proper, birational morphism to a normal scheme X. For any closed subscheme
ZY ⊂ Y , f∗OY (−ZY ) = OX

(−f(ZY )
)

where f(ZY ) is the scheme theoretic
image. If ZY is reduced, then ZX := f(ZY ) ⊂ X is also reduced. Thus if B is
f -exceptional and f(B) does not contain any of the irreducible components of
ZX , then OX(−ZX) = f∗OY (−ZY ) = f∗OY (B − ZY ).

The last equality holds even if X is not normal.

Another easy case is the following (cf. [Fuj85]).

Lemma 12. Let f : Y → X be a proper, birational morphism. Let D be a
Z-divisor on X and assume that D ∼Q,f Dh + Dv where Dv is f-exceptional,
bDvc = 0 and Dh is effective without exceptional components. Let B be an
effective, f-exceptional divisor. Assume that

(1) either X and Y are normal,
(2) or X and Y are S2, f is an isomorphism outside a codimension 2 sub-

scheme of X and Y is normal at the generic point of every exceptional
divisor.

Then
OX

(−f∗D
)

= f∗OY (−D) = f∗OY (B −D).

Proof. Note that in general f∗OY (−D) ⊂ OX

(−f∗D
)

and there is an effective,
f -exceptional divisor B′ such thatOX

(−f∗D
) ⊂ f∗OY (B′−D). Thus it is enough

to prove that f∗OY (−D) = f∗OY (B −D).

For some B1, fix a section s ∈ H0
(
X, f∗OY (B1−D)

)
and then take 0 ≤ B ≤ B1

as small as possible such that s ∈ H0
(
X, f∗OY (B −D)

)
still holds. We need to

prove that B = 0.
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By assumption, there is a Q-Cartier Q-divisor M on X such that D + f∗M =
Dh + Dv. Choose n ∈ N such that nDh, nDv, f

∗(nM) are all Z-divisors. Then
(
f∗s

)n ∈H0
(
Y,OY (nB − nD)

)

= H0
(
Y,OY (nB − nDh − nDv + f∗(nM)

)

⊂H0
(
Y,OY (nB − nDv + f∗(nM)

)
.

As noted in (11), adding effective exceptional divisors to a pull-back never cre-
ates new sections. By assumption, every irreducible component of B appears in
nB−nDv with positive coefficient. Thus

(
f∗s

)n vanishes along every irreducible
component of B and so does f∗s, contradicting the minimality of B. Thus B = 0
and so s is a section of f∗OY (−D). ¤

Conditions for (6.2).

The following is the relative version of the Kawamata–Viehweg vanishing the-
orem [Kaw82, Vie82].

Theorem 13. Let f : Y → X be a projective, birational morphism, Y smooth
and ∆ an effective simple normal crossing divisor on Y such that b∆c = 0. Let
M be a line bundle on Y and assume that M ∼Q,f KY + (f-nef) + ∆. Then
Rif∗M = 0 for i > 0. ¤

If f is not birational, Y is not smooth or if b∆c 6= 0, then vanishing fails in
general. There are, however, some easy consequences that can be read off from
induction on the number of irreducible components and by writing down the
obvious exact sequences

0 → M → M(H) → M(H)|H → 0 and 0 → M(−D) → M → M |D → 0

where H is a smooth sufficiently ample divisor on Y and D ⊂ b∆c is a smooth
divisor.

Let W be a smooth variety and
∑

i∈I Ei a snc divisor on W . Write I = IV ∪ID

as a disjoint union. Set Y :=
∑

i∈IV
Ei as a subscheme and DY :=

∑
i∈ID

Ei|Y
as a divisor on Y . We call (Y, DY ) an embedded snc pair. Anything isomorphic
to such a pair is called an embeddable snc pair. A pair is called an snc pair if it
is locally an embeddable snc pair.
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Corollary 14. Let (Y,
∑

i Di) be an snc pair and f : Y → X a projective mor-
phism. Let M be a line bundle on Y and assume that

M ∼Q,f KY + (f-nef) +
∑

iaiDi where 0 ≤ ai ≤ 1.

Then Rif∗M = 0 for i > max{dim f−1(x) : x ∈ X}. ¤

Corollary 15. Notation and assumptions as in (14). Set ∆ =
∑

i aiDi. Assume
that f is birational and set n = dim Y . Then

(1) Rnf∗M = 0.
(2) Rn−1f∗M = 0 unless there is a divisor B ⊂ Sing Y ∪ b∆c such that

dim f(B) = 0.
(3) Rn−2f∗M = 0 unless there are divisors B1, B2 ⊂ Sing Y ∪ b∆c such that

either dim f(B1) ≤ 1 or dim f(B1 ∩B2) = 0. ¤

In the log canonical setting we also used the i = 1 case of the following result
of [Amb03, 3.2], [Fuj09b, 2.39], [Fuj09a, 6.3]. In contrast with (14) and (15), its
proof is quite difficult and subtle.

Theorem 16. Let (Y,
∑

i Di) be an embeddable snc pair and f : Y → X a
projective morphism. Let M be a line bundle on Y and assume that

M ∼Q,f KY + (f-semi-ample) +
∑

iaiDi where 0 ≤ ai ≤ 1.

Then every associated prime of Rif∗M is the f-image of an irreducible component
of some intersection B1 ∩ · · · ∩ Br for some divisors Bj ⊂ Sing Y ∪ {Di : ai =
1}. ¤

Remark 17 (The analytic case). The complex analytic version of (13) is proved
in [Tak85, Nak87] but the complex analytic version of (16) is not known.

If X is a complex analytic space, we can choose f : Y → X to be projective.
By pushing forward the sequence

0 → M
(−∑

Di

) → M → M |∑ Di
→ 0

shows that Rif∗M ∼= Rif∗
(
M |∑ Di

)
. Thus we need to prove the analog of (16) for

the projective morphism
∑

Di → X. This is in fact how the proofs of [Amb03,
Fuj09b] work. However, their proofs rely on a global compactification of

∑
Di →

X.
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18 (A natural double cover). Let X0 be a scheme whose singularities are double
normal crossing points only. Let π0 : X̄0 → X0 denote its normalization with
conductors D0 ⊂ X0, D̄0 ⊂ X̄0 and Galois involution τ : D̄0 → D̄0.

Take two copies X̄0
1 q X̄0

2 and on D̄0
1 q D̄0

2 consider the involution

σ(p, q) =
(
τ(q), τ(p)

)
.

Note that
(
D̄0

1qD̄0
2

)
/σ ∼= D̄0 but the isomorphism is non-canonical.

We obtain X̃0 either as the universal push-out of
(
D̄0

1 q D̄0
2

)
/σ ← (

D̄0
1 q D̄0

2

)
↪→ (

X̄0
1 q X̄0

2

)

or as the spectrum of the preimage of the σ-invariant part
(OD̄0

1
+OD̄0

2

)σ ⊂ OD̄0
1

+OD̄0
2

in OX̄0
1

+OX̄0
2
.

Then π0 : X̃0 → X0 is an étale double cover and the irreducible components of
X̃0 are smooth. The normalization of X̃0 is a disjoint union of two copies of the
normalization of X0.

Let now X be slc and j : X0 ↪→ X an open subset with double nc points only
and such that X \X0 has codimenson ≥ 2. Let π0 : X̃0 → X0 be as above. Then
j∗π0∗OX̃0 is a coherent sheaf of algebras on X. Set

X̃ := SpecX j∗π0
∗OX̃0

with projection π : X̃ → X.

By construction, X̃ is S2, π is étale in codimension 1 and the normalization of
X̃ is a disjoint union of two copies of the normalization of X. Furthermore, the
irreducible components of X̃ are smooth in codimension 1.

Conditions for (6.3).

These are reduced to the previous vanishing theorems using the following du-
ality.

Proposition 19. Let f : Y → X be a proper morphism, Y CM, M a vector
bundle on Y and x ∈ X a closed point. Set n = dim Y and let W ⊂ Y be a
subscheme such that SuppW = Supp f−1(x). Then there is a natural bilinear
pairing

H i
W

(
Y, ωY ⊗M−1

)× (
Rn−if∗M

)
x
→ k(x)
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which has no left or right kernel, where the subscript denotes the stalk at x.

In particular, if either H i
W

(
Y, ωY ⊗M−1

)
or

(
Rn−if∗M

)
x

is a finite dimen-
sional k(x)-vector space then so is the other and they are dual to each other.

Proof. Let mW ⊂ Y be the subscheme defined by the ideal sheaf OY (−W )m.
By [Gro68, II.6]

H i
W

(
Y, ωY ⊗M−1

)
= lim−→Exti

Y

(OmW , ωY ⊗M−1
)
. (19.1)

On the other hand, by the theorem on formal functions,
(
Rn−if∗M

)∧ = lim←−Hn−i
(
mW,M |mW

)
(19.2)

where ∧ denotes completion at x ∈ X.

We show below that for every m, the groups on the right hand sides of (19.1–2)
are dual to each other. This gives the required bilinear pairing which has no left
or right kernel.

(Duality using a compactification.) Let Ȳ ⊃ Y be a CM compactification such
that M extends to a vector bundle M̄ on Ȳ . Since W is disjoint from Ȳ \ Y ,

Exti
Y

(OmW , ωY ⊗M−1
)

= Exti
Ȳ

(OmW , ωȲ ⊗ M̄−1
)

= Exti
Ȳ

(OmW ⊗ M̄, ωȲ

)

and, by Serre duality, the latter is dual to

Hn−i
(
Ȳ ,OmW ⊗ M̄

)
= Hn−i

(
mW, M̄ |mW

)
= Hn−i

(
mW,M |mW

)
.

(It is not known that such Ȳ exists, but we could have used any compactification
and Grothendieck duality. For the complex analytic case see [RRV71].)

(Duality without compactification.) This proof works if W is an effective
Cartier divisor. In most applications, X is given and Y is a suitable resolution,
hence this assumption is easy to achieve.

We use the local-to-global spectral sequence for Ext

H i
(
Y, Ext j

Y (N, N ′)
) ⇒ Exti+j

Y (N, N ′).

Since OmW has projective dimension 1 as an OY -sheaf, Ext i
Y

(OmW , ωY

)
= 0 for

i 6= 1 and Ext1
Y

(OmW , ωY

)
= ωmW . Thus for any locally free OmW -sheaf N , the
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local-to-global spectral sequence for Ext∗Y (N, ωY ) degenerates and

Exti
Y (N, ωY ) = H i−1

(
Y, Ext1

Y (N, ωY )
)

= H i−1
(
Y, N−1 ⊗ ωmW

)
= H i−1

(
mW,N−1 ⊗ ωmW

)
.

Setting N = OmW ⊗M gives the isomorphisms

Exti
Y

(OmW , ωY ⊗M−1
)

= H i−1
(
mW,M−1 ⊗ ωmW

)
.

Since mW is a proper CM scheme over a field, Serre duality gives that the latter
group is dual to

Hn−1−(i−1)
(
mW,M |mW

)
= Hn−i

(
mW,M |mW

)
. ¤

Combining this with (13) we obtain the following.

Corollary 20. Let f : Y → X be a proper morphism, Y smooth. Let x ∈ X be a
closed point and assume that W := Supp f−1(x) is a Cartier divisor. Let L be a
line bundle on Y such that L ∼Q,f (f-nef) + ∆ for some simple normal crossing
divisor ∆ such that b∆c = 0. Then H i

W

(
Y, L−1

)
= 0 for i < dimX. ¤

There are obvious dual versions of (14) and of (15).
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