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Abstract: A spin surface S refers to the total space of a line bundle L

over a smooth projective curve D satisfying L2 = KD. A spin surface is
canonically equipped with a holomorphic 2-form θ, which gives rise to a
cosection σ of the obstruction sheaf of the moduli stack Mg,n(S, d) of stable
maps, thus by [6] the localized GW invariants of S. In this paper, we first
relate the localized GW invariants of S with the twisted GW invariants of D

when certain locally freeness assumption holds. We then analyze in detail a
situation in which the aforementioned locally freeness does not hold. Both
studies are part of our proof of the Maulik-Pandharipande formulas for low
degree GW invariants of surfaces with smooth canonical divisors.
Keywords: Localized GW invariant, spin surface, stable map.

1. Introduction

Let S be a smooth surface that is the total space of a theta characteristic of a
connected smooth curve D, (i.e. it is a line bundle L on D such that L⊗2 ∼= KD).
We call such a surface a spin surface in this paper.

Given a spin surface

p : S −→ D
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and an integer d, we form the moduli Mg,n(S, d) of stable morphisms to S of
fundamental class d[D] ∈ H2(S), where D ⊂ S is the zero section of p. Since L

is a theta characteristic of D, ωS = p∗L∨⊗ p∗KD
∼= p∗L. Let θ ∈ Γ(S, ωS) be the

tautological section of p∗L, meaning that for any a ∈ L|x where x ∈ D, θ(a) =
a ∈ L|x. Following [6], the holomorphic two-form θ induces a homomorphism

σ : Ob −→ OMg,n(S,d)

from the obstruction sheaf Ob of the tautological perfect obstruction theory of
Mg,n(S, d) to the structure sheaf of Mg,n(S, d). Further, this homomorphism is
surjective away from Mg,n(D, d) ⊂Mg,n(S, d). Applying the cosection localiza-
tion of virtual cycles [6], we obtain a localized virtual cycle

[Mg,n(S, d)]vir
loc ∈ A∗Mg,n(D, d).

This cycle defines the (localized) GW invariants of S. Let ẽv : Mg,n(S, d) → Sn

be the evaluation morphism, let γ1, · · · , γn ∈ H∗(S), let α1, · · · , αn ∈ Z≥0, and
let ψi be the first Chern class of the relative cotangent line bundle of the domain
curves at the i-th marked point. We define the GW invariant of a spin surface S

with descendants to be

(1.1) 〈τα1(γ1) · · · ταn(γn)〉Sg,d =
∫

[Mg,n(S,d)]vir
loc

ẽv∗(γ1 × · · · × γn) · ψα1
1 · · ·ψαn

n .

The first theorem we prove is

Theorem 1.1. Let p : S → D be a spin surface associated to a theta character-
istic L of D. Let (π, f) : C → Mg,n(D, d) ×D be the universal family. Suppose
R1π∗f∗L is locally free, then

[Mg,n(S, d)]vir
loc =

∑

Wi⊂Mg,n(D,d)

(−1)h0(f∗L)[Wi]vir ∩ e(V ),

where V is the kernel vector bundle of (2.6), the summation is over all connected
components Wi of W = Mg,n(D, d), h0(f∗L) is the rank of π∗f∗L over Wi, and
e(V ) is the Euler class of V .

This theorem gives the GW invariants of S without insertions. (See Proposition
2.5.) It also proves the degree one part of a conjecture of Maulik-Pandharipande
on GW invariants of surfaces, phrased in terms of GW invariants of a spin surface
[11, (8)-(9)] (see Theorem 3.2).
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Conjecture 1.2. Let p : S → D be a spin surface and h = g(D); let γ =
p∗[pt]PD ∈ H2(S), where [pt]PD ∈ H2(D) is the Poincaré dual of the point class
in D. Then

(1.2) 〈
n∏

i=1

ταi(γ)〉S,•
[D] = (−1)h0(L)

n∏

i=1

αi!
(2αi + 1)!

(−2)−αi ;

(1.3) 〈
n∏

i=1

ταi(γ)〉S,•
2[D] = (−1)h0(L) 2h+n−1

n∏

i=1

αi!
(2αi + 1)!

(−2)αi .

Here • indicates that the GW invariants are defined for moduli of stable maps
with not necessarily connected domains; for definition see Definition 3.1.

Proposition 1.3. The conjecture (1.2) holds.

Even in case R1π∗f∗L is not locally free, by studying the error term we can
compare the GW invariants of S with the twisted GW invariants of D. This gives
the following special case of (1.3).

Proposition 1.4. The conjecture (1.3) holds in case n = 1.

This Proposition is part of the proof of (1.3) via degeneration developed by
the authors. The proof of a degeneration formula of localized GW invariants of
spin surfaces will be addressed in a separate paper.

Acknowledgment: The first author is grateful to the Stanford Mathematics
department for support and hospitality while he was visiting during the academic
year 2005/2006. The second author thanks D. Maulik for sharing with him his
computation for an example that is crucial for this paper; he also thanks E.
Ionel for stimulating discussions. We thank J. Lee and T. Parker for stimulating
questions and for pointing out several oversights in our previous draft.

The second named author is partially supported by NSF grant and the first
named author was partially supported by NRF grant 2010-0007786.

2. GW invariants and twisted GW invariants

We fix a spin surface p : S → D that is the total space of a theta characteristic
L of a connected, smooth, proper curve D over C together with its standard
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holomorphic two-form θ on S. We fix a positive d > 0 and n, g ∈ Z. For
convenience, we abbreviate M := Mg,n(S, d) and W := Mg,n(D, d).

The projection p :S → D induces a morphism

p̄ : M = Mg,n(S, d) −→W = Mg,n(D, d).

At individual map level, in case u :C → S is a stable map, then p ◦ u :C → D is
a stable map, and u is determined by a global section in H0(C, (p ◦ u)∗L). Con-
versely, using the embedding D ⊂ S by the zero section, W ⊂M is canonically
a substack, and fibers of p̄ are vector spaces with W ⊂M its zero section.

Since D is projective, we can pick two vector bundles E1 and E2 on W and a
sheaf homomorphism

α : E1 −→ E2

(we will not distinguish a vector bundle from its sheaf of sections) so that [E1 →
E2] is quasi-isomorphic to π!f

∗L. By viewing q : E1 → W as the total space of
E1 with q the projection, we can form the pullback bundle q∗E2 on E1 and the
associated section ᾱ ∈ Γ(E1, q

∗E2).

Lemma 2.1. The vanishing locus ᾱ−1(0) is the moduli stack M.

Proof. The proof is straightforward and will be omitted. ¤

We now describe the non-surjective locus of the cosection σ : Ob → OM
induced by θ. A stable map u :C → S in M is called θ-null if the composite

u∗(θ̂) ◦ du : TCreg −→ u∗TS |Creg −→ u∗ΩS |Creg

vanishes over the regular locus Creg of C. Applying a criterion proved in [6],
the locus M(σ) where σ fails to be surjective is the collection of all θ-null stable
morphisms in M. Since d > 0, using the explicit form of θ, we see that σ is
surjective away from W = Mg,n(D, d) ⊂ M. This shows that the localized
virtual cycle satisfies

[M]vir
loc ∈ A∗W.

Using (1.1), we have defined the localized GW invariants 〈·〉Sg,d of S.

We now investigate the relation between the localized GW invariants 〈·〉Sg,d and
the twisted GW invariants of the curve D. We let

(2.1) (π, f) : C −→ W ×D
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be the universal family of W = Mg,n(D, d). The twisted GW invariants of D in
this paper refer to the evaluation against [W]vir of the usual insertions

ψα1
1 · · ·ψαn

n · ev∗(γ), γ ∈ H∗(Dn)

multiplied (or twisted) by the Chern classes of π!f
∗L.

Let

(2.2) (π̃, f̃) : C̃ −→M× S

be the universal family of M. Because S → D has affine fibers, the composite
p ◦ f̃ : C̃ → D is a family of stable morphisms. Therefore, C̃ = C ×WM and p ◦ f̃

is the pullback of f .

It was hoped that the localized GW invariants of S can be recovered by the
twisted GW invariants of D. As was pointed by Maulik, this fails in general.
However, in case the sheaf R1π∗f∗L is locally free, this is true up to a sign by
Theorem 1.1.

We describe the cosection σ in case R1π∗f∗L is locally free.

Lemma 2.2. Let the notation be as above and suppose d > 0. Assume R1π∗f∗L
is locally free. Then M is the total space of E1 := π∗f∗L. Let p̄ : E1 = M→W
be the projection. Then the homomorphism σ : ObM → OM induced by θ is the
composite of ν and θ̄∨:

(2.3) ObM
ν−→ p̄∗E∨

1
θ̄∨−→OM,

where ν is surjective and θ̄∨ is defined by pulling back via p̄∗ the dual-pairing
E1 ⊗ E∨

1 → OW and using M = E1.

Proof. Because the two-form θ on S is a section of p∗L = Ω2
S , linear along fibers

of S → D, it induces a section

θ̄ ∈ H0
(M, π̃∗f̃∗p∗L

)
;

Since θ vanishes along D ⊂ S and is non-degenerate away from D, the vanishing
locus of its dual

(2.4) θ̄∨ ∈ Hom
(
R1π̃∗(f̃∗p∗L∨ ⊗ ωC̃/M),OM

)

is exactly W ⊂M.
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Since L ∼= L∨ ⊗KD, we further have a homomorphism

f̃∗p∗L ∼= f̃∗p∗L∨ ⊗ f̃∗p∗KD −→ f̃∗p∗L∨ ⊗ ωC̃/M

(induced by f̃∗p∗ΩD → ωC̃/M) that induces a homomorphism between locally
free sheaves

(2.5) R1π̃∗f̃∗p∗L −→ R1π̃∗(f̃∗p∗L∨ ⊗ ωC̃/M).

We claim that this homomorphism is surjective. Let u : C → S be a positive
degree stable map. Since H0(u∗p∗L) → H0(u∗p∗L∨ ⊗ ωC) is injective, its Serre
dual H1(u∗p∗L) → H1(u∗p∗L∨ ⊗ ωC) is surjective. The surjectivity of (2.5)
follows from the base change property.

Obviously, (2.5) is the pullback via p̄ of a similarly defined surjective homo-
morphism

(2.6) E2 = R1π∗f∗L −→ R1π∗(f∗L∨ ⊗ ωC/W) = E∨
1

over W.

We claim that the homomorphism σ : ObM → OM induced by θ factors
through the homomorphism θ̄∨ in (2.4). Indeed, from the natural morphisms

f̃∗(TS ⊗ p∗L) = f̃∗(TS ⊗ Ω2
S) −→ f̃∗ΩS −→ ΩC̃/M −→ ωC̃/M

we obtain a homomorphism f̃∗TS → f̃∗p∗L∨⊗ωC̃/M, and thus a homomorphism

(2.7) R1π̃∗f̃∗TS −→ R1π̃∗(f̃∗p∗L∨ ⊗ ωC̃/M).

Similar to the proof that the cosection R1π̃∗f̃∗TS → OM lifts to ObM → OM
([6, Lemma 6.1]), the composition of (2.7) with the natural homomorphism

γ : Ext1π̃(ΩC̃/M,OC̃) −→ R1π̃∗f̃∗TS

is zero. Using ObM = coker{γ}, (2.7) lifts to a homomorphism

(2.8) ν : ObM −→ R1π̃∗(f̃∗p∗L∨ ⊗ ωC̃/M) = p̄∗E∨
1 ,

which by construction satisfies θ̄∨ ◦ ν = σ. This proves (2.3).

Because R1π̃∗f̃∗p∗L → ObM composed with (2.8) is (2.5), and because (2.5)
is surjective, ν is surjective. Since R1π̃∗

(
f̃∗p∗L∨ ⊗ ωC̃/M

)
is dual to π̃∗f̃∗p∗L =

p̄∗π∗f∗L = p̄∗E1 and since M is the total space of E1, one checks that θ̄∨ is
obtained by pulling back the dual pairing E∨

1 ⊗ E1 → OW and using M = E1.
This proves the Lemma. ¤
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We now prove Theorem 1.1.

Proof of Theorem 1.1. We pick a vector bundle (locally free sheaf) F onM and a
surjective F → ObM. Since S is quasi-projective, such F exists. The obstruction
theory of M provides us a cone cycle CM ⊂ F , which is the pullback of the
intrinsic normal cone [2, 10]. We let σ̄ : F → OM be the composite of F → ObM
with σ. By the definition of localized virtual cycles [6],

[M]vir
loc = s!

F,σ̄([CM]) ∈ A∗W,

where s!
F,σ̄ : Z∗M(σ) → A∗W is the localized Gysin map constructed in [6]. Here

M(σ) = W ∪ ker{σ̄|M−W}.
Let F0 = F |W and let C0 = CM ×MW ⊂ F0; pulling back via p̄, we obtain a

pair

C := p̄∗C0 ⊂ p̄∗F0.

We claim that we can find a homomorphism σ̄′ : p̄∗F0 → OM such that

(2.9) [M]vir
loc = s!

F,σ̄([CM]) = s!
p̄∗F0,σ̄′([C]) ∈ A∗W.

Let t ∈ A1 \ 0 and let ζt : S → S be the scaling of the fibers of S → D by
t, i.e. ζt(v) = tv. The morphism ζt : S → S induces a morphism ζ̄t : M =
Mg,n(S, d) → M that maps [u] ∈ M to [ζt ◦ u] ∈ M. Clearly, it is also the
scaling of the fibers of M = E1 →W by t.

We now form the pullback sequence

(2.10) ζ̄∗t CM ⊂ ζ̄∗t F −→ ζ̄∗tObM
ζ̄∗t ν−→ p̄∗E∨

1

t−1ζ̄∗t θ̄∨−→ OM.

Here since p◦ζt = p, we have that p̄◦ ζ̄t = p̄; thus we can replace ζ̄∗t p̄∗E∨
1 by p̄∗E∨

1 .
When t specializes to 0 ∈ A1, ζ̄∗t F specializes to p̄∗F0. Denoting by ν̃0 : F0 → E∨

1

the restriction to W of the composite of F → ObM with ν, then the composite
of the first two arrows (in the sequence) specializes to p̄∗ν̃0. By direct checking,
for all t 6= 0, t−1ζ̄∗t θ̄∨ = θ̄∨. Finally, since M → W is the total space of the
vector bundle E1 → W, for any closed u ∈ W, the restriction CM ×M p̄−1(u)
is flat over p̄−1(u). Thus the cones ζ̄∗t CM specializes to C := p̄∗C0. (Recall
C0 = CM ×MW.)

In conclusion, the sequence (2.10) specializes to

(2.11) C ⊂ p̄∗F0
p̄∗ν̃0−→ p̄∗E∨

1
θ̄∨−→OM.
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Let σ̄′ : p̄∗F0 → OM be the composition of the two arrows above. Since the
support of CM lies in the kernel of F → OM, the support of C lies in the kernel
of σ̄′. Finally, because the localized Gysin map preserves rational equivalence
[6], and because t ∈ A1, s!

F,σ̄([CM]) is rationally equivalent to s!
p̄∗F0,σ̄′([C]). This

proves (2.9).

We now investigate the cone C0 ⊂ F0. Since W = Mg,n(D, d), and since
TS |D ∼= TD ⊕ L, for (π, f) : C → W ×D the universal family of W,

R1π∗f∗TS
∼= R1π∗f∗TD ⊕R1π∗f∗L.

Further, since f(C) ⊂ D, the homomorphism Ext1
π(ΩC/W ,OC) → R1π∗f∗TS fac-

tors through R1π∗f∗TD ⊂ R1π∗f∗TS . Because

ObW = coker{Ext1
π(ΩC/W ,OC) → R1π∗f∗TD}

and

ObM|W = coker{Ext1
π(ΩC/W ,OC) → R1π∗f∗TS},

we have

(2.12) ObM|W ∼= ObW ⊕R1π∗f∗L = ObW ⊕ E2.

By tracing through the construction of the homomorphism ν in (2.8), we see
that ν|W : ObM|W → E∨

1 factors through

ObM|W = ObW ⊕ E2
pr−→E2

(2.6)−→E∨
1 = R1π∗(f∗L∨ ⊗ ωC/W).

Let F0 → ObM|W = ObW ⊕ E2 be the restriction of F → ObM to W, and let
W0 ⊂ F0 be the kernel bundle of the induced F0 → E2. Thus W0 → ObW is a
quotient homomorphism. Because M is a vector bundle over W, it is direct to
check that C0 ⊂ F0 lifts to C0 ⊂ W0 and is indeed the pullback of the virtual
normal cone of the obstruction theory of W via W0 → ObW . In particular,
[W]vir = s!

W0
([C0]).

We now prove Theorem 1.1. Following the basic construction of the localized
Gysin map [6], we first blow up M along W. Since M = E1 is a vector bundle
over W, the blow-up M̃ is an Ãr1-bundle over W, where Ãr1 is the blow-up of
Ar1 at its origin and r1 = rankE1. We let ρ : M̃ →M be the blow-up morphism;
let q = p̄ ◦ ρ : M̃ → W, and let C̃ = q∗C0 ⊂ q∗F0 be the proper transform of
p̄∗C0 ⊂ p̄∗F0.
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Let E ⊂ M̃ be the exceptional divisor of ρ, which is a Pr1−1-bundle over W.
The pullback ρ∗σ̄′ lifts to a surjective homomorphism q∗F0 → OM̃(−E). Let
G̃ = ker{q∗F0 → OM̃(−E)}. By the definition of C̃ and [6], the support of C̃ lies
in G̃. Further, since W0 ⊂ F0 is the kernel subbundle of F0 ³ E2, q∗W0 is a
subbundle of G̃ that contains the support of C.

We let ρ(σ) : E → W denote the projection. For the moment, we assume W is
connected. By the definition of localized Gysin map,

s!
q∗F0,σ̄′([C]) = ρ(σ)∗

(
[−E ] · s!

G̃
([C̃])

)
= ρ(σ)∗

(
[−E ] · cr2−1(G̃/q∗W0) · s!

q∗W0
([C̃])

)
.

Here in the expression, s!
G̃

is the Gysin map of intersecting the zero section of G̃,
[E ]· : A∗M̃ → A∗E is intersecting with the Cartier divisor E and r2 = rankE2.

By the projection formula,

s!
q∗W0

([C̃]) = s!
q∗W0

([q∗C0]) = q∗s!
W0

([C0]) = q∗[W]vir.

As to the quotient G̃/q∗W0
∼= q∗E2/OM̃ (−E), since p̄∗E2 → OM factors through

p̄∗E2 → p̄∗E∨
1 and since r2 − 1 is the rank of q∗E2/OM̃ (−E), by letting V be the

kernel of E2 → E∨
1 , we have

cr2−1(G̃/q∗W0) = cr2−1(q∗E2/OM̃(−E)) = cr2−r1(q
∗V ) · cr1−1(q∗E∨

1 /OM̃(−E)).

This proves

ρ(σ)∗
(
[−E ] · cr2−1(G̃/q∗W0) · s!

q∗W0
([C̃]) = ρ(σ)∗

(−[E ]r1 · q∗(cr2−r1(V )[W]vir)
)

= (−1)r1cr2−r1(V )[W]vir.

Here since E ⊂ M̃ is the exceptional divisor of the blowup of the zero section of
the rank r1 bundle E1 over W, [E ]r1 = (−1)r1−1[W]. This proves Theorem 1.1 in
case W is connected.

When W is not connected, we can perform the same argument to each of
its connected components, and derive the stated formula in Theorem 1.1. This
completes the proof. ¤

Remark 2.3. The sign (−1)r in the formula can be seen by the following toy
case. Take the scheme M = Ar with obstruction sheaf E = O⊕r

M . Since M is
smooth, its virtual normal cone is the zero section 0E ⊂ E. The usual Gysin map
gives s!

E [0E ] = 0 ∈ A0M . In case we are given a cosection σ : E → OM , say
given by a non-degenerate bilinear form on Cr. Then σ is surjective away from
0 ∈ M , and s!

E,σ[0E ] = (−1)r ∈ A0{0}.
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Topologically, this number can be computed by picking a continuous section u

of E such that (1) the graph Γu of u is transversal to 0E; (2) away from a unit
ball in M , we have σ ◦ u = 1. Then deg s!

E,σ[0E ] is the degree of the intersection
Γu ∩ 0E. In the case presented, we get (−1)r.

Corollary 2.4. Suppose furthermore that π∗f∗L is a trivial vector bundle on W,
and let l be the rank of −π!f

∗L = R1π∗f∗L− π∗f∗L, then

[M]vir
loc = (−1)h0(f∗L)[W]vir ∩ cl(−π!f

∗L).

Proof. Observe that e(V ) = cl(−π!f
∗L) under the assumptions. ¤

Proposition 2.5 ([9]). Let S be the total space of a theta characteristic L of a
genus h smooth curve D; let g = d(g(D)− 1) + 1. Then

〈1〉Sd,g =
∑

u:d-fold étale cover of D

(−1)h0(u∗L)

|Aut(u)| .

Proof. This choice of g forces any u ∈ Mg(D, d) to be a d-fold étale cover of D.
Since an étale cover u : C → D is a smooth isolated point in Mg(D, d), a direct
application of Corollary 2.4 gives the stated formula. ¤

This Proposition was proved by Lee-Parker [9] using analytic methods.

3. Low-degree GW invariants

In this section, we study Maulik-Pandharipande’s conjecture on low degree
GW invariants of a spin surface for possibly disconnected domains.

Definition 3.1. For integers n, χ and d > 0, we let Mχ,n(S, d)• be the moduli
of stable morphisms u : C → S from not necessarily connected n-pointed nodal
curves C for which χ(OC) = χ and u∗([C]) = d[D], and such that the restriction
of u to each connected component of C is non-constant.

As usual, we call u stable when the automorphism group of u is finite. The
moduli space Mχ,n(S, d)• is étale covered by disjoint union of products

Φ :
∐

α∈Λ

kα∏

i=1

Mgi,ni(S, di) −→Mχ,n(S, d)•,
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where Λ 3 α = (gi, ni, di)kα
i=1 runs over all partitions d1 + · · · + dkα = d with

di > 0, partitions n1 ∪ · · · ∪ nkα = {1, · · · , n} with |ni| = ni, and kα −
∑

gi = χ.

We now use the holomorphic two-form θ. The preceding discussion of localized
GW invariants can be adopted to define localized virtual cycle [Mgi,ni(S, di)]vir

loc.
We define

[Mχ,n(S, d)•]vir
loc = Φ∗

(∑

α∈Λ

1
|Autα| ·

kα∏

i=1

[Mgi,ni(S, di)]vir
loc

)
,

where Aut α is the automorphism group of α = (di,ni, gi)kα
i=1.

Consequently, we define the localized GW invariants, of stable maps with not
necessarily connected domains but with non-constant restrictions to any con-
nected components, to be

(3.1) 〈τα1(γ1) · · · ταn(γn)〉S,•
χ,d[D] , γi ∈ H∗(D,Z).

(Here we will not include the subscript “loc” into the notation since S is a spin
surface and only localized GW invariants make sense.)

Following the convention, since (3.1) is possibly non-trivial only when

(3.2) −χ = d(h− 1) +
n∑

i=1

αi, αi ∈ Z≥0, h = g(D),

we shall omit the reference to χ in the notation of (3.1) with the understanding
that it is given by (3.2).

This section is devoted to a study of Conjecture 1.2 of Maulik and Pandhari-
pande. The first identity follows directly from Corollary 2.4.

Theorem 3.2. Let the condition be as in Conjecture 1.2. Then the identity (1.2)
holds.

Proof. Let −χ = h− 1 +
∑

αi, and denote

M = Mχ,n(S, 1)• and W = Mχ,n(D, 1)•.

Since maps in M are of degree one, their domains must be connected. Likewise
the same holds for W .

Let (π, f) :C → W×D be the universal family. Because maps in W have degree
one, a direct check shows that π∗f∗L ∼= H0(L)⊗OW and satisfies the base change
property. Hence R1π∗f∗L is locally free and π∗f∗L is a trivial bundle.
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Applying Corollary 2.4, we conclude that

(3.3) 〈
n∏

i=1

ταi(γ)〉S,•
[D] = (−1)h0(L)

∫

[W ]vir

∏
ψαi

i ev∗i (γ) ∩ ctop(−π!f
∗L)

is a twisted GW invariant of D with sign (−1)h0(L). From [3], we can readily
evaluate them and obtain (1.2). ¤

The degree two case follows from the combination of a degeneration formula
and the special case n = 1. Since the proof of a degeneration formula requires an
extensive study of obstruction theory of the family, we will prove it in a separate
paper [7]. In this section, we prove a special case of (1.3) that will be part of the
proof of (1.3) using degeneration.

Proposition 3.3 (h = 0 case). Let S be the total space of OP1(−1). Then

(3.4) 〈
n∏

i=1

ταi(γ)〉S,•
2[P1]

= 2n−1
n∏

i=1

αi!
(2αi + 1)!

(−2)αi .

Proof. Since P1 ⊂ OP1(−1) is rigid, the moduli space of stable maps to OP1(−1)
is proper and the localized GW invariant coincides with the twisted GW invariant
of P1 by Corollary 2.4. Hence, (3.4) follows from the differential equations for
the twisted invariants in [3]. ¤

The remaining part of this paper is devoted to a proof of

Proposition 3.4. Let p : S → D be an arbitrary spin surface and h = g(D) ≥ 1.
Then (1.3) holds for n = 1. Namely,

(3.5) 〈τ1(γ)〉S,•
2[D] = (−1)h0(L)

(
2h

−3

)

We first describe the moduli space Mχ,1(D, 2)•. Let ν : Σν → D be a degree
two étale morphism (Σν can possibly be disconnected). Picking a point p ∈ Σν ,
attaching an elliptic curve E to p and requiring u : Σν∪E → D be ν on Σν and be
constant on E, [u] ∈Mχ(D, 2)•. Since ν has a Z2-symmetry, attaching the same
E to p or to the other point in ν−1(ν(p)) gives the same stable map. This shows
that each ν gives an irreducible component of Mχ(D, 2)• that is isomorphic to
D×M1,1. An easy check shows that this is a connected component of Mχ(D, 2)•
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and this component is smooth. We denote this component and its preimage under
the forgetful morphism ϕ : Mχ,1(D, 2)• →Mχ(D, 2)• by

(3.6) Nν ⊂Mχ(D, 2)• and Wν ⊂Mχ,1(D, 2)•.

We denote by P the set of étale double covers of D; it is known that |P | = 22h.
Thus there are 22h such components. We let N0 be their complement and W0

the preimage of N0 under ϕ:

N0 = Mχ(D, 2)• − ∪ν∈P Nν , and W0 = ϕ−1(N0).

We let π : Mχ,1(S, 2)• →Mχ,1(D, 2)• be the morphism induced by p : S → D.
We let

Ma = π−1(Wa), a ∈ P ∪ {0}.
Since all Na, a ∈ P ∪{0}, are mutually disjoint, the same is true for all Ma. Thus
the localized virtual cycle

[Mχ,1(S, 2)•]vir
loc ∈ A∗Mχ,1(D, 2)• = ⊕a∈P∪{0}A∗Wa

decomposes into

(3.7) [Mχ,1(S, 2)•]vir
loc =

∑

a∈P∪{0}
[Ma]vir

loc, [Ma]vir
loc ∈ A∗Wa.

We define the contribution to 〈τ1(γ)〉S,•
2[D] from the component Ma to be

〈τ1(γ)〉S,•
2[D][Ma] =

∫

[Ma]vir
loc

ψ1ev∗1(γ).

(I.e., by replacing [Mχ,1(S, 2)•]vir
loc by [Ma]vir

loc.)

It is easy to see that

〈τ1(γ)〉S,•
2[D][Mν ] = (−1)h0(u∗L)

(
− 1

12

)
, ν ∈ P.

Here the sign (−1)h0(ν∗L) is due to Proposition 3.5 and the factor −1/12 is from
the formula (1.2) for the degree one case. Because exactly 2h−1(2h +1) of the 22h

étale ν ∈ P satisfy h0(u∗L) ≡ h0(L) mod 2, the total contribution
∑

ν∈P

〈τ1(γ)〉S,•
2[D][Mν ] = (−1)h0(L)

(
− 1

12

)
· (2h−1(2h + 1)− 2h−1(2h − 1)

)

= (−1)h0(L)

(
−2h

12

)
.
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Therefore to prove (3.5), it suffices to show

Lemma 3.5. The contribution

〈τ1(γ)〉S,•
2[D][M0] = (−1)h0(L)

(
2h

−3

)
− (−1)h0(L)

(
−2h

12

)
= (−1)h0(L)(−2h−2).

The difficulty in this case is that π∗f∗L is not locally free over W0. Were π∗f∗L
locally free over W0, we could apply Theorem 1.1 to obtain the Lemma. Instead,
we will prove this identity by studying its non-locally freeness and comparing it
with the twisted GW invariants of Mχ,1(D, 2)•.

Because of the connected component decomposition

Mχ,1(D, 2)• =
⊔

a∈P∪{0}
Wa,

we have

[Mχ,1(D, 2)•]vir =
∑

a∈P∪{0}
[Wa]vir.

The contributions to the twisted GW invariants from Wa are defined with the
cycle [Mχ,1(D, 2)•]vir replaced by [Wa]vir.

It is easy to get the contribution to the twisted GW invariant from W0. From
[3] and [12], it is straightforward to deduce that the degree two GW invariant of
D twisted by the top Chern class of −π!f

∗L is

〈τ1(γ); ctop(−π!f
∗L)〉D,•

2,χ =
(

h− 8
3

)
22h−3;

the contribution to the twisted GW invariant from any of the irreducible compo-
nents Wν is − 1

12 . Therefore, the contribution to the twisted GW invariant from
W0 is

〈τ1(γ); ctop(−π!f
∗L)〉D,•

2,χ [W0] =
(

h− 8
3

)
22h−3 − 22h

(
− 1

12

)
= (h− 2) 22h−3.

It remains to determine the difference

(3.8) 〈τ1(γ)〉S,•
2[D][M0]− 〈τ1(γ); ctop(−π!f

∗L)〉D,•
2,χ [W0].
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4. Explicit virtual cycle calculation

After exhausting the general machinery to attack the localized GW invariants,
we will turn to an explicit construction to evaluate the term (3.8). We quote the
following deformation invariance result.

Proposition 4.1 ([5]). The localized GW invariants of the spin surface S → D

are deformation invariant under the deformation of spin pair (D, L) (i.e. such
that L⊗2 ∼= KD).

This is proved in [5], and will appear in the proof of the degeneration formula
of GW invariants for spin surfaces [7].

Because of this invariance, we can replace the spin pair (L,D) by another
pair that lies in the same connected component of the space of all spin pairs.
As is well known, two spin pairs (L,D) and (L′, D′) lie in the same connected
component if the parity of L, which is h0(L) mod 2, equals the parity of L′.
Applying the invariance result, we can assume without loss of generality that D

is a hyperelliptic curve.

We now set up the stage for our calculation. Our first step is to identify the
obstruction sheaf of M0. By definition, the obstruction sheaf ObM0 is the cokernel
of the homomorphism

(4.1) Ext1
π̃(ΩC̃(s̃),OC̃) −→ R1π̃∗f̃∗TS .

Here (π̃, f̃ , s̃, C̃) and (π, f, s, C) are the universal families of M0 ⊂ Mχ,1(S, 2)•

and W0 ⊂Mχ,1(D, 2)•, respectively. Here s̃ and s are the sections of the marked
points, viewed as divisors in C̃ and C respectively.

Composing (4.1) with the tautological R1π̃∗f̃∗TS → R1π̃∗f̃∗p∗TD, we obtain

(4.2) Ext1
π̃(ΩC̃(s̃),OC̃) −→ R1π̃∗f̃∗p∗TD.

We claim that it is surjective. Using C̃ = C ×W0 M0, (4.2) is the pullback to M0

of the similarly defined Ext1
π(ΩC(s),OC) → R1π∗f∗TD, which is surjective since

(f, π) : C → D ×W0 is finite and surjective. Let K be the kernel of (4.2) which
is locally free on W0.

Lemma 4.2. The sheaf R1π̃∗f̃∗TS fits into the short exact sequence

0 −→ R1π̃∗f̃∗p∗L −→ R1π̃∗f̃∗TS −→ R1π̃∗f̃∗p∗TD −→ 0;
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the composite K → Ext1
π̃(ΩC̃(s̃),OC̃) → R1π̃∗f̃∗TS lifts to a unique

(4.3) K −→ R1π̃∗f̃∗p∗L;

its cokernel is the obstruction sheaf ObM0.

Proof. Using the exact sequence 0 → p∗L → TS → p∗TD → 0, we obtain the long
exact sequence

−→ π̃∗f̃∗TS
a0−→ π̃∗f̃∗p∗TD

a1−→R1π̃∗f̃∗p∗L −→ R1π̃∗f̃∗TS −→ .

Suppose a1 (in the sequence) is trivial, then K → R1π̃∗f̃∗TS lifts to K →
R1π̃∗f̃∗p∗L; since (4.2) is surjective, ObM0 is the cokernel of (4.3).

We now prove a1 = 0. In case h = g(D) ≥ 2, we have π̃∗f̃∗TD = 0, thus
a1 = 0. In case h = 1, then TD = OD and π̃∗f̃∗TD = OM0 is generated by a
one-parameter family of automorphisms ηt : D → D, η0 = id. Since L⊗2 ∼= OD,
(η∗t L)⊗2 ∼= OD. Thus η∗t L ∼= L, and hence ηt lift to η̃t : S → S, which generates a
section in π̃∗f̃∗TS that surjects onto π̃∗f̃∗p∗TD. This shows that a0 is surjective,
hence a1 = 0. The case h = 0 is similar. ¤

By the theory of (localized) virtual cycles, to get (localized) GW invariants,
we need to identify the intrinsic virtual normal cone

(4.4) CM0 ⊂ h1/h0
(
Rπ̃∗f̃∗TS) = h1/h0

(
Rπ̃∗f̃∗p∗L)

(Here the identity follows from the proof of Lemma 4.2.) Over the locus U ⊂ W0

where R1π∗f∗L is locally free, the moduli stack M0 ×W0 U is smooth, and then
CM0 ×W0 U is the zero section of h1/h0

(
Rπ̃∗f̃∗p∗L)×W0 U . This shows that the

zero section is part of CM0 , and of multiplicity one.

The remainder components of CM0 support over the complement of M0×W0 U .
These components can be analyzed by knowing the stack structure of M0; this
will be the main technical part of this section.

Finally, we need to intersect CM0 by applying the localized Gysin map. Ap-
plying the localized Gysin map to the zero section part of CM0 amounts to de-
termining the degree of the sheaf R1π∗f∗L on W0, which is carried out by the
twisted GW invariant of D (see the argument before (4.22)). Applying the local-
ized Gysin map to other components of CM0 is carried out by direct calculation;
this is possible since the locus where R1π∗f∗L fails to be locally free is finite.
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This calculation shows that the “top dimensional contribution” to the localized
GW invariant comes from the twisted GW invariant. To get the full invariant,
one approach is to pinpoint the “lower dimensional” contributions. The method
presented in this paper is our answer to this question. It is limited; nevertheless
we hope that it will shed lights on finding a more powerful machinery.

We now carry out the details. As mentioned, we assume D is hyperelliptic, we
let δ : D → P1 be its associated double cover; we will cut down the space W0 by
the insertion τ1(γ) = ψ1ev

∗
1(γ).

We first describe the space N0. An easy argument shows that closed points of
N0 are double covers u : C → D branched at two points q1, q2 ∈ D. It is known
that such map is characterized by a line bundle ξ on D satisfying

ξ⊗2 ∼= OD(q1 + q2);

the curve C is a subscheme of the total space of ξ defined by {t ∈ ξ | t2 = v} for v

a non-trivial section in H0(OD(q1 +q2)) vanishing at q1 +q2; the map u is the one
induced by the projection ξ → D. Further, a direct obstruction analysis shows
thatMχ(D, 2)• is smooth near such double covers [u]. Thus this description gives
the scheme structure of N0: N0 is a smooth two dimensional DM stack, with Z2

automorphism group at every point. Consequently, W0 is the quotient by Z2 of
the total space of the universal curve of Mχ(D, 2)• over N0; it is a smooth three
dimensional DM stack, and the only points with Z2 automorphism groups are
those [u] whose two branched points and the marked point coincide.

We now let

f : C → D, π : C → W0, s : W0 → C the section of marked points

be the universal family of W0; we let ev1 : W0 → D as before be the evaluation
morphism. We can cut down W0 by ψ1ev

∗
1(γ) as follows: we pick a general point

q ∈ D and form the subscheme ev−1
1 (q); it is a Cartier divisor of W0 and it

represents the class ev∗1(γ).

For ψ1, the natural homomorphism s∗f∗ΩD → s∗ωC/W0
induces a section

(4.5) φ ∈ Γ
(
W0, s

∗(ωC/W0
⊗ f∗Ω∨D)

)
.

This section vanishes at [u] = (ξ, q1+q2) ∈ W0∩ev−1
1 (q) if and only if the marked

point su of [u] is one of the two branch points q1 and q2.
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We introduce

(4.6) Z = {φ = 0}, Zq = Z ∩ ev−1
1 (q), M0,q = M0 ×W0 Zq.

Then the cycle contributing to
〈
τ1(γ)

〉S,•
2[D]

[M0] lies inside M0,q.

Our next step is to investigate the stack structure of M0 near M0,q. According
to Lemma 2.1, it suffices to investigate the locus Λ ⊂ W0 over which the sheaf
R1π∗f∗L is non-locally free. For a double cover u :C → D given by (ξ, q1 + q2),
since

(4.7) H0(C, u∗L) = H0(D, L)⊕H0(D, L⊗ ξ−1),

it is easy to see that R1π∗f∗L is non-locally free exactly along the locus

Λ = {u = (ξ, q1 + q2) ∈ W0 | H0(L⊗ ξ−1) 6= 0}.

Here the marked point su ∈ C of u is implicitly understood.

Let u = (ξ, q1 + q2) ∈ Λ, and let

η 6= 0 ∈ H0(D, L⊗ ξ−1).

We denote H = δ∗OP1(1). As L2 ∼= KD = (h − 1)H and ξ⊗2 = O(q1 + q2), we
have

(4.8) (h− 1)H = q1 + q2 + 2η−1(0),

which, because D is hyperelliptic, is possible only if

(4.9) either q1 = q2, or q1 = q̄2,

Here we use q̄2 to denote the point conjugate to q2 with respect to δ : D → P1.
In particular, when u ∈ Λ ∩ Zq, one of qi must be q; thus Λ ∩ Zq is finite.

Let

R = {u = (ξ, q1 + q2) ∈ W0 | q1 = q̄1 or q2 = q̄2}.
Since q ∈ D is general, Λ ∩ Zq ∩R = ∅. As the desired contribution lies in M0,q,
we only need to study the set

Λ′ = {u = (ξ, q1 + q2) ∈ Λ−R | q1 = q̄2}, Λ′′ = {u ∈ Λ−R | q1 = q2}

Note that Λ′ and Λ′′ is a partition of Λ−R.
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It is easy to identify the set Λ′. Let u = (ξ, q + q̄) be any point in this set.
Since q + q̄ = H, (4.8) reduces to 2η−1(0) = (h− 2)H. Let

(4.10) r = h0(L⊗ ξ−1)− 1 = h1(L⊗ ξ−1)− 2,

which ranges between 0 and (h− 2)/2. Since D is hyperelliptic, we can write the
effective divisor

η−1(0) = p1 + · · ·+ ph−2, pi ∈ C

so that
(a). pi+r = p̄i for i ≤ r;
(b). all pj for j ≥ 2r + 1 are distinct ramification points of δ : D → P1.

The r in (4.10) decomposes Λ′ into disjoint union of Λ′r for 0 ≤ r ≤ (h− 2)/2.
Since

(4.11) ξ = L(−p1 − · · · − ph−2) = L− rH − p2r+1 − · · · − ph−2,

elements in Λ′r are uniquely determined by the distinct ramified points pj>2r of
δ : D → P1.

Looking at the intersection Λ′ ∩ Zq, since the branch points of u ∈ Λ′ ∩ Zq

must be q1 + q̄1 = q + q̄, and the marked point of u must be q, (noting q 6= q̄,) we
conclude that Λ′r ∩ Zq consists of

(
2h+2

h−2−2r

)
elements, where 2h + 2 is the number

of ramification points of δ.

Claim 4.3. The scheme structure of M0,q near the fiber over u = (ξ, q + q̄) ∈ Λ′r
is (analytically) isomorphic to

(4.12) Al × {
zw1 = z3w2 = · · · = z2r+1wr+1 = 0

} ⊂ Al+r+2, l = h0(L)

near Al × {0} ⊂ Al+r+2, with automorphisms Z2 acting trivially at every point.

Proof. Since Zq is smooth near u, the local defining equation of M0,q is determined
by a locally free resolution of π̄!f̄

∗L for f̄ : C̄ → D and π̄ : C̄ → Zq the restrictions
of f and π to Zq. On the other hand, from (4.7), we see immediately that
π̄∗f̄∗L = H0(L) ⊗ OZq . By Riemann-Roch, away from M0,q ×W0 Λ, R1π̄∗f̄∗L is
locally free and has rank l + 1. Therefore, R1π̄∗f̄∗L is a direct sum of its torsion
free part R and its torsion part.

Since h1(L ⊗ ξ−1) = r + 2 by Riemann-Roch [1], in a formal neighborhood
of u ∈ Zq with z the local coordinate of Zq at u, we can find positive integers
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α1 ≤ α2 ≤ · · · ≤ αr+1 and express the torsion part of R1π̄∗f̄∗L as

(4.13) C[[z]]/(zα1)⊕ · · · ⊕ C[[z]]/(zαr+1).

Thus a (locally free) resolution of π̄!f̄
∗L can be chosen as

diag(zα1 , · · · , zαr+1) :
r+1⊕

i=1

O −→
(

r+1⊕

i=1

O
)
⊕R.

By Lemma 2.1, if we let (z1, · · · , zl, w1, · · · , wr+1) be the coordinates for the
vector space H0(C, f∗L) = H0(L)⊕H0(L⊗ ξ−1), the local defining equation of
M0,q near fibers over u can be chosen as

zα1w1 = zα2w2 = · · · = zαr+1wr+1 = 0.

It remains to determine the integers αi. For this we need to investigate whether
a line Cη ⊂ H0(L⊗ ξ−1) can be extended to a submodule

(4.14) C[z]/(zn) ⊂ π∗f∗L/znπ∗f∗L.

Let
H0(L⊗ ξ−1) = Fr+1 ⊇ Fr ⊇ · · · ⊇ F1 ⊇ F0 = {0}

be a flag with Fr+1−k = H0(L ⊗ ξ−1(−kq)). It is a complete flag since h0(L ⊗
ξ−1(−kq)) = max(r+1−k, 0), using (4.11). For 0 ≤ k ≤ r, let η ∈ Fr+1−k−Fr−k

be a general element and (pi) be the zeros of η. Then after reshuffling if necessary,
we have

p1 = · · · = pk = q, pr+1 = · · · = pr+k = q̄, pk+1, · · · , pr, pr+k+1, · · · , p2r /∈ {q, q̄}.
Suppose η fits into a C[z]/(zn)-modules as in (4.14), then there are morphisms

q, q′ and pi : SpecC[z]/(zn) −→ D,

which extend the points q, q̄ and pi respectively, such that q is constant, q′ has
non-vanishing first order variation, and viewing q,q′,pi as families of divisors on
D parameterized by SpecC[z]/(zn), the relation (4.8) holds as SpecC[z]/(zn)-
families of Cartier divisors:

(h− 1)H = q + q′ + 2p1 + · · ·+ 2ph−2.

Because q̄ is not a branch point of δ :D → P1, our local coordinate z for Zq at
u can be thought of as a local coordinate for D near q̄ and also a local coordinate
for P1 via δ. Without loss of generality, we can choose q′ so that δ ◦ q′(z) = z.
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Suppose δ ◦ pi = pi(z). Then the above identity on divisors over SpecC[z]/(zn)
is equivalent to

(4.15) w
k∏

i=1

(w − pi(z))2 ≡ (w − z)
k∏

i=1

(w − pr+i(z))2 mod zn,

for a formal variable w.

Shortly, we shall show that (4.15) is solvable if and only if n ≤ 2k+1. Once this
is done, we see that because dim Fk = k, we have α1 = 1, α2 = 3, . . . , αr = 2r+1.
This will provide us the structure result of M0,q over an element in Λ′r.

We now prove that (4.15) is solvable if and only if n ≤ 2k+1. We first compare
the constant coefficients in w of (4.15) to obtain

(4.16) z

k∏

i=1

p2
r+i(z) ≡ 0 mod zn.

To proceed, we shall show that for n = 2k + 1, (4.15) holds if and only if
pr+i(z) ≡(z2) ciz for uniquely determined complex numbers ci 6= 0, 1 ≤ i ≤ k.
(Here we use ≡(zn) to mean equivalence modulo zn.) Together with (4.16), this
immediately implies the claim.

Let n = 2k + 1; let f , g and h be defined by

f =
k∏

i=1

(1− pi(z)/w) =
k∑

j=0

Ajw
−j , g =

k∏

i=1

(1− pr+i(z)/w) =
k∑

j=0

Bjw
−j

and h =
√

1− z/w ·g =
∑∞

j=0 Cjw
−j , with Ai, Bi and Ci analytic functions of z.

Dividing (4.15) by w2k+1, we see immediately that that Cj ≡(zn) Aj for 0 ≤ j ≤ k

and that h2 − f2 = 2f(h− f) + (h− f)2 has no terms w−j with j ≤ 2k, modulo
zn as usual. Since f is monic and h− f has no terms w−j with j ≤ k, h− f has
no terms w−j with j ≤ 2k. This implies that Cj ≡(zn) 0 for k < j ≤ 2k. If we let√

1− z/w =
∑

Djw
−j , we obtain

0 ≡(zn) Cj =
k∑

i=0

Dj−iBi = Dj +
k∑

j=1

Dj−iBi

for k < j ≤ 2k, and thus we have a matrix equation

(4.17) (G1 G2 · · · Gk)B ≡(zn)−Gk+1,
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where Gj is the column vector (Dj , Dj+1, · · · , Dj+k−1)t and B is the column
vector (Bk, Bk−1, · · · , B1)t. Since Dj = −21−2j 1

j

(
2j−2
j−1

)
zj , the determinant of

the Hankel matrix (G1 G2 · · · Gk) is [(−1)k/22k2−k]zk2
and the determinant of

(G2 G3 · · · Gk+1) is [(−1)k/22k2+k]zk2+k. (See [13] for the computation of these
Hankel determinants.) To prove the solvability of (4.15) for n = 2k + 1, we
can replace ≡(zn) by the honest equality. By Cramer’s rule, the matrix equation
(G1 G2 · · · Gk)B = −Gk+1 has a unique solution Bk = (−4)−kzk and Bj = βjz

j

for some βj ∈ C, j ≤ k. The equation Aj = Cj for j ≤ k implies Aj = γjz
j for

some γj ∈ C. Therefore pr+i(z) = ciz for some ci 6= 0 solves (4.15) and (4.16).

To see the insolvability of (4.15) for n > 2k+1, we observe from (4.17) that the
least order terms of Bj are uniquely determined as above and thus pr+i(z) ≡(z2)

ciz for ci 6= 0. Then (4.16) cannot be satisfied. This completes our description of
the formal neighborhoods of exceptional points in Λ′r. ¤

The structure of Λ′′ is similar.

Claim 4.4. The intersection Λ′′∩Zq is the disjoint union of Λ′′r for 0 ≤ r ≤ h−3
2 ;

each Λ′′r has
(

2h+2
h−3−2r

)
elements; the local defining equation for the stack M0,q near

a fiber over a point in Λ′′r is (analytically) isomorphic to

(4.18) Al ×
{

z2w1 = z4w2 = · · · = z2(r+1)wr+1 = 0
}
⊂ Al+r+2

near Al × {0} ⊂ Al+r+2, with authmorphisms Z2 acting trivially at every point.

Proof. The proof is parallel, and will be omitted. ¤

These two claims immediately give us

Corollary 4.5. The stack M0,q is the union of closed substacks V0 and Vu, where
u are indexed by u ∈ Λ ∩ Zq as follows:

(a) V0 is the vector bundle H0(L)× Zq over Zq;
(b) for u ∈ Λ′ ∩ Zq, following the notation of Claim 4.3, Vu is

Al × {zw1 = z3w2 = · · · = z2r+1wr+1 = z2r+1 = 0} ⊂ Al+r+2;

(c) for u ∈ Λ′′ ∩ Zq, following the notation of Claim 4.4, Vu is

Al × {z2w1 = z4w2 = · · · = z2(r+1)wr+1 = z2(r+1) = 0} ⊂ Al+r+2.

The stack M0,q has automorphism group Z2 acting trivially at every point.
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We let B ⊂ C be the branch locus of the morphism f : C → W0 × D; let
R = f(B) ⊂ W0 × D be its image, and let Ξ be the line bundle on W0 × D so
that Ξ⊗2 ∼= OW0×D(R). Then

(4.19) R1π̃∗f̃∗p∗L ∼= φ∗R1πW0∗π
∗
DL⊕ φ∗R1πW0∗(π

∗
DL⊗ Ξ−1).

Here πW0 and πD are the projections of W0 × D, and φ : M0 → W0 is the
projection. Of the two, R1πW0∗π∗DL = H1(L) ⊗ OW0 is locally free of rank
l = h0(L).

We next pick a vector bundle F on W0 together with a surjective homomophism
OW0(F ) → R1πW0∗(π∗DL⊗ Ξ−1). We let

OW0(E) = H1(L)⊗OW0 ⊕OW0(F ).

By Lemma 4.2, ObM0 is a quotient sheaf of OW0(E). We let F̃ = φ∗F and
Ẽ = φ∗E. We let Q ⊂ Z∗Ẽ be the virtual normal cone cycle that is the pullback
of the intrinsic normal come of M0; we let σ̄ : Ẽ → OM0 be the homomorphism
induced by the holomorphic two-form θ on S. Then we know that Q lies in
the union of Ẽ|W0 and ker{σ̄|M0−W0}. Applying the localized Gysin map [6],
s!
Ẽ,σ̄

(Q) ∈ A∗W0 and

(4.20) 〈τ1(γ)〉S,•
2[D][M0] =

∫

s!
Ẽ,σ̄

(Q)
ψ · ev−1(q), q ∈ D.

Recall that Zq ⊂ W0 is defined in (4.6). We call q ∈ D general if no irre-
ducible component of Q lies entirely over M0,q. Since the obstruction to deform-
ing pointed stable maps does not depend on the location of the marked points,
the cycle Q is the pullback of a cycle on Mχ(S, 2)•. Thus, for general q ∈ D,

Qq = Q×M0 M0,q ∈ Z∗M0,q

is well-defined and for Ẽq = Ẽ|M0,q and σ̄q = σ̄|M0,q ,

(4.21) 〈τ1(γ)〉S,•
2[D][M0] =

∫

s!
Ẽq,σ̄q

(Qq)
1.

The description of Qq is given by the following claim. Let Rq be the torsion free
part of R1π∗f∗L⊗OW0

OZq . Since Zq is smooth of dimension one, it is locally free.
Let φq : M0,q → Zq ⊂ W0 be the projection. The quotient R1π∗f∗L|Zq → Rq

pullbacks to
Ẽq −→ R1π̃∗f̃∗p∗L|M0,q −→ φ∗qRq.
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Following the notation of Corollary 4.5, for u ∈ Λ ∩ Zq we let

Vu,i = Al × {w1 = · · · = wi+1 = 0} ⊂ Vu.

Let m = rankE. We have

Claim 4.6. The cycle Qq has a decomposition Qq = T0 +
∑

u∈Λ∩Zq
mu,iTu,i:

(1) T0 is the total space of the bundle ker{Ẽq → φ∗qRq} ×Zq V0 over V0;
(2) for u ∈ Λ′ ∩ Zq, Qq has irreducible components Tu,i lying over Vu, 0 ≤

i ≤ r; Tu,i is a rank m + i− (l + r + 1) subbundle of Ẽ|Vu,i, mu,i = 2i + 1;
(3) for u ∈ Λ′′ ∩ Zq, Qq has irreducible components Tu,i lying over Vu, 0 ≤

i ≤ r; Tu,i is a rank m + i− (l + r + 1) subbundle of Ẽ|Vu,i, mu,i = 2i + 2.

Proof. The key is that M0,q near M0,q ×Zq u for u ∈ Λ′ ∩ Zq has local defining
equation given by Claim 4.3; the normal bundle to the subscheme in (4.12) is the
union of Al+1 (= Al×A1, where A1 is the z-variable part,) with r +1 additional
irreducible components over Vu (i.e. lies over z = 0): the i-th component is a
subbundle of Ar+1 × Vu,i → Vu,i, of fiber rank i + 1, and of multiplicity 2i + 1.

Let m = rankE. Since Qq has pure dimension m, and since dimVu,i = l + r +
1 − i, Qq has an irreducible component, that is a rank m + i − r − l − 1 vector
bundle over Vu,i. It has multiplicity mu,i = 2i + 1.

The same argument applied to u ∈ Λ′′∩Lq using the explicit defining equation
in Claim 4.4 proves item (3) in the statement of the claim.

It remains to show that the remaining part of Qq is (1). Indeed, since M0,q −
M0,q ×Zq Λ is smooth, the cone cycle Qq over M0,q − M0,q ×Zq Λ is the kernel
bundle Ẽq → φ∗qRq. Using the description of the normal cone to (4.12) and (4.18),
we know that near fibers over u ∈ Λ ∩Zq, the cycle Qq consists of parts listed in
(2) and (3) plus a vector bundle over V0. Since this bundle is the kernel bundle
of Ẽq → φ∗qRq at general points of V0, and since Ẽq → φ∗qRq is surjective, this
shows that the part listed in (1) is also part of Qq. Combined, this proves the
claim. ¤

We now prove Lemma 3.5.
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Proof of Lemma 3.5. We first show that the contribution of T0 in Claim 4.6 is

∫

s!
Ẽq,σ̄q

([T0])
1 = (−1)l

[
(h− 2)22h−3 −

h−2∑

j=0

(
2h + 2

h− 2− j

)
aj

]
.

We know that T0 is a subbundle of Ẽ|V0 ; its normal bundle in Ẽ|V0 is the
pullback of the Rq, which is the locally free part of R1π̄∗f̄∗L. Therefore, the
contribution is

(−1)lc1(Rq)[Zq].

Here l = h0(L) is the dimension of the fiber of V0 → Zq; the sign (−1)l is due to
the reason similar to the proof of Proposition 1.1.

Let (π̄, f̄) : C̄ → Zq ×D be the restrictions of (π, f) to Zq. The degree of Rq is
the difference of c1(−π̄!f̄

∗L) and the total degree of the torsion part of R1π̄∗f̄∗L.
By (4.12), the latter at a point in Λ′r ⊂ Λ′ is (4.13) with αi = 2i − 1; thus the
total degree of the torsion part lying over Λ′ is

(4.22)
[h−2

2
]∑

r=0

1
2
· a2r ·

(
2h + 2

h− 2− 2r

)
, a2r = 1 + 3 + 5 + · · ·+ (2r + 1).

Here the factor 1
2 is from the trivial Z2 action. Similarly, the degree of the torsion

part lying over Λ′′ is

[h−3
2

]∑

r=0

1
2
· a2r+1 ·

(
2h + 2

h− 3− 2r

)
, a2r+1 = 2 + 4 + 6 + · · ·+ (2r + 2).

Hence, by Proposition 1.1, the contribution from T0 is as claimed.

For u ∈ Λ′ ∩ Zq, following the proof of Theorem 1.1,

r∑

i=0

mu,i

∫

s!
Ẽq,σ̄q

([Tu,i])
1 =

r∑

i=0

(−1)l+r+1−i (2i + 1) =: b2r · (−1)l

2
1
2
.

Here, the sign is from Theorem 1.1; (2i + 1) is the multiplicity; 1/2 is from the
trivial Z2 action.

By the same reason, for u ∈ Λ′′ ∩ Zq,

r∑

i=0

mu,i

∫

s!
Ẽq,σ̄q

([Tu,i])
1 =

r∑

i=0

(−1)l+r+1−i (2i + 2) =: b2r+1 · (−1)l

2
1
2
.
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Combining the above, the contribution to the localized GW invariant of the
component M0 of branched double covers is

(−1)h0(L)
[
(h− 2)22h−3 −

h−2∑

j=0

(
2h + 2

h− 2− j

)
· aj − bj

2

]
.

Now it is an elementary combinatorial exercise to check that this coincides with
the desired (−1)h0(L)(−2h−2). This completes our proof of Lemma 3.5. ¤
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