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the projective space. It has been conjectured that a surjective endomorphism
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1. Introduction

We will work over the complex number field C. It seems that the following has
been a folklore since 1980’s.

Conjecture 1.1. Let X be a Fano manifold of Picard number one different from
the projective space. Then a surjective endomorphism X → X must be bijective.
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Up to our knowledge, no general strategy to this conjecture has been suggested.
Even testing the conjecture for a specifically given Fano manifold of Picard num-
ber one is not easy. For that reason, it is worth studying the conjecture with
some additional assumptions on X. For example, Conjecture 1.1 was proved
for homogeneous spaces in [PS], for hypersurfaces of the projective space in [Be]
and for Fano manifolds containing a rational curve with trivial normal bundle in
[HM03]; the last work solves Conjecture 1.1 in case dim X = 3.

On the other hand, since Conjecture 1.1 predicts that all surjective endo-
morphisms are just automorphisms, it is somewhat artificial and aesthetically
repulsive to work on the conjecture with additional assumptions on the endomor-
phism. Notwithstanding this, we will study Conjecture 1.1 for a special class of
endomorphisms in this paper. We say that an endomorphism f : X → X is étale
outside a completely invariant divisor if there exists a reduced divisor D ⊂ X

such that f−1(D) := f∗(D)red = D and f |X\D : X \D → X \D is étale. We will
prove the following.

Theorem 1.2. Let X be a Fano manifold of Picard number one different from the
projective space. If an endomorphism of X is étale outside a completely invariant
divisor, it is bijective.

In fact, our result is slightly stronger. See Theorem 2.1 for the precise state-
ment.

What is our excuse for making this special assumption on the endomorphism?
We believe that Theorem 1.2 will be useful in attacking Conjecture 1.1. It seems
that, for many examples of X, the geometry of rational curves on X forces an ar-
bitrary endomorphism X → X to be étale outside a completely invariant divisor.
To illustrate this idea, we will use Theorem 1.2 to prove the following.

Theorem 1.3. Let X be a Fano manifold of Picard number one different from
the projective space. Suppose that the variety of minimal rational tangents of X

is linear. Then a surjective endomorphism X → X is bijective.

See Section 6 for the meaning of the assumption on the variety of minimal
rational tangents. In practice, the only known examples of Fano manifolds of
Picard number one whose variety of minimal rational tangents is linear are those
having rational curves with trivial normal bundles. For the latter class of Fano
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manifolds, Theorem 1.3 were already proved in [HM03]. In this sense, Theo-
rem 1.3 is a generalization of a result of [HM03]. However, the proof given here is
different from that of [HM03] and conceptually simpler. In particular, the calcu-
lation involving discriminantal orders, which was the hardest part in [HM03], is
not needed here. Moreover, as far as endomorphisms are concerned, Theorem 1.3
has a theoretical advantage which makes it more useful than [HM03]. As an
example, we will use Theorem 1.2 and Theorem 1.3 to prove the following, for
which the result of [HM03] is not sufficient.

Theorem 1.4. Let X be a Fano manifold of Picard number one different from
the projective space. Assume that X is quasi-homogeneous, i.e., the connected
component Auto(X) of the group of biregular automorphisms of X has an open
orbit in X. Then a surjective endomorphism X → X is bijective.

This verifies Conjecture 1.1 for quasi-homogeneous cases. Note that quasi-
homogeneous Fano manifolds of Picard number one cover a large class of exam-
ples, much larger than the homogeneous cases of [PS]. See, for example, [Pq]
for interesting examples. Even when Auto(X) is reductive, this class of Fano
manifolds have not yet been classified.

2. Proof of Theorem 1.2

In this section, we will prove the following stronger version of Theorem 1.2.

Theorem 2.1. Let X be an n-dimensional Fano manifold of Picard number
one and D ⊂ X a reduced divisor. Assume that there exist a non-isomorphic
surjective endomorphism f : X → X such that f−1(D) = D and f |X\D : X \D →
X \D is étale. Then X is isomorphic to the projective space Pn and D is a simple
normal crossing divisor consisting of n + 1 hyperplanes.

Given a reduced divisor D in a projective manifold X, we define the sheaf
Ω̂1

X(log D) as follows. Let U ⊂ X be a Zariski open subset with codim(X \U) ≥ 2
and D ∩ U being a smooth divisor. Denote by Ω1

U (log(D ∩ U)) the locally free
sheaf of germs of logarithmic 1-forms on U with poles only along U ∩D. Using
the open immersion j : U ⊂ X, we define

Ω̂1
X(log D) := j∗Ω1

U (log(D ∩ U)).

This is a reflexive coherent sheaf on X.
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Proposition 2.2. In the setting of Theorem 2.1, let A be the ample generator of
Pic(X) ∼= Z and let q > 1 be the integer with f∗A = qA in Pic(X); in particular,
deg f = qn. Then the following hold.

(i) f∗(c1(A)i) = qic1(A)i ∈ H2i(X,Z) and f∗(c1(A)j) = qn−jc1(A)j ∈
H2j(X,Z) for any 0 ≤ i, j ≤ n.

(ii) There is a natural isomorphism f∗Ω̂1
X(log D) ∼= Ω̂1

X(log D). In particular,
KX + D = f∗(KX + D).

(iii) For any i > 0, ci(Ω̂1
X(log D)) c1(A)n−i = 0.

Proof. (i) is direct from the projection formula. (ii) follows from the fact that f

is flat, f−1(D) = D and f is étale outside D. For (iii), denoting Ω̂1
X(log D) by

F , (ii) gives f∗(ci(F)) = ci(F) for any i. Then

qn−ici(F)c1(A)n−i = f∗ci(F)(f∗c1(A))n−i = (deg f)ci(F)c1(A)n−i = qnci(F)c1(A)n−i

implies ci(F)c1(A)n−i = 0. ¤

Proposition 2.3. In the setting of Proposition 2.2, the sheaf Ω̂1
X(log D) is semi-

stable with respect to A. In fact, Ω̂1
X(log D) ∼= O⊕n

X .

Proof. Suppose it is not semi-stable with respect to A. Then, there is a non-zero
coherent sheaf F ⊂ Ω̂1(log D) such that

µA(F) :=
c1(F)c1(A)n−1

rankF > 0.

Then µA(f∗F) = qµA(F) by f∗(c1(A)n−1) = qc1(A) ∈ H2(X,Z) and by the
projection formula. For the iterated power fk = f ◦ · · · ◦ f (k ≥ 1) of f , we have
µA((fk)∗F) = qkµA(F). Note that the set

{µA(F) | 0 6= F ⊂ Ω̂1(log D)}

is bounded from above. Since (fk)∗F ⊂ Ω̂1
X(log D) by Proposition 2.2 (ii), we

get a contradiction.

Now if a reflexive sheaf G on a projective manifold X is semi-stable with respect
to an ample line bundle A, satisfying c1(G) = 0 and c2(G)c1(A)n−2 = 0, then G
is locally free and there exists a sequence

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ El = G
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of subbundles such that Ei/Ei−1 is a projectively flat vector bundle with
c1(Ei/Ei−1) = 0 for any 1 ≤ i ≤ l (cf. [Na, IV.4.1]). We can apply it to
G = Ω̂1

X(log D) by Proposition 2.2 (iii). Then, Ω̂1
X(log D) is free, since X is

simply connected and

dimExt1X(OX ,OX) = dim H1(X,OX) = 0. ¤

The proof of the following result is taken from [NZ, Lemma 5.3 and Proposition
5.4].

Proposition 2.4. In the setting of Theorem 2.1, there is an open subset U ⊂ X

such that D ∩ U is a normal crossing divisor and codim(X \ U) ≥ 3.

Proof. Let ν : D̃ → D ⊂ X be the normalization of D and c be the conductor of
D, regarded as a Weil divisor on D̃. The adjunction formula gives

K
D̃

+ c = ν∗(KX + D).

There is an endomorphism h : D̃ → D̃ such that ν ◦h = f ◦ν and its ramification
divisor Rh is h∗(c)− c. In fact, we have K

D̃
+ c = h∗(K

D̃
+ c) from KX + D =

f∗(KX + D) in Proposition 2.2 (ii). Moreover, deg h = qn−1 by h∗ν∗(A) =
ν∗f∗(A) = qν∗(A), where q is as in Proposition 2.2.

We will show that c is reduced. Let Γ be an irreducible component of c and
Θ be an irreducible component of h−1(Γ). We set a := multΘ h∗(Γ). Then

a− 1 = multΘ(Rh) = multΘ(h∗c)−multΘ(c) = a multΓ(c)−multΘ(c).

Consequently,

(1) multΘ(c)− 1 = a (multΓ(c)− 1).

Thus, Θ is contained in c. By considering the number of irreducible components
of c, we infer that Θ 7→ h(Θ) induces a permutation of the set of irreducible
components of c. In particular, h∗(Γ) = aΘ. Replacing h by some iteration hm,
we may assume that h∗(Γ) = aΓ. Since h∗ν∗(A) ∼ qν∗(A) and deg h = qn−1, we
have a = q by

qn−1Γν∗(A)n−2 = h∗(Γ)h∗ν∗(A)n−2 = aqn−2Γν∗(A)n−2 > 0.

Thus h∗(Γ) = qΓ and for each positive integer k, (hk)∗(Γ) = qkΓ for the iterated
endomorphism hk. Then

multΓ(c)− 1 = qk(multΓ(c)− 1)
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by (1). Thus, multΓ(c) = 1, proving that c is reduced.

If a plane curve has a reduced conductor over a singular point, then the singu-
larity is nodal. Hence, D has only normal crossing singularities in codimension
one. ¤

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let U be the open subset in Proposition 2.4. Since
codim(X \ U) ≥ 3, we have an isomorphism

C ∼= H1(X, Ω1
X) ∼= H1(U,Ω1

U ).

On the other hand, we have an exact sequence

0 −→ Ω1
U −→ Ω1

U (log(D ∩ U)) −→ ν∗OD̃
|U −→ 0

for the normalization ν : D̃ → D. Here, D̃ is the disjoint union of the normal-
izations D̃i of irreducible components Di of D. Thus, dimH0(U, ν∗OD̃

) is the
number l of irreducible components of D. The connecting homomorphism

H0(U, ν∗OD̃
) −→ H1(U,Ω1

U ) ∼= H1(X, Ω1
X)

essentially sends a generator 1 of O
D̃i

for each component Di to the first Chern
class c1(Di). From

dimH0(U,Ω1
U ) = dim H0(X, Ω1

X) = 0, dimH1(U,Ω1
U ) = dim H1(X, Ω1

X) = 1,

we get

l − 1 = dim H0(U,Ω1
U (log(D ∩ U))) = dim H0(X, Ω̂1

X(log D)) = n

where the last equality is from Proposition 2.3. Since KX + D = 0 by Propo-
sition 2.3, −KX = mA for some positive integer m ≥ n + 1. Thus, X ∼= Pn

by Kobayashi–Ochiai’s criterion [KO]. Moreover, m = l = n + 1 implies that
each irreducible component Di is a hyperplane. The normal crossing property of
D =

∑
Di is verified in [NZ, Proposition 5.6]. ¤

3. Free immersed submanifolds with trivial normal bundle

Let X be a non-singular projective variety.
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Definition 3.1. A finite morphism ν : V → X is called an immersion from a
projective manifold if V is a non-singular projective variety with dimV < dimX

and ν is unramified and generically injective. If the normal bundle Nν = NV/X

is a trivial bundle of rank dimX − dimV = codim ν(V ) > 0 in addition, then ν

is called an immersion with trivial normal bundle. In this case, the image ν(V )
is called an immersed submanifold with trivial normal bundle.

For an immersion ν : V → X from a projective manifold with trivial normal
bundle, we have an exact sequence

(2) 0 → TV → ν∗TX → NV/X ' O⊕c
V → 0

for c = codim ν(V ). In particular, KV = ν∗KX . Therefore, if X is a Fano mani-
fold, then so is V . A projective space Pn does not have an immersed submanifold
with trivial normal bundle since the tangent bundle is ample.

Definition 3.2. Let ν : V → X × W be a finite morphism for algebraic
schemes V and W. Let ϕ : V → X and π : V → W be the morphisms in-
duced by projections. If π is a smooth morphism with connected fibers and
ν|Vw = ϕ|Vw : Vw := π−1(w) → X is an immersion, then ν is called a family of
immersions from projective manifolds parametrized by W

We can consider ν as a deformation of the holomorphic map ν|Vw varying the
source and fixing the target. In particular, we have the characteristic map

Tw(W) → H0(Vw, NVw/X)

for the deformation V → X ×W of the non-degenerate holomorphic map ν|Vw

in the sense of Horikawa [Ho], where Tw(W) denotes the tangent space of W
at w. The proof of the following lemma, which is straight forward using basic
deformation theory, will be skipped.

Lemma 3.3. Let ν : V → X ×W be a finite morphism for algebraic schemes V,
W, and let ϕ : V → X and π : V → W be the morphisms induced from projections.
Assume that π is a smooth morphism with connected fibers. For a given point
w ∈ W and V = Vw = π−1(w), the following three conditions are mutually
equivalent :

(i) ν|V : V → X is an immersion with trivial normal bundle and ϕ : V → X

is étale at a point of V .
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(ii) W is non-singular at w, ν is a family of immersions over an open neigh-
borhood of w in W, ν|V has trivial normal bundle, and the characteristic
map Tw(W) → H0(V, NV/X) is an isomorphism.

(iii) ν is a family of immersions over an open neighborhood of w in W and ϕ

is étale along V .

A family V → X×W of immersions from projective manifolds is called étale if
the first projection V → X is étale. Let ν = (ϕ, π) : V → X×W be an étale family
of immersions from projective manifolds. Then, ν|Vw = ϕ|Vw : Vw = π−1(w) →
X is an immersion with trivial normal bundle for any w ∈ W by Lemma 3.3.
Moreover, V → X × W is a versal family of the deformation of ν|Vw for any
w ∈ W by Lemma 3.3 and [Ho].

We can consider the push-forward ν∗(Vw) as an algebraic cycle of X associated
with the subvariety ν(Vw) for any w. Moreover, if W is normal, then the push-
forward ν∗(V) is regarded as a family of algebraic cycles of X parametrized by
W. Thus, in this case, we have an associated morphism from W to the Chow
variety Chow(X) of X.

Definition 3.4. A positive-dimensional closed subvariety M of Chow(X) is
called a component of the locus of free immersed submanifolds with trivial normal
bundle (FIT, for short) if M is the closure of the image of W → Chow(X) in-
duced from an étale family V → X×W of immersions from projective manifolds.
The set of FITs of X is denoted by FIT(X).

An example of an FIT is provided by the fibers of a surjective morphism
X → Y with dimX > dimY . More interesting examples arise from minimal
rational curves on Fano manifolds. As explained in [HM03], if a Fano manifold
X contains a rational curve with trivial normal bundle, such a rational curve can
be deformed to cover an open subset in X. The family of these deformations will
give rise to an FIT. Quite often, e.g., when X has Picard number one, this FIT
cannot come from a surjective morphism X → Y . There are many examples of
Fano manifolds of Picard number 1 containing rational curves with trivial normal
bundles. They provide interesting examples of FIT’s. For example, any Fano
threefold X of Picard number one, excepting P3 and the quadric hypersurface
X ⊂ P4, admits an FIT, as noted in [HM03, p.628]. More generally, an FIT
arises whenever we have a minimal component of the space of rational curves
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on X whose variety of minimal rational tangents is linear, as we will see in
Proposition 6.1.

Theorem 3.5. Let X be a Fano manifold. Then FIT(X) is a finite set.

Proof. We recall the fact that the Fano manifolds of fixed dimension are bounded
(cf. [Kr, V.2]). Thus, there exist finitely many smooth families Πi : Xi → Si of
Fano manifolds such that, for any M ∈ FIT(X), there exist an étale family ν =
(ϕ, π) : V → X ×W of immersions from projective manifolds defining M as the
closure of the image ofW → Chow(X), a morphism σ : W → Si for some i, and an
isomorphism V ' Xi×Si W over W. We fix M , ν : V → X ×W, and σ : W → Si.
We write Π: X → S for Πi : Xi → Si for the i. The morphism ν defines a
morphism [ν] : W → H into the relative Hom scheme H := HomS(X , X×S) over
S. Here, σ = q◦[ν] for the structure morphism q : H → S. Note thatH is regarded
as an open subscheme of the relative Hilbert scheme of X ×S (X × S) ' X ×X

over S. Let
Λ: X ×S H → (X × S)×S H = X ×H

be the universal family for the Hom scheme H and let

Ψ = Π×S idH : X ×S H → H
be the second projection. For a point t ∈ H, let

Λt : Xt := Ψ−1(t) = (X ×S H)×H {t} ' Π−1(q(t)) → (X ×H)×H {t} = X

be the base change of Λ by {t} → H.

Claim 3.6. Let T be the set of points t ∈ H such that Λt is an immersion with
trivial normal bundle. Then T is an open subset and Λ: Ψ−1(T ) → X × T is a
family of immersions.

Proof. Let t be a point of T . For the proof, we may replace H with an open
neighborhood of t in H. Then Λ is a finite morphism over an open neighborhood
of t in H. It is easy to see that Λ is an immersion over an open neighborhood of
t in H. Thus, we may assume that Λ is a family of immersions. It is enough to
show that T is an open subset. For the normal bundle

N := NΛ = NX×SH/X×H

and for the fiber Xt = Ψ−1(t), we have an isomorphism N|Xt ' NXt/X . Since
this is trivial of rank c := dimX − dimXt and Xt is Fano, Hp(Xt,N|Xt) = 0 for
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any p > 0. Applying the upper semi-continuity theorem and the base change
theorem to Ψ and N , we see that Ψ∗N is a locally free sheaf of rank c and

Ψ∗N ⊗ C(t) ' H0(Xt,N|Xt).

Thus, Ψ∗Ψ∗N → N is isomorphic along Xt. Therefore, Λt′ is an immersion with
trivial normal bundle for any point t′ of an open neighborhood of t in W. Thus,
T is open. ¤

Claim 3.7. T has only finitely many irreducible components.

Proof. We consider the relative ample divisors −KX on X and p∗1(−KX) on X×S
respectively with respect to S, where p1 : X×S → X denotes the first projection.
These two divisors define a relative ample divisor on X × X over S. Note that
−KXt = Λ∗t (−KX) for t ∈ T . By the boundedness of (−KV )dim V for the Fano
manifolds V , for any s ∈ S, the open subset T ∩ q−1(s) ⊂ Hilb(Π−1(s) ×X) is
contained in a union of finitely many projective subvarieties. Thus, the closure
T ⊂ HilbS(X ×X) is proper over S. Hence, the Claim follows. ¤

Proof of Theorem 3.5 continued. By Claim 3.7, there exist finitely many families
of immersions νj = (ϕj , πj) : Uj → X × Tj (j = 1, 2, . . . , m) from projective
manifolds satisfying the following conditions:

• Tj is an irreducible algebraic variety for any j.
• πj : Uj → Tj is a smooth family of Fano manifolds for any j.
• The restriction νj |Ut : Ut → X for Ut := π−1

j (t) is an immersion with
trivial normal bundle for any j and any t ∈ Tj .

• For any M ∈ FIT(X), there exist an étale family ν : V → X × W of
immersions from projective manifolds and a morphism W → Tj for some
j such that M is the closure of the image of W → Chow(X) and such
that ν : V → X ×W is just the pullback of νj by W → Tj .

For a given M ∈ FIT(X), let ν = (ϕ, π) : V → X × W and W → Tj be as
above. We shall show that M is just the closure of the image of the morphism
Tj → Chow(X) associated with the family νj of immersions. If this is proved,
then the finiteness of FIT(X) follows. Let t ∈ Tj be the image of w ∈ W by
W → Tj and let V be the fiber π−1(w) = π−1

j (t). Now, ν : V → X×W is a versal
family of the deformation of the immersion ϕ|V : V → X. Thus, Uj → Tj is
isomorphic to the pullback of the versal family on an analytic open neighborhood
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T ]
j of t in Tj . Hence, the image of T ]

j → Chow(X) is contained in the image of
W → Chow(X). Therefore, the closure of the image of Tj → Chow(X) is M .
Thus, we are done. ¤

4. Divisors univalent with respect to an FIT

We will use the notation of the previous section. Let M be an FIT of X and let
V → X ×W be an étale family of immersions from projective manifolds defining
M . Let Z → M be the normalization. Then W → M ⊂ Chow(X) factors
through Z. There is a family Y of algebraic cycles of X parametrized by Z. For
a point w ∈ W and its image z in Z, Y ∩ (X × {z}) coincides with the cycle
ν∗(Vw). Let Y be the normalization of the irreducible component of Supp(Y)
which dominates Z. Then we have a finite birational morphism V → Y ×ZW. In
particular, V → X×W is determined by the morphism W → Z. Let Y → X×Z

be the induced generically injective morphism. Let µ : Y → X and ρ : Y → Z

be the morphisms induced from the projections. We define Zo ⊂ Z to be the
maximum open subset such that ρ : Yo → Zo is smooth and µ : Yo → X is étale
for Yo := ρ−1(Zo). Then Zo is a non-singular dense Zariski open subset of Z and
Yo → X × Zo is an étale family of immersions.

Definition 4.1. The morphism (µ, ρ) : Y → X×Z above is called the normalized
realization of M . The étale family Yo → X×Zo of immersions is called the smooth
realization of M . A smooth member of M means the immersion µ : ρ−1(z) → X

with trivial normal bundle for a point z ∈ Zo.

Lemma 4.2. Let X be a Fano manifold of Picard number one. Let (µ, ρ) : Y →
X × Z be the normalized realization of an FIT of X. Then deg µ > 1.

Proof. Assume that µ is birational. Then µ : Yo → X is an open immersion. For
a non-zero effective Cartier divisor Θ of Z, we have

µ∗µ∗ρ∗(Θ) = ρ∗(Θ) + E

for an effective divisor E supported on Y \ Yo. The non-zero effective divisor
µ∗(ρ∗(Θ)) is not ample since it does not intersect µ(ρ−1(z)) for a point z ∈ Zo\Θ.
This is a contradiction. Thus, deg µ > 1. ¤

Definition 4.3. Let M be an FIT of X and let (µ, ρ) : Y → X × Z be the
normalized realization of M .
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(i) For a prime divisor H of X, let µ∗(H) = Hh + Hv be the decomposition
into the horizontal part Hh and the vertical part Hv with respect to
ρ : Y → Z. Then, ρ(SuppHv) 6= Z and any irreducible component of Hh

dominates Z.
(ii) A prime divisor H is said to be univalent with respect to M if Hh is

irreducible and µ induces a birational morphism Hh → H.

Lemma 4.4. Let H be a univalent prime divisor with respect to an FIT M . Then,
for a general point x ∈ H, there exists a unique smooth member ν : V → X of M

such that x ∈ ν(V ) and ν(V ) 6⊂ H. Moreover, the image ν(V ) is non-singular at
x.

Proof. Let (µ, ρ) : Y → X × Z be the normalized realization of M . Let D be an
irreducible component of Hv such that D∩Yo 6= ∅. Then D∩Yo = ρ−1(ρ(D)∩Zo)
since ρ is smooth over Zo. Therefore,

µ∗(H)|Yo = Hh|Yo + ρ∗(Θ)

for an effective divisor Θ on Zo. Let x ∈ H ∩ µ(Yo) be a general point. Then
µ−1(x) ∩ Hh = {y} for a unique point y ∈ Yo. If y′ ∈ µ−1(x) \ {y}, then
y′ ∈ ρ−1(Θ), ρ−1(ρ(y′)) ⊂ Hv and µ(ρ−1(ρ(y′))) ⊂ H. Thus, ρ−1(ρ(y)) → X is
the unique smooth member ν : V → X of M with x ∈ ν(V ) and ν(V ) 6⊂ H. Since
ρ−1(y) ∩ µ−1(x) = {y}, x is a non-singular point of ν(V ) = µ(ρ−1(ρ(y))). ¤

Let f : X̃ → X be a generically finite surjective morphism from another pro-
jective manifold X̃. We consider pulling back of FITs of X to X̃. Let M be an
FIT of X and (µ, ρ) : Y → X ×Z the normalized realization of M . Let Ỹ be the
normalization of an irreducible component of the fiber product X̃ ×X Y which
dominates Y and let µ̃ : Ỹ → X̃ and fY : Ỹ → Y be the induced morphisms. As
the Stein factorization of the composition ρ ◦ fY : Ỹ → Y → Z, we have a proper
surjective morphism ρ̃ : Ỹ → Z̃ to a normal projective variety Z̃ with connected
fibers and a finite morphism fZ : Z̃ → Z such that fZ ◦ ρ̃ = ρ ◦ fY .

Lemma 4.5. In this situation, let Z[ ⊂ Zo be the maximum open subset over
which ρ ◦ fY : Ỹ → Z is smooth. Set Y[ = ρ−1(Z[), Z̃[ = f−1

Z (Z[), and
Ỹ[ = f−1

Y (Y[). Then (µ̃, ρ̃) : Ỹ[ → X̃ × Z̃[ is an étale family of immersions from
projective manifolds and the associated morphism Z̃[ → Chow(X̃) is generically
injective. Let M̃ be the FIT of X̃ defined by Ỹ[ → X̃ × Z̃[. If f is a finite
morphism, then (µ̃, ρ̃) : Ỹ → X̃ × Z̃ is the normalized realization of M̃ .
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Proof. The first assertion can be checked easily using base change, which will be
left to the reader. For the second assertion, we have a morphism j : Z̃[ → Z for
the normalization Z of M̃ . It is enough to prove that j extends to an isomorphism
Z̃ → Z provided that f is finite. Since f is finite, considering the push-forward
f∗ of cycles, we have a finite morphism f∗ : Z → Z such that f∗ ◦ j coincides
with the composition of fZ : Z̃[ → Z[ and Z[ ⊂ Z. Thus, j extends to a finite
morphism Z̃ → Z since Z̃ → Z is also a finite morphism. Hence, Z̃ ' Z since it
is a birational morphism of normal projective varieties. Thus, we are done. ¤

Let f : X̃ → X be a generically finite surjective morphism between non-singular
projective varieties. Let X̃ → X → X be the Stein factorization. The branch
locus B of the finite morphism X → X is purely of codimension one. We call B

the branch divisor of f .

Lemma 4.6. Let f : X̃ → X, M , (µ, ρ) : Y → X × Z be the same as before.
For the branch divisor B of f , assume that the horizontal part Bh for B with
respect to ρ : Y → Z, in the sense of Definition 4.3, is not zero. Then there is
an irreducible component of X̃ ×X Y such that, for the normalization Ỹ of the
component and for the induced morphisms fY : Ỹ → Y , fZ : Z̃ → Z as above, the
inequality deg(Ỹ /Y ) > deg(Z̃/Z) holds.

Proof. Assume that deg(Ỹ /Y ) = deg(Z̃/Z) for any Ỹ . Then

Ỹ[ ' Y[ ×Z[
Z̃[,

since everything is smooth over Z[. Thus, fY : Ỹ[ → Y[ is étale over ρ−1(Z ′[) for
a non-empty Zariski open subset Z ′[ ⊂ Z[. Since it holds for any Ỹ , the divisor
µ−1(B) ∩ Y[ does not dominate Z[. This is a contradiction to the assumption:
Bh 6= 0. ¤

Proposition 4.7. Let X be a Fano manifold of Picard number one. For a given
M ∈ FIT(X), there exist at most finitely many univalent prime divisors of X

with respect to M .

Proof. Let (µ, ρ) : Y → X × Z be the normalized realization of M . We apply
Lemmata 4.5 and 4.6 to the generically finite morphism µ = f : Y = X̃ → X.
Let Ỹ → X̃ × Z̃ be the same as in Lemma 4.6. Also let the symbol [ be as in
Lemma 4.5. Let U be the open subset X \ µ(Y \ Y[). Then µ−1(U) ⊂ Y[. It is
enough to show that U ∩ H = ∅ for any univalent divisor H of X with respect
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to M . Assume the contrary. Since µ∗(H) = Hh + Hv and deg µ > 1, there is
an irreducible component D ⊂ Hv such that µ(D) = H and D ∩ Y[ 6= ∅. Then
D ∩ Y[ = ρ−1(Θ ∩ Z[) for the prime divisor Θ = ρ(D) since ρ is smooth over Z[.
There is an irreducible component Γ[ of f∗Y (D∩Y[) such that the closure of µ̃(Γ[)
is Hh for the induced morphism µ̃ : Ỹ → X̃. Then Γ[ → D∩Y[ is a non-birational
generically finite morphism by Lemma 4.6. On the other hand, Γ[ → D ∩ Y[ is
birational, since

Γ[ ⊂ Hh ×X (D ∩ Y[) ⊂ X̃ ×X Y[

and Hh → H is birational. This is a contradiction. Hence, any univalent divisor
with respect to M is an irreducible component of X \U . Thus, we are done. ¤

5. Webs and tangentially special divisors

Let X be a non-singular projective variety.

Definition 5.1. Let M be an FIT and let ν = (µ, ρ) : Yo → X × Zo be the
smooth realization of M . We call M a web if the following two conditions are
satisfied for an open dense subset UM ⊂ X :

(i) For any y ∈ µ−1(UM ) ∩ Yo, µ(y) is a non-singular point of µ(ρ−1(ρ(y)).
(ii) For any point (y1, y2) ∈ (Yo ×X Yo) \ (Y ×Z Y ) with x = µ(y1) = µ(y2) ∈

UM ,

(3) µ∗Ty1(V1) ∩ µ∗Ty2(V2) = 0 in Tx(X),

where Vi = ρ−1(ρ(yi)) for i = 1, 2.

Remark 5.2. The condition (i) of Definition 5.1 is equivalent to that the projection
ν(Yo) ∩ (UM × Zo) → Zo is smooth for the image ν(Yo). The condition (ii) of
Definition 5.1 is equivalent to that the composition

(4) TYo×Yo/Zo×Zo
|Yo×XYo → TYo×Yo |Yo×XYo → NYo×XYo/Yo×Yo

of natural homomorphisms is injective and has maximal rank at any point
(y1, y2) ∈ (Yo ×X Yo) \ (Y ×Z Y ) with x = µ(y1) = µ(y2) ∈ UM . Indeed, the
fiber of the homomorphism (4) at (y1, y2) ∈ (Yo ×X Yo) \ (Y ×Z Y ) is expressed
as

Ty1(V1)⊕ Ty2(V2) 3 (v1, v2) 7→ µ∗(v1)− µ∗(v2) ∈ Tx(X),

where x = µ(y1) = µ(y2) ∈ X and Vi = ρ−1(ρ(yi)) for i = 1, 2. This is because
µ∗ : Tyi(Y ) → Tx(X) is an isomorphism for i = 1, 2 and the tangent space
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T(x,x)(∆X) of the diagonal locus ∆X ⊂ X ×X at (x, x) is just the diagonal locus
of Tx(X)⊕ Tx(X) = T(x,x)(X ×X).

Definition 5.3. Let M be a web and let (µ, ρ) : Y → X × Z be the normalized
realization of M . A prime divisor H of X is called tangentially special if Hh 6=
∅ (cf. Definition 4.3) and there is a coherent subsheaf L of TX |H of rank one
satisfying the following conditions:

(i) L ∩ TH = 0 for the subsheaf TH ⊂ TX |H .
(ii) µ∗HL ∩ (TYo/Zo

|Hh
o
) is of rank one on Hh

o := Hh ∩ Yo for the restriction
µH : Hh

o → H of µ and for the subsheaf

TYo/Zo
|Hh

o
⊂ TYo |Hh

o
' µ∗(TX)|Hh

o
' µ∗H(TX |H).

Remark. In the situation of Definition 5.3, the injection L ⊕ TH ⊂ TX |H is an
isomorphism over an open dense subset of H. Thus, L ⊗ C(x) = Lx ⊗OH,x

C(x)
is a one-dimensional subspace of Tx(X) for general x ∈ X.

Lemma 5.4. For a web M and for the open subset UM in Definition 5.1, if H

is a tangentially special prime divisor with respect to M with UM ∩H 6= ∅, then
H is univalent with respect to M .

Proof. Let H be a tangentially special prime divisor with respect to M . Let L
be the subsheaf of TX |H as in Definition 5.3. For a smooth point x ∈ H ∩ UM ,
assume that the image of L ⊗ C(x) is a one-dimensional subspace of Tx(X) and
that x = µ(y1) = µ(y2) for two points y1, y2 ∈ Hh

o . For i = 1, 2, let vi be a
non-zero element of(

µ∗HL ∩ (TYo/Zo
|Hh

o
)
)
⊗ C(yi) ⊂ TYo/Zo

⊗ C(yi) = Tyi(Vi),

where Vi := ρ−1(ρ(yi)). Then the images µ∗(v1) and µ∗(v2) in Tx(X) are non-zero
elements contained in L⊗C(x). Therefore, the equality (3) is not satisfied. Hence,
ρ(y1) = ρ(y2). Thus, µ(V1) = µ(V2) is singular at x. This is a contradiction to
the condition (i) of Definition 5.1. Therefore, Hh → H is birational. ¤

Corollary 5.5. If X is a Fano manifold of Picard number one, then, for a given
web, there exist at most finitely many tangentially special prime divisors.

Proof. A tangentially special divisor is an irreducible component of X \ UM or
univalent with respect to M by Lemma 5.4. Thus, the assertion follows from
Proposition 4.7. ¤
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Lemma 5.6. Let M be a web of X. Let f : X̃ → X be a finite surjective mor-
phism from another non-singular projective variety X̃. Let M̃ be an FIT of X̃

arising from M and f as in Lemma 4.5. Then M̃ is a web.

Proof. Let UM̃ be the open subset f−1(UM \ B) for the branch divisor B of
f . Then the condition (i) of Definition 5.1 is satisfied for M̃ and UM̃ , since
f−1(X \B) → X \B is étale. Let (µ̃, ρ̃) : Ỹo → X̃ × Z̃o be the smooth realization
of M̃ . For (ỹ1, ỹ2) ∈ (Ỹo ×X̃ Ỹo) \ (Ỹ ×Z̃ Ỹ ) with x̃ = µ̃(ỹ1) = µ̃(ỹ2) ∈ UM̃ , if
we set y1 = fY (ỹ1) and y2 = fY (ỹ2), then (y1, y2) ∈ (Yo ×X Yo) \ (Y ×Z Y ) with
x = f(x̃) = µ(y1) = µ(y2) ∈ UM . Since f is unramified at x̃, (3) implies that

µ̃∗Tỹ1(Ṽ1) ∩ µ̃∗Tỹ2(Ṽ2) = 0 in Tx̃(X̃)

where Ṽi = ρ̃−1(ρ̃(ỹi)) for i = 1, 2. Thus, the condition (ii) of Definition 5.1 is
also satisfied for M̃ . ¤

Lemma 5.7. In the situation of Lemma 5.6, let H̃ be a prime divisor of X̃

such that Hh 6= 0 for H := f(H̃). Either if f is ramified along H̃ or if f(H̃) is
tangentially special with respect to M , then H̃ is tangentially special with respect
to any web M̃ obtained as in Lemma 5.6.

Proof. The horizontal part H̃h with respect to ρ̃ is not zero for the normalized
realization (µ̃, ρ̃) : Ỹ → X̃ × Z̃ of M̃ .

Assume that f is ramified along H̃. The kernel L̃ of

TX̃ |H̃ → f∗TX |H̃
is of rank one and L̃ ∩ TH̃ = 0. Let H̃h

[ be the open subset H̃h ∩ Ỹ[. Then

Ker(TỸ /Z̃ |H̃h → f∗Y TY/Z |H̃h)|H̃h
[

= Ker(TỸ |H̃h → f∗Y TY |H̃h)|H̃h
[
' µ̃∗

H̃
L̃

for the morphism µ̃H̃ : H̃h
[ → H̃ induced from µ̃, since fZ : Z̃[ → Z[ and µ̃ : Ỹ[ →

Ỹ are étale. Thus, H̃ is tangentially special with respect to M̃ .

Next assume that H is tangentially special with respect to M and that f is
not ramified along H̃. Let Ũ ⊂ X̃ be an open subset such that f : Ũ → X is
étale and Ũ ∩ H̃ 6= ∅. Let L be the subsheaf of TX |H in Definition 5.3. For the
induced morphism fH : H̃ → H, we set

L̃ := f∗HL ∩ TX̃ |H̃ ⊂ f∗TX |H̃ = f∗H(TX |H).
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Then L̃ ∩ TH̃ = 0 and L̃ is of rank one, since TX̃ → f∗TX is isomorphic over Ũ .
Since Ỹ[ → Y[ is étale along µ̃−1(Ũ), the condition (ii) of Definition 5.3 also holds
for L̃ and Ỹ → X̃ × Z̃. Thus, we are done. ¤

Theorem 5.8. Let X be a Fano manifold of Picard number one admitting a web.
Then any surjective endomorphism X → X is bijective.

Proof. For a web M of X, let EM be the union of tangentially special prime
divisors with respect to M . Then EM is a divisor by Corollary 5.5. The set of
webs of X is a finite set by Proposition 4.7. Thus, the union E of EM for all the
webs M of X is also a divisor. Suppose that there is a surjective endomorphism
f : X → X of degree > 1. Then any irreducible component of the ramification
divisor of f is contained in E and f−1(E) ⊂ E by Lemma 5.7. Thus, f−1(E) = E

and f : X \ E → X \ E is étale. Then X is a projective space by Theorem 1.2.
This contradicts that X has a web. ¤

6. Proofs of Theorems 1.3 and 1.4

Let X be a Fano manifold of Picard number one. An irreducible component
K of the space RatCurves(X) of rational curves (in the sense of [Kr]) on X is
called a minimal component if for a general point x ∈ X, the subscheme Kx of
K consisting of members passing through x is non-empty and complete. In this
case, the subvariety Cx of the projectivized tangent space PTx(X) consisting of
the tangent directions at x of members of Kx is called the variety of minimal
rational tangents at x (see [HM04] for more details). We say that the variety of
minimal rational tangents of X is linear if Cx is a union of linear subspaces of
PTx(X) for a general x ∈ X. This includes the case when Cx is a finite set. Then
we have the following results from [Hw, Propositions 2.1 and 2.2].

Proposition 6.1. Let X be a Fano manifold of Picard number one different
from the projective space. Suppose that the variety of minimimal tangents of X

is linear of dimension p ≥ 0. Then X has a web M such that the projection
ρ : Yo → Zo is a Pp+1-bundle for the smooth realization (µ, ρ) : Yo → X × Zo of
M .

Proof of Theorem 1.3. Under the assumption of Theorem 1.3, X is a Fano man-
ifold of Picard number one different from the projective space and the vari-
ety of minimal rational tangents of X is linear of dimension p ≥ 0 for some
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p < dimX − 1. By Proposition 6.1, X has a web. Applying Theorem 5.8, any
surjective endomorphism X → X is bijective, which is the assertion of Theo-
rem 1.3. ¤

We recall the following result from [HM04, p. 62, Corollary 2].

Proposition 6.2. Let f : X ′ → X be a surjective generically finite morphism
from a projective manifold X ′ to a Fano manifold X of Picard number one.
Assume that the variety of minimal rational tangents of X is not linear. Then any
holomorphic vector field on X ′ descends to a holomorphic vector field on X such
that f is equivariant with respect to the 1-parameter groups of automorphisms of
X ′ and X generated by the holomorphic vector fields.

Combining Theorem 1.3 and Proposition 6.2, we have the following.

Proposition 6.3. Let X be a Fano manifold of Picard number one different from
the projective space. Let f : X → X be a surjective endomorphism. Then f is
equivariant with respect to Auto(X), in the sense that it induces a homomorphism
Φ: Auto(X) → Auto(X) such that f(σx) = Φ(σ)f(x) for σ ∈ Auto(X) and
x ∈ X.

Proof. If the variety of minimal rational tangents of X is linear, f is biregular by
Theorem 1.3. Otherwise, we apply Proposition 6.2 to get the equivariance. ¤

A projective manifold X is quasi-homogeneous if Auto(X) has an open orbit
Xo ⊂ X. The complement E of Xo is called the boundary of X. The boundary
E ⊂ X is a proper subvariety of X which is preserved by Auto(X). Proposi-
tion 6.3 implies the following.

Corollary 6.4. Let X be a quasi-homogeneous Fano manifold of Picard number
one with the boundary E ⊂ X. Then any surjective endomorphism f : X → X

satisfies f−1(E) = E and f |X\E is étale.

Proof of Theorem 1.4. Assume that X is a quasi-homogeneous Fano manifold
of Picard number one different from the projective space. Theorem 1.4 claims
that any surjective endomorphism f : X → X is bijective. To prove this, we
use Corollary 6.4 to conclude that f must be étale on the complement of the
boundary E. Thus if E has codimension ≥ 2 in X, then f is étale and must
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be bijective because a Fano manifold is simply connected. If E has components
of codimension 1, then by Corollary 6.4 and the purity of branch locus, those
components form a divisor D ⊂ X with f−1(D) = D such that f is étale outside
D. Thus f is étale outside a completely invariant divisor. By Theorem 1.2, we
conclude that f is bijective. ¤

Let us finish with a final remark. As noted in [HM04, p. 62], the variety of min-
imal rational tangents is not linear for homogeneous spaces of Picard number one,
excepting the projective space. However, it is linear for some quasi-homogeneous
Fano manifolds of Picard number one (e.g. [HM03, Corollary 2]). So it is essential
to use Theorem 1.3 for the proof of Theorem 1.4.
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