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Abstract: For a projective K3 surface X we introduce the dense triangulated
subcategory S∗ of the bounded derived category Db(X) of coherent sheaves
on X that is generated by spherical objects. For a K3 surface X over Q̄
it is shown that S∗ admits a bounded t-structure if and only if the Bloch–
Beilinson conjecture holds for X, i.e. CH2(X) = Z.
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For a projective K3 surface X over an algebraically closed field k let Db(X)
denote the bounded derived category of coherent sheaves. Spherical objects, e.g.
line bundles and rigid stable bundles, play a central role in the study of Db(X)
and, as it turns out, also of CH∗(X). Our aim here is to make this more precise
by studying the k-linear triangulated subcategory S∗ ⊂ Db(X) generated by
all spherical objects (see below for definitions). The main result concerns K3
surfaces over number fields and is a consequence of Thomason’s classification of
dense subcategories. It can be stated as follows.

Theorem 0.1. Let X be a K3 surface over Q̄ with Picard number ρ(X) ≥ 2.
Then the following conditions are equivalent:
i) CH2(X) ' Z.
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ii) Db(X) = S∗, i.e. Db(X) is generated by spherical objects.
iii) The triangulated category S∗ admits a bounded t-structure.

Note that i) is predicted by the Bloch–Beilinson conjecture applied to K3 sur-
faces. The implication ii) ⇒ iii) is obvious and ii) ⇒ i) follows from [10]. This
note is concerned with the curious observation that i) and ii) are in fact equivalent
(and that both are implied by iii)).

In [10, 11] and elsewhere we have alluded to ii) as a ‘categorial logical possi-
bility’, in analogy to Bogomolov’s ‘logical possibility’ that every Q̄-rational point
on a K3 surface might be contained in a rational curve (see [4]). Whether either
of the two is a way towards a proof of the Bloch–Beilinson conjecture for K3
surfaces seemed doubtful, but due to Theorem 0.1 one now knows at least that
our categorial one is strictly equivalent to it.

Theorem 0.1 is valid for any algebraically closed field k of characteristic zero,
but for k = C a result of Mumford shows that none of the conditions, i)-iii) holds.
In fact as soon as we pass from Q̄ to a field k with trdeg(k) > 0, i)-iii) cannot
hold any longer. This is due to [3] (for trdeg(k) > 1) and [8].

For a discussion of spherical objects, Chow groups and derived categories we
refer to [11]. The notion of spherical objects and the precise definition of S∗ can
be found in Section 1. The equivalence of ii) and iii) is proved in Section 2. The
case k = Q̄ is discussed in Section 3.

1. The spherical category S∗

Let X be a K3 surface over a field k. Then the category Coh(X) will be con-
sidered as a k-linear abelian category and its bounded derived category Db(X) :=
Db(Coh(X)) as a k-linear triangulated category.

Recall that an object A ∈ Db(X) is called spherical if there exists a k-linear iso-
morphism Ext∗(A,A) ' H∗(S2, k). In other words Exti(A,A) is one-dimensional
for i = 0, 2 and zero otherwise. We denote the collection of all spherical objects
by

S ⊂ Db(X).

We can view S simply as a set or as a full subcategory of Db(X). Note that S
is invariant under shift, but it is not a triangulated subcategory of Db(X) and, in
fact, not even an additive one. Indeed, the direct sum A1 ⊕ A2 of two spherical
objects A1, A2 ∈ S is clearly not spherical. Instead we consider the category S∗
generated by S.
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To avoid confusion we shall spell out the definition of S∗. It is the full subcat-
egory of Db(X) with objects

⋃Sn, where Sn is defined recursively by S1 := S
and Sn+1 := Sn ∗S. Here for two subcategories A1,A2 ⊂ Db(X) one lets A1 ∗A2

be the full subcategory of all objects A ∈ Db(X) such that there exist objects
Ai ∈ Ai, i = 1, 2, and an exact triangle A1

// A // A2. For completeness sake
we give a proof of the rather obvious

Lemma 1.1. S∗ ⊂ Db(X) is a full triangulated subcategory.

Proof. It is enough to show that for objects A ∈ Sm, B ∈ Sn and an exact triangle
A // C // B one has C ∈ Sm+n. This can be proved by induction on n. If n = 1,
i.e. B ∈ S, then C ∈ Sm+1 by definition. Otherwise, there exists an exact triangle
B1

// B // B2 with B1 ∈ Sm−1 and B2 ∈ S. Then consider the diagram

A // C1

²²

// B1

²²
A // C //

²²

B

²²
B2 B2

with exact triangles A // C1
// B1 and C1

// C // B2. From the first one and
the induction hypothesis one deduces C1 ∈ Sm+n−1. The second one and the
definition of Sm+n then yield the assertion. ¤

Remark 1.2. Note that S and S∗ are strictly full, i.e. any object in Db(X)
isomorphic to an object in S or S∗ is contained in S resp. S∗.

The category S∗ can equivalently be described as the smallest strictly full
triangulated subcategory of Db(X) that contains S. But note that we do not
require S∗ to be closed under taking direct summands, i.e. if E1, E2 ∈ Db(X)
with E1 ⊕ E2 ∈ S∗, then E1, E2 need not necessarily be objects in S∗.

There are various notions of generators of a triangulated category. E.g. one
also says that a collection of objects {Ei} generates Db(X) if Extn(Ei, E) = 0 for
all i, n implies E ' 0. E.g. for an ample line bundle O(1) on X the set {O(i)}
generates Db(X) in this sense (cf. Lemma 1.3) and hence also S∗. But the notion
used here is different.

It is easy to see that S∗ is dense in Db(X), i.e. that for every object E ∈ Db(X)
there exists an object F ∈ Db(X) with E ⊕ F ∈ S∗. This is equivalent to
Db(X) being the smallest strictly full thick triangulated subcategory of Db(X)
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that contains S. The argument to prove that S∗ is dense can be split in two
steps and is well-known (see e.g. the more general [17, Lem. 3.12]). Again for
completeness sake we include the details.

Lemma 1.3. Let X be a smooth projective variety of dimension d with an ample
line bundle O(1). Then for any E ∈ Coh(X) there exists F ∈ Coh(X) and a
complex

K• = [O(−nd)⊕md // . . . //O(−n0)⊕m0 ]

such that
E ⊕ F [d] ' K•.

Proof. Choose a resolution of E of the form

. . . //O(−n1)⊕m1 //O(−n0)⊕m0 // E // 0

and let F be the kernel of O(−nd)⊕md //O(−nd−1)⊕md−1 . The extension class
of the exact triangle F [d] // K• // E is an element in Hom(E, F [d + 1]) =
Extd+1(E, F ) = 0. Thus, K• ' E ⊕ F [d]. ¤

Lemma 1.4. Let D := Db(C) be the bounded derived category of an abelian cate-
gory C. A strictly full triangulated subcategory D0 ⊂ D is dense if and only if for
all E ∈ C there exists an object F ∈ D with E ⊕ F ∈ D0.

Proof. The ‘only if’ is clear. Let us prove the ‘if’. For any E ∈ D we have to
find a complex F ∈ D such that E ⊕ F ∈ D0 which we will do by induction on
the length `(E) of the complex E. Choose an exact triangle E1

// E // E2 with
E2 ∈ C[n] for some n and such that `(E1) < `(E). By induction hypothesis there
exist F1, F2 ∈ D such that Ei ⊕ Fi ∈ D0, i = 1, 2. Taking the direct sum of the
exact triangles E1

// E // E2, F1 = F1
// 0, and 0 // F2 = F2 yields an exact

triangle of the form E1⊕F1
// E ⊕F1⊕F2

// E2⊕F2. Since Ei⊕Fi ∈ D0 and
D0 is closed under extensions, this proves E ⊕ F1 ⊕ F2 ∈ D0. ¤

Corollary 1.5. S∗ ⊂ Db(X) is a dense strictly full triangulated subcategory.

Proof. This follows directly from the above using the fact that all line bundles,
and in particular the line bundles O(−ni), are spherical. Thus, the complex K•

occurring in Lemma 1.3 is an object in S∗. ¤

Next, let us recall Thomason’s classification of dense subcategories. Here
and in the sequel K(D) of a triangulated or an abelian category D will be the
Grothendieck group of D. If D = Db(C) with C abelian, then K(D) ' K(C).
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Theorem 1.6. (Thomason, [17]) Let D be an essentially small triangulated
category. Then there exists a natural bijection

{strictly full dense triangulated subcategories} ↔ {subgroups H ⊂ K(D)}.

The bijection is given by mapping a triangulated subcategory D0 ⊂ D to the
image of the natural map K(D0) // K(D). The inverse map sends a subgroup
H ⊂ K(D) to the strictly full dense triangulated subcategory DH ⊂ D of all
objects E ∈ D with [E] ∈ H.

Moreover, for a dense triangulated subcategory D0 ⊂ D the natural map
K(D0) // K(D) is in fact injective, which was proved by Thomason as a con-
sequence of the above theorem (cf. [17, Cor. 2.3]). Applied to our situation one
finds that the natural K(S∗) // K(X) ' K(Db(X)) identifies K(S∗) with a sub-
group of K(X). Furthermore, the theorem yields the following characterization
of S∗.
Corollary 1.7. The subcategory S∗ ⊂ Db(X) is the strictly full dense subcategory
of all objects E ∈ Db(X) with [E] ∈ K(S∗) ⊂ K(X). ¤

In particular, for arbitrary E ∈ Db(X) the object E ⊕ E[1] is contained in S∗
which does not seem obvious to prove directly.

Let us recall the following result from [10].

Theorem 1.8. If k is algebraically closed of characteristic zero and ρ(X) ≥ 2,
then K(S∗) = R(X).

Here, R(X) is the Beauville–Voisin ring generated by the Chern characters
ch(L) of all line bundles L ∈ Pic(X) and the distinguished class cX ∈ CH2(X)
satisfying 24cX = c2(X).∗ Alternatively, R(X) is spanned by the Mukai vectors
v(L) ∈ CH∗(X) of line bundles and the theorem says that the Mukai vector v(E)
of all spherical objects E are also contained in R(X). As was shown in [2], the
cycle map induces an isomorphism R(X) ' Z⊕NS(X)⊕ Z.

Thus under the assumption of the theorem Corollary 1.7 says that

S∗ = DR(X).

Of course the inclusion S∗ ⊂ DR(X) follows immediately from Theorem 1.8, but
for the equality Thomason’s result is used.

∗Note that here and in the sequel we implicitly identify the Chow ring CH∗(X) with the
Grothendieck group K(X), i.e. CH∗(X) = K(X), tensoring with Q is not needed for K3 surfaces.
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2. Db(X) versus S∗

Here we shall discuss some of the similarities between S∗ and Db(X) and some
of their differences. As we will explain in Section 3, one expects S∗ = Db(X) for
k = Q̄ but for k = C the two categories are very different. But, nevertheless, even
for k = C dealing with Db(X) or S∗ seems equivalent for many purposes.

The main difference between Db(X) and S∗ is that Db(X), as the bounded
derived category of an abelian category, is Karoubian. This is not obvious and
in general not true for S∗. Recall that a triangulated category D is Karoubian if
it is idempotent-split, i.e. every morphism f : E // E with f2 = f comes from a
direct sum decomposition E = ker(f)⊕ Im(f). Thus, since S∗ ⊂ Db(X) is dense,
the triangulated category S∗ is Karoubian if and only if S∗ = Db(X). In general,
Db(X) can be seen as the Karoubian (or idempotent) closure of S∗, i.e. Db(X)
is equivalent to the category of all pairs (E, f) with E ∈ S∗ and an idempotent
f ∈ End(E) (see e.g. [1]).

2.1. Let us first study autoequivalences of Db(X) and of S∗. Consider two projec-
tive K3 surfaces X and Y over an algebraically closed field k. Let S∗X ⊂ Db(X)
and S∗Y ⊂ Db(Y ) be the corresponding subcategories generated by the collec-
tions SX resp. SY of spherical objects. Let now Φ : Db(X) ∼ // Db(Y ) be a linear
exact equivalence. Since the notion of a spherical object is purely categorial,
Φ induces a linear equivalence ΦS : SX

∼ // SY and an exact linear equivalence

ΦS∗ : S∗X
∼ // S∗Y . In particular, this yields a natural homomorphism

Aut(Db(X)) // Aut(S∗X),

where Aut(D) for a linear triangulated category D denotes the group of isomor-
phism classes of all exact linear autoequivalences.

Proposition 2.1. Any exact linear equivalence Ψ : S∗X
∼ // S∗Y is isomorphic to

ΦS∗ for some uniquely determined Φ : Db(X) ∼ // Db(Y ) (up to isomorphism).

Proof. Any (exact) equivalence between two categories extends naturally to an
(exact) equivalence of their Karoubian closures (see [1]). Since the Karoubian
closure of S∗X is Db(X) and similarly for Y , any given exact equivalence Ψ :

S∗X
∼ // S∗Y extends naturally to an exact equivalence Db(X) ∼ // Db(Y ). By the

same argument or by a result of Bondal and Orlov (see e.g. [9, Ch. 4.3]) an
equivalence Φ : Db(X) ∼ // Db(Y ) is uniquely determined by its restriction to
S∗X . ¤
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This yields in particular the following

Corollary 2.2. For K3 surfaces X and Y over an algebraically closed field k one
has:
i) Derived equivalence is determined by the category of spherical objects. More
precisely,

Db(X) ' Db(Y ) if and only if S∗X ' S∗Y .

ii) Restricting an autoequivalence of Db(X) to S∗X yields an isomorphism

Aut(Db(X)) ∼ // Aut(S∗X).

Remark 2.3. Can one replace S∗X by SX?

i) If SX is viewed as a linear category then the same result of Bondal and Orlov
shows that Aut(Db(X)) // Aut(SX) is injective.

ii) If SX is viewed as a simple set, then one can show that elements in the
kernel of Aut(Db(X)) // Aut(SX) are of the form f∗ for some automorphism f

of X (see [12]). In fact, it is expected that the kernel coincides with the finite
group of all automorphisms of X that act trivially on NS(X).

iii) The surjectivity of Aut(Db(X)) // Aut(SX) for SX as a set (or as a quan-
dle) seems doubtful, as the k-linear structure should enter somehow. In this
context it would be interesting to understand the action of Gal(k/k0) on SX ,
where k0 ⊂ k is the field of definition of X.

For SX as a linear category the surjectivity seems more likely and would depend
on whether SX determines the structure of S∗X , both viewed as abstract categories
(and not as subcategories of Db(X)).

2.2. Let us now turn to stability conditions. Here the category S∗ seems most
unsuitable, as it can be non-Karoubian (e.g. for k = C). For this first recall the
following basic fact, see [14].

Proposition 2.4. If a triangulated category D admits a bounded t-structure, then
it is Karoubian.

Recall that a t-structure on D consists of a full subcategory D≤0 ⊂ D such
that D≤0[1] ⊂ D≤0 and for any object A ∈ D there exists a distinguished
triangle A0

// A // A1 with A0 ∈ D≤0 and A1 ∈ D≥1 := (D≤0)⊥ := {A ∈
D | Hom(B,A) = 0 ∀B ∈ D≤0}. The t-structure is bounded if for every object
A ∈ D there exist n,m such that A ∈ D≤0[n] ∩ D≥1[m].



1402 Daniel Huybrechts

The next result is in contrast to the case Db(X) for a K3 surface X over Q̄ on
which stability conditions can be constructed copying the arguments in [6].

Corollary 2.5. If the inclusion S∗ ⊂ Db(X) is not an equality, then S∗ does not
admit a bounded t-structure and, hence, no stability condition.

Proof. Recall that a stability condition, e.g. in the sense of [5], is given by a
bounded t-structure together with a stability function with the HN-property on
its heart. But if S∗ 6= Db(X), then S∗ is not Karoubian and by Proposition 2.4
does not admit a bounded t-structure. ¤

Clearly, the corollary proves that in Theorem 0.1 iii) implies ii). The converse
of it is obvious.

Remark 2.6. Triangulated K3 categories have been studied in other situations
and most successfully in the case of local K3 categories (see e.g. [7, 13, 16]).
More precisely consider the minimal resolution π : X // Spec(k[x, y]G) of an
ADE singularity (G ⊂ Sl(2) a finite group). The usual derived category Db(X),
which can also be seen as the bounded derived category of the abelian category
CohG(Spec(k[x, y])) of G-equivariant coherent sheaves on the plane, contains two
natural triangulated subcategories D ⊂ D̂ ⊂ Db(X). The objects in D̂ are com-
plexes with cohomology supported on the exceptional divisor E ⊂ X and objects
E ∈ D satisfy in addition Rπ∗E = 0.

The category D̂ contains spherical objects A0, . . . , An that correspond to the
vertices of the extended Dynkin graph of G or, equivalently, to the irreducible
representations of G. If one lets A0 be the one corresponding to the trivial repre-
sentation, then A1, . . . , An ∈ D.

It is known that the Grothendieck group of D̂ (resp. D) is freely generated by
the classes [Ai]. In particular, in both cases the collection of spherical objects
Ŝ ⊂ D̂ (resp. S ⊂ D) and its associated category Ŝ∗ (resp. S∗) spans the full
Grothendieck group. Thus, by Corollary 2.5 Ŝ∗ = D̂ (resp. S∗ = D), i.e. both
categories are generated by spherical objects (not allowing taking direct sum-
mands). Presumably, this can be also proved more directly, but it is instructive
to see how everything falls into place in this geometrically easier case.

Similar arguments would apply to another local K3 category, the derived cate-
gory of complexes on the total space of O(−2) which are concentrated in the zero
section.
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In [12] we show that stability conditions on Db(X) are determined by their
behaviour with respect to spherical objects, so morally by their ‘restriction’ to
S∗. In order to make this precise we introduce a modified notion of stability
conditions that is applicable to S∗.

3. Special base fields

Due to a result of Mumford [15] one knows that for k = C the Chow group
CH2(X) is infinite dimensional. In particular, the degree map CH2(X) //Z is
far from being injective and the Beauville–Voisin subring R(X) ⊂ CH∗(X) is of
infinite corank.

However, for k = Q̄ the situation should be drastically different. According to
the general Bloch–Beilinson conjectures (see e.g. [3]) one expects that in this case
CH∗(X) = R(X) (see [10]).

Inspired by Bogomolov’s ‘logical possibility’ that every closed point of a K3
surface defined over Q̄ may be contained in a rational curve (see [4]), I have put
forward (implicitly in [10, 11] and explicitly in related talks) the ‘categorial logical
possibility’ that for k = Q̄ the derived category Db(X) might be generated by
spherical objects. With our notation here, this would mean Db(X) = S∗.

Bogomolov’s logical possibility as well as Db(X) = S∗ would clearly imply the
Bloch–Beilinson conjecture CH2(X) ' Z. To be precise, Db(X) = S∗ would
imply R(X) = CH∗(X) which only under the assumption ρ(X) ≥ 2 is known to
yield CH2(X) ' Z. To deduce the Bloch–Beilinson conjecture from Bogomolov’s
logical possibility one needs to use that for a point x ∈ X contained in a rational
curve one has [x] = cX which was proved in [2].

The main purpose of this note is to show that the logical possibility Db(X) = S∗
not only implies the Bloch–Beilinson conjecture for K3 surfaces but that it is in
fact equivalent to it. Note that there is no obvious relation between Bogomolov’s
geometric logical possibility and the categorial one. Also, it is unclear whether
Bogomolov’s is actually equivalent to the Bloch–Beilinson conjecture.

Theorem 3.1. Let X be a projective K3 surface defined over Q̄ with ρ(X) ≥ 2.
Then the Bloch–Beilinson conjecture for X, i.e. CH2(X) ' Z, holds if and only
if Db(X) is generated by spherical objects, i.e. Db(X) = S∗.
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Proof. If Db(X) = S∗, then CH∗(X) = K(X) = K(Db(X)) = K(S∗). By [10]
one has K(S∗) = R(X) for ρ(X) ≥ 2 and by [2] the cycle map is an isomorphism
R(X) ∼ //Z⊕NS(X)⊕ Z. Thus, CH2(X) ' Z.

The ‘only if’ is more surprising. So suppose conversely that CH2(X) ' Z. Then
R(X) = CH∗(X). In other words, for any E ∈ Db(X) one has [E] ∈ R(X) =
K(S∗) and hence E ∈ DR(X) = S∗ by Corollary 1.7. Thus Db(X) = S∗. ¤

Remark 3.2. i) For ρ(X) = 1 the argument still shows that CH2(X) ' Z implies
Db(X) = S∗, but conversely Db(X) = S∗ only yields CH∗(X) = K(S∗) which we
do not yet control completely for ρ(X) = 1.

ii) Note that for X defined over an algebraically closed extension Q̄ ⊂ k of
positive transcendence degree CH2(X) 6= Z and hence Db(X) is not generated by
spherical objects, i.e. Db(X) 6= S∗ (use [3, 8]).

I am not aware of any technique that possibly could prove Db(X) = S∗ for
X over Q̄. However, as a consequence of Corollary 2.5 we can at least say the
following.

Corollary 3.3. Let X be a projective K3 surface over Q̄ with ρ(X) ≥ 2. Then
CH2(X) ' Z (Bloch–Beilinson) if and only if there exists a bounded t-structure
on S∗. ¤
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