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1. Introduction

The geometry of the moduli space Ag of principally polarized abelian varieties
(ppav) of dimension g has been studied extensively since the works of Riemann
and Jacobi. Still, the structure of the cohomology and Chow rings of Ag and its
various compactifications remains to a large extent unknown. Much of the recent
progress in this direction (and similarly for the moduli of curves Mg) originated
from the idea of studying the tautological subrings of Chow and cohomology. In
particular, the tautological ring of Ag is the ring generated by the Chern classes
of the Hodge vector bundle, and Mumford [Mum83b] was perhaps the first to
discuss the relations in the tautological ring. Later van der Geer in [vdG99] and
Esnault and Viehweg in [EV02] described the tautological ring of Ag, and of
a suitable toroidal compactification (in the cohomology and in the Chow ring,
respectively), by proving that the fundamental rela! tion gives all the relations.
This fundamental relation is at the heart of many calculations in the Chow ring,
and we dedicate this paper to the memory of Eckart Viehweg.

While the tautological ring has been described, it is not clear what the non-
tautological classes in Chow and cohomology are. Moreover, for naturally defined
geometric subvarieties of Ag it is not clear if their classes are tautological. Study-
ing geometrically defined subvarieties of Ag could thus shed some further light
on the geometry of the space, and this is the subject we pursue here.

Some of the first examples of such subvarieties are the Andreotti-Mayer loci
Nk. These are the loci of ppav whose theta divisor is singular in dimension at
least k :

Nk,g := Nk := {(X, ΘX)|dimSing(ΘX) ≥ k}.

These loci were defined in [AM67] as a tool for approaching the Schottky problem
— the question of characterizing Jacobians of curves among all ppav. To this
end Andreotti and Mayer proved that the locus of Jacobians is an irreducible
component of Ng−4, and the locus of hyperelliptic Jacobians — of Ng−3.

Beauville [Bea77] showed that N0 is a divisor, Debarre [Deb92] showed that
for g ≥ 4 the divisor N0 has two irreducible components (one of them the theta-
null divisor), and Mumford [Mum83a] showed that the codimension of N1 is at
least 2. In another direction, Ein and Lazarsfeld [EL97] proved the conjecture
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of Arbarello and De Concini [ADC87] stating that Ng−2 is equal to the locus of
decomposable ppav (those that are products of lower-dimensional ppav).

In general not much is known about the number of components of the Andreotti-
Mayer loci, their dimension, or their class in the Chow ring. The study of
these loci was recently advanced by Ciliberto and van der Geer, who showed
in [CvdG00] that for 1 ≤ k ≤ g− 3 the codimension of (any component of) Nk is
at least k + 2 (and if k > g/3, at least k + 3). However, this does not seem to be
the best bound possible, and they conjecture in [CvdG00] that any component
of Nk whose general point corresponds to an abelian variety with endomorphism
ring Z has codimension at least

(
k+2
2

)
. They moreover conjecture that equality

only occurs for g = k + 3 and the hyperelliptic locus, respectively g = k + 4 and
the Jacobi locus. This conjecture remains wide open for k > 1, and only the case
of k = 1 was fully settled by Ciliberto and van der Geer in [CvdG08]. This means
that Ciliberto and van der Geer prove that the codimension of N1 is at least 3,
this being the first improvement in this direction since the work of Mumford.

The method of their proof is by considering the closure of the locus N1 in a
suitable toroidal compactification of Ag, and studying all degenerations of torus
rank up to 2 (we shall discuss this notion in detail below in section 3).

It appears that our methods and results on semiabelic varieties of torus rank up
to 3 should allow for an extension of their method deeper into the boundary, and
in particular would allow one to handle any subvariety of Ag of codimension at
most 5, by studying its intersection with the boundary of a toroidal compactifica-
tion. In particular, we believe our results, together with a suitable interpretation
of the results of [CvdG08], should give an approach to the Andreotti-Mayer locus
N2. While the conjecture of Ciliberto and van der Geer is that the codimension
of N2 is at least 6, our results on semiabelic theta divisors should suffice (once
the appropriate generalization of [CvdG08, Prop. 12.1] for other degenerations is
obtained — we will remark on this below) to prove the following weaker state-
ment, which would still be an improvement of the known bound of 4 for the
codimension:

Conjecture 1.1. The codimension in Ag of any component of the locus N2

consisting of simple abelian varieties is at least 5.
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Another interesting subvariety of Ag is the locus I(g) parameterizing princi-
pally polarized abelian varieties whose theta divisor has a singularity at an odd
2-torsion point. Casalaina-Martin and Friedman [CMF05, CM08] showed that
I(5) is equal, within the locus of indecomposable ppav, to the locus of intermedi-
ate Jacobians of cubic threefolds. Moreover, Casalaina-Martin and Laza [CML09]
studied the closure of I(5), in particular describing the corresponding decompos-
able ppavs. For arbitrary g the loci I(g) (and generalizations) were investigated
in [GSM09]; conjecture 1 in that paper states that I(g), if non-empty, has pure
codimension g in Ag. The main result of this paper is a new proof by degeneration
methods of this conjecture for g ≤ 5:

Theorem 1.2. The locus I(g) is empty for g ≤ 2 and has pure codimension g in
Ag for 3 ≤ g ≤ 5.

This result is not new; it follows from the work of Casalaina-Martin and Fried-
man [CMF05, CM08] characterizing I(5). However, their results were obtained
using the theory of Prym varieties, and our methods are completely different.

Our next result is what we need for computing the class of the locus of in-
termediate Jacobians in [GK11]. To explain its statement, we need to discuss
the compactifications of Ag. Indeed, the main idea of the proof of the theorems
above is to study and understand the closures N2 and I(g) of the loci N2 and
I(g) in a suitable (toroidal) compactification of Ag. There are two toroidal com-
pactifications which are of interest to us: the perfect cone compactification APerf

g

and the second Voronoi cone compactification AVor
g . Both are toroidal compact-

ifications, i.e. are given by a suitable fan (or rational polyhedral decomposition)
in the rational closure of the cone of real semi-positive g × g matrices, namely
the perfect cone and the second Voronoi decomposition respectively. Both APerf

g

and AVor
g have an intrinsic geometric meaning: the first is the minimal model

of Ag for g ≥ 12, in the sense of the minimal model program (this was proven
by Shepherd-Barron [SB06]), the latter represents (at least up to normalization
and up to extra components) a geometrically meaningful functor, namely that of
stable polarized semi-abelic varieties (this was proven by Alexeev [Ale02]). For
g ≤ 5, but not in general, AVor

g is a blow-up of APerf
g .

Analytically, the locus I(g) can be described as the zero locus of the gradients
fm of the theta function at odd two-torsion points m (see next section for a precise
definition). It turns out that fm extend to sections f̃m of some vector bundle on
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(a level cover of) APerf
g . We denote by G(g) the (projection to APerf

g from a level
cover of the) zero locus of f̃m. We then have the obvious inclusion I(g) ⊂ G(g), as
G(g) is the zero locus of some holomorphic functions vanishing identically on I(g)

(and thus also on I(g)). We note that since locally I(g) is given by the vanishing
of each of the g components of the gradient vector fm, the codimension of any
component of I(g) in Ag is at most equal to g. The following result will be crucial
in our forthcoming paper [GK11], where it will be used to compute the classes of
the loci I(g) in the Chow rings of APerf

g for g ≤ 5.

Theorem 1.3. The locus G(g) ⊂ APerf
g has no irreducible components contained

in ∂APerf
g of codimension less than 6 in APerf

g . In particular, for g ≤ 5, we have
I(g) = G(g).

To see that the first statement of the theorem implies the second, note that for
g ≤ 5 the locus G(g), being of codimension at most 5, has no irreducible compo-
nents contained in the boundary, and thus any of its irreducible components is a
closure of a component of I(g).

Besides these main theorems, the core of the paper (and of the proofs for
all of the above) is an explicit description of the geometry of various types of
semi-abelic varieties — which is really our main result. We are essentially able
to extend the degeneration computations originated by Mumford for the partial
compactification two steps further into the boundary.

In order to study the closures of the subvarieties Nk and I(g) in APerf
g or

AVor
g it is necessary to understand the geometry of the semi-abelic varieties and

their (semi-abelic polarization) theta divisors, associated to boundary points of
AVor

g . Recall that every toroidal compactification of Ag maps to the Satake
compactification

ASat
g = Ag t Ag−1 t Ag−2 . . . t A0.

We denote the projections P : APerf
g → ASat

g and Q : AVor
g → ASat

g . We denote
β0

k := P−1(Ag−k) the open strata of the perfect cone compactification, and denote
by βk := β0

k t . . .t β0
g = P−1(ASat

g−k) the closed strata. We say that a semi-abelic
variety has torus rank k if the corresponding point of APerf

g lies in β0
k (resp. for

AVor
g , lies in Q−1(ASat

g−k)

Since the second Voronoi and the perfect cone decomposition coincide up to
genus 3 it follows in particular thatAPerf

g \P−1(ASat
g−4) ∼= AVor

g \Q−1(ASat
g−4). In fact
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more is true as we shall discuss in Section 3: the two compactifications coincide
outside codimension at least 6 in APerf

g . We shall make use of this fact. One of
the results of this paper is a complete description of the geometry of semi-abelic
varieties of torus rank at most 3 and their theta divisors, describing explicitly
their geometry, including the geometry of the polarization divisor. One of the
main applications of this description is to computing the class of the closure of the
locus I(g) in the Chow ring of APerf

g , which we will accomplish in a forthcoming
paper [GK11]. For this reason we also describe explicitly the involutions on the
semi-abelic varieties, their fixed points, and the gradients of the (semi-abelic)
theta function at these fixed points. We shall derive these descriptions from toric
geometry together with some simple properties of the (symmetric) theta divisor
which follow from general principles. Alternatively one can also make Alexeev’s
construction explicit. We chose the geometric approach as the more elementary
method, as this gives us the geometric properties which we require.
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2. Theta functions and their gradients

We denote by Hg the Siegel upper half plane of genus g and consider the
quotient Ag = Hg/ Sp(2g,Z) — the moduli space of principally polarized abelian
varieties (ppav). The Riemann theta function θ(τ, z) is a function of τ ∈ Hg and
z ∈ Cg and is given by

θ(τ, z) :=
∑

n∈Zg

e(πintτn + 2πintz),
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where for future use we denote e(x) := exp(2πix) the exponential function. The
theta function is quasiperiodic and satisfies

(1) θ(τ, z + nτ + m) = e(−ntτn/2− ntz)θ(τ, z)

for any n,m ∈ Zg.

For an abelian variety A, we denote by A[2] the set of two-torsion points on
it; as a group, A[2] ∼= (Z/2Z)2g. Analytically the points in A[2] can be labeled
m = (τε + δ)/2, for τ being the period matrix of A, and ε, δ ∈ (Z/2Z)g. We
denote σ(m) := ε · δ ∈ Z/2Z and call it the parity of m. Accordingly we call m

even or odd depending on whether σ(m) is 0 or 1, respectively. This is equivalent
to the point m not lying (resp. lying) on the theta divisor for a generic τ (i.e. for
a two-torsion point m the function θ(τ, m) is identically zero if and only if m is
odd).

For a point m = (τε + δ)/2 we denote the theta function with (half-integer)
characteristic

θ

[
ε

δ

]
(τ, z) := θm(τ, z) :=

=
∑

n∈Zg

e((n + ε/2)tτ(n + ε/2)/2 + (n + ε/2)t(z + δ/2)).

As a function of z, the theta function with characteristic is even or odd depending
on the parity of the characteristic. In particular, all odd theta constants with
characteristics (the values of theta functions with characteristics at z = 0) vanish
identically.

We recall the level subgroups of Γg := Sp(2g,Z) defined as follows:

Γg(n) :=

{
γ =

(
A B

C D

)
∈ Γg

∣∣∣∣∣ γ ≡
(

1 0
0 1

)
mod n

}

Γg(n, 2n) :=
{
γ ∈ Γg(n) | diag(AtB) ≡ diag(CtD) ≡ 0 mod 2n

}
.

The moduli space of ppav is then Ag = Hg/Γg, while the level moduli spaces
Ag(n) := Hg/Γg(n) and Ag(n, 2n) := Hg/Γg(n, 2n) are finite covers of Ag.

We can thus compute for an odd point m ∈ A[2]

fm(τ) := gradzθ(τ, z)|z=m = gradzθ(τ, z + (τε + δ)/2)z=0

= e(−εtτε/8− εtδ/4− εtz/2)gradzθ

[
ε

δ

]
(τ, z)|z=0
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since θ

[
ε

δ

]
(τ, 0) = 0 for an odd two-torsion point m. It is known that this gradi-

ent is a vector-valued modular form for Γg(4, 8) for the representation det⊗1/2⊗std :
Γg → GL(g,C). In other words, we have

(2) fm ∈ H0(Ag(4, 8),detE⊗1/2 ⊗ E),

where E is the Hodge vector bundle on Ag. Note that this bundle extends to any
toroidal compactification of Ag, see [Mum77].

The group Γg(2)/Γg(4, 8) acts on the gradients by certain signs, and thus the
zero locus

(3) Gm := Gε,δ = {τ |fm(τ) = 0}
is a well-defined subvariety of Ag(2). We refer to [GSM04, GSM09] for a more
detailed discussion of the properties of the gradients of the theta function and
further questions on loci of ppavs with points of high multiplicity on the theta
divisor.

Finally we denote by

I(g) := p(Gm) ⊂ Ag

the locus of ppavs for which some fm vanishes — note that it follows from the
fact that Γg permutes the fm that the projection of Gm to Ag does not depend
on m. For further use we also denote by I(g) ⊂ APerf

g the closure in the perfect
cone compactification. The sections fm extend to sections of a suitable vector
bundle on the perfect cone decomposition APerf

g . This is most easily described
on the level 8 cover APerf

g (8). We shall denote the boundary components of
this compactification by Dn. Recall that these are enumerated by the index
±n ∈ (Z/8Z)2g. We denote the mod 2 reduction of n by n2. Moreover we call an
element k = (k1, k2) ∈ (Z/2Z)2g even or odd if the product of the length g vectors
k1 · k2 is even or odd respectively. In [GK11] we show the following result:

Proposition 2.1. The sections fm extend to global sections

f̃m ∈ H0


APerf

g (8),det(E)⊗(1/2) ⊗ E⊗O

−

∑

{n|m+n2 even}/n∼−n

Dn





 ,

which do not vanish at a general point of any irreducible component of the bound-
ary divisor.
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Proof. This follows from a computation of the Fourier expansion of the sections
fm. For details see [GK11, Section 3] and also the computations in [GSM09]. ¤

Remark 2.2. Note that the statement of the above proposition includes the
claim that

∑
{n|m+n2 even}/n∼−n

Dn is a Cartier divisor, not just a Weil divisor,

which is not immediate as APerf
g (8) is not a smooth variety for g ≥ 4. However

this was shown in [GK11, Section 3], and also follows from the computations in
[GSM09].

We denote by Gm ⊂ APerf
g (4, 8) the vanishing locus of f̃m. We note that by

this definition we automatically have I(g) ⊂ p(Gm), and thus if we show that f̃m

does not vanish in codimension less than g for g ≤ 5, this would suffice to prove
theorem 1.2.

3. Outline of approach

Throughout the paper we shall make extensive use of the description of AVor
g

as (the normalization of) a moduli space of polarized semi-abelic varieties. The
reader is referred to [AN99],[Ale02], [Ols08] where details can be found. Here
we shall recall the facts which we will require for our purposes and outline the
approach which we shall take.

Recall that Alexeev [Ale02] showed that (possibly up to normalization) the
Voronoi compactification AVor

g represents a functor. The geometric objects are
pairs (X, Θ) where X is a stable semi-abelic variety (in particular it admits an
action of a semi-abelian variety) and Θ ⊂ X is a theta divisor (for a precise
definition see [Ale02, Def. 1.1.9]). For smooth objects the functors of principally
polarized abelian varieties and that of stable polarized semi-abelic varieties are
isomorphic: an abelian variety is a torsor over itself and Θ is just the classical
theta divisor (which is unique up to translation).

The boundary strata of any toroidal compactification correspond to orbits of
cones in the corresponding rational polyhedral cone decomposition (fan). To
every such orbit corresponds a type of polarized semi-abelic varieties. If the
relative interior of a given cone contains symmetric matrices of rank k, then the
corresponding semi-abelic varieties have torus rank k, i.e. the normalization of
the semi-abelic variety is fibered over an abelian variety B of dimension g − k.
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The semi-abelic variety will in general have several components, each fibering
over B with fibers being toric varieties of dimension k. The precise nature of
these components, as well as the combinatorics of their gluings, is determined
by a periodic decomposition of Rk into polytopes, determined by the cone in
question, which is invariant under the action of Zk.

In [AN99],[Ale02],[Ols08] the general theory of degeneration data is described,
from which it is also possible to obtain the description of the theta divisor. In par-
ticular, Valery Alexeev explained to us how to easily derive the formulae for the
theta divisor of standard semi-abelic varieties (see below for a definition) directly
from this general framework. Note, however, that in this general approach the
calculations dealing with reducible semi-abelic varieties with non-trivial abelian
part are already quite complicated, while our approach is direct and sufficient for
our purposes here, and also provides an explicit and direct confirmation of the
general framework. We also compute the involution and study its fixed points
explicitly.

In this paper we are mostly interested in the perfect cone decomposition APerf
g .

The perfect cone decomposition and the second Voronoi decomposition coincide
in genus g ≤ 3. For g = 4, 5 the second Voronoi decomposition is a refinement
of the perfect cone decomposition [RB78], [ER88], i.e. AVor

g is a blow-up of APerf
g

for these genera. For g = 4 the situation is very simple: AVor
4 is the blow-up

of APerf
4 in one point. This corresponds to a subdivision of a non-basic 10-

dimensional cone, the so-called second perfect cone. In g = 5 the situation is
more complicated. For g ≤ 5 we let Zg ⊂ APerf

g be the center of the modification
σ : AVor

g → APerf
g . Then Zg = ∅ for g ≤ 3 and Z4 is a point. We shall use

the fact that the codimension of Zg in APerf
g is greater than 5. To see this it

is enough to consider the part of APerf
g which lies over Ag t Ag−1 . . . t Ag−5 as

the complement of this set in APerf
g has codimension 6. In other words we must

consider all those cones in the perfect cone decomposition which are not also
cones in the second Voronoi decomposition. There are no such cones for g ≤ 3.
We already mentioned that there is precisely one such cone for g = 4 and this
is in codimension 10. Finally there is only one stratum in APerf

g over Ag−5 of
codimension 5 and this is the stratum belonging to the cone 〈x2

1, . . . x
1
5〉. But this

cone is a face of the so-called principal cone and is thus also contained in the
second Voronoi decomposition.
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A partial compactification APerf
g \ Zg

∼= AVor
g \ σ−1(Zg) can be constructed

by adding all those strata to Ag which correspond to cones belonging to both
the perfect cone and the second Voronoi decomposition. Below we list all cones
which correspond to strata of codimension ≤ 5 in APerf

g . All of these cones belong
to both the perfect cone and the second Voronoi decomposition. These are the
strata which we will have to handle.

To explain the geometric situation which we will encounter we start with the
simplest case of semi-abelic varieties, the so-called standard degenerations. We
shall treat these in detail in the next section. The starting point for such a stan-
dard degeneration is the decomposition of Rk into unit cubes. In this case the
normalization of the semi-abelic varieties is irreducible, and is a fibration over
some B ∈ Ag−k with fibers isomorphic to (P1)k, the toric variety corresponding
to a k-dimensional cube (we refer to [Ful93] for a description of the toric vari-
ety associated to a polytope). All other decompositions which we shall have to
consider are subdivisions of these cubes.

The action of Zk by translations on the periodic decomposition of Rk into
polytopes also tells us how to glue the normalization to get the semi-abelic variety
(i.e. what identifications have to be made to obtain the semi-abelic variety from
its normalization). In the case of the cube these are simply identifications of
each pair of the opposite faces. These identifications are gluing maps of toric
(sub)bundles over B. The gluing maps fibers to fibers, and thus induces a gluing
map on the base of the fibration. Such a gluing map B → B then is a translation
by some point in B, which we then call the shift. Once the shift is determined, we
need to understand the map of the toric variety fiber to another such fiber. Such
a map induces a map of the corresponding polytope, and there is the discrete
data — the combinatorics of which faces of the polytope are glued to which —
and the continuous parameters which are the multiplicative parameters for the
map (C∗)k → (C∗)k. The shift and continuous gluing parameters account for the
moduli of semi-abelic varieties of a given combinatorial type (corresponding to a
give cone, i.e. for given toric variety fiber). The next step we take is to normalize
(simplify) these continuous parameters by suitable choices of coordinates on each
toric variety, wherever possible.
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The polytope picture also gives us a description of the theta divisor on the toric
part. On each irreducible component of the normalization of the semi-abelic va-
riety we know the numerical class of the polarization divisor, and we will thus
start by writing down a general divisor in that numerical class. Since the theta
divisor on the normalization is the lifting of the divisor on the semi-abelic variety,
its restrictions to the glued faces must be glued, which gives some restrictions on
the formula for the semi-abelic theta divisor. Finally, the involution on the toric
part corresponds to reflection with respect to the center of the cube: notice that
since the cube is dissected, the involution may permute the irreducible compo-
nents of the normalization of the semi-abelic variety. Requiring the theta divisor
to be preserved by the involution on the semi-abelic variety will allow us to fix
the remaining free shift and gluing parameters.

In the following table we list all the strata in codimension at most 5 in APerf
g

(notice that the list for AVor
g would be considerably longer, we refer the reader

to [ER88] and [Val03, Ch. 4] for more details on the structure of the perfect
cone and second Voronoi compactifications). We list generators of a cone in each
orbit, describe the slicing of the standard cube defined by this cone and explain
which toric varieties are associated to these polytopes. In this table F (2, 2)
stands for the toric variety associated to an octahedron: it is the intersection of
2 quadrics {y0y1 = y2y3 = y4y5} in P5 (the corresponding cone is generated by
x2

1, x
2
2, x

2
3, (x1 + x2 + x3)2 or by the ones given in the table) . We also denote F4

the cone over a smooth quadric surface, given by {y1y2 = y3y4} in P4 — it is the
toric variety whose associated polytope is the square pyramid. Finally we denote
by X the toric variety whose associated polytope is a 4-dimensional cube with
two 4-dimensional simplices cut off at the opposite corners (this cone is equivalent
to the one generated by x2

1, x
2
2, x

2
3, x

2
4, (x1 + x2 + x3 + x4)2, but the one below is

more useful for our computations) — its geometry is unimportant to us.

This table gives explicit geometric descriptions of all combinatorial types of
principally polarized semi-abelic varieties of torus rank up to 3, and also of all
those that give loci of codimension at most 5 in APerf

g . We would also like to point
out that Nakamura [Nak75] has given an explicit description of all semi-abelic
varieties in genus 3, in a slightly different language.

For each of the cases in this table we will compute explicitly the polarization
(semi-abelic theta) divisor, the involution, and the gradients of the semi-abelic
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ASat
g Forms generating Codim Type of Toric part of the

the cone in APerf
g polytope semi-abelic variety

β1 x2
1 1 interval P1

β2 x2
1, x

2
2 2 square P1 × P1

β2 x2
1, x

2
2, (x1 − x2)2 3 2 triangles P2 t P2

β3 x2
1, x

2
2, x

2
3 3 cube P1 × P1 × P1

β3 x2
1, x

2
2, (x1 − x2)2, x2

3 4 2 prisms P1 × P2 t P1 × P2

β3 x2
1, x

2
2, 4 1 octahedron F (2, 2) t 2P3

(x1 − x3)2, (x2 − x3)2 and 2 tetrahedra
β3 x2

1, x
2
2, x

2
3, 5 2 pyramids 2F4 t 2P3

(x1 − x3)2, (x2 − x3)2 and 2 tetrahedra
β3 x2

1, x
2
2, x

2
3, (x1 − x2)2 6 6 tetrahedra 6P3

(x1 − x3)2, (x2 − x3)2

β4 x2
1, x

2
2, x

2
3, x

2
4 4 4-dim cube (P1)×4

β4 x2
1, x

2
2, (x1 − x2)2, 5 product of t2(P1)×2 × P2

x2
3, x

2
4 square and

2 triangles
β4 x2

1, x
2
2, x

2
3, 5 product of P1 × (F (2, 2) t 2P3)

(x1 − x3)2, (x2 − x3)2, interval with
x2

4 1 octahedron
and 2 tetrahedra

β4 x2
1, x

2
2, (x1 − x4)2 5 two 4-dim simplices X t 2P4

(x2 − x3)2, (x3 − x4)2 and a 4-dim cube
with simplices cut off

β4 . . . 10 24 4-dim simplices 24P4

β5 x2
1, x

2
2, x

2
3, x

2
4, x

2
5 5 5-dim cube (P1)×5
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theta divisor at the fixed points of the involution. This analysis is also essential
for our paper [GK11]. In order to prove theorem 1.3 we must link these geometric
considerations to the gradients of the extended sections f̃m. This is the contents
of the following lemma.

Lemma 3.1. Let x ∈ APerf
g \ Zg

∼= AVor
g \ σ−1(Zg) and let (Xx,Θx) be the

associated polarized stable semi-abelic variety, with an involution jx on Xx, and
the divisor Θx preserved by jx. Assume the following holds: for every fixed point
P0 ∈ Θx of jx, there is a component (X0

x,Θ0
x) of (Xx,Θx) whose normalization

(X̃0
x, Θ̃0

x) is smooth at x, such that the gradient of the pullback T̃ 0
x of the equation

Tx of Θx to X̃0
x does not vanish: grad T̃ 0

x (P0) 6= 0. Then P0 6∈ G(g).

Proof. We consider the pullback of the universal family XVor
g → AVor

g toAVor
g (4, 8)

and call this Y. Over Ag(4, 8) the 2-torsion points on Y form 22g disjoint sections
which extend to (no longer disjoint) sections Zm over AVor

g (4, 8). By assumption
P0 lies in (at least) one section Zm parameterizing odd 2-torsion over Ag(4, 8).
Our aim is to show that under the assumptions of the lemma f̃m(P0) 6= 0.

Since X̃0
x is smooth we can choose a set of g local holomorphic functions on the

component of X0
x, say u0

1, . . . , u
0
g, such that their pullback to X̃0

x is a regular set
of local parameters. We extend these to local holomorphic functions u1, . . . , ug

in a neighborhood of P0 on Y. Since u0
1, . . . , u

0
g is a set of parameters on X̃0

x near
P0 it follows that the restriction of u = (u1, . . . , ug) to smooth fibers of Y form a
regular set of parameters at points P ∈ Zm in a neighborhood of P0.

We can extend the equation Tx of the theta divisor on Xx to an equation of
the pullback of the universal theta divisor on Y in nearby fibers. We denote this
extension by T . Then graduT (P ) and f̃m are proportional after a suitable local
trivialization of the Hodge bundle E. This is true for smooth fibers of Y, but also
holds for torus rank 1 degenerations. This can be easily seen by computing the
Fourier expansion of the sections f̃m with respect to the coordinate t = e(τ1,1), see
also [GK11] and [GSM09, Sec. 5]. Hence there is a nowhere vanishing function h

in a neighborhood of the point P0 in Zm such that graduT (P ) = h · f̃m. Since this
holds on Mumford’s partial compactification, i.e. in codimension 2 in (AVor

g )0,
and since AVor

g (4, 8) and hence Zm is smooth near this point we can extend h as
well as the above equality to a neighborhood of P0 in Zm. Since h does not have
zeroes in codimension 2 it is nowhere vanishing. Now the claim follows from the
assumption that grad T̃ 0

x (P0) 6= 0. ¤
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4. Theta gradients vanishing on boundary divisors

In [GSM09] the behavior of the gradients of the theta function near the bound-
ary of the partial compactification Ag t β0

1 was studied. This was obtained by
using the Fourier-Jacobi expansion of the theta function. However, this analytic
method would not work for going deeper into the boundary, and in this section
of the text we present the geometric approach to describing the geometry of
polarized semi-abelic varieties. While the case of torus rank one goes back to
Mumford [Mum83a], and the geometry of the semi-abelic variety and its polar-
ization is known, the method we explain in detail here will allow us to deal with
much more complicated degenerations later on. Still, even for the case of torus
rank one, the description of the involution and its fixed points seem to be new.

The singular varieties parameterized by β0
1 are P1 bundles over a (g − 1)-

dimensional abelian variety B with the 0-section and the ∞-section glued with a
shift. More precisely, such a singular variety is determined by a pair (B, b) where
B ∈ Ag−1 and b ∈ B. Identifying B via the principal polarization with its dual
variety we can interpret b as a degree 0 line bundle OB(b) on B and the P1 bundle
in question is P(OB ⊕ OB(b)). The 0 and ∞ sections of this bundle correspond
to P(0 ⊕ OB(b)) and P(OB ⊕ 0) respectively (we use the geometric notation for
the projective space).

The singular variety X = X(B, b) is obtained from this P1 bundle by identifying
the 0-section and the ∞-section with a shift, to be precise (z′, 0) ∼ (z′ − b,∞).
Note that ±b determine isomorphic singular varieties. The semi-abelian variety
acting on this is the C∗ bundle which is the P1 bundle with the sections at
0,∞ removed, which is nothing else but the semi-abelian variety defined by the
extension b ∈ Ext1(B,C∗) ∼= Pic0(B).

We have to understand the theta divisor on this singular variety. The idea,
which we also want to apply to other degenerations, is to obtain an equation of
the theta divisor on the semi-abelic variety from geometric principles, identify
the limits of two-torsion points, and then study the vanishing properties of the
gradient of the theta function at these points (which is to say the vanishing orders
of f̃m). This simple torus rank one case will showcase the approach that we will
take in dealing with semi-abelic varieties of higher torus rank.
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In the case of torus rank one degenerations it was Mumford who first wrote
down such a theta divisor Θ by studying limits of the theta function. This
approach was further advanced in [GL08]. For the genus 2 case also see [HKW93].
We consider a one-parameter family of principally polarized abelian varieties
degenerating to a semi-abelic variety of torus rank one — analytically this is the
family for which one can compute the standard Fourier-Jacobi expansion, as in
[GK11]. An analytic expression for the theta function on the semi-abelic variety
in this family is known. Following Mumford, one considers a translate of the
Riemann theta function by shifting the argument z by (−w/2, 0, . . . , 0), i.e. by
replacing z = (z1, z

′) by (z1−w/2, z′) (where w = τ1,1). Expanding this function
in Fourier series we obtain

θ

((
ω tb

b τ ′

)
,

(
z1 − ω/2

z′

))

=
∑

N∈Z,n′∈Zg−1

e

(
1
2

(
N

n′

)t (
ω tb

b τ ′

)(
N

n′

)
+

(
N

n′

)t (
z1 − ω/2

z′

))

=
∑

N∈Z
q

1
2
N(N−1)e(Nz1)


 ∑

n′∈Zg−1

e(
1
2
n′tτ ′n′ + n′t(z′ + Nb))


 ,

where as before q = e(w). As ω → i∞ we have q → 0, so that only the terms
with N = 0 and N = 1 survive, and thus as a limit we obtain the semi-abelic
theta function

(4) T (z′, x) := θ(τ ′, z′) + xθ(τ ′, z′ + b),

where x := e(z1) can be viewed as the fiber coordinate of the C∗ or P1 bundle,
and the gluing is (z′, 0) ∼ (z′ − b,∞). This gives an analytic equation for Θ.

To simplify notation, from now on we will drop the ′ and denote z′ and τ ′

simply by z and τ when no confusion is possible; this convention will also be used
in the following sections.

We now come to the delicate point of determining the involution on the semi-
abelic pair (X, Θ), and determining the limits of two-torsion points on it as the
fixed points of this involution — to the best of our knowledge these questions have
not been previously treated in the literature. It follows from general theory that
we have an involution j on the polarized semi-abelic variety which is compatible
with the inverse map on the semi-abelian (open) variety, i.e. the action of the
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semi-abelian variety on (X, Θ) is equivariant with respect to the involution j on
X and the inverse map of the semi-abelian variety viewed as a group scheme. We
want to write this down explicitly. However, one needs to be careful in writing
down the involution in z, x coordinates. The issue here is that while we are
interested in the involution on a semi-abelic variety, and its fixed points there,
analytically the computation happens on the universal cover.

Indeed, we are interested in the involution on the P1 bundle over the abelian
variety B, while formula (4) is in fact an analytic expression for the lifting of
the theta function from the semi-abelian variety to the universal cover C∗ ×
Cg−1. To describe the involution explicitly we first describe a uniformization
of the smooth part of X (which can be identified with the semi-abelian variety
corresponding to the point b). Let B = Cg−1/(Zg−1 + Zg−1τ). The semi-abelian
variety corresponding to the line bundle b ∈ B∨ is the quotient of the trivial C∗

bundle Cg−1 × C∗ over Cg−1 by the group Z2(g−1) ∼= Zg−1 + Zg−1τ acting via

(5) (n,m) : (z, x) 7→ (z + nτ + m, e(−ntb)x),

where (n,m) ∈ Z2(g−1) (see for example [Igu72, Sec. II.3] or [BL04, Sec. I.2])

To determine the action of the involution j on the semi-abelic variety, we
note that the involution must lift to an involution on Cg−1 × C∗, inducing an
involution on the base, z 7→ a− z for some a ∈ B, and mapping fibers to fibers.
If we complete the C∗ bundle to a P1 bundle, the involution must interchange
the 0 and ∞ sections, and thus must be given by (z, x) 7→ (a− z, c(z)x−1) on the
fiber over z ∈ Cg−1 for some c : Cg−1 → C∗. For this involution to be preserved
by the action (5) we must then have c(z +nτ +m) = c(z) for any n,m ∈ Zg, and
thus c must be a holomorphic function c : B → C∗, and thus constant.

We now determine the constants a ∈ B and c ∈ C∗ by requiring the involution
to preserve the semi-abelic theta divisor. Indeed, we have

T (j(z, x)) = T (a− z, cx−1) = θ(τ, a− z) + cx−1θ(τ, a− z + b) =

θ(τ, z − a) + cx−1θ(τ, z − a− b) = cx−1
(
θ(τ, z − a− b)) + c−1xθ(τ, z − a)

)

and for this to match T (z, x) we must then have a = −b and c = 1, as expected
(recall that in Mumford’s construction the origin was shifted by b/2).

We now determine the limit of two-torsion points on the degenerating family of
abelian varieties — these are the fixed points of the involution j on the semi-abelic
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variety. These points can either lie in the smooth part of X or in its singular
locus (which is isomorphic to the abelian variety B). We start with the smooth
locus. Note that a fixed point of the involution j on the C∗ bundle over B does
not necessarily lift to a fixed point of the involution on Cg−1 ×C∗; rather it lifts
to a point such that its image under the involution is identified with the point
itself under the action (5). Indeed, suppose some (z, x) ∈ Cg−1×C∗ descends to a
fixed point of j on the C∗ bundle over B. This means that there exist ε, δ ∈ Zg−1

such that
j(z, x) = (−b− z, x−1) = (z + τε + δ, e(−εtb)x).

This implies that z = −(τε + δ + b)/2 (as a point in Cg−1, not on B!) and that
x = ±e(−εtb/2). Note that since ε and δ differing by even integer vectors give
the same point in B, it is enough to consider ε, δ ∈ (Z/2Z)g−1, and thus the total
number of fixed points of j we obtain in this way is 2 · 22g−2. Each of them arises
as a limit of a single family of two-torsion points on smooth abelian varieties
(geometrically this means that the multisection defined by these 2-torsion points
on the universal family extends locally to sections over the boundary and is
unramified there).

The fixed points of the involution on the glued 0 and ∞ sections of the semi-
abelic variety can be obtained from the equation

j(z, 0) = (−b− z,∞) ∼ (−z, 0) = (z + τε + δ, 0),

where ∼ denotes the glued points on the 0 and ∞ sections. This implies that
z = −(τε + δ)/2. In this way we have found 22g−2 fixed points of the involution
on the singular locus of the semi-abelic variety. Each of these points is the limit
of two 2-torsion points on a smooth abelian variety (the extended multisection of
2-torsion points is ramified here) and hence has to be counted with multiplicity
2. Together with the 22g−1 fixed points on the smooth part we indeed obtain 22g

points.

Note that for the simple example of an elliptic curve degenerating as τ → i∞,
in the limit the one fixed point of the involution on the glued locus is a limit of
both two-torsion points τ/2 and (1 + τ)/2. Thus in a family of abelian varieties
degenerating to a semi-abelic variety it does not make sense to say that some fixed
points of the involution on the semi-abelic variety are even and some are odd.
However, it makes sense to ask which fixed points are limits of odd points (and
possibly also of some even ones) — these are the fixed points of j that generically
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lie on the semi-abelic theta divisor. We will now determine these points and
then compute the gradients (with respect to z and x) of the semi-abelic theta
function T (z, x) at these fixed points lying on the semi-abelic theta divisors, and
verify that these gradients generically do not vanish. As we have explained, this
gives us information on the vanishing locus of the section f̃m. The gradient of
the torus rank 1 semi-abelic theta function at a generic point was computed in
[CvdG08], where the singularities of the theta divisor were studied — while we
are only interested in the singularities at the fixed points of the involution j.

For points in the smooth part of the semi-abelic variety we denote m := (τε +
δ)/2 the two-torsion point on B. Using the fact that the theta function is even
we compute

T (−(τε + δ + b)/2,±e(−εtb/2)) = θ(τ,−m− b/2)± e(−εtb/2)θ(τ,−m + b/2)

= θ(τ, m + b/2)± e(−εtb/2)θ(τ,−m + b/2).

Now we note that 2m = τε + δ and so by quasi-periodicity of the theta function
we get

θ(τ, m + b/2) = θ(τ,−m + b/2 + τε + δ)

= e(−εtτε/2− εt(−τε + δ + b)/2)θ(τ,−m + b/2)

= (−1)εtδe(−εtb/2)θ(τ,−m + b/2).

Substituting this into the above expression finally yields

T (−m− b/2,±e(−εtb/2)) = e(−εtb/2)θ(τ,−m + b/2)((−1)εtδ ± 1),

and thus the semi-abelic theta function vanishes at this fixed point of j generically
if m ∈ B[2]odd, and the plus sign is chosen, or if m ∈ B[2]even, and the minus
sign is chosen.

We now compute the gradient of the semi-abelic theta function at these points.
Computing these gradients is the same as evaluating the sections f̃m, as we saw
in lemma 3.1.

Indeed, we have

∂

∂x
T (z, x) = θ(τ, z + b);

∂

∂z
T (z, x) =

∂θ(τ, z)
∂z

+ x
∂θ(τ, z + b)

∂z
,

and plugging in an odd two-torsion point gives these derivatives as

(6) θ(τ,−m + b/2); 2e(−εtb/2)
∂θ

∂z
(τ,−m + b/2)
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using quasi-periodicity as above. For this gradient to vanish is then equivalent
to the point −m + b/2 being a singular point on the theta divisor of B, and this
condition is known to define a codimension g locus within the universal family
Xg−1 of (g − 1)-dimensional abelian varieties.

To finish the discussion of the torus rank one case, we need to determine which
fixed points of the involution on the singular part of the semi-abelic variety lie
on the theta divisors and compute the gradient of theta there. Indeed, we have

T (−m, 0) = θ(τ,−m),

which vanishes identically if and only if m is an odd two-torsion point. The
gradient of the semi-abelic theta function at such a point is

(7) θ(τ,−m + b);
∂θ

∂z
(τ,−m).

The condition for the derivatives to vanish is exactly to say that τ ∈ I(g−1).
Then the condition for θ(τ,−m + b) to vanish is equivalent to the corresponding
theta function with characteristic vanishing at b, which is clearly an independent
vanishing condition, so that in this case we arrive at the following

Proposition 4.1. If theorem 1.2 holds in genus g − 1, then in genus g the zero
locus of each f̃m does not have any irreducible components contained in β0

1 . It
thus follows that we have

I(g) ∩ (Ag t β0
1) = G(g) ∩ (Ag t β0

1),

i.e. that the locus G(g) does not pick up any “extra components” for semi-abelic
varieties of torus rank 1.

Remark 4.2. In the following sections of the text we will study the gradients
of the semi-abelic theta functions for various types of principally polarized semi-
abelic varieties. The conclusion in each case will be the same: that if theorems
1.2 and 1.3 hold in lower genus, then in genus g the loci G(g) and I(g), when inter-
sected with the stratum of semi-abelic varieties of the type considered, coincide
and are both of codimension g. Altogether, this will eventually yield the proofs
of theorems 1.2 and 1.3.
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5. Theta gradients on the standard degenerations

The easiest example of a semi-abelic variety is when Rn is divided into standard
cubes with Zn acting by translation along the coordinate axes. The following
figure (see Figure 1) depicts this for n = 2.

Figure 1. The standard dicing of the plane with translations

The normalization of the semi-abelic variety is then a (P1)n bundle over an
abelian variety B of dimension g− n. Following [CvdG08, Sec. 16ff] we call such
a semi-abelic variety standard. For APerf

g (but not for AVor
g !) the locus parame-

terizing standard semi-abelic varieties is open and dense in βn, see [SB06]. These
degenerations of abelian varieties have already been studied by different authors,
see [DHS94, Sec. 4ff.], [CvdG08, Sec. 16ff.] (the conventions in these texts are
slightly different, resulting in different signs; we make a choice compatible with
Mumford’s description in the torus rank one case). We shall recall the description
of these semi-abelic varieties and of their generalized theta divisors, and compute
the gradient of the theta divisor, which allows us to compute the extension of f̃m

to this locus.

In terms of period matrices these degenerations correspond to the degenera-
tions of the period matrix where the first n diagonal entries tend to i∞, and the
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others stay bounded:

τ =




τ11 . . . τ1k . . . τ1n bt
1

...
. . . . . . . . . . . . . . .

τj1
... τjj . . . τjn bt

j
...

...
...

. . . . . . . . .

τn1
... τnk

... τnn bt
n

b1
... bk

... bn τ ′




with τjj → i∞ for 1 ≤ j ≤ n, τ ∈ Hg−n being the period matrix of B, and
b1, . . . , bn ∈ B. The semi-abelic variety is then obtained from the (P1)n bun-
dle over B ∈ Ag−n (the non-homogenous fiber coordinates on which we denote
x1, . . . , xn ∈ P1) by gluing

(z, x1, . . . , xj−1, 0, xj+1, . . . , xn) ∼

∼ (z − bj , t
−1
j,1x1, . . . , t

−1
j,j−1xj−1,∞, t−1

j,j+1xj+1, . . . , tj,nxn)

for all 1 ≤ j ≤ n, where the parameters t are given by tj,k = e(τjk). Thinking of
the toric picture of (P1)n as a hypercube, this means that each of the n pairs of
parallel (n− 1)-dimensional faces is identified with a shift.

The semi-abelic theta divisor was then computed in [DHS94, CvdG08] to be
given by

T (z, x1, . . . , xn) =
∑

µ1,...,µn∈{0,1}

n∏

j=1

x
µj

j

∏

1≤j<k≤n

t
µjµk

j,k θ


τ, z +

n∑

j=1

µjbj


 .

By tedious computations generalizing the case of n = 1, the involution on this
semi-abelic variety can be computed to be given by

j(z, . . . , xj , . . .) = (−
∑

bj − z, . . . , x−1
j

∏

k 6=j

t−1
j,k , . . .).

Instead of going through the derivation, let us check that this works, i.e. that
this involution maps glued points to glued points, and preserves the semi-abelic
theta divisor. Indeed, the point

j(z − bj , t
−1
j,1x1, . . . ,∞, . . . , ) =

= (−b1 − . . .− bn + bj − z, (x1t
−1
j,1 )−1

∏

k 6=1

t−1
1,k, . . . , 0, . . .)
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is glued to

(−b1 − . . .− bn + bj − z − bj , t
−1
j,1 (x1t

−1
j,1 )−1

∏

k 6=1

t−1
1,k, . . . ,∞, . . .),

which is equal to j(z, x1, . . . , 0, . . .), and thus the involution preserves the gluing.
We now check that the semi-abelic theta divisor is invariant under j. Indeed, we
have

T (j(z, x1, . . .)) =

∑

µ1,...,µn∈{0,1}

n∏

j=1


x−1

j

∏

k 6=j

t−1
j,k




µj ∏

1≤j<k≤n

t
µjµk

j,k θ(−z +
∑

(µj − 1)bj)

=
n∏

j=1

x−1
j

∏

1≤j<k≤n

t−1
j,k

∑
µ1,...,µn

n∏

j=1

x
1−µj

j ×

∏

1≤j<k≤n

t
µjµk−µj−µk+1
j,k θ(z +

∑
(1− µj)bj)

which upon changing the variables of summation to 1 − µj becomes simply the
expression for

n∏

j=1

x−1
j

∏

1≤j<k≤n

t−1
j,k T (z, x1, . . . , xn).

To determine the fixed points of j, we again need to be careful to distinguish
working on (C∗)n ×Cg−n and on the bundle over B. The same arguments as for
the n = 1 case show that the fixed points of the involution j are of the form


−τε + δ +

∑
µibi

2
, . . . ,±µje(−εtbi/2)

∏

k 6=j

t
−1/2
j,k , . . .


 ,

where µ1, . . . , µn ∈ {0, 1}.
Similarly to the case of torus rank one, one can then determine which of the

fixed points of j are “odd”, i.e. which of them generically lie on the semi-abelic
theta divisor, and then one verifies that the gradient of T (i.e. the set of derivatives
with respect to z, xi) impose g independent conditions (assuming that theorems
1.2 and 1.3 hold for g−n). The computation is straightforward, but tedious, and
we skip it; the n = 2 case easily follows from the computations of gradients done
in [CvdG08].
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6. The non-standard semi-abelic variety of torus rank 2

For torus rank 2 there is only one other type of degeneration apart from the
standard degeneration discussed in the previous section. In this case the decom-
position of R2 is obtained by subdividing each unit square into two triangles (see
Figure 2). Hence the normalization of the semi-abelic variety consists of two P2

Figure 2. The non-standard dicing of the plane

fibrations over an abelian variety B ∈ Ag−2. The locus of the non-standard rank
2 degenerations in APerf

g is the so-called singular locus ∆ in β0
2 , in notation of

[vdG99] and [EGH10]. It has codimension one in β0
2 , and in terms of the above

discussion corresponds to the case of t1,2 = ∞, so that the previous computa-
tions break down. The Fourier-Jacobi expansion in this case is very complicated
to deal with. We shall, therefore, apply our general geometric approach described
in section 3.

The description of the geometry in this case can also be obtained from the
general construction in [AN99, Ale02], and the entire picture of the semi-abelic
variety and the semi-abelic theta function were computed and written out in de-
tail in [CvdG08, Sec. 17], where it was also considered as a t1,2 →∞ degeneration
of the standard compactification. Our reason for giving now a completely elemen-
tary derivation for this semi-abelic theta divisor is to showcase all the techniques
that we will then use for the much harder and not previously dealt with, non-
standard torus rank 3 degenerations. Our sign conventions are slightly different
from those of [CvdG08] — we chose the conventions to be consistent throughout
this paper.
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The normalization of the semi-abelic variety in this case consists of two copies
of a P2 bundle over some B ∈ Ag−2. We will denote by z ∈ B the coordinates
on the bases of these bundles, and by (u0 : u1 : u2) and (v0 : v1 : v2) the
homogeneous coordinates on the fibers P2

u and P2
v of these bundles. In the purely

toric case (i.e. genus 2) the two copies of the P2 bundle are glued along the 3
coordinate P1’s. We look at the corresponding toric picture of polytopes: two
triangles glued into a square, with the opposite edges further identified, and with
the involution being the symmetry with respect to the center of the square —
see Figure 3. Then the edges of the P2 correspond to the coordinate lines P1

obtained by setting one homogeneous coordinate to zero, and the vertices to the
axis points on the coordinate lines.

Figure 3. The gluings for the non-standard torus rank 2 case

In general (i.e. in the presence of a non-trivial abelian base), fibers over the
points in the base differing by shifts (i.e. by adding some point on B) are glued
as indicated in Figure 4. When identifying the u0 = 0 and v0 = 0 coordinate

Figure 4. Shifts in the non-standard torus rank 2 case

P1’s, there is no shift on B (this being an interior face of the decomposition of
the cube), while the shifts for the other two gluings are b1 and b2, the same as
for the case of the standard compactification (P1)2.
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Now to understand the gluing parameters for the fiber coordinates, in P2
u and

P2
v’s, we have a choice. The simplest choice here is to require the involution to

map the coordinates to the coordinates (which corresponds to the labeling of the
coordinate lines in the two P2’s as in the figure). The involution is then given in
coordinates as

j : (z, (p : q : r)u) 7→ (−b1 − b2 − z, (p : q : r)v)

where the subscript indicates on which P2 the point is taken.

To see what the gluings of the three coordinate P1’s on P2
u to those on P2

v

are in these coordinates, we look at the vertices. For example, we see from
figure 3 that the gluing identifying the diagonal sides of the triangles glues the
vertex corresponding to (0 : 0 : 1)u to (0 : 1 : 0)v, and glues (0 : 1 : 0)u to
(0 : 0 : 1)v. It thus follows that the P1 given by u0 = 0 on P2

u is glued to the
P1 given by v0 = 0 on P2

v with an involution, and thus the gluing is given by
(z, (0 : p : q))u → (z, (0 : λq : p))v, for some parameter λ ∈ C∗. Since we still
have the freedom of choosing the coordinates on P2

u, we can rescale the coordinate
u1 so that this parameter is made equal to 1 (the situation will be much more
complicated for the case of torus rank 3 that we will need to consider in what
follows). Similarly by rescaling the coordinate u2 (and simultaneously also v2

which is identified with u2 by the involution j) we can make the second gluing
to be (z, (p : 0 : q)u) → (z − b1, (q : 0 : p)v), whereas for the third gluing we can,
a priori, only say that it is of the form (z, (p : q : 0))u) → (z − b2, (cq : p : 0)v)
for some gluing parameter c ∈ C∗. We shall see below that the existence of a
symmetric principal polarization implies c = 1. This description was obtained in
[CvdG08, Sec. 17] (with which we have a different sign convention) by studying
the appropriate identifications of the summands of rank three vector bundles over
B projectivized to the P2 bundles.

The theta divisor on the normalization of the semi-abelic variety has the fol-
lowing form. On the section given by the coordinate points of the P2 bundles it
is isomorphic to ΘB, whereas its restriction to each P2 in a fiber is a section of
O(1), as follows from the general theory. It can also be seen in a more elementary
way by looking at the split situation (b1 = b2 = 0). Then this is the only choice
of a class of an ample line bundle with correct top self-intersection number.
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Thus if we denote by Tu and Tv the classes of the theta divisors on the two
copies of the P2 bundle (with coordinates on the fibers being u and v, respec-
tively), we must have (where we dropped the argument τB of the theta function
everywhere)

Tu(z1, (u0 : u1 : u2)) = λ0u0θ(z1 + α0) + λ1u1θ(z1 + α1) + λ2u2θ(z1 + α2);

Tv(z2, (v0 : v1 : v2)) = µ0v0θ(z2 + β0) + µ1v1θ(z2 + β1) + µ2v2θ(z2 + β2)

for some points αi, βi ∈ B (in [CvdG08] it is explained why these shifts are in
fact known a priori, but here we give a direct way of computing them from the
gluings), and for some coefficients λi, µi ∈ C. The involution j must interchange
Tu and Tv, which is equivalent to requiring

θ(z + αi) ∼ θ(−b1 − b2 − z + βi) = θ(z + b1 + b2 − βi),

where by abuse of notation ∼ denotes equality up to a non-zero constant (we
will usually get such identities from the gluings, also denoted ∼, so the notation
makes sense).

Thus for the shifts we have αi = b1 + b2 − βi and for the coefficients we have
λi = µi. We now write down the conditions for Tu and Tv to glue, i.e. for the
divisors to coincide on the glued coordinate P1’s. Indeed, we must have

Tu(z, (0 : p : q)) ∼ Tv(z, (0 : q : p)),

which means that we must have

λ1pθ(z + α1) + λ2qθ(z + α2) ∼ λ1qθ(z + b1 + b2 − α1) + λ2pθ(z + b1 + b2 − α2)

for all z ∈ B, and all u, v ∈ C. This is equivalent simply to

α1 = b1 + b2 − α2; (λ1 : λ2) = (λ2 : λ1).

Similarly from

Tu(z, (p : 0 : q)) = λ0pθ(z + α0) + λ2qθ(z + α2)

∼ Tv(z − b1, (q : 0 : p)) = λ0qθ(z + b2 − α0) + λ2pθ(z + b2 − α2)

we get
α0 = b2 − α2; (λ0 : λ2) = (λ2 : λ0),

and finally from

Tu(z, (p : q : 0)) = λ0pθ(z + α0) + λ1qθ(z + α1)

∼ Tv(z − b2, (cq : p : 0)) = cλ0qθ(z + b1 − α0) + λ1pθ(z + b1 − α1)
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we get

α0 = b1 − α1; (λ0 : λ1) = (cλ0 : λ1).

Notice that combining this proportionality with the previous ones gives λ0 =
λ1 = λ2 and c = 1. Solving the three equations for the shifts we finally obtain

Tu(z, (u0 : u1 : u2)) = u0θ(z) + u1θ(z + b1) + u2θ(z + b2);

Tv(z, (v0 : v1 : v2)) = v0θ(z + b1 + b2) + v1θ(z + b2) + v2θ(z + b1).

We now compute the fixed points of the involution j; since it interchanges the
two components, the fixed points must lie on the gluing locus, i.e. on the union of
coordinate P1’s. We first compute the fixed points on the three gluing affine lines,
and then deal with the vertices of the triangle. As in the previous computations,
one delicate point is that we are working on a non-trivial (C∗)2 bundle over B.
Indeed, we shall make repeated use of the 2-dimensional analogue of formula (5).

On the line u0 = 0 6= u1u2 the fixed points of the involution j are given by the
condition that

j((z, (0 : p : q))u) = (−b1 − b2 − z, (0 : p : q))v

is identified with itself under the gluing (z, (0 : p : q))u ∼ (z, (0 : q : p))u

(after a possible shift by some element of Zg−2 + τZg−2, and the corresponding
factors appearing in v and u). This implies that these points are of the form
(m − (b1 + b2)/2, (0 : ±e(εt(b1 − b2)/2) : 1) where m = (τε + δ)/2 ∈ B[2].
Similarly the fixed points of j on the other two glued P1’s (away from the vertices
of the triangle, i.e. away from the three coordinate points in P2

s) are of the form
(m− b2/2, (±e(εtb2/2) : 0 : 1)u) and (m− b1/2, (±e(εtb1/2) : 1 : 0)u).

To determine which of these two torsion points generically lie on the theta
divisor, we compute, denoting p := (m− (b1 + b2)/2, (0 : ±e(εt(b1 − b2)/2) : 1))u

Tu(p) = ±e(εt(b1 − b2)/2)θ(m + (b1 − b2)/2) + θ(m + (b2 − b1)/2),

which by using again the quasi-periodicity (1) is proportional to

±θm((b1 − b2)/2) + θm((b2 − b1)/2),

and vanishes if the signs are chosen appropriately. Thus onthis C∗ the fixed points
of the involution generically lying on the semi-abelic theta divisor are

{
(m− (b1 + b2)/2, (0 : e(εt(b1 − b2)/2) : 1)) | m ∈ B[2]odd

}
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and
{
(m− (b1 + b2)/2, (0 : −e(εt(b1 − b2)/2) : 1)) | m ∈ B[2]even

}
.

We now compute the gradient of Tu at any such point, i.e. we need to compute
the derivatives with respect to local coordinates z ∈ B, and (u1 : u2) ∈ P1. Again
using (1), up to an exponential factor we get

∂zTu|p = ±∂zθm((b1 − b2)/2) + ∂zθm((b2 − b1)/2),

which for each of the two cases of sign and parity gives simply 2∂zθm((b2−b1)/2).
For the other two partial derivatives we compute (again up to exponential factors)

∂u1Tu|p = θm((b1 + b2)/2); ∂u2Tu|p = θm((b1 − b2)/2)

(compare to the computation in [CvdG08]). For all of these partial derivatives
to vanish simultaneously, the point (b2 − b1)/2 must be a singular point of the
theta divisor ΘB (which imposes g − 1 conditions in Xg−2), and in addition we
must have (b1 + b2)/2 ∈ ΘB, which is another independent condition — thus in
this case we have a codimension g locus within ∆ ⊂ β0

2 where the gradient of the
equation defining the theta divisor vanishes, as expected. The computation for
the fixed points of j lying on the two other glued coordinate P1’s is completely
analogous, with points b1/2 and b2/2 appearing instead of (b1 + b2)/2, and we do
not give it here.

The remaining case to handle is of the fixed points over the vertices of the
triangles in the toric picture. In this case there are multiple gluings to take care
of, so we determine the fixed points of the involution as follows:

j((z, (p : 0 : 0))u) = (−b1 − b2 − z, (p : 0 : 0))v ∼ (−z − b1, (0 : p : 0))u

∼ (−z + b2, (0 : 0 : p))u ∼ (−z, (p : 0 : 0))u

where we used the gluings along all the coordinate P1’s. Thus the fixed points
in this case are given by (m, (1 : 0 : 0)) for m ∈ B[2]. Note that each such fixed
point is a limit of 4 two-torsion points on a smooth ppav. Since

Tu(m, (1 : 0 : 0)) = θ(m),

such a fixed point of involution j is odd (generically lies on Tu) if and only if m

is odd. We then compute the gradient: indeed

∂zTu|(m,(1:0:0)) = ∂zθ(m)
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vanishes if and only if τ ∈ I(g−2), and furthermore the vanishing of

∂u1Tu|(m,(1:0:0)) = −θ(m + b1) and ∂u2Tu|(m,(1:0:0)) = −θ(m + b2),

are the conditions for b1 and b2 to lie on the translated theta divisor — and thus
give two more independent conditions, as expected.

7. The codimension 4 strata of non-standard semi-abelic varieties

in APerf
g

In this section we deal with the cones that correspond to strata of non-standard
semi-abelic varieties of codimension 4 in APerf

g . Recall from the table that there
are two such strata, both of them in β0

3 . The easier case, for which we can
easily deduce the appropriate formulae, corresponds to dicing the cube into two
triangular prisms (so the corresponding toric variety is the union of two copies of
P1 × P2). The other case - the most complicated that we need to handle in this
paper — is that of the dicing into two tetrahedra and one octahedron (so the
corresponding toric variety is the union of two copies of P3 and a toric threefold
of type F (2, 2) — the intersection of two special quadrics in P5).

7.1. Two copies of a P1×P2 bundle. The simpler case is that of two triangular
prisms, i.e. that of a semi-abelic variety having two irreducible components, the
normalization of each being a fibration over some B ∈ Ag−3 with fibers P1×P2. As
before for the case of two copies of P2, we denote these two copies by subscripts
u and v respectively, choose coordinates on the second copy to be the image
under the involution j of the coordinates on the first copy, and finally denote by
x the (non-homogenous) coordinate on P1

u. As for the case of two copies of P2,
which, as explained in [CvdG08], can be obtained by degenerating the standard
P1 × P1 compactification when letting the gluing parameter t1,2 approach zero,
this compactification can be obtained from the standard (P1)3 compactification
by letting t1,2, now one of the three gluing parameters, approach zero. We then
get

Tu(x, (u0 : u1 : u2)) = u0θ(z) + u1θ(z + b1) + u2θ(z + b2)

(8) +u0xθ(z + b3) + u1xt1,3θ(z + b1 + b3) + u2xt2,3θ(z + b2 + b3).

This answer can be recovered by a straightforward (even though longer) compu-
tation using the gluings; one can also easily see that it is correct by checking that
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it glues correctly and restricts to the theta divisors on P1 and P2 that we com-
puted previously. The computation of the vanishing locus of the theta gradients
is then also a straightforward combination of the previous results, and we omit
it. One can also see in this case that the vanishing of the gradient of the theta
function imposes g independent conditions.

7.2. Two P3 bundles and an F (2, 2) bundle. The only other type of semi-
abelic varieties of torus rank 3 that form a codimension 4 locus in APerf

g (and also
in AVor

g ) is the stratum corresponding in the toric picture to cutting up the cube
into an octahedron and two tetrahedra, see Figure 5 below. The normalization

Figure 5. Cube dissected into 2 tetrahedra and 1 octahedron

of the toric variety has three irreducible components, two of which are P3’s —
the toric varieties for which the corresponding polytope is a tetrahedron, while
the toric variety corresponding to the octahedron is (see [Ful93])

F := F (2, 2) = {y0y1 = y2y3 = y4y5} ⊂ P5,

where we have denoted the homogeneous coordinates on P5 by y0 : y1 : y2 : y3 :
y4 : y5. This variety has 6 nodes, they are the coordinate points of P5. In this
description the eight faces of the octahedron correspond to the eight coordinate
P2’s contained in F , corresponding to the case when all three products are equal
to zero. We will label such a P2 by a triple abc with a ∈ {0, 1}, b ∈ {2, 3}, c ∈
{4, 5}, so that on this P2 the coordinates are ya : yb : yc (with the other three
homogeneous coordinates being zero).
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Here the gluing parameters are crucial. Indeed, the base abelian variety B

varies in Ag−3, so we get (g − 3)(g − 2)/2 parameters. We also have the three
shifts bi ∈ B giving another 3(g − 3) parameters. Thus we must have two more
free gluing parameters to make up codimension 4.

For the two P3’s corresponding to the tetrahedra we choose homogenous co-
ordinates (u0 : u1 : u2 : u3) and (v0 : v1 : v2 : v3) respectively. The faces of
the tetrahedra are then given by equations ui = 0 and vi = 0, respectively, for
i = 0 . . . 3. Similarly to the case of two copies of P2, we number the u and the v

so as to label the opposite sides with the same index, and for further use we also
label the vertices by the number of the corresponding non-vanishing coordinate,
see Figure 6.

Figure 6. Labeling of the tetrahedra

With a view towards further computations, similarly to the case of two copies
of a P2 bundle considered above, we fix coordinates on P3

u and then choose the
coordinates on P3

v to be their images under the involution j, so that we have

(9) j(z, (p : q : r : s))u = (−b1 − b2 − b3 − z, (p : q : r : s))v,

which is easily seen to be compatible with the gluings by looking at the toric
picture.

We now describe the semi-abelic theta divisors on these components. Indeed,
we know from the general theory what the restriction of the theta divisor to each
fiber is (this is given by the polytope description) and that the restriction to
any section of the fibration (such a section is isomorphic to a copy of B) is a
principal polarization on the base B and hence the translate of a theta divisor.
In particular, on the fiber F the theta divisor TF is a restriction of some section
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of OP5(1), while on each P3 fiber the theta divisor is given by some sections
of OP3(1). It thus follows that there exist constants λi, µi, νi ∈ C and points
ai, αi, βi ∈ B such that the theta divisors are given by

TF =
5∑

i=0

λiyiθ(z + ai)|F ; Tu =
3∑

i=0

µiuiθ(z + αi); Tv =
3∑

i=0

νiviθ(z + βi).

We now investigate the action of the involution, requiring it to fix the semi-abelic
(reducible) theta divisor. Writing down the condition that j maps the zero locus
of Tu to the zero locus of Tv amounts to

3∑

i=0

µiuiθ(z + αi) ∼
3∑

i=0

νiuiθ(−b1 − b2 − b3 − z + βi)

where ∼ denotes equality up to a non-zero constant factor. This implies

(10) αi = b1 + b2 + b3 − βi

for all the shifts, and the equality (µ0 : µ1 : µ2 : µ3) = (ν0 : ν1 : ν2 : ν3) as
of projective points. To simplify computations in what follows, we note that
since the theta function is defined only up to a constant multiple, we can choose
µ0 = ν0 = λ0 = 1.

The involution j respects the fibration, i.e. it lies over an involution on the base
B and maps fibers to fibers. Each fiber over a fixed point of the involution on B

is mapped to itself. We can see from the toric picture that on such a fiber the
involution must act by (y0 : y1 : y2 : y3 : y4 : y5) 7→ (t1y1 : t−1

1 y0 : t2y3 : t−1
2 y2 :

t3y5 : t−1
3 y4) for some t1, t2, t3 ∈ C∗. As in the case of torus rank 1 degenerations,

we are again dealing with compactified (C∗)3 bundles over the universal cover of
the abelian variety B. Then the ti are sections of a bundle, namely the trivial
bundle, and thus constants.

Notice that we have the freedom of rescaling the coordinates on P5 ⊃ F . We
now choose coordinates in such a way as to get t1 = t2 = t3 = 1 (note that we
could also have −1), so that the involution on the normalization of the F bundle
over B is then given by

(11) j(z, (y0 : y1 : y2 : y3 : y4 : y5)) =

= (−b1 − b2 − b3 − z, (y1 : y0 : y3 : y2 : y5 : y4))
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Writing down the condition TF ∼ j∗TF on the face P2 ⊂ F given by y0 = y2 =
y4 yields

λ1y1θ(z + a1) + λ3y3θ(z + a3) + λ5y5θ(z + a5)

∼ y1θ(−b1 − b2 − b3 − z + a0) + λ2y3θ(−b1 − b2 − b3 − z + a2)

+ λ4y5θ(−b1 − b2 − b3 − z + a4),

which implies (after flipping the signs of the arguments of the even function θ on
the right-hand-side) in particular a1 = b1 + b2 + b3− a0 for the shifts, and for the
coefficients we get

(12) (λ1 : λ3 : λ5) = (1 : λ2 : λ4).

By restricting TF to different coordinates P2’s contained in F we get also a3 =
b1+b2+b3−a2 and a5 = b1+b2+b3−a4, while all the equalities for the coefficients
together imply

(1 : λ1 : λ2 : λ3 : λ4 : λ5) = (λ1 : 1 : λ3 : λ2 : λ5 : λ4)

which, possibly after changing the signs of some coordinates yields λ1 = 1, λ3 =
λ2, λ5 = λ4, so that finally we have

TF = y0θ(z + a0) + y1θ(z + b1 + b2 + b3 − a0)

+ λ2 (y2θ(z + a2) + y3θ(z + b1 + b2 + b3 − a2))

+ λ4 (y4θ(z + a4) + y5θ(z + b1 + b2 + b3 − a4)) .

The shifts induced on the base B of the semi-abelic variety under the gluings
of the faces of the cube are the same as for the gluing of the case (P1)3 discussed
above: there is no shift for gluings in the interior of the cube, and shifts by bi for
gluing the faces, which we label as in Figure 5. In Figure 7 we labeled the faces
of the octahedron with the face of the tetrahedron that gets attached to it (ui

means that the coordinate P2 given in P3
u by {ui = 0} is attached).

For the gluing maps of the faces of the octahedron and of the tetrahedra, in
addition to the shifts we have to describe the permutation of the coordinates
on the P2’s being identified — for this, as before, we will see which coordinate
points go where — and the scaling parameters. The vertices of the octahedron
correspond to the 6 coordinate axes points (0 : . . . : 0 : 1 : 0 : . . . : 0) ∈ P5 where
only one homogeneous coordinate is non-zero. In Figure 7 we label these points
0, . . . ,5; note that (0,1), (2,3), and (4,5) are then the pairs of antipodal points
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on the octahedron. To write down the gluing map from a face of the octahedron

Figure 7. The faces of the tetrahedron glued to the top and
bottom of the octahedron

to the corresponding face of a tetrahedron in coordinates, we need to make sure
that the coordinate points get mapped appropriately. For example, the “024”
face of the octahedron (i.e. the P2 given by {y1 = y3 = y5 = 0} ⊂ F ) gets
mapped to the {u0 = 0} face of the first P3, and looking at Figures 6 and 7 we
see that the axes points are mapped 0 7→ 1, 2 7→ 2, and 4 7→ 3. Thus the induced
map on the P2 must be given in coordinates by

(y0 : 0 : y2 : 0 : y4 : 0) 7→ (0 : t00y0 : t20y2 : t40y4)u,

where t00, t20, t40 ∈ C∗ are the gluing parameters, and we use the subscript u to
keep track of the fact that this is the first P3. Since we are gluing projective planes,
the gluing is only defined up to scaling, and we can thus rescale to get t00 = 1.
Furthermore, we can then also rescale coordinates u2 and u3 (without changing
the coordinates yi, which we recall were fixed by prescribing the involution on
F ), to get t20 = t40 = 1. Thus after these choices we have fixed the coordinates
u2, u3, and got the gluing to be

(13) (z, (p : 0 : q : 0 : r : 0)) 7→ (z, (0 : p : q : r)u)

(recall that there is no shift on B for gluing interior faces of a dicing of a cube);
we have switched to (p : q : r) for coordinates on P2 to make the other cases
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look similar. The gluing of the v0 = 0 face is obtained from this by acting by the
involution j, and is given by

(z, (0 : p : 0 : q : 0 : r)) 7→ (z, (0 : p : q : r)v).

Similarly, by combining the data of which faces get glued from Figure 7 with the
depiction in Figure 5 of the shifts on B induced by the gluing, and the labeling
of the vertices in Figure 6 (also shown in Figure 8, where we marked on the faces
of the octahedron the labels of the vertices of the face of the tetrahedron glued
to that face) allows us to determine the other gluings. Looking at the fibers of
the P2 given by u1 = 0, we have the map

(y0 : 0 : 0 : y3 : 0 : y5) 7→ (t01y0 : 0 : t21y5 : t31y3)

where we can choose t21 to be equal to 1, and then rescale the u0 coordinate so
that t01 = 1. Note that we have now fixed all the coordinates on P3

u. Including
the base, the gluing on the P2 bundle given by u1 = 0 is finally given by

(14) (z, (p : 0 : 0 : q : 0 : r)) 7→ (z + b1, (p : 0 : r : t31q)u).

Similarly for the face u2 = 0 we have

(15) (z, (0 : p : q : 0 : 0 : r)) 7→ (z + b2, (t02q : t12r : 0 : p)u),

and for the gluing of the face u3 = 0 we have

(16) (z, (0 : p : 0 : q : r : 0)) 7→ (z + b3, (r : t13q : t23p : 0)u).

The gluings for the faces of the tetrahedron corresponding to P3
v are obtained

from these by acting by the involution j.

We will now use the gluings to derive some identities between the parameters,
ensuring that the restriction of TF to the P2’s contained in F that are glued to
the coordinate P2s in the P3’s agree with the restrictions of Tu and Tv. Indeed,
for example we must have the restrictions

TF |y1=y3=y5=0 and Tu|u0=0

identified under the gluing map (13). Writing out the formulae, this is equivalent
to the relation

y0θ(z + a0) + λ2y2θ(z + a2) + λ4y4θ(z + a4)

∼ µ1y0θ(z + α1) + µ2y2θ(z + α2) + µ3y4θ(z + α3)
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being satisfied for all points (y0 : y2 : y4) ∈ P2 and for all z ∈ B. This in turn is
equivalent to having the identities

a0 = α1; a2 = α2; a4 = α3

(as points of B) for the shifts, and the identity

(1 : λ2 : λ4) = (µ1 : µ2 : µ3)

for the coefficients, as points in P2. Similarly from the other gluings we get further
equalities relating TF and Tu. We first write down all the formulae for the shifts
on B, and will then deal with the gluing parameters. Indeed, from the gluings
on the u1 = 0 we get

a0 = α0 + b1; a3 = α3 + b1; a5 = α2 + b1,

which using a3 = b1 + b2 + b3 − a2 and a5 = b1 + b2 + b3 − a4 and the above
identities further yields

α1 = α0 + b1; α2 = b2 + b3 − α3.

From the gluing on u2 = 0 we then similarly get

b1 + b3 − α3 = α1; α2 = α0 + b2,

so that expressing all the shifts in terms of α0 we obtain

(17) α1 = α0 + b1; α2 = α0 + b2; α3 = α0 + b3.

Of course the gluings of the faces of P3
v will also give similar formulae for the

shifts: βi = β0 − bi. We can now write down two formulae for a2: in terms of α,
from the u0 = 0 gluing, and in terms of β, from the v1 = 0 gluing. Using (10) we
then obtain

α0 + b2 = α2 = a2 = β3 − b1 = b1 + b2 + b3 − α3 − b1 =

= b2 + b3 − (α0 + b3) = α0 + b2

To summarize, we know at the moment that the semi-abelic theta divisor has on
the irreducible components the form

Tu = u0θ(z) + µ1u1θ(z + b1) + µ2u2θ(z + b2) + µ3u3θ(z + b3);

Tv = v0θ(z + b1 + b2 + b3) + µ1v1θ(z + b2 + b3) + µ2v2θ(z + b1 + b3)

+ µ3v3θ(z + b1 + b2);

TF = y0θ(z + b1) + y1θ(z + b2 + b3) + λ2y2θ(z + b2) + λ2y3θ(z + b1 + b3)+
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(18) +λ4y4θ(z + b3) + λ4y5θ(z + b1 + b2).

We now turn to determining the gluing parameters tij in (14), (15), (16) and
the coefficients µi and λi above. Indeed, from (13) we get from the fact that
TF |y1=y3=y5=0 glues to Tu|u0=0 the identity

(1 : λ2 : λ4) = (µ1 : µ2 : µ3)

(recall that λ0 = µ0 = 1). From (14) on {y1 = y2 = y4 = 0} ⊂ F glued to
{u1 = 0} ⊂ P3

s we get another identity for (1 : λ2 : λ4), this time involving a
gluing parameter, and altogether the identities we get from (13),(14),(15),(16)
combined are

(1 : λ2 : λ4) = (µ1 : µ2 : µ3) = (1 : t31µ3 : µ2)

= (µ3 : t02 : t12µ1) = (t23µ2 : t13µ1 : 1).

Solving these, we get first µ2 = λ4, then

µ1 = λ−1
2 λ4; µ3 = λ−1

2 λ2
4,

and finally we compute

t31 = λ−2
2 λ2

4; t02 = λ2
4; t12 = λ2

4; t23 = λ−2
4 ; t13 = λ2

2λ
−2
4 .

Notice that as expected the two parameters λ2 and λ4 determine the picture
completely.

We now need to determine the fixed points of the involution, and compute
the gradients of the semi-abelic theta function there. Notice that in this case for
the first time we encounter a singular toric variety, with singularities of F being
the coordinate points of P5. While considering the gradients of a function at a
singular point would be hard, we shall see that all fixed points lie either in the
interior part of F (i.e. away from the planes where the gluing occurs) and thus
in the smooth locus, or on a P3 corresponding to a tetrahedron, i.e. at least one
of the components of the normalization is smooth at these points. This will allow
us to use lemma 3.1.

We first determine the fixed points of j in the interior of F (where none of
the yi are zero). As in all of the previous cases, note that our description was
of a trivial F fibration over Cg−3, being a subset of P5 × Cg−3. Formula (11) is
for the involution there, and thus to determine the fixed points on a bundle over
B, we would need to include the exponential factors similar to the ones needed
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above. These can be computed explicitly, but to simplify the presentation (and
since no new idea is necessary) we will omit them in the following formulae. We
will instead pretend that θm are even or odd functions of z depending on the
characteristic (in fact they have parity up to an exponential factor, which would
precisely cancel the other exponential factor from the transformation formulae
for the F bundle over B). We thus determine the fixed points from

(z, (1 : y1 : y2 : y3 : y4 : y5)) = j(z, (1 : y1 : y2 : y3 : y4 : y5))

= (−b1 − b2 − b3 − z, (y1 : 1 : y3 : y2 : y5 : y4)),

where we have rescaled the projective point with all non-zero coordinates to get
y0 = 1. It follows that z = m− b1+b2+b3

2 for some two-torsion point m ∈ B[2]. For
the projective coordinates we must have y1 = ±1 and also y2 = ±y3, y4 = ±y5.
Since we are only looking for fixed points on F , we finally see that y1, y3, y5 ∈
{−1, 1} and finally that the fixed points are of the form

(
m− b1 + b2 + b3

2
, (1 : y1 : y1y3 : y3 : y1y5 : y5)

)

for y1, y3, y5 ∈ {−1, 1}. The number of such fixed points is thus equal to 23 ·
22(g−3).

Evaluating the semi-abelic theta divisor at such a point gives (up to the expo-
nential factors which we omitted in the expressions for yi, and which cancel with
the exponential factors resulting from switching to θm)

θm

(
b1 − b2 − b3

2

)
+ y1θm

(
b2 + b3 − b1

2

)

+λ2y3

(
y1θm

(
b2 − b1 − b3

2

)
+ θm

(
b1 + b3 − b2

2

))

+λ4y5

(
y1θm

(
b3 − b1 − b2

2

)
+ θm

(
b1 + b2 − b3

2

))
,

which, as expected, vanishes for m odd and y1 = 1 or for m even and y1 = −1.

It remains to compute the gradient of the theta function at such a fixed point.
These two cases are similar, and we give the formulae for the case of m odd and
y1 = 1. Note that we are working on F and that we can use z, y1, y3, y5 as
local coordinates. For computing the gradient of TF near a fixed point as above
we locally set y0 = 1, and write y2 = y1/y3, y4 = y1/y5, so that we get for the
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gradients evaluated at these points

∂TF

∂y1
= θm

(
b2 + b3 − b1

2

)
− λ2y3θm

(
b1 + b3 − b2

2

)
− λ4y5θm

(
b1 + b2 − b3

2

)
;

∂TF

∂y3
= 2λ2θm

(
b1 + b3 − b2

2

)
;

∂TF

∂y5
= 2λ4θm

(
b1 + b2 − b3

2

)
.

(so that these three all vanish if and only if the three values θm((b1+b2+b3)/2−bi)
all vanish), and

∂TF

∂z
= 2

∂θm

∂z

(
b1 − b2 − b3

2

)
+ 2y3λ2

∂θm

∂z

(
b2 − b1 − b3

2

)
+

+2y5λ4
∂θm

∂z

(
b3 − b1 − b2

2

)
.

Studying the dimension of the locus where these gradients are all zero simultane-
ously is complicated (the z-derivative is hard to deal with). However, the stratum
of semi-abelic varieties of this type is already codimension 4 in APerf

g , and it is
enough for our purposes to show that the common zero locus of these partial
derivatives has codimension at least 2 on this stratum. Since the vanishing of the
y1, y3, y5 derivatives above implies that three independent points lie on the theta
divisor, these vanishing conditions are in codimension at least 3 within the locus
of semi-abelic varieties with such a toric structure.

We now need to deal with the fixed points of the involution j that are on
the “gluing” locus, i.e. where the map from the normalization to the semi-abelic
variety is not 1-to-1. A geometric picture of the dicing of the cube as shown in
Figure 5 (or a direct calculation) shows that there are no such fixed points on
the faces of the tetrahedra or of the octahedron, and that the only fixed points
are on the edges or at the vertices. Note now that all edges of the octahedron
are glued to some edges of the tetrahedra (and the total number of edges after
the gluings is 6), while all the vertices are glued together. We will now compute
the fixed points on the tetrahedra, and for gradients will work with Tu and Tv

rather than TF . For example the fixed points on the “edge” u0 = u1 = 0 6= u2u3

are computed from the equation

(z, (0 : 0 : 1 : p)u) = j(z, (0 : 0 : 1 : p)u)

= (−b1 − b2 − b3 − z, (0 : 0 : 1 : p)v) ∼ (−b1 − b2 − b3 − z, (0 : 0 : 0 : 1 : 0 : p))
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∼ (−b2 − b3 − z, (0 : 0 : p : t31)u),

which gives the fixed points as
(

m− b2 + b3

2
, (0 : 0 : 1 : ±t

1/2
31 )u

)
.

Evaluating the semi-abelic theta divisor at these points gives (up to the expo-
nential factors)

Tu = µ2θm

(
b2 − b3

2

)
± µ3t

1/2
31 θm

(
b2 − b3

2

)
,

which upon using µ2 = λ4, µ3 = λ−1
2 λ2

4, t31 = λ−2
2 λ2

4 becomes simply

λ4θm

(
b2 − b3

2

)
± λ4θm

(
b3 − b2

2

)
.

Thus such a point generically lies on the semi-abelic theta divisor if m is odd and
the + sign is chosen or if m is even and the − sign is chosen. For the gradient of
Tu at such a point we then get

∂Tu

∂u0
= θm

(−b2 − b3

2

)
;

∂Tu

∂u1
= µ1θm

(
b1 − b2 − b3

2

)
;

∂Tu

∂u2
= µ2θm

(
b2 − b3

2

)
,

which clearly imposes at least 3 independent conditions.

The computation for the other edges is completely analogous. The total num-
ber of fixed points of j of this type is then equal to 6 · 2 · 22(g−3), each of them
being the limit of 4 different 2-torsion points on smooth ppavs.

Finally we need to compute the fixed points of j over the “vertices” of the
dicing. These are computed from the equation

(z, (1 : 0 :0 : 0)u) = j(z, (1 : 0 : 0 : 0)u) = (−b1 − b2 − b3 − z, (1 : 0 : 0 : 0)v)

∼ (−b1 − b2 − z, (0 : 0 : 0 : 0 : 0 : 1)) ∼ (−b1 − b2 − z, (0 : 0 : 0 : 1)v)

∼ (−b1 − z, (1 : 0 : 0 : 0 : 0 : 0)) ∼ (−z, (1 : 0 : 0 : 0)u),

which yields simply the fact that m is a 2-torsion point on B. Since all the
vertices are glued together, we thus have 22(g−3) fixed points, each arising as the
limit of 8 two-torsion points on smooth ppavs. For a consistency check, we have
the valid equality

22g = 22(g−3)(8 + 6 · 2 · 4 + 8)
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for the number of limits of two-torsion points on smooth ppavs. The gradient
computation is completely analogous to the previous cases and we omit it.

8. The codimension 5 strata of non-standard semi-abelic varieties

in APerf
g

In this section we explain the approaches to handling all the non-standard de-
generation types that give strata of codimension 5 in APerf

g . Instead of describing,
very laboriously as above, the semi-abelic theta divisors explicitly, we note that
our main theorem 1.3 states essentially that G(g) does not have codimension 5
components contained in the boundary. Thus it suffices for our purposes to show
that none of these codimension 5 strata can be contained in G(g). To do this it
suffices to exhibit one point not contained in the corresponding variety, and this
is done by degeneration. Below we give two techniques to do this, one that works
easily when the toric variety is a product, and thus handles many (but not all)
of our cases, and the second, by degenerating to the “principal” degenerations —
dicing into simplices — that applies in all of our situations. The two approaches
seem to be independently interesting and general.

8.1. Approach via “semi-direct” products. To handle the first two non-
standard codimension 5 cases in β0

4 , where the fibers of the normalizations of the
semi-abelic varieties are of the form P1× (F (2, 2)t2P3) or P1×2(P1×P2) we will
use the corresponding cases of F (2, 2) t 2P3 and 2(P1 × P2) handled above. We
shall explain this for the first of these two cases, the second being analogous — the
main point is to use the P1 product structure. We start with a semi-abelic variety
of torus rank 1, i.e., a semi-abelic variety whose normalization is a P1 bundle over
an abelian variety A of dimension g− 1. Now we choose a degeneration of A to a
semi-abelic variety X of torus rank 3 with base an abelian variety B of dimension
g − 4, where the fiber of the normalization of X is of the form (F (2, 2) t 2P3).
Under such a degeneration, the divisor of the polarization behaves as follows.
For a semi-abelic variety of torus rank 1 we start with a function of the form
θ(z) + xθ(z + b) where z ∈ A, x is the coordinate of P1 and b ∈ A is the shift
parameter. Degenerating this in the family described above we obtain on each
component of the normalization a function of the form T (z′) + xt∗b′(T (z′)) where
z′ are coordinates on the total space of an F (2, 2) or P3 bundle over B and b′ is
a point of the semi-abelian variety which is a rank 3 extension of B′ and which
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acts by tb′ on the semi-abelic variety (and thus also on the components of the
normalization). We have already seen that it is a non-empty condition that the
theta divisor on X has a singular point at a fixed point of the involution. We can
then argue as in the discussion of formulae (6) or (7) in section 4 that lying in Gg

imposes a non-trivial condition for the P1 bundles over X considered here. This
is sufficient for us since the loci under consideration (being proper subvarieties of
β4) already have codimension 5 in APerf

g .

8.2. Approach via degenerating to a principal semi-abelic variety. An
approach to handle all the non-standard codimension 5 strata is by dicing the
cube further, into simplices. Note that all our non-standard codimension 5 strata
correspond to cones spanned by forms x2

i or (xi−xj)2. These cones are thus con-
tained in the corresponding torus rank k principal cone σ0 = 〈x2

i , (xi−xj)2| i, j =
1, . . . k〉, the so called principal cone. Thus the strata of semi-abelic varieties cor-
responding to each of these cases contain the locus of semi-abelic varieties cor-
responding to the principal cone. The principal cone defines in APerf

g a stratum
with the normalization of the corresponding semi-abelic variety being k! copies of
a Pk bundle over some B ∈ Ag−k. We call these semi-abelic varieties the principal
semi-abelic varieties of torus rank k (For k = 4 there is only one other dimension
10 cone in the perfect cone decomposition, namely the so called second perfect
cone, which, however, is not a cone in the second Voronoi decomposition where
it gets subdivided.)

Proposition 8.1. The stratum of principal semi-abelic varieties of torus rank k

is not contained in G(g).

Proof. To prove this proposition, we will first describe explicitly the semi-abelic
theta divisor on the principal semi-abelic varieties, then will discuss the gradients
at the fixed points of j to deal with G(g).

There are finitely many combinatorial choices for how a k-dimensional cube is
diced into k-dimensional simplices; the resulting semi-abelic theta divisor would
depend on this, but will be very similar for all the cases. Since we have the
freedom of choosing coordinates on half of the Pk’s independently (the other half
would be given by the involution), by rescaling the coordinates we can ensure
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that on each Pk the semi-abelic theta divisor Ti (for i = 1 . . . k!) has the form

Ti(z, (u0 : · · · : uk)) =
k∑

n=0

unθ(z + vi
n)

for some shifts vi
n ∈ B. The gluings all happen along the faces of the simplices,

i.e. along Pk−1’s, and there are no free scaling parameters for the gluings, while
the shifts are either 0 for the gluings in the interior or the appropriate bi for
gluing the exterior faces of the cube (each subdivided into (k − 1)! simplices).
The gluing conditions for Ti and Tj on some face would then be to say that all,
possibly except one (for the variable the vanishing of which gives the faces of the
simplex that are on the faces of the cube) shifts vi

n are obtained from the shifts vj
n

by a suitable permutation (which tells us how the coordinates on the glued Pk−1

faces of Pk
i and Pk

j are identified), while if we are gluing faces of the simplices
that are faces of the cube, we shift by some bi.

We start from the simplex at the origin, for which k of its faces are glued
to other simplices by +bi shifts, and the one face in the interior of the cube is
glued without the shift. The “origin” of the cube is a vertex of this simplex
that is identified with each of the other k vertices of the simplex via a shift
by the corresponding bi. It thus follows that θ(z + v1

0) (the value of T1 for
u1 = · · · = uk = 0) is identified with θ(z + v1

n) via a shift by bn, and it thus
follows that v1

n = v1
0 + bn. By an overall coordinate shift on Pk we can then make

T1(z, (u0 : · · · : uk)) = u0θ(z) +
k∑

n=1

unθ(z + bn).

We note that in general for any simplex all of its vertices are vertices of the cube,
and they are all identified together by certain shifts. Since there is a non-zero
shift for identifying any vertex of the cube to any other vertex, none of these
shifts are zero, and thus it follows that vi

n 6= vi
m for n 6= m.

This consideration determines the semi-abelic theta divisor on any Pk
i up to

an overall shift, and this shift can then be obtained by writing down the gluing
conditions to eventually glue to Pk

1. The answer for k = 2 is discussed in detail
in the section on the non-standard torus rank 2 degeneration. As an example of
what happens for higher torus tank, here is a possible answer for k = 3 (depending
on how the cube is diced, the other symmetric choices may occur):

v1 = (0, b1, b2, b3); v2 = (b1 + b2, b1, b2, b3); v3 = (b1 + b2, b1, b1 + b3, b3);
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v6 = (b1 + b2 + b3, b2 + b3, b1 + b3, b1 + b2); v5 = (b3, b2 + b3, b1 + b3, b1 + b2);

v4 = (b3, b2 + b3, b2, b1 + b2).

Now in order to investigate the fixed points of the involution j, we first note
that since it permutes the simplices, all the fixed points are on the gluing loci. To
determine the gradient of the semi-abelic theta function at each such point, one
can take any of the components of the normalization containing it. The partial
derivative of Tj with respect to un is equal to θ(z + vj

n). Note, however, that for
bi generic no two points vj

n differ by a point of order two, and thus we cannot
have both z + vj

n and some z + vj
m be points of order two on B. Thus generically

some θ(z + vj
n) does not vanish, and thus a generic principal semi-abelic variety

does not lie in G(g). ¤

Remark 8.2. One could try to prove the same statement about N2: that it does
not contain the stratum of principal degenerations. To do this, one would use
the setup and the results of Ciliberto and van der Geer [CvdG08]. By [CvdG08,
Rem. 18.1], the scheme of vertical singularities is defined over APerf

g − β5 − Z,
(where Z is the locus where the perfect cone and the Voronoi compactifications
differ) and can in fact be defined for any principal degeneration (note that this
stratum belongs to both the perfect cone and the Voronoi compactification).
Similarly to the discussion of the non-standard (i.e. principal) torus rank 2 de-
generations in [CvdG08, Sec. 17], the vertical singularities are of different types,
depending on how many of the homogeneous coordinates on the corresponding Pk

j

vanish. Indeed, the condition for there to exist (u0 : · · · : uk) with u0 . . . uk 6= 0
such that the Tj is singular at that point is for the k + 1 theta divisors Θ

vj
n

to
be tangentially degenerate, in the notation of [CvdG08, Sec. 11], which is to say
that for some z ∈ B the Gauss images of the k + 1 points θ(z + vj

n) are linearly
dependent (or for all the translates of the theta divisor to be singular, or a limit
of these two cases).

To complete the argument, one would need to apply a suitable version of
[CvdG08, Prop. 12.1]. Unfortunately, the proof given there seems incomplete.
The k = 1 case of the proposition, the only one used in that paper, holds, but
it seems that the argument given only proves a weaker statement for higher k,
insufficient to complete our proof. We have not been able to adapt the argument
to our situation.
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As a corollary we immediately obtain

Corollary 8.3. The locus G(g) contains no strata of non-standard codimension
5 consisting of non-standard semi-abelic varieties.

Proof. Since the corresponding cones of these strata are all contained in the
principal cone it follows that the closure of the codimension 5 strata contain the
locus of principal semi-abelic varieties of torus rank 4. Thus the assertion follows
immediately from proposition 8.1. ¤

8.3. Explicit formulae for the case of two P3 bundles and two quadric
cone bundles. The two approaches above allow one to deal with all the types of
non-standard semi-abelic varieties giving strata of codimension 5 in APerf

g without
having to undertake a laborious computation similarly to the one for the F (2, 2)t
2P3 toric part. In fact, if the toric part of a semi-abelic variety is a product of
P1 and another known case, the formulae for the semi-abelic theta divisor can be
obtained rather straightforwardly.

For completeness, in this section we give the explicit expressions for the invo-
lution, gluings, and the semi-abelic theta divisor for the torus rank 3 semi-abelic
variety corresponding to the case of two tetrahedra and two square pyramids.
This will therefore complete the explicit computations for all types of semi-abelic
varieties of torus rank up to 3. The derivations in this case are tedious, and for
brevity we will omit all of them, just explaining the coordinate choices made, and
writing down the resulting formulae.

As in the previous cases, we will choose coordinates on P3
v to be the image of

those on P3
u under the involution j, and similarly the coordinates on P4

x (where
one quadric cone sits) to be the image of those on P4

y (where the other quadric
cone sits) under the involution, while we choose the coordinates on the bases
of these bundles in such a way that as for the octahedron case we have j : z 7→
−b1−b2−b3−z, as in (9). Writing down the general expressions for theta divisors
on each P3 (where it is a section of O(1) on the fiber), and on each quadric cone
(where it is a restriction of a section of O(1) from P4), then suitably changing
coordinates on P3

u and on P4
x, while preserving the cone, and then requiring the

gluings and the involution to preserve the theta divisor allows to compute all the
unknown coefficients in terms of one free parameter that we denote c ∈ C∗.



Semi-abelic Varieties of Small Torus Rank 1355

The gluings are then given by

(z, (p : q : 0 : r : 0))x 7→ (z + b3, (p : q : r : 0))u;

(z, (p : q : 0 : 0 : r))x 7→ (z − b2, (q : p : 0 : r))v;

(z, (p : 0 : q : r : 0))x 7→ (z − b1, (c2r : 0 : p : q))v;

(z, (p : 0 : q : 0 : r))x 7→ (z, (0 : r : c−2q : p))u,

for the identifications of the faces of the tetrahedra with the sides of the pyramids
(along P2’s). The new feature of this case compared to that of a dicing into an
octahedron and two tetrahedra is the gluings of the bases x0 = 0 and y0 = 0 of
the two pyramids (along P1 × P1), which is given by

(19) (z, (0 : p : q : r : s)x) 7→ (z, (0 : c−1q : cp : c−1s : cr)y).

The resulting expressions for the components of the semi-abelic theta divisors
are

Tu = u0θ(z) + u1θ(z + b1) + cu2θ(z + b2) + u3θ(z + b3);

Tx = x0θ(z + b3) + x1θ(z + b1 + b3) + c−1x2θ(z + b2)

+ cx3θ(z + b2 + b3) + x4θ(z + b1),

and Tv and Ty are obtained from these by applying the involution j.

9. Proofs of the main theorems

In this section we use the explicit descriptions of the semi-abelic theta divisors
given above to obtain the proofs of our main theorems.

Remark 9.1. To attempt to prove conjecture 1.1, one would use the method
pioneered in [CvdG08]: by studying the intersection of the closure N2 with the
boundary strata. Note that since we have described more boundary strata, we
have more control of the situation, and are thus able to push the computation
deeper into the boundary. Recall from [CvdG08, Rem. 18.1] that away from β5

(and also for the standard torus rank 5 degenerations) the vertical singularities
of the semi-abelic theta divisors can be defined geometrically. We recall that the
way this is done is by using the log-differentials Ω1

APerf
g

(log D), which is to say that
one computes the gradient of the semi-abelic theta divisor with respect to the
coordinate z ∈ B on the base of the semi-abelic variety, and to the coordinates
on the fiber, and then has to take into account the “gluing” singularities, see
eg. [CvdG08, formula (28)] for the case when the toric variety is 2P2.
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One would now proceed by studying N2 ∩ ∂APerf
g . Indeed, assume for con-

tradiction that N2 had an irreducible component of codimension 4 in Ag (the
results of Ciliberto and van der Geer [CvdG08] apply to show there could not
be a component of codimension 3). By the result of Keel and Sadun [KS03] this
component would have to intersect the boundary of APerf

g , and we let M be its
intersection with the boundary, which is thus of codimension 5 in APerf

g . If M

were to intersect the locus of standard semi-abelic varieties, the vertical singu-
larities there are completely described in [CvdG08], and noting that an analog of
lemma 16.1 there applies to show that if the dimension of the space of vertical
singularities is at least 2, B ∈ N1, we see that M cannot have a codimension 5
component intersecting the locus of standard semi-abelic varieties. The situation
with non-standard torus rank 2 semi-abelic varieties is also handled in [CvdG08],
and thus it remains for us to deal with the possibility that M ⊂ β3; note also that
M cannot contain β5 (where the set of standard compactifications of torus rank
5 is open), and thus M must intersect β0

3 t β0
4 , and moreover it must intersect

some locus of non-standard compactifications there. For all codimension 5 loci
corollary 8.3 applies, and thus it remains to handle the two loci of non-standard
torus rank 3 compactifications that have codimension 4 in APerf

g — when the
toric part is 2P1 × P2 or F2,2 t 2P3.

The case of two copies of P1×P2 is straightforward — one can use the descrip-
tion of the semi-abelic theta divisor given by (8) and compute directly, or note
that this case arises as the limit of the standard torus rank 3 case when one of
the gluing parameters approaches zero (this of course also equivalent to the case
when it approaches infinity), so that all the equations and descriptions arise as
limits of those for the standard case.

The hardest case to deal with is perhaps that of the toric part being F (2, 2)t
2P3. Note that here the normalization of the toric variety is itself singular. Here
one would need to have an appropriately corrected and generalized version of
[CvdG08, Prop. 12.1], and also a geometric understanding of the singularities of
the theta divisors possibly appearing at singular points of the F (2, 2) fibration.
This seems plausible, but, as before, we were not able to complete this step.

Proof of theorem 1.2. We want to (re)prove the statement that the codimension
of I(g) in Ag is equal to g for g ≤ 5. Indeed, for g = 1 this is trivial. For g = 2
the theta divisor of an indecomposable ppav is smooth, and the theta divisor
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of a product of two elliptic has one singular point which is not of multiplicity
three. For higher g, suppose the codimension of some irreducible component Z

of I(g) is equal to d. We then know, since I(g) is given locally by g equations,
that d ≤ g, and we want to prove the equality. For g ≥ 3, by a theorem of Keel
and Sadun [KS03] any codimension g subvariety of Ag is non-complete, and thus
the closure Z of Z in APerf

g must intersect the boundary of APerf
g . Moreover, the

codimension of Y := Z ∩ ∂APerf
g within APerf

g must then be equal to d + 1. If
g ≤ 5 (which are the only cases when we can prove the theorem), if d < g, it
would follow that the codimension of Y in ¶!erf is at most 5, and thus Y must
intersect one of the strata of semi-abelic varieties of types described above. For
each of these cases from the description of the vanishing locus of f̃m (given at the
end of the corresponding section of the text) we see that if theorem 1.2 holds in
genus g− k, where k is the torus rank, then the intersection of G(g) (and thus of
Y contained in it) with the corresponding stratum is codimension strictly greater
than g within APerf

g . It thus follows that the codimension of the locus Z in APerf
g

is at least g. ¤

Proof of theorem 1.3. Recall that this theorem says that the vanishing locus of
a function f̃m on APerf

g , which is the extension to the boundary of the gradient
of the theta function at the corresponding odd two-torsion point, does not have
an irreducible component of codimension less than 6 contained in the boundary.
Indeed, in the previous sections we described explicitly the functions f̃m for each
type of semi-abelic varieties giving a stratum of codimension at most 5 in APerf

g .
For the simplest case of torus rank 1 degenerations we proved proposition 4.1
showing that G(g), the zero locus of f̃m, does not have any irreducible components
contained in β0

1 . In the following sections above we then handled all the types
of semi-abelic varieties in β0

2 t β0
3 t β0

4 that give loci of codimension at most 5
in APerf

g . From the explicit descriptions of the theta divisors, we know, as in
the proof of proposition 4.1, that the intersection of G(g) with the corresponding
locus is of codimension greater than g in APerf

g . On the other hand, since the
zero locus of the gradient f̃m is locally given by the vanishing of g functions, any
irreducible component of G(g) has codimension at most g in APerf

g , and we have
arrived at a contradiction. It thus follows that G(g) has no irreducible components
of codimension less than 6 in APerf

g that are contained in the boundary of APerf
g ,

and the theorem is thus proven. ¤
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