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1. INTRODUCTION

In a previous paper ([6]) we introduced a p-adic Simpson correspondence, be-
tween Higgs-bundles and (generalised) étale sheaves on a curve X over a p-adic
base Spec(V'). In Fontaine’s dictionary between étale and crystalline objects this
corresponds to the Hodge-Tate picture. The method was a rather straightforward
application of ”almost mathematics”, except that at one stage we had to intro-
duce an exponential function on p-adics which involved making arbitrary choices.
This was necessary to treat "big” Galois-representations, that is representations
which are not close to the trivial representation.

Here we try to extend this to the full crystalline theory. That is we want
to associate to Q-representations of the geometric fundamental group certain
"bundles with singular connection” which are Frobenius invariant. Compared
to [6] the main new ingredient is the role of Frobenius. However as there is no
obvious Frobenius action on Higgs-bundles this looks like an interesting problem.

Received: Sept. 28, 2010.
1991 Mathematics Subject Classification. 14F30.



1242 Gerd Faltings

We propose to pass from Fontaine’s ring A..;s to the more involved rings of Berger
and Kedlaya. These are coordinate rings of coverings of the p-adic unit disk.
While A..;s corresponds roughly to power series converging for p-adic valuations
> 1/(p — 1), we instead consider convergence for valuations between rational
numbers b~! and a~! or for valuations < a~'. The action of Frobenius multiplies
a and b by p, and Frobenius modules are defined via an isomorphism on the
overlap of two annuli. In A..;s Fontaine defines two elements £ and ¢ where (in
our picture) £ has as zeroset one point of valuation 1 whereas t also has zeroes at
its transforms under Frobenius (with valuations p, p?,...). If we choose a > p~!
and b < p—1 the corresponding ring A, ; contains A..;s, and in it { and ¢ generate
the same ideal. This is useful because the étale- crystalline comparison theory
gives information which is somehow inprecise up to a factor ¢/£. Also if p > 2 we
can still choose A and b such that b > pa, so the annulus has non trivial overlap
with its Frobenius transform.

As an illustration let us consider the situation on tangent-spaces at the trivial
objects, and there for rank one: The tangent space to representations is the étale
HY(Xf,Zp) and that to bundles with a usual connection the first crystalline
cohomology H, (}Tys (X/Ains(V)). For singular connections (which extends the pre-
vious notion of Higgs-bundle) we have to extend this by allowing elements in the
first step of the Hodge-filtration to become divisible by €1, where ¢ denotes as
before the wellknown element in Fontaine’s theory. The crystalline comparison
theorem shows that this is contained in H' (X, Z,) @ Ay (V), with the coker-
nel annihilated by ¢/£ but otherwise rather mysterious. If we pass to a certain
A(V)ap D Aing(V) this cokernel (essentially) disappears and we obtain a good
correspondence. Exponentiating this picture gives our result for ”small” objects.
We also present some ideas how to extend beyond these, and two examples to
show that there are still difficult problems left. What is missing is an analogue

of the exponential function from [6].

In the next sections we first generalise Berger’s rings to general coefficients,
explain the relation between Frobenius-modules and p-adic representations, and
then (for curves) the link to bundles with singular connections.

It is an honor to dedicate this paper to the memory of Eckart Viehweg.
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2. BERGER’S RINGS IN HIGHER DIMENSIONS

Suppose R is a p-adically complete torsionfree (commutative, with unit) alge-
bra. We assume that R[1/p] is normal. Also in the following we also assume that
R is integral (otherwise everything will decompose into a product over irreducible
components of Spec(R)). We fix a dense open subset U C Spec(R[1/p]).

We denote by R the integral closure of R in the maximal unramified covering
of U, that is the union of all finite extensions S contained in an algebraic closure
of the fraction-field for which S[1/p] is étale over R[1/p] in all points of U. It
admits a continuous action of the algebraic fundamental group (SGA1) m(U).
The Frobenius map is surjective on R/pR (compare [7], lemma 3):

Suppose = € R lies in a finite extension S as above. Consider the extension S’
of S obtained by adjoining a root y of the equation

2
YW —py =

It is finite (of degree p?) over S and thus p lies in its Jacobson radical (the
intersection of all maximal ideals). Furthermore the y-derivative of the above
equation is
2 2_
Py —p=plpy” T 1),
The second factor is invertible, and so is the whole derivative if we invert p. Thus

S’[1/p] is étale over S[1/p] and the inclusion S C R extends to a homomorphism
which sends y? to a p-th root modulo p of .

Now define R(R) as the projective limit of R/pR with Frobenius as transi-
tion maps. Equivalently an element of R(R) consists of an infinite sequence of
elements 7, € R/pR (for n > 0) with

— 2P
’I”n—Tn+1.

We know that each such sequence lifts uniquely to such a sequence in the p-adic
completion R. However the addition on such sequences is then no more defined
componentwise. R(R) is a perfect ring of characteristic p, that is Frobenius on

it is an isomorphism.

We denote by p € R(R) such a sequence with 79 = p (it is unique up to
multiplication by units), and by 1 a sequence with ro = 1 but r; is a primitive
p-th root of unity.
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Aing(R) = W(R(R))
is the ring of Witt vectors. It is p-adically complete with
Ainf(R)/pAinf(R) = R(R).

Any element of A, (R) is an infinite sum
> [l
n>0

with Teichmiiller representatives [ry o]. The action of w1 (U) on R(R) is continu-
ous for the (p, [p])-adic topology. There exists a homomorphism

0: Apms(R) — R

which sends a Teichmiiller representative [re] to rg. It is surjective with kernel
generated by one element, for example by

E=1[p—p:

It suffices to check that after reduction modulo p (£ clearly lies in the kernel).
Then surjectivity follows from surjectivity of Frobenius on R/pR. Furthermore
the kernel now consists of sequences r, € R(R) with ro divisible by p. We have
to show that each 7, € R is divisible by pP ". For this approximate 7, by an
element of R which coincides with it modulo p. As the p"-th power of this element
is divisible by p it lies itself in ppfnlg%.

For any positive rational number a = m/n we denote by p* € R(R) the m-th
power of an n-th root of p. It is only well determined up to multiplication by a
unit, but this will not matter in the sequel. For rational numbers a,b, 0 < a < b,
define (where {} denotes p-adically convergent series)

AR)ap = Aing(R{X, Y}/ (X[p*] = p.Yp — [, XY — [p"7)),
and
Aap(R) = Aqp(R)[1/p].
Also
A(R)a,co = Aing(RI{X}/(X[p"] — p),
A(R)op = Aing(RI{Y}/ (YD — [p"))-
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Lemma 1. a) The rings fla,b(R) are p-adically complete and separated, without

p-torsion.
b) Fora < a’ < ¥ < b we have inclusions (X maps to [p® ~*] X', Y to [p*~*]Y")
A(R)ap € A(R)arpy, A(R)ap € A(R)ar -
¢) Under the same conditions
A(R)ap = A(R)ayy N A(R)ay

(intersection in A(R)y 1), and the same with A’s.

Proof. The quotient A, (R){X,Y}/(XY —[p*~%]) can be identified with the set

of all p-adically convergent series
> am X by Y™
m>0 n>0

In this quotient the ideal generated by X[p®] — p and Yp — [p’] consists of all

linear combinations (of p-adically convergent powerseries)

(X[p"] - Z amX™ 4+ (Yp — Zb Y™

m>0 n>0

As [p] is a non zerodivisor in Aj,f(R)/pAins(R) this defines a topological direct
sum, so the ideal is p-adically complete and thus closed. Hence the quotient is
also p-adically complete and separated. Also one checks easily that it has no
p-torsion.

Furthermore we derive an exact sequence
(0) = Aimg(R) — A(R)op ® A(R)a,00 — A(R)ap — (0),

so to show assertion b) it suffices to treat the cases where a =a' =0o0r b=V =
00.

For the second consider a convergent series

Z amX™

m>0

such that its image is divisible by X’ []2“,] — p, that is

Z am m(a —a) X/m _ (X,[Ba/] _ p) Z anln
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This translates into
[pm(a’—a)]am — [Ba/]bmfl — by

As p and [p] form a regular sequence one derives by induction that by, is divisible

Z amX™

by [p™(@~%)] and then that

is indeed divisible by
X[p] —p-

For the first inclusion assume that Y'p — [p¥] divides 3=, b, [p"=?)]Y"", so

[Bn(b—b/)]bn = pen_1 — [Bb/]crp
We derive by induction over r and (for fixed r) over n that ¢, is divisible by

[pMin(rb’,(nJrl)(bfb’))]

and that
> by

is divisible by Yp— [p]. ¢) also easily follows from the exact sequence above. [

The rings A(R),; are p-adic Banach algebras (with the norms defined by A)
and the inclusions have dense image (this is why we exclude ¢’ = 0). We remark
that the action of 71 (U) on A, ,(R) is p-adically continuous if b < oco.

We need a glueing result for ”vectorbundles on overlapping annuli”. For this
we consider parameters

0<ad <a’” <V <b < oo,
so we have an exact sequence
(0) = A(R)arpy — A(R)w v @ A(R)a> p» — A(R)ar iy — (0).
Suppose given finitely generated projective modules M’, M” over A" = A(R)q
respectively A” = A(R),» 7, together with an isomorphism
MM @0 A2 M @4 A

over A= A(R)y .
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Lemma 2. Given these data the kernel M* of the natural difference map
Ml EB M” N M

is a finitely generated projective A* = A(R)q p-module inducing M', M”, and

the isomorphism above.

Proof. After chosing systems of generators M’, M” and M become Banach mod-
ules with norms well defined up to equivalence, and the inclusions M’ C M and
M” C M have dense image. Choose a finite system of generators m; of M.
Furthermore choose elements m; € M’ with

/
mi —mi =Y fijm;
j

with fi; C pfl(R)avgb/, and similarly elements m;” € M”. Then as
A(R)w pr = A(R)aryr + A(R) o>

any A(R)aw w-linear combination of the m; can be written as a sum of an A(R)a/’b/-
linear combination of the m/, an A(R),» ;»-linear combination of the m;”, and a
linear combination of the m; with coefficients in p/NI(R)aw’b/. By p-adic iteration

we can drop this last term.

If we define M* by our exact sequence above (i.e. as tuples of elements sat-
isfying the glueing condition) we derive that the projections of M* to M’ and
M” have dense image: For example given m’ € M’ approximate its image in M
by an m” € M” and write the difference m’ — m” as a difference of elements in
M', M” with small norm. Correcting m’ and m” by these gives an element of
M* approximating m/'.

It now follows easily that we can find finitely many elements m; € M™* which
generate M’ as A’-module and M” as A”-module. If N* denotes the kernel of
the resulting map

AR M*

N* is obtained by glueing the respective kernels N’; N” (over A’, A”) using the
same procedure as for M*. To show that M is a direct summand in A*" we have
to construct a section s* of the map A*" — M. We know that we have such
section s’, s” for M’ and M”,. Their difference is an A-linear map M — N.
By the previous (applied to Hom (M, N)) it can be written as a difference of



1248 Gerd Faltings

maps in Hom(M', N') and Hom(M”,N”). Correcting s’ and s” by them gives
a matching set of sections and thus the desired s*.

Finally this implies that M is finitely generated projective, and as s* induces
s’ and s” it also follows that M induces our gluing data. Uniqueness of M is
rather obvious. O

The next topic is the introduction of Frobenius. The Frobenius automorphism
of R(R) induces an automorphism on Witt-vectors and isomorphisms (as [p] is
raised to its p-th power)

¢: A(R)ap = A(R)papb-
If b > pa we define an element of A(R), to be ¢-invariant if z = ¢(z) in A(R)pqp-

Lemma 3. Fach Frobenius invariant element in A(R)qy lies in Qp.

Proof. We may assume b = pa, and it suffices to consider Frobenius invariant
clements in A(R), ;. We show that any such elements lies modulo p in F,. The
quotient

A(R)ap/PA(R)ap = R(R)[X,Y]/([p"1X, [p"), XYp"~))
consists of polynomials
F=) amX™+> byY"
m>0 n>0
where the a,, lie in R(R)/(p®) and the by, in R(R)/(p?). Frobenius invariance

modulo p means

dlam) = BM(pfl)aamjﬂn(pfl)bd,(bn) =b,,
where all equalities are modulo Qb.

Now the first equalities imply that all a,, vanish: They are represented by
sequences 7, € R/pR such that r, = TZ 41 and
— pn(:v—l)a/pnrn'

It follows that the quotients r, /pa/ P" are integral over R and thus lie in R, so
the element 7, is divisible by p“.

Next the equation
by =

SS
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implies that by defines a locally constant function from Spec(R(R)/(p)) to Fp.
It is constant if its domain of definition is connected. Otherwise the exists a non
trivial idempotent in R(R)/(p") and (as idempotents lift over nilpotents) a non
trivial idempotent e in R/pR. Thus there exists a finite R-algebra S, contained
in the fraction-field of R, and a non trivial idempotent e € S/pS. We claim that e

lifts to a non trivial idempotent in S, a contradiction as S is an integral domain.

Lift e to S, let f = (e2—¢)/p € S and let F(f) = 0 denote a monic polynomial
equation with coefficients in R for f. The algebra

S = Rlu,v]/(u? — u — pv, F(v))

is a finite free R-module and thus p-adically complete, u defines an idempotent
in S'/pS’ which lifts to an idempotent in S’, and S” maps to S sending u to e
and v to f. Thus we get a lift in S, and we have shown that by lies in F,,.

Finally the equation for the b,, shows that they vanish (modulo [Qb]) for positive
n. 0

Under the same assumption on a and b we can consider Frobenius-modules.
Such a module is a finitely generated projective A(R),, module M together with

an isomorphism
O " (M) M

over A(R)pqp. By glueing this extends to a such a module M, over all A(R)qy,
0<a<b<oo. If Risa complete discrete valuationring one of the main results
of Kedlaya [11] say that such a module is the direct sum of submodules of constant
slope, which are induced from Q,-vectorspaces with a Frobenius automorphism.
If this automorphism can be chosen as the identity we call our module admissible.
Equivalently the pair (M, ®) if it is isomorphic to a direct sum of trivial modules

(A(R)ap, @)-

For general R recall that the Berkovich-spectrum of the Banach algebra R[1/p]
consists of all multiplicative non archimedean seminorms which are < 1 on R, and
coincide with the fixed p-adic norm on @, ([2], Ch.1). Equivalently it consists of
equivalence classes of morphism R — K into a completely valued p-adic field K.
Such a morphism sends R into the valuation-ring V' of K. One checks easily that
Kedlaya’s arguments in [11] still work for V. That is over A(V),; the pushout
of a Frobenius module M decomposes into components of fixed slopes. We call
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it admissible at the Berkovich point if all these slopes are zero, that is if the
pushout to A(V)sp becomes constant.

Recall also that the Berkovich spectrum is a compact topological space, with
the topology defined by norms of functions f € R[1/p] . Each point has a funda-
mental system of (closed) neighborhoods (called ”affinoid”) which are Berkovich
spectra of Banach algebras R'[1/p]. For example the norm of f is < 1 on the
Berkovich spectrum of R[1/p]{f}, > 1 on that of R[1/p]{f '}, etc.. The following
is a variant of [7], th. 9.

Proposition 4. Suppose (M, ®) is a m (U)-equivariant Frobenius module over
A(R)ap, b > pa. Then the set of points in the Berkovich spectrum where it is
admissible is open. Furthermore each point in it has an ”affinoid” neighbourhood
gwen by an R’ such that the pushout of (M, ®) becomes trivial over A(R')qp-

Proof. We start with some general remarks on Berkovich spectra: A point in the
Berkovich spectrum of R[1/p] is given by a homomorphism z : R[1/p] — K into
a field K with a p-adic Banach norm. If p C R[1/p]| denotes its kernel of = (a
prime ideal) we may assume that the fraction-field of R[1/p]/p is dense in K, so
K is a completion of that field. Denote by V' C K the valuation-ring.

The map z : R — V extends to Z : R — V. This extension is not unique but
two choices differ by the action of m(U). More precisely if D C m(U) denotes
the joint stabiliser of an extension p of p and an extension of the chosen p-adic
norm on the fraction-field of R/p then D is a quotient of Gal(K /K) which thus
acts on R such that on extensions both actions coincide.

We also get a map z : A(R)ap — A(V)ap. As Ainp(V) ®@a,,;(r) A(R)ap
is p-adically dense in A(V'),, we can approximate any element of A(V), by
A(R)qp-linear combinations of Teichmiiller representatives [r] with r € pR(V).
Such an r is given by a projective system of elements r,, € V /pV. Each r, can be
represented by an element of the valuation-ring V' of a finite extension K’ of K.
This extension is separable and generated by a single element. Approximating its
minimal polynomial by a polynomial with values in the fraction-field of R[1/p]/p
we may assume that the extension is defined by a separable polynomial over this
field. Passing to a Berkovich-neighborhood we may assume that the polynomial
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has coefficients in R[1/p]/p (where the denominators are nonzero) and has in-
vertible discriminant (same argument). So it defines a finite extension R’ of R
which is étale after inverting p, and R — V extends uniquely to ' : R — V.

The element r, is a priori not in the image of this map. However we can
assume that it lies in the image of R'[1/p], by approximation. Assume that it is
the image of an element r/p®. As we know that r, has norm < 1 we may pass to
an open neighbourhood in the Berkovich spectrum of R'[1/p| where the norm of
r/p® is also < 1. By uniqueness of 2’ this neighbourhood contains the preimage
of a neighborhood of z. Also we can assume that r is a unit in R'[1/p]. p-power
roots of it lie in R. All in all we obtain an element of R(R) whose image in R(V)
is p-adically close to r. As p divides in A(V'), a power of [p] we derive that any
element of A(V),; can be approximated arbitrarily close in the p-adic topology
by the image of A(R)qp, provided we pass to a Berkovich neighborhood.

What happens if we change our extension R — V by an element of 71 (U)?
As 2’ is the unique Berkovich-point above z such an element is the product of
an element of the decomposition group D of x and an element which fixes the
finite cover R’. The second factor changes our element only by a p-adically small
amount, and the first transforms the image via Gal(K/K). Also we may apply
thus procedure to finitely many elements r € R(V) at once, using a common

extension K’. Conclusion:

Suppose given finitely many elements g1, ...,9» € A(V)qp, and n > 0. Then
there exists a neighbourhood of x (defined by a new R) and elements fi, ..., f €
Aup(R) such that for each extension R — V the image of the vector (fi,..., fr)
is a Gal(K / K-conjugate of (g1, ..., g») modulo p"A(V), .

We also need that for an element f € A(R),, with image in A(V'), of small
p-adic norm (for any extension R — V') the p-adic norm of f becomes itself small
if we pass to a Berkovich-neighborhood. We first show that for any rational € > 0
and any f € A(R),; whose image in A(V),, is divisible by p, [p]f is divisible
by p in A(R’)mb, for a neighbourhood of = defined by R'.

For this we use that
A(R)ap/(p) = XR(R)[X]/(p") ® R(R)[Y]/(2").

So the reduction of f modulo p is given by finitely many coefficients [r;] with
elements r; € R(R) whose image in R(V) is divisible by p® or p’. Represent
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these by sequences of p-power roots (modulo p) in a finite generically étale R-
algebra S. The assumption bounds their p-adic norm in all points of the Berkovich
spectrum of S[1/p] mapping to z, so relaxing this bound as described by e this
still holds for a neighbourhood of x.

Repeating this argument shows that if the value of f at x is divisible by p"”
then this also holds for [p"¢]f in a neighbourhood. If ne < a we derive that f

n—1

itself is divisible by p

Now we apply these considerations to our problem. By assumption the Gal(K /K)-
equivariant Frobenius module M ® 4 R)avbA(V)a,b has a basis consisting of Frobenius-
invariant elements. Lift this basis as well as the dual basis (for M?) approximately
to M (the image under each extension R — V is close to a Gal(K /K)-conjugate
of our basis or its dual). The pairing between M and M?! applied to these lifts
gives a h x h matrix whose entries at = (and all possible extensions of maps) are
close to the identity. Replacing R by a smaller neighbourhood we may assume
that this matrix is congruent to the identity modulo p[l(R)aJ,. This implies that
our lifts form a basis for M, so M is a free A(R),p-module. Also we may assume
that our basiselements are almost fixed by Frobenius (as this holds in z). So
assume that we have a basis mq, ..., my, of M such that

O(mi) —mi €p Y A(R)papm;.
j

We correct them successively modulo p-powers to get a Frobenius-invariant

basis. This is possible if the map
¢ —id: A(R)a,b/(p) - A(R)pa,b

is surjective. It sends a typical element

Z am X™ + Z b, Y™

m>0 n>0

(am defined modulo [p]?, b, modulo [p]®) to

> (@am) =" Vanm) X+ Y (PTG (bn) — b)Y

m>0 n>0

(all coefficients modulo [p]P?®)

To prove surjectivity of the map on coefficients note that on R(R) p"¢—id is for
r > 0 surjective by an easy p-adic iteration. Furthermore as for any e < 1,Y € R
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the equation X? —p®X =Y defines an étale cover of R[1/p], the map ¢ —plid is
surjective modulo each power QN .

O

Next we try to globalise these considerations. Suppose V' is a complete discrete
valuation-ring, with perfect residue-field k of characteristic p > 0, and fraction-
field K of characteristic zero. We denote by 7 a uniformiser of V.. Also Vj = W (k)
are the Witt-vectors. Then V is a finite totally ramified extension of Vj.

Suppose furthermore that X is a proper semistable curve over V', with smooth
generic fibre. Furthermore we assume that D C X is a divisor which is finite
étale over V, and we define our group 7; as the fundamental group of (X — D).
That is we consider finite coverings which are unramified over Xx — D

The condition on singularities means that X can be covered by affines U =
Spec(R) with the algebra R étale over Vplu,v](uv — n™) or over V]u] (with D
defined by u = 0). This allows us to apply the theory of almost étale coverings
to get a better grip on the rings R:

Namely choose a suitably ramified extension Vo, of V, for example the nor-
malisation of V in the field extension generated by all p-power roots of unity, or
the extension obtained by adjoining all p-power roots of . Then R contains the
extension Ro, generated by V., and all roots of u, and is almost étale over it ([5],
theorem 1.4). This means the following:

We can write Ro, as an increasing union
R = JRn

of regular finite R-algebras R,. If S is a finite extension of R unramified in
characteristic zero the normalisation S, of S ®gr R, is a finite flat R,-algebra.
The discriminant of its trace-form divides for big n a power of p whose exponent
converges to zero as n — oo. As a consequence the Galois-cohomology of R/R
of any R-module with continuous Galois-action is almost zero, that is annihilated
by any positive fractional power of p. Similarly such a module is almost generated
by its invariants. This allows us to reduce some statements about R to R, where
we can do explicit calculations.

For the ring R(R) we have a similar result: The Frobenius is surjective Roo /pRoo
so we can form a projective limit R(R) and R(R) is almost étale over R(R)qo
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if we define ”almost” with respect to the fractional powers of [p]. This then also

applies to the rings A;,¢(R) and A(R)4p, A(R)qp. If a > 0 note that [p] becomes

invertible in A(R)qp, so almost zero means zero.

Also the same reasoning works for the p-adic completion of R. One consequence
of this theory is that 7;-equivariant almost modules over R (or R(R), or A(R)ap)
are the same category as over Ry, (with the corresponding smaller Galois-group).
Also such modules then can be glued in the Zariski-topology, so can be defined
over X or better over the formal scheme X. For example if L is a smooth Qp-sheaf
on X the tensorproducts L ® A(R), form a mi-equivariant Frobenius module.
Similar for Z,-sheaves and A(R)a,b—modules. Theorem 4.9 in [5] says that under

these circumstances the natural maps
HY(Xg,L) ®z, A(V)ap — H(L ®z, A(R)ap)

are almost isomorphisms. Thus our functor is fully faithful and the image is

closed under extensions.

It is an open question which Frobenius modules arise from local systems. Of
course it is necessary that they are pointwise admissible, but even then we only
get a rigid étale Q,-sheaf which may not be algebraic. The latter is equivalent to
admitting a Z,-lattice.

3. BUNDLES WITH A SINGULAR CONNECTION

Frobenius modules should correspond to crystalline objects. We again assume
that X is a semistable proper curve over V. Furthermore we assume given a
logarithmic lifting X to such a curve over A;,;(V). Logarithmic means that
the singularities of the lift are étale locally given by

Aing (V)]s t]/(st = [z]%).
Such a lift always exists (by Grothendieck’s classical argument as A;,¢(V) is

complete in the &-adic topology) but it is not unique. Here ¢ is a generator of
the kernel of A;, (V) — V, for example

§=[pl —p.

For later purposes we need the notion of the logarithmic self-product of X/A;, .
This is a projective map
X xl9 X 5 X x X
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which is an isomorphism away from the diagonal embedding of the discriminant
locus of X. Recall that the singular locus of X is the closed subset where X is
not smooth over A;,r. In local coordinates as above it is defined by the ideal
(s,t) which is also one of the Fitting-ideals of the relative (usual, not logarithmic)
differentials. The discriminant locus is unramified over A;,; and thus the disjoint
union of sections over quotients A;,s/[x]*. As the assertion is local around the
singular locus we may assume that it consists only of one point.

If Y — X is an étale cover which is étale over A;,r(V')[s, ]/ (st — [x]*) consider
the blowups of Y x4, . Y in the ideals (s1,s2) and (t1,t2), with s;,#; denoting
the pullbacks of the coordinates from the factors. One checks that they are both
isomorphic to Y x Y away from the selfproduct of the singular locus, and that the
identity there extends to an isomorphism. The tensorproduct of the canonical

ample line-bundles makes this into a projective scheme over Y x4, . Y.

To descend to a projective scheme over X x4, . X we have to check that
the result is independant of the choice of coordinates s,t. As we already have
canonical isomorphisms away from the singular locus it is enough to show that
they extend, and this assertion is étale local in X. However one checks easily that
in the strict henselisation of X at the singular point two sets of coordinates (s, )
and (s',¢") differ by first modifying by a unit u (s’ = su, t = t'u) and (perhaps)
by exchanging s and ¢. The key fact which we use is that the discriminant [z] is
a regular element in A;,s:

The ideals (s,t) and (s/,t') coincide. Thus either s’ or ¢’ generates this ideal
modulo s, and we may assume that ¢’ does. As s divides s’ after inverting either
s or t' the meromorphic function s’/s is regular outside the locus of (s,t) which
is generated by a regular sequence of length two. Thus s divides s’ and ' divides
t, and because of (s,t) = (s,t') the quotients are units.

Both types of coordinate changes extend to the blow-ups and induce isomor-
phims which respect the relatively ample bundle.

Finally we perform a similar operation on the diagonal embedding of D. If D
has local equation {u = 0} we blow-up (ui,u2). The final result is a relatively
projective

log
XxAianﬂXxAme



1256 Gerd Faltings

such that X embeds diagonally in it and is locally defined by one equation. This
is an ”exact immersion” (Kato). The corresponding conormal bundle is the sheaf
of logarithmic differentials wx.

There are also triple products etc: In local coordinates we blow up simultane-
ously (s1, s2), (s1,53), (s2,s3), that is we form the universal scheme where the s;
become totally ordered under the relation of divisibility.

A vectorbundle with singular connection is a vectorbundle £ on X+ ® A (V)
A(V), together with a

V:E=E& ®Amf(V) fflejL

satisfying the usual connection rule, and such that the Taylor-series converge p-
adically. That means on the smooth locus that for a local coordinate ¢ and a
local section e of £ the sequence "V(9/0t)"(e)/n! converges p-adically to zero.
A variant also applies to singular points. Equivalently we may consider the p-
adic formal scheme D?) (XT) over A;,¢(V) obtained by adjoining Za /€ to the
algebra of the logarithmic selfproduct X x!9 X*. A singular connection is an
isomorphism between the two pullbacks of £ which satisfies transitivity on the
triple product.

We also switch freely between formal vectorbundles and algebraic bundles:

Lemma 5. The restriction of vectorbundles on X to those on Xt is an equiv-
alence of categories, over bases Ay (V), Awis(V), or Aqy(V). The same holds
for bundles with singular connections.

Proof. If £ is a formal vectorbundle its reduction modulo p is algebraic and in-
duced from a vectorbundle over a noetherian base. Tensoring with a suitable very
ample line-bundle £ we may assume that the higher direct images of £ ® L/(p)
vanish fibrewise, and the zeroe’th direct image generates this bundle. It follows
that we can lift sections and that £ is the quotient of a direct sum of copies of
L£7L. Tt thus defines a p-adic sequence of points in a Quot-scheme which has an
algebraic limit. Thus £ is algebraic. For maps the argument is similar, again
writing £ as quotient of an algebraic bundle.

Finally for singular connections there exists an exact sequence of bundles

0—ERE wx — Jg(Q)(E) —-E&—0
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and singular connections correspond to splittings. (|

A logarithmic connection corresponds to an isomorphism between the two pull-
backs of £ to ﬁf) (X*) which satisfies the usual cocycle relation on the triple
product Dé?’) (XT). Equivalently the logarithmic selfproducts form a groupoid of
formal schemes which operates on X+ , and £ is a bundle on the quotient. Or
(a third description) the dual D¢ of the direct image (under the first projection
to X*) of the structuresheaf of D) (X*) is a sheaf of topological noncommu-
tative algebras on X+ and an Ox+-bimodule, and a singular connection on & is
the same as a continuous Dg¢-operation. Dg is a projective limit of locally free
O x+-modules, and locally on the smooth locus it is isomorphic to the algebra
of power-series in divided powers (£0/0t)"/n!, for any local coordinate t. At
the double points we have to replace these by {"D(D — 1)...(D —n + 1)/n! with
D =t0/0t for a log-coordinate ¢.

Assume given a non constant map X — Y between two semistable curves
over V. It preserves the log structure, and locally on open subsets Uc X we
can extend to a logarithmic map X — Y™ for lifts over A;,s(V). Two such
extensions define a U — DéZ)(Y) and we get a map on stack-quotients (under
groupoid-actions)

X*+/DP(x+) - v/ DI (V).

Stack-quotient means that the domain of definition Xt has to be replaced by a
Zariski cover, with the pullback groupoid.

Thus if £ on Y+ admits an action of Déz) (Y1) we get a welldefined pullback on
X*. Applied to X =Y we especially derive that the category of vectorbundles
with singular connections does not depend on the choice of the lift X .

The singular connection V defines a m-equivariant module, as follows: Suppose
Spec(R) C X is a small affine which we lift to an affine Spec(RT) C X . Choose
an Ajpp(V)-linear lift f

RJr — Amf(R)

of Rt — Rund the pushforward by it of £. For two different lifts the connection
gives an isomorphism between the two pushforwards, via the Taylor-series

S V(.)€ (falu) — fr(w)"/nl.
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Here u denotes a local coordinate, e a local section of £. This series converges
p-adically so we get the desired isomorphism. Note that fo(u) — fi(u) is divisible
by £ so the terms of the series have no denominators £. An example (if b < 00)
is given by the trivial bundle O+ with its trivial connection: 9] is divisible by
n! (because the usual Taylor-series converges) and p divides [Bb] and thus also
a sufficiently high power of [p] — p. This reasoning also implies that the e’s for

which we have convergence form an R*-submodule.

One possible assumption which implies convergence is that £, V is locally trivial
modulo a positive p-power p®, that is locally £ has a basis annihilated modulo p*
by V, or equivalently locally

£ = 0%,
and

V =d+ adu,

where a is a 7 X r-matrix with entries in p*¢~'R. We claim that the series then
converges if b < p — 1 and if in addition either p > 2 or s > 2:

Applied to a basis-element e we have to sum
oM ad™a...0y a(e)™ /(n + 5)!
over all tupes (n1,...,n;) of non-negative integers (with n their sum).

All the partials are divisible by n;!, the £a by p®, and €P~! by p. If we ignore
the partials we get as p-power (where o(n + j) denotes the sum of the digits of
n + j in p-adic numbers)

js+n/(p=D] = (n+35)/(p—1) +oln+j)/(p—1).

This is the largest integer below or equal

js—(—on+4)/lp-1)=s+ (G- 1(s—1/(p—1)).

Thus we obtain a p-power which is at least p® and converges to infinity if j — oo.
If j remains bounded but some of the n; — oo we get additional unbounded p-
powers from the factors n;! which we have not used yet. Thus the series converges
and all terms are divisible by p°.

Also we obtain under these conditions a Frobenius pullback for bundles trivial
modulo p°®, which sends bundles with coefficients in /Nlal, /p to those with coeffi-
cients flpmb:
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In A(V)pap
§=[pl —p=[pl(1 —p/[p)

has the same divisor as [p] and divides p (as pa > 1). Thus two different lo-
cal Frobenius-lifts coincide modulo & and the Taylor-series comparing the two
pullbacks coincides.

In the following we have to pass to the almost category, that is we consider

almost modules over RT® 4, % Ag p(R) with a singular connections, and almost

modules over A, (R).

Another consequence of b < p — 1 is that £&2~! is divisible by p in A(R)mb and
thus the ring A..;s(R) maps to Aa7b. In fact each power £" is in flmb divisible by
(n+1)!. The crystalline comparison theorem ([5], cor.5.4) defines an almost map

Hll)R(X+v 0) ®Amf(V) Aeris(V) — Helt(Xf{a Zp) ®z, Aeris(V')
which respects Poincaré-duality up to a factor ¢t and thus has an inverse up to this
factor. Furthermore the first step I'(X T, w!) of the Hodge-filtration has image
contained in the tensorproduct with F(As(V). If we base extend to A(V)qy
the image is then contained in the ideal generated by divided powers £ /n! with
n > 0. Thus the image is divisible by &.

Geometrically this map has the following interpretation: Consider extensions
0)—-0—-&—0—(0)

in the category of vectorbundles on X+ with singular connections, with coef-
ficients in fla,b. Then the Taylor-series converges for such extensions: In the
notation above o becomes unipotent with square zero, and we have to sum

9yag™/(n+1)!
which is divisible by a&™/(n + 1) and thus converges p-adically to zero..

So we get an almost 7-equivariant module over the A(R),p. This module is
defined by an extension of trivial étale Z,-sheaves.

If we multiply the Poincaré duality product on H} (X ™) ® Ap s (V) A(V)a,b by
& we get a non-degenerate product on the space describing such extensions £ with
singular connections. As our map respects dualities up to a factor ¢/ there exists
an inverse up to t/&, so this factor then annihilates the kernel and cokernel.
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We claim that ¢/¢ divides p? (in A(R),) provided a > 1/p: It is known that
t/€ is up to a unit equal to 1— [gp], where the second term denotes the Teichmiiller
representative of a sequence of p-power roots of a primitive p-th root of unity.
As it is equal (in R(R)) to 1 modulo Ql/(pfl) the image of 1 — [gp] in the Witt
vectors over R(R)/ (Ql/ (P=1)) vanishes. This means that in A;,;(R) we have an

expansion
1-1¢) =3 p"e)

with z, € R(R) divisible by ]zpfn/ (=1)_ Also the leading term becomes a unit if
we divide by this p-power. Hence

1_ [g ] _ [El/(p_l)][UO](l + Z[Qna—(l—pin)/(p—l)][wn]Xn)

P
n>0

with ug a unit, and this is up to a unit equal to [p/®~D] in A(R).p if a > 1/p.

It then also divides p?.

The de Rham cohomology with coefficients in €' defines a cohomological
functor on vectorbundles with singular connection. The functor to mi-equivariant
modules induces maps on cohomology in degrees zero and one (defined by exten-
sions). To circumvent the problem of treating degree two we pass to the loga-
rithmic context, that is assume that the divisor at infinity is nonempty. This has
the advantage that various second cohomology groups will vanish.

Our formulas work for almost modules modulo a power p™, and for bundles
modulo p™ with singular connections. They show that there exists fixed numbers
s,t such that a bundle modulo p” with singular connection trivial modulo p®
defines a mi-equivariant almost module modulo p™. As the relevant cohomology
vanishes in degree two (for bundles with singular connections because they are
unipotent modulo p) we can always lift bundles modulo p™ to bundles modulo

p" 1 and the same holds for equivariant almost modules.

We have seen that any extension of trivial bundles defines an extension of al-
most modules. As the corresponding map on first cohomology groups has kernel
and cokernel annihilated by a fixed power p' it follows that if two singular ex-
tensions modulo p™ induce isomorphic extensions of almost modules then they
are already isomorphic modulo p"~*, and that any extension modulo p” of trivial
almost modules which is trivial modulo p"™ (for some r > 0) is induced from an
extension (trivial modulo p”) of trivial bundles modulo p™. We derive from that:
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Proposition 6. Suppose n > s+t + 1. Then any m1-equivariant almost module

modulo p™ trivial modulo p*Tt is induced from a bundle (modulo p") with singular

s+t+1

connection trivial modulo p*. Furthermore for bundles trivial modulo p any

map of such modules is induced modulo p"~t by a map of bundles modulo p™~¢,

unique modulo p™ 57,

Proof. We use induction over n. The start n = s + t is trivial. Assume the
result holds for n — 1. Given a representation modulo p”, trivial modulo p**?, its

"~1 comes from a bundle modulo p™~! which is trivial modulo

reduction modulo p
p®. Tt lifts modulo p™ (the relevant second de Rham cohomology vanishes) and
induces a new mi-equivariant module modulo p™. It differs from the original
module by a class in H' which corresponds to an extension trivial modulo p”~!
of of trivial almost modules modulo p™. By the previous it is induced by an

n—1—t

extension of trivial bundles modulo p™, trivial modulo p . Use this extension

to modify our lift, and we get the first assertion.

For maps we proceed in the same way: Given a map modulo p™ first consider its

n—1—t n—1—t
)

reduction modulo p which is induced by a map of bundles modulo p

by induction. Trying to lift this map modulo p™. The obstruction to this is

n—1—t

an extension of trivial bundles modulo p™, trivial modulo p . Its image on

almost modules vanishes modulo p", so the class itself vanishes modulo p™~t.

n—t

Thus we may lift modulo p”~* our map on bundles. The lift may not induce the

desired map on almost modules, but the two differ by a map modulo p™~* which is

n=1=t i e. an endomorphism of the trivial almost module modulo

trivial modulo p
p. It is induced from a map of trivial bundles modulo p or by a map of bundles

modulo p"~! which is trivial modulo p"~ !, O

Passing to the limit n — oo we obtain that almost modules trivial modulo
p*T are induced from bundles with singular connections trivial modulo p*, and
homomorphisms correspond. Also the Frobenius on representations induces an
isomorphism of Frobenius pullbacks which map the pushouts to A(V)ayb/p to
those to A(V')pa,p-

Finally in the general case where the divisor D is allowed to by empty we choose
two such fiberwise divisors D’ and D” and use that the singular connections
without poles are the intersection of singular connections with poles in D’ and
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singular connections with poles in D”, the intersection taking place in connections
with poles in D’ + D”. Also there is an analogue for almost modules.

For arbitrary 7, representations of the fundamental group, not necessarily

close to trivial, we can find a Galois cover (defined over V)
Y - X,

such that the representation becomes sufficiently close to the identity on 71 (Y).
Here Y is semistable, the generic fibre is a G-cover, and we may assume that
the map is stable (as defined by Kontsevich-Manin). We then get a bundle with
singular connection on any lift Y of Y to A;, (V) and this lift is G-equivariant
for the twisted action on Y/ Déz) (Y*). So all in all the bundle is equivariant

under a groupoid which is an extension of G by DéQ)(YJF). However 1 do not
know how to relate these data to bundles on X .

4. EXAMPLES

a) Consider X = P! with D = {0,00}. We consider representations and
bundles of rank one. The geometric fundamental group is Z(l) so representations
on Qp are non canonically identified with Z,. For line-bundles with singular

connections one gets for bundle always the trivial bundle Ox, with connection
Vo=d+adl/T

with a € E71A(V)4p. The action of Frobenius can be defined without convergence
problems as X admits the Frobenius-lift given by 7% and it sends V4 to Vg,
The fixed-points are (@ptfl. There is a natural map from representations to
Frobenius-bundles with singular connection
log _
Hom(Zy(1),Z3) = Hom(Zp(1),Qp) = Qut ™!

which on small representations coincides with our general construction, and which
is neither injective nor surjective. This example suggests that one should impose

some conditions on the monodromy around D, as in [6].

b) Assume X has good reduction and D is empty. Line-bundles with a con-
nection are classified by the A;,¢(V')-points of the universal vectorextension E of

the Jacobian J, which lies in an exact sequence

0—-Qx - FEF—J—0,
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with Qx the vectorgroup given by the differentials on X. It admits a Frobenius-
lift over A;np(V) (after lifting X'). Singular connections correspond to base-
extension by embedding 2x into its tensor-product with & *1A(V)a,b. A natural
Frobenius-lift can be defined for some such extensions but not all of them. Rep-
resentations of the geometric fundamental-group into Z, are given by homomor-
phisms defined on the Tate-module T),(J). Here the torsion-elements correspond
to the (p — 1)-torsion in E and are all elements of E(A(V)qp).

On the other hand representations with values in 1 4 pZ, correspond via the
exponential to representations into pZ,. The crystalline comparison theorem

defines an inclusion
Tp(J) ® Acrys(V) — Lie(E/Aerys(V))
with cokernel annihilated by . It induces an isomorphism
Tp())(=1) @ A(V)ap = (Lie(E/Ams(V) + £ '0x) @ AV )ap-

The representations with values in pZ, are naturally isomorphic to pT,(J)(—1).
Via the exponential they correspond to certain elements in the pushout of the
universal vectorextension. Frobenius-lifts exist on a suitable subgroup (the image
under the exponential) of this pushout as well as on the original vectorextension.
They combine to give a partial Frobenius with fixed-points the desired represen-
tations.

c¢) Assume € is a filtered Frobenius-crystal on X. It extends naturally to any
lift X to A.s. It is associated to a p-adic local system L if

S(Bcrzs(R)) =L® Bcris(R)
for affines Spec(R) C X (see [4]). With the induced product filtration
FO(S ®Acris(v) Bcris(v)

is a bundle with singular connection and it corresponds to L.
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