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Abstract: Given a projective variety X, a smooth divisor D, and semipositive line
bundles (L1, h1), . . . , (Lm, hm), we consider the “multiply twisted pluricanonical
bundle” F :=

⊗m

i=1
(KX +D+Li) on X and FD :=

⊗m

i=1
(KD +Li|D). Let Ij be

the multiplier ideal sheaves associated to hj |D, j = 1, . . . , m. We show that, under
a certain conditions on curvature, H0(D, FD ⊗ I1I2 · · ·Im) lies in the image of
the restriction map H0(X, F ) → H0(D, FD). Our result is inspired by Siu’s proof
of invariance of plurigenera and its simplification made by Păun. We emphasize its
nature as a multiple version of extension theorem of Ohsawa-Takegoshi type (the
case with m = 1), whose proof is also given here in detail.
Keywords: Pluricanonical sections, multiplier ideal sheaves, multiply twisted, ex-
tension theorems of Ohsawa-Takegoshi type.

1. Introduction

In this work we study the problem of extending “multiply twisted” pluri-
canonical forms from smooth divisors in a complex projective manifold. We
first state the main theorem and then review some earlier results. Definitions
and notation can be found in Section 2.

Theorem 1.1. Let X be a projective manifold of dimension n, D ⊂ X a smooth
divisor with canonical section sD.
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Let hD be an almost semipositive metric (cf. 2.3) on the line bundle D such
that |sD|hD

is essentially bounded on X, i.e. bounded by a fixed number almost
everywhere, and let (L1, h1), . . . , (Lm, hm) be semipositive line bundles (cf. 2.3)
such that the restriction of the singular metric hj to Lj |D is well defined, i.e. not
identically +∞ along D.

If there is a real number µ > 0 such that

µ
√−1Θhj

>
√−1ΘhD

as currents on X for j = 1, . . . , m, then for every section σ of
m⊗

j=1

(KD + Lj |D)⊗I1I2 · · ·Im

on D, where Ij denote the multiplier ideal sheaves I (hj |D), there exists a global
section σ̃ of

m⊗

j=1

(KX + D + Lj) = m(KX + D) + L1 + · · ·+ Lm

on X such that σ̃|D = σ ∧ (dsD)⊗m (cf. 2.1).

Extension theorems of this type (for m = 1) date back to the work of Ohsawa
and Takegoshi [11] on extending holomorphic functions from submanifolds of
Stein manifolds with weighted L2 estimates. Their key idea is to use a modified
Bochner–Kodaira inequality to achieve the L2 estimate for a skewed ∂ operator.
This theorem was generalized by Manivel [10] to the case of holomorphic sections
of vector bundles. Variants of their theorems were used by Angehrn and Siu [1],
in their study of Fujita’s conjecture, to prove the semicontinuity of multiplier
ideal sheaves under variation of the singular metrics, and used by Siu [18, 19],
in his proof of the invariance of plurigenera, to extend pluricanonical forms from
the central fiber of a smooth projective family of complex manifolds to the total
space.

The argument exploited in [19] was generally referred to as a “two tower” ar-
gument by Siu. Indeed, in [19], the theorem of Ohsawa-Takegoshi type (m = 1)
is for the canonical bundle twisted by a suitable line bundle. In passing from
a single canonical bundle to pluricanonical bundles, Siu combined the extension
theorem with Skoda’s theorem on (effective) ideal generation as well as a supre-
mum norm estimate. Later Păun [13] simplified Siu’s approach by showing that
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the supremum norm condition can be replaced by an L2 one and the invariance
of plurigenera can be deduced directly from the extension result without using
Skoda’s theorem. More precisely, he proved the following result:

Theorem 1.2 (Păun [13]). Let π : X → ∆ be a projective family over the unit
disk and (L, h) a semipositive line bundle on X such that the restriction h|X0 is
well defined. Then every section of (mKX0 + L|X0) ⊗I (h|X0) on X0 extends to
a section of mKX + L.

His proof consists of an elegant single tower climbing induction argument.
The induction is on the multiple of the canonical bundle twisted by the fixed line
bundle L equipped with a fixed singular metric h. It is then natural to ask, when
climbing the tower, can we add different line bundles each with its own singular
metric instead of just a constant pair (L, h). If this can be achieved, one may
possibly obtain an extension theorem of “multiply twisted” pluricanonical forms.
In fact, Demailly proved the following result:

Theorem 1.3 (Demailly [3]). Let X and π be as in Theorem 1.2 and (Lj , hj)
(1 6 j 6 m) semipositive line bundles on X such that hj |X0 are well defined.
Suppose I (hj |X0) = OX0 for j = 2, . . . , m. Then every section of (mKX0+L1|X0+
· · ·+ Lm|X0)⊗I (h1|X0) on X0 extends to a section of (mKX + L1 + · · ·+ Lm).

Note that, although Theorem 1.3 enables one to add different line bundles Lj ,
only one of them is allowed to be equipped with a singular metric whose multiplier
ideal sheaf is nontrivial. This motivates us to look at the statement like Theorem
1.1, which removes this restriction. This was recently achieved in [20].

Theorem 1.4 ([20]). Let π : X → ∆ be a projective family over the unit disk
and (Lj , hj) (1 6 j 6 m) semipositive line bundles on X such that hj |X0 are well
defined. Then every section of (mKX0 + L1|X0 + · · ·+ Lm|X0)⊗I1I2 · · ·Im on
X0 extends to a section of (mKX+L1+ · · ·+Lm) on X, where Ij is the multiplier
ideal sheaf I (hj |X0) on X0.

Inspired by the results of Tsuji, Takayama, and Hacon-McKernan respectively
in connection with their work on pluricanonical series [15], [14], and [8], we proved
our theorem under the setting of pairs of a complex projective manifold and a
smooth divisor whose associated line bundle satisfies some conditions on cur-
vature. The projective family case is relatively easier in that the line bundle
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associated to the central fiber is trivial, hence it can be ignored in the necessary
curvature condition, i.e. the curvature inequality in Theorem 1.1 holds automat-
ically.

Most of our arguments in the proof of Theorem 1.1 follow closely Păun’s one
tower argument. The major new input to overcome the non-triviality of multiplier
ideal sheaves I (hj |D), which occurs during the intermediate inductive steps, is
a more careful choice of the auxiliary twisting ample line bundle (denoted by
A in our argument). This bundle needs to be sufficiently ample to take care of
both the required metric properties and the global generation for related coherent
sheaves. The complete discussion is presented in Section 3 and Section 4.

For completeness and self-containedness of this article, we include in Appendix
1 (Section 5) a proof of the Ohsawa–Takegoshi type theorem which we will use.
The proof is exactly the same as the proof in [19], except that we deal with the
situation in which the line bundle D is not trivial. A similar statement appeared
in [17], Theorem 2. It is worth noting that Friedrichs and Hörmander’s results ([5]
and [7]) on the density in the graph norm (cf. Remark 5.2) plays an essential role
when using the Bochner–Kodaira formula to get a priori estimates. This density
result requires the weight functions to be smooth or to have at most suitably mild
singularities. Therefore, to allow hD to be a singular metric, one has to reduce
the proof to the case when it is smooth. We discuss such a reduction in detail for
completeness, although it might be well known to experts. In addition, Theorem
1.1 is a refinement of [17], Theorem 1.

In fact we only dealt with the case hD being smooth in our first version sub-
mitted on October 2010 since we were still struggling on this subtle regularization
issue at that time. We developed our treatment in Appendix 1 following ideas of
Siu which we learnt from several of his lectures and private notes. We consider a
locally biholomorphic projection from a Stein manifold to a Euclidean space and
apply the convolution method on the target Euclidean space.

We also noticed that in a recent preprint by Demailly, Hacon, and Păun [4],
an extension theorem similar to Theorem 3.1 has been proven. They also gave a
detailed discussion on the process of smoothing singular metrics. Their approach
is basically as follows. First one imbeds a Stein manifold V (which will be the
complement of some suitable sufficiently ample divisor H in the projective man-
ifold X under consideration) in an ambient M (which is an Euclidean space in
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their case). Then, by a theorem of Siu (Theorem 4.2 in [4]) one can construct a
Stein neighborhood W of V in the ambient space M which admits a holomorphic
retraction r : W → V . To smoothen plurisubharmonic functions on V , one first
pulls them back to W via r, which are still plurisubharmonic. After applying the
usual convolution method in the Euclidean space M to regularize the pulled back
functions, one takes their restrictions on V .

These two methods are different. Although both methods crucially use the
Stein property and convolution, the difference lies in that the approach in [4] is
“injective” and ours is “projective”.

We are able to extend Theorem 1.1 to allow Lj ’s to be R divisors instead of
genuine line bundles. We are grateful to the referee for asking this question. Since
the proof requires some other techniques, we will present it in a separate work.

Acknowledgements. This collaboration arose from discussions during the
seminar series “Analytic Approach to Algebraic Geometry” in December 2008
and March 2010 at National Taiwan University sponsored by the National Center
for Theoretic Sciences and Taida Institute of Mathematical Sciences. Two major
references we studied are Siu’s Harvard lecture notes on “Complex geometry” and
the excellent online book “Complex analytic and differential geometry” written
by Demailly. We are grateful to both authors for their inspiring writings and
generous sharing. Also we would like to thank the referee for pointing out a gap
in an earlier version of the proof of Lemma 5.1, which led us to formulate the
almost semipositivity condition for hD in our Theorem 1.1.

C.-L. would like to express his sincere gratitude to Professor Eckart Viehweg
for providing crucial help during his early stage of mathematical career.

2. Preliminaries and Conventions

2.1. Adjunction. Given a smooth divisor D in a compact complex manifold X,
we use the same letter D to denote the line bundle associated to D. In order to
justify the restriction of sections of adjoint line bundles on X to get sections of
adjoint line bundles on D, we need to take a closer look at the adjunction formula
KD ' (KX +D)|D. Locally D is given by a set of equations {sα = 0} with respect
to an open cover {Uα}. The relations sα = gαβsβ on Uα ∩ Uβ give a 1-cocycle
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{gαβ} of the sheave O∗
X which defines the line bundle D, and tautologically the

locally defined functions sα’s give a canonical section, denoted by sD, which is
unique up to scaling and will be fixed throughout all arguments. The short exact
sequence

0 → N∗
D/X → T ∗X |D → T ∗D → 0

implies a canonical isomorphism by taking wedge product:

KD + N∗
D/X = KX |D.

(We adopt the additive notation for tensor products of line bundles.)

On the other hand, dsα is a local frame of N∗
D/X on Uα. Let eα be a local

frame of D on Uα for all α. The relation sα = gαβsβ and eβ = gαβeα implies that
{dsα⊗eα} defines a global frame, denoted by dsD, of the line bundle N∗

D/X +D|D,
and hence N∗

D/X + D|D is trivial. This induced the isomorphism

KD ' KD + N∗
D/X + D|D = KX |D + D|D

by sending η to η ∧ dsD.

2.2. Singular metrics and pseudonorms. The term “singular hermitian met-
ric” or “singular metric” always means a hermitian metric whose local weight
functions are locally Lebesgue integrable, and hence smooth metrics are counted
as singular metrics. For such metrics h we use Θh to denote their curvature
currents. Locally we have h = e−ϕ with Θh = −∂∂̄ log e−ϕ = ∂∂̄ϕ.

Let X be a complex manifold of dimension n and L a line bundle on X with
a singular metric h. Let s be a (Lebesgue) measurable section of mKX + L.
Suppose s and h are represented by functions f(z) and h(z) in terms of local
coordinates z = (z1, . . . , zn), zj = xj +

√−1yj , of trivializing charts of L.

Definition 2.1. We define a measurable (n, n)-form 〈s〉
2
m
h by setting

〈s〉
2
m
h = h(z)

1
m |f(z)| 2

m dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn

locally. 〈s〉
2
m
h is clearly well defined and is nonnegative with respect to the canon-

ical orientation on X associated to dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn. Therefore we
define

〈〈s〉〉h =
∫

X
〈s〉

2
m
h 6 ∞.

This number is called the pseudonorm of s with respect to h.
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Suppose g is a smooth hermitian metric on TX with Kähler form ω. g induces

a hermitian metric on the canonical bundle KX , denoted as gω. Let dVω =
ωn

n!
be the volume form on X induced by g. It is easily seen that

〈s〉
2
m
h = |s|

2
m

g⊗m
ω ⊗h

dVω.

Using this expression one sees directly the following facts:

(i) Suppose L and L′ are two line bundles with singular metrics h and h′

respectively. For any measurable sections s of mKX + L and s′ of L′, and l ∈ N
we have

(2.1) 〈s⊗ s′〉
2
m
h⊗h′ = |s′|

2
m
h′ 〈s〉

2
m
h

and

(2.2) 〈sl〉
2

lm

h⊗l = 〈s〉
2
m
h .

(ii) If sj is a measurable section of mjKX + Lj and hj is a singular metric
on Lj , j = 1, . . . , r, then we can deduce from the usual Hölder inequality the
“Hölder inequality for pseudonorms”:

(2.3) 〈〈s1 ⊗ · · · ⊗ sr〉〉m1+···+mr
h1⊗···⊗hr

6 〈〈s1〉〉m1
h1
· · · 〈〈sr〉〉mr

hr
.

2.3. Almost semipositive line bundles and pseudoeffective divisors. A
semipositive line bundle (resp. an almost semipositive line bundle) is a pair (L, h)
of a line bundle L and a singular hermitian metric h on L such that

√−1Θh is a
closed positive current in the sense of Lelong (resp. the sum of a closed positive
current and a smooth (1, 1)-form), or equivalently, each of its local weights is a
nontrivial plurisubharmonic function, i.e. not identically −∞ (resp. the sum of a
nontrivial plurisubharmonic function and a smooth function). We will call such h

a semipositive metric (resp. an almost semipositive metric) on L. The multiplier
ideal sheaf associated to an almost semipositive singular metric h is the coherent
sheaf of local L2

h sections and is denoted by Ih or by I (h).

Remark 2.1. On a projective manifold X, a pair (L, h) is almost semipositive if
and only if there exist a semipositive line bundle (L1, h1) and a line bundle with
smooth hermitian metric (L2, h2) such that L = L1 ⊗ L2 and h = h1 ⊗ h2.

A typical type of semipositive line bundles consists of effective line bundles by
the following construction.
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Definition 2.2. Let S = {s1, . . . , sl} be a set of nontrivial global holomorphic
sections of a line bundle L. For any σ ∈ Lx where x ∈ X, we choose an arbitrary
smooth metric h on L and define

|σ|2hS
:=

|σ|2h
l∑

j=1
|sj(x)|2h

.

If s is a section of KX + L and S = {s1, . . . , sl} a set of global holomorphic
section of L, then for any smooth metric h on L we have

(2.4) 〈s〉2hS
=

〈s〉2h
l∑

j=1
|sj |2h

.

It is clear that the definition does not depend on the choice of h. Locally if the
sections {sj} are represented by functions {fj} then the weight function is

ϕ := log
( l∑

j=1

|fj |2
)

which is plurisubharmonic, and hence
√−1ΘhS

=
√−1∂∂ log(Σj |fj |2) > 0.

Denote by Psef(X) ⊆ N1(X)R the closure of the real convex cone generated
by numerical classes of semipositive line bundles over X. In the algebraic case,
we have the following interpretation.

Remark 2.2. (cf. [2]) If X is projective then Psef(X) = Eff(X) = Big(X), where
Eff(X) (resp. Big(X)) is the closure of effective (resp. big) cone of X, which is
also known as the cone of pseudoeffective divisors.

3. The main extension result

3.1. An extension theorem for adjoint line bundles. We will need the
following extension theorem of Ohsawa–Takegoshi type for adjoint line bundles,
whose proof will be given in Appendix 1.

Theorem 3.1. Let X be a projective manifold, D ⊆ X a smooth divisor. Sup-
pose hD an almost semipositive metric on the line bundle D such that |sD|hD

is
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essentially bounded on X and (L, h) be a semipositive line bundle on X such that
the restriction h|D is well defined. If there is a real number µ > 0 such that

µ
√−1Θh >

√−1ΘhD

as currents on X, then for every section s of (KD + L|D)⊗I (h|D) there exists
a section s̃ of KX + D + L such that s̃|D = s ∧ dsD and

∫

X
〈s̃〉2hD⊗h 6 C

∫

D
〈s〉2h

where C > 0 only depends on ess. supX |sD|hD
and µ.

Note that the statement of Theorem 1.1 for m = 1 is exactly the statement of
Theorem 3.1. Hence we fix from now on a positive integer m ≥ 2 and consider a
non-zero σ as in the hypothesis of Theorem 1.1.

3.2. Reduction to constructing a semipositive metric on m(KX + D) +∑m

1
Lj. Note that m(KX +D)+

∑m

1
Lj = KX +D+(m−1)(KX +D)+

∑m

1
Lj .

In order to prove Theorem 1.1 via Theorem 3.1, we need to create a semipositive
metric h0 on (m− 1)(KX + D) +

∑m

1
Lj such that

µ
√−1Θh0 >

√−1ΘhD

as currents and ∫

D
〈σ ∧ ds

⊗(m−1)
D 〉2h0

< ∞.

The construction of h0 goes as follows. First, we choose A to be so ample that
the following conditions hold:

(A1) For each r = 0, 1, . . . , m− 1, the line bundle (m− r)A is generated by its
global sections {t(r)l }16l6N .

(A2) The coherent sheaf (KD + Lj |D + A|D) ⊗ Ij on D is generated by its
global sections {sj,l}16l6N for each 1 6 j 6 m.
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(A3) The following map induced by I1 ⊗ · · · ⊗Im → I1 · · ·Im is surjective:

m⊗

j=1

H0 (D, (KD + Lj |D + A|D)⊗Ij)

−→ H0
(
D, (mKD +

∑m

1
Lj |D + mA|D)⊗I1 · · ·Im

)
.

This can be achieved by Lemma 6.1 in Appendix 2.

(A4) Every section of
(
m(KX + D) +

∑m

1
Lj + mA

)|D on D extends to X.
This is a consequence of the Serre vanishing theorem.

Suppose that we have a semipositive metric h∞ (which will be constructed in
Lemma 4.3 by using the auxiliary ample bundle A) on m(KX + D) +

∑m

1
Lj

such that
∣∣σ ∧ ds⊗m

D

∣∣
h∞

6 1. We take h0 = h
m−1

m∞ (h1 · · ·hm)
1
m . The curvature

condition holds since

µ
√−1Θh0 =

µ(m− 1)
m

√−1Θh∞ +
1
m

m∑

j=1

µ
√−1Θhj

>
√−1ΘhD

by the curvature assumption in Theorem 1.1.

The finiteness condition also holds. To see this, first note that, by (2.1) and
(2.2),

〈σ ∧ ds
⊗(m−1)
D 〉2h0

= 〈(σ ∧ ds
⊗(m−1)
D )⊗m〉

2
m

h⊗m
0

= 〈(σ ∧ ds⊗m
D )⊗(m−1) ⊗ σ〉

2
m

h
⊗(m−1)
∞ ⊗h1⊗···⊗hm

=
∣∣(σ ∧ ds⊗m

D )⊗(m−1)
∣∣ 2

m

h
⊗(m−1)
∞

〈σ〉
2
m
h1⊗···⊗hm

=
(∣∣σ ∧ ds⊗m

D

∣∣2
h∞

)m−1
m 〈σ〉

2
m
h1⊗···⊗hm

6 〈σ〉
2
m
h1⊗···⊗hm

.

By (A3),

σ ⊗ t
(0)
l =

nl∑

p=1

τl;1,p ⊗ · · · ⊗ τl;m,p
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where τl;j,p are sections of (KD + Lj |D + A|D) ⊗Ihj |D for l = 1, . . . , N . Again,
by (2.1) and (2.2),

( N∑

l=1

∣∣t(0)
l

∣∣ 2
m

h⊗m
A

)
〈σ〉

2
m
h1⊗···⊗hm

=
N∑

l=1

〈σ ⊗ t
(0)
l 〉

2
m

h1⊗···⊗hm⊗h⊗m
A

6
N∑

l=1

nl∑

p=1

〈τl;1,p ⊗ · · · ⊗ τl;m,p〉
2
m

h1⊗···⊗hm⊗h⊗m
A

where hA is a fixed smooth metric on A.

M0 := min
D

∑

l

∣∣t(0)l

∣∣ 2
m

h⊗m
A

> 0

exists since
∑

l

∣∣t(0)
l

∣∣ 2
m

h⊗m
A

is a nonvanishing smooth function by (A1) and D is

compact. Therefore

〈σ〉
2
m
h1⊗···⊗hm

6 1
M0

N∑

l=1

nl∑

p=1

〈τl;1,p ⊗ · · · ⊗ τl;m,p〉
2
m

h1⊗···⊗hm⊗h⊗m
A

.

By the above, (A1), and (2.3),
∫

D
〈σ ∧ ds

⊗(m−1)
D 〉2h0

6 1
M0

N∑

l=1

nl∑

p=1

∫

D
〈τl;1,p ⊗ · · · ⊗ τl;m,p〉

2
m

h1⊗···⊗hm⊗h⊗m
A

6 1
M0

N∑

l=1

nl∑

p=1

( ∫

D
〈τl;1,p〉2h1⊗hA

) 1
m

· · ·
( ∫

D
〈τl;m,p〉2hm⊗hA

) 1
m

< ∞.

Applying Theorem 3.1 to prove Theorem 1.1 is then justified if such h∞ exists.

4. Construction of the metric h∞

4.1. A modification of Siu and Păun’s induction. Here we follow the ar-
gument in [13] and [19]. For every positive integer k = qm + r (q = [k/m] the
Gauss symbol of k/m and 0 6 r 6 m− 1 the remainder), we let

L(k) := q

m∑

j=1

Lj + L1 + · · ·+ Lr
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and let Fk := k(KX + D) + L(k) + mA where A is the ample bundle chosen in
3.2.

Were m(KX + D) + L(m) known to have a family of sections which do not
vanish identically along D and their restrictions to D are basically σ ∧ ds

⊗(m)
D

multiplied by some functions which do not have common zeros, we can simply
take h∞ to be the semipositive metric defined by them (Definition 2.2).

However, we do not know a priori that m(KX + D) + L(m) have any nonzero
sections (we are trying to produce one). Instead, for the ample line bundle A we
can find a set of sections Sk of Fk = k(KX + D) + L(k) + mA whose restrictions
to D have properties similar to those mentioned above (Lemma 4.1). Then we
try to obtain h∞ by “taking the q-root” of the semipositive metrics hSqm on
Fqm = q(mKX + mD + L(m)) + mA to “eliminate” the line bundle factor mA

(Lemma 4.3).

Now we let Λr :=
∏r

1{1, . . . , N} for r = 1, 2, . . . , m − 1. For every J =
(j1, . . . , jr) ∈ Λr, we define

s
(r)
J := s1,j1 ⊗ · · · ⊗ sr,jr

with the convention that Λ0 = {0} s
(0)
0 := 1 for r = 0. We define the special

index set Λ∗m to be
∏m

1 {1, . . . , N} and sections ŝ
(m)
J = s1,j1 ⊗ · · · ⊗ sm,jm for all

J = (j1, . . . , jm) ∈ Λ∗m. We consider for each k ≥ m the following statement:

(E)k: There exists a family of sections

Sk = {σ̃(k)
J,l : J ∈ Λr, 1 6 l 6 N}

of Fk over X such that

(4.1) σ̃
(k)
J,l |D = σ⊗[k/m] ⊗ s

(r)
J ⊗ t

(r)
l ∧ ds⊗k

D

for all J ∈ Λr and l = 1, . . . , N , where r = k − [k/m]m.

Lemma 4.1. (E)k holds for all k > m. Moreover, there exists a constant C0 > 0
which only depends on ess. supX |sD|hD

, µ, σ, and the choices of {t(r)l } and {sj,l}
in (A2) and (A3) above such that

(4.2)
∫

X

∑

J∈Λr
l=1,...,N

〈σ̃(k)
J,l 〉2hD⊗hSk−1

⊗hr∗ 6 C0
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for all k > m, where r = k − [k/m]m and

r∗ :=

{
r if r 6= 0,

m if r = 0.

Proof. First, (E)m holds by (A4). We proceed to prove that (E)k−1 implies (E)k

for any k > m. Note that Fk = KX + D + Fk−1 + Lr∗ and hence Fk|D =
KD + (Fk−1 + Lr∗)|D + (N∗

D/X + D|D) by 2.1. We are going to apply Theorem

3.1 to the situation L = Fk−1 + Lr∗ and s = σ⊗[k/m] ⊗ s
(r)
J ⊗ t

(r)
l ∧ ds

⊗(k−1)
D . We

choose the singular metric h on Fk−1 + Lr∗ to be hSk−1
⊗ hr∗ .

The restriction hSk−1
|D is well defined by (4.1), (A1), (A2), and (A3); hr∗ |D is

well defined by the hypothesis of Theorem 1.1. Therefore h|D is well defined. By
2.3 and the hypothesis of Theorem 1.1,

µ
√−1Θh = µ

√−1ΘhSk−1
+ µ

√−1Θhr∗ >
√−1ΘhD

and the curvature condition is fulfilled.

In the following we will show that

∫

D
〈σ⊗[k/m] ⊗ s

(r)
J ⊗ t

(r)
l ∧ ds

⊗(k−1)
D 〉2hSk−1

⊗hr∗ 6 C ′

for a positive number C ′ which only depends on the choices of {t(r)l } and {sj,l} in
(A2) and (A3) above. This will imply s is a section of

(
KD +(Fk−1+Lr∗)|D

)⊗Ih

and, combined with the pseudonorm inequality on Theorem 3.1, will yield (4.2).

Case 1: r 6= 0, i.e. [k/m] = [(k − 1)/m].

We choose smooth metrics hA on A|D, h(r−1) on (r− 1)KD + L(r−1)|D, and h′

on [k/m](mKD +L(m))+(k−1)(N∗
D/X +D|D). We let h := h′⊗h(r−1)⊗h⊗m

A on
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Fk−1|D. Writing J = (J ′0, j0) with J ′0 ∈ Λr−1, by (2.1), (2.4), and (4.1), we have

〈σ⊗[k/m] ⊗ s
(r)
J ⊗ t

(r)
l ∧ ds

⊗(k−1)
D 〉2hSk−1

⊗hr

=
〈σ⊗[k/m] ⊗ s

(r)
J ⊗ t

(r)
l ∧ ds

⊗(k−1)
D 〉2h⊗hr∑

J ′∈Λr−1

l′=1,...,N

∣∣σ⊗[(k−1)/m] ⊗ s
(r−1)
J ′ ⊗ t

(r−1)
l′ ∧ ds

⊗(k−1)
D

∣∣2
h

=

∣∣σ⊗[k/m] ∧ ds
⊗(k−1)
D

∣∣2
h′

∣∣s(r−1)
J ′0

∣∣2
h(r−1)〈sr,j0〉2hA⊗hr

∣∣t(r)l

∣∣2
h
⊗(m−r)
A∑

J ′∈Λr−1

l′=1,...,N

∣∣σ⊗[k/m] ∧ ds
⊗(k−1)
D

∣∣2
h′

∣∣s(r−1)
J ′

∣∣2
h(r−1)

∣∣t(r−1)
l′

∣∣2
h
⊗(m−r+1)
A

=

∣∣s(r−1)
J ′0

∣∣2
h(r−1)

∑
J ′∈Λr−1

∣∣s(r−1)
J ′

∣∣2
h(r−1)

×
∣∣t(r)l

∣∣2
h
⊗(m−r)
A

N∑
l′=1

∣∣t(r−1)
l′

∣∣2
h
⊗(m−r+1)
A

〈sr,j0〉2hA⊗hr

6

∣∣t(r)l

∣∣2
h
⊗(m−r)
A

〈sr,j0〉2hA⊗hr

N∑
l′=1

∣∣t(r−1)
l′

∣∣2
h
⊗(m−r+1)
A

.

By (A1) and the choices of sr,j ,

C1 := max
l,r

∫

D

∣∣t(r)l

∣∣2
h
⊗(m−r)
A

〈sr,j〉2hA⊗hr

N∑
l′=1

∣∣t(r−1)
l′

∣∣2
h
⊗(m−r+1)
A

exists. It is clear that
∫

D
〈σ⊗[k/m] ⊗ s

(r)
J ⊗ t

(r)
l ∧ ds

⊗(k−1)
D 〉2hSk−1

⊗hr
6 C1.

Case 2: r = 0, i.e. [k/m] = [(k − 1)/m] + 1.

We choose smooth metrics hA on A|D, h(m−1) on (m− 1)KD +L(m−1)|D, ĥ on
KD + Lm|D + A|D, and h′ on [(k− 1)/m](mKD + L(m)) + (k− 1)(N∗

D/X + D|D).

We let h := h′ ⊗ h(m−1) ⊗ h⊗m
A on Fk−1|D. Now J ∈ Λ0 = {0}, by (2.1), (2.4),

and (4.1), we have
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〈σ⊗[k/m] ⊗ s
(0)
0 ⊗ t

(0)
l ∧ ds

⊗(k−1)
D 〉2hSk−1

⊗hm

=
〈σ⊗[k/m] ⊗ t

(0)
l ∧ ds

⊗(k−1)
D 〉2h⊗hm∑

J ′∈Λm−1

l′=1,...,N

∣∣σ⊗[(k−1)/m] ⊗ s
(m−1)
J ′ ⊗ t

(m−1)
l′ ∧ ds

⊗(k−1)
D

∣∣2
h

=

∣∣σ⊗[(k−1)/m] ∧ ds
⊗(k−1)
D

∣∣2
h′〈σ ⊗ t

(0)
l 〉2

h(m−1)⊗h⊗m
A ⊗hm∑

J ′∈Λm−1

l′=1,...,N

∣∣σ⊗[(k−1)/m] ∧ ds
⊗(k−1)
D

∣∣2
h′

∣∣s(m−1)
J ′

∣∣2
h(m−1)⊗h

⊗(m−1)
A

∣∣t(m−1)
l′

∣∣2
hA

=
〈σ ⊗ t

(0)
l 〉2

h(m−1)⊗h⊗m
A ⊗hm

∑
J ′∈Λm−1

∣∣s(m−1)
J ′

∣∣2
h(m−1)⊗h

⊗(m−1)
A

N∑
l′=1

∣∣t(m−1)
l′

∣∣2
hA

.

By multiplying both the numerator and the denominator by the same positive

factor
N∑

j=1

|sm,j |2ĥ, the expression becomes

N∑
j=1

∣∣sm,j

∣∣2
ĥ
〈σ ⊗ t

(0)
l 〉2

h(m−1)⊗h⊗m
A ⊗hm

∑
J ′∈Λm−1
j=1,...,N

∣∣s(m−1)
J ′

∣∣2
h(m−1)⊗h

⊗(m−1)
A

∣∣sm,j

∣∣2
ĥ

N∑
l′=1

∣∣t(m−1)
l′

∣∣2
hA

=

N∑
j=1
〈σ ⊗ t

(0)
l ⊗ sm,j〉2h(m−1)⊗ĥ⊗h⊗m

A ⊗hm

∑
J∈Λ∗m

∣∣ŝ(m)
J

∣∣2
h(m−1)⊗ĥ⊗h

⊗(m−1)
A

N∑
l′=1

∣∣t(m−1)
l′

∣∣2
hA

=

∣∣σ ⊗ t
(0)
l

∣∣2
h(m−1)⊗ĥ⊗h

⊗(m−1)
A∑

J∈Λ∗m

∣∣ŝ(m)
J

∣∣2
h(m−1)⊗ĥ⊗h

⊗(m−1)
A

×

N∑
j=1
〈sm,j〉2hA⊗hm

N∑
l′=1

∣∣t(m−1)
l′

∣∣2
hA

.
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By (A1) and the choices of sm,j ,

C2 :=
N∑

j=1

∫

D

〈sm,j〉2hA⊗hm

N∑
l′=1

∣∣t(m−1)
l′

∣∣2
hA

exists. By (A2) and (A3), σ ⊗ t
(0)
l is a linear combination of {ŝ(m)

J }J∈Λ∗m . The
Cauchy–Schwartz inequality implies that

C3 := max
l=1,...,N

sup
D

∣∣σ ⊗ t
(0)
l

∣∣2
h(m−1)⊗ĥ⊗h

⊗(m−1)
A∑

J∈Λ∗m

∣∣ŝ(m)
J

∣∣2
h(m−1)⊗ĥ⊗h

⊗(m−1)
A

exists. In this case we have
∫

D
〈σ⊗[k/m] ⊗ s

(0)
0 ⊗ t

(0)
l ∧ ds

⊗(k−1)
D 〉2hSk−1

⊗hm
6 C2C3.

It is clear that C1, C2, C3, and hence

C ′ := max{C1, C2C3}

depend only on σ and the choices of {t(r)l } and {sj,l} in (A2) and (A3) (and is
independent of k > m and the choices of the auxiliary metrics hA, h(m−1) and
ĥ).

In summary,
∫

D
〈σ⊗[k/m] ⊗ s

(r)
J ⊗ t

(r)
l ∧ ds

⊗(k−1)
D 〉2hSk−1

⊗hr∗ 6 C ′.

By Theorem 3.1, there exists a family of sections

Sk = {σ̃(k)
J,l : J ∈ Λk, 1 6 l 6 N}

of Fk over X such that

σ̃
(k)
J,l |D = σ⊗[k/m] ⊗ s

(r)
J ⊗ t

(r)
l ∧ ds⊗k

D

and ∫

X

∑

J∈Λr
l=1,...,N

〈σ̃(k)
J,l 〉2hD⊗hSk−1

⊗hr
6 C0 := CC ′.

This completes the proof. ¤
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4.2. Siu’s construction of the metric h∞. For any w0 = (w1
0, . . . , w

n
0 ) ∈ Cn

and any r > 0, we let Dr(w0) denote {(w1, . . . , wn) : |wν − wν
0 | < r, 1 6 ν 6 n},

the polydisk in Cn centered at w0 with polyradii (r, . . . , r). Choose a finite open
cover W ′ = {W ′

α}α∈I of X such that each W ′
α is biholomorphic to D1(0) and

W = {Wα} also covers X, where Wα ⊆ W ′
α corresponds to D1/3(0). We also

require that L1|W ′
α
, . . . , Lm|W ′

α
, D|W ′

α
, and A|W ′

α
(and hence Fk|W ′

α
, k > m) are

trivial for all α ∈ I.

Suppose that σ̃
(k)
J,l given by Lemma 4.1 are represented by holomorphic func-

tions f̃
(k)
α;J,l on W ′

α for each α ∈ I.

Lemma 4.2. There exists C ′
0 > 0 such that

max
x∈Wα
α∈I

1
q

log
N∑

l=1

∣∣f̃ (qm)
α;0,l (x)

∣∣2 ≤ C ′
0

for all q ∈ N.

The essential part of this result is the uniformity of C ′
0 with respect to q ∈ N.

Proof. For each x ∈ Wα whose coordinate is wx = (w1
x, . . . , wn

x), we let Wx be
the subset of W ′

α corresponding to D1/3(wx). Since
⋃

x∈W ′
α

Wx b W ′
α, there exists

M > 0 such that on all Wx we have (following the notation in 4.1)

(4.3)

∑
J,l

∣∣f̃ (k+1)
α;J,l

∣∣2

∑
J ′,l′

∣∣f̃ (k)
α;J ′,l′

∣∣2 dV ≤ M
∑

J,l

〈σ̃(k+1)
α;J,l 〉2hD⊗hSk−1

⊗hr∗

where uν = Re wν , vν = Im wν , and dV = du1 ∧ dv1 ∧ · · · ∧ dun ∧ dvn. For each
m 6 k 6 qm− 1, by Jensen’s inequality, (4.3), and Lemma 4.1,
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1
Vol

(
D1/3(wx)

)
∫

D1/3(wx)
log

∑

J,l

∣∣f̃ (k+1)
α;J,l

∣∣2dV

− 1
Vol

(
D1/3(wx)

)
∫

D1/3(wx)
log

∑

J ′,l′

∣∣f̃ (k)
α;J ′,l′

∣∣2dV

6 log

(
1

Vol
(
D1/3(wx)

)
∫

D1/3(wx)

∑
J,l

∣∣f̃ (k+1)
α;J,l

∣∣2

∑
J ′,l′

∣∣f̃ (k)
α;J ′,l′

∣∣2 dV

)

6 log
(

1
Vol(Wx)

∫

Wx

∑

J,l

〈σ̃(k+1)
α;J,l 〉2hD⊗hSk−1

⊗hr∗

)

6 log
MC0

Vol(Wx)
.

Summing up the above computation from k = m to k = qm− 1 and applying
the sub-mean value inequality, we obtain

1
q

log
N∑

l=1

∣∣f̃ (qm)
α;0,l (x)

∣∣2

6 1
qVol

(
D1/3(wx)

)
∫

D1/3(wx)
log

N∑

l=1

∣∣f̃ (qm)
α;0,l

∣∣2dV

6 9n

qπn

∫

D1/3(wx)
log

N∑

l=1

∣∣f̃ (m)
α;0,l

∣∣2dV +
(q − 1)m

q
log

9nMC0

πn

6 9n

qπn

∫

D2/3(0)
log

N∑

l=1

∣∣f̃ (m)
α;0,l

∣∣2dV +
(q − 1)m

q
log

9nMC0

πn
.

Since we have only finitely many α ∈ I, the expected constant C ′
0 > 0 clearly

exists. ¤

Now we are ready to construct the desired metric h∞.

Lemma 4.3. There exists a semipositive metric h∞ on m(KX +D)+L(m) such
that |σ ∧ ds⊗m

D |h∞ 6 1.
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Proof. On each Wα ∈ W we let

f̃ (∞)
α := lim

p→∞

(
sup
q>p

1
q

log
N∑

l=1

∣∣f̃ (qm)
α;0,l

∣∣2
)∗

where ( )∗ denotes upper semicontinuous regularization. By Lemma 4.2,
{(

sup
q>p

1
q

log
N∑

l=1

∣∣f̃ (qm)
α;0,l

∣∣2
)∗}

p∈N

is a decreasing sequence of plurisubharmonic functions on W ′
α which are bounded

above by C ′
0 on Wα, and hence f̃ (∞)

α is also plurisubharmonic and bounded from
above by C ′

0 on Wα.

Let gαβ and aαβ ∈ O∗
X(Wα ∩ Wβ), α, β ∈ I be the transition functions of

m(KX + D) + L(m) and mA respectively. By the definition of {f̃ (qm)
α;0,l }, we have

f̃
(qm)
α;0,l =

(
gαβ

)q
aαβ f̃

(qm)
β;0,l

and hence

1
q

log
N∑

l=1

∣∣f̃ (qm)
α;0,l

∣∣2 = log |gαβ |2 +
1
q

log |aαβ |2 +
1
q

log
N∑

l=1

∣∣f̃ (qm)
β;0,l

∣∣2.

Taking lim
p→∞(sup

q>p
)∗ to both sides and exponentiating them, we get rid of the

term involving aαβ and obtain

e−f̃
(∞)
β = |gαβ |2e−f̃

(∞)
α .

This shows that the set of local data {e−f̃
(∞)
α : α ∈ I} defines a semipositive

metric h∞ on m(KX + D) + L(m).

It remains to show that
∣∣σ ∧ ds⊗m

D

∣∣
h∞

6 1. By Lemma 4.1,

σ̃
(qm)
0,l |D = σ⊗q ⊗ t

(0)
l ∧ ds

⊗(qm)
D

for l = 1, . . . , N . Suppose that σ∧ds⊗m
D and t

(0)
l are represented by functions ψα

and τ
(0)
α;l on Wα ∩ D respectively. Then we have f̃

(qm)
α;0,l = ψq

ατ
(0)
α;l for each l, and

hence

1
q

log
N∑

l=1

∣∣f̃ (qm)
α;0,l

∣∣2
∣∣∣
D∩Wα

= log |ψα|2 +
1
q

log
N∑

l=1

∣∣τ (0)
α;l

∣∣2.
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Since (
sup
q>p

1
q

log
N∑

l=1

∣∣f̃ (qm)
α;0,l

∣∣2
)∗∣∣∣∣∣

D∩Wα

> sup
q>p

1
q

log
N∑

l=1

∣∣f̃ (qm)
α;0,l

∣∣2
∣∣∣
D∩Wα

,

we obtain that

f̃ (∞)
α |Wα∩D = lim

p→∞

(
sup
q>p

1
q

log
N∑

l=1

∣∣f̃ (qm)
α;0,l

∣∣2
)∗∣∣∣∣∣

D∩Wα

> log |ψα|2.

This shows that e−f̃
(∞)
α |ψα|2 6 1 for each α ∈ I and hence completes the proof.

¤

5. Appendix 1

In this appendix we will provide a proof of Theorem 3.1. Let Ω be a complex
manifold and let D be a nonsingular hypersurface in Ω. Suppose that (D, hD)
and (L, h) are line bundles on Ω with singular metrics, and s ∈ H0(D, KD +L|D).

Consider the following statement:

E
(
Ω, (D, hD), (L, h), s

)
: If

(i) (L, h) is semipositive,

(ii) h|D is well defined (see 2.2 and 2.3),

(iii) there are real numbers µ > 0 and M > 0 such that

µ
√−1Θh >

√−1ΘhD

as currents on Ω and
ess. supΩ|sD|hD

6 M,

and

(iv) ∫

D
〈s〉2h|D < ∞,

then there is a section s̃Ω of H0(Ω,KΩ + D + L) such that s̃Ω|D = s ∧ dsD and
∫

Ω
〈s̃Ω〉2hD⊗h 6 C

∫

D
〈s〉2h

where C > 0 only depends on M and µ.
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In order to simplify notations, when L and D are trivial line bundles we al-
ways write h = e−κ and hD = e−ϕD , and rewrite E

(
Ω, (D, hD), (L, h), s

)
as

E(Ω, ϕD, κ, s). For brevity, when we write E(Ω, ϕD, κ, s) we assume implicitly
that D and L are trivial bundles.

Theorem 5.1. The statement E(Y, ϕD, κ, s) holds if Y is a Stein manifold and
ϕD is the sum of a plurisubharmonic function and a smooth function.

Proof of Theorem 3.1. Choose a sufficiently ample hypersurface V in X such that
D * V and D and L are trivial over X\V and ϕD is the sum of a plurisubharmonic
function and a smooth function (cf. Remark 2.1). Then the theorem follows from
Theorem 5.1 by taking Y = X\V , and the L2 Riemann extension theorem. ¤

5.1. Smoothing of singular metrics. Let Y be a Stein manifold of dimension
n. Then we can find a locally biholomorphic map π : Y → Cn (cf. [6], p.225).
In our case Y will be X\V , the complement of an ample divisor in a projective
manifold, for which such a map π can be constructed directly. The locally bi-
holomorphic map can be used to define the operation of convolution for functions
on relatively compact open subsets of Y .

We define a function R : Y → R+ ∪ {+∞} as follows. For z ∈ Cn, denote by
BR′(z) the ball of radius R′ centered at z. For y ∈ Y and R′ > 0, let BR′(y) be
the component of π−1BR′

(
π(y)

)
containing y and

R(y) := sup{R′ > 0 | π : BR′(y) → BR′
(
π(y)

)
is biholomorphic }.

R is easily seen to be lower semicontinuous. Let

RΩ := inf
y∈Ω

R(y) > 0

for every relatively compact open subset Ω b Y . Note that RΩ > RΩ′ for
Ω b Ω′ b Y . If f : Y → R ∪ {−∞} is a function and {ρε} is a family of
smoothing kernels associated to a symmetric mollifier ρ on Cn, then we can
define the convolution fε as follows. For any y ∈ Y we have a coordinate chart

πy := π|Uy : Uy → BR(y)

(
π(y)

)
,

where Uy := BR(y)(y). Then

fε(y) :=
(
(f ◦ π−1

y ) ∗ ρε

)(
π(y)

)
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for every y with R(y) > ε. Note that for any x, y ∈ Y , f ◦ π−1
x |π(Ux∩Uy) =

f ◦ π−1
y |π(Ux∩Uy) and hence fε|Uy =

(
(f ◦ π−1

y ) ∗ ρε

) ◦ π|Uy . Therefore, if f is
plurisubharmonic, the convolution fε is also plurisubharmonic on a relatively
compact open subset Ω for all ε < RΩ.

Lemma 5.1. Suppose D0 is a nonsingular hypersurface in Y . If D0 and L are
trivial bundles and ϕD0 and κ0 are smooth on Y , then E(Ω, ϕD, κ, s) holds for
every relatively compact pseudoconvex domain Ω with smooth boundary in Y and

s ∈ image
(
H0(D0,KD0 + L|D0) −→ H0(D, KD + L|D)

)
,

where D = D0 ∩ Ω, ϕD = ϕD0 |Ω, and κ = κ0|Ω.

Now we deduce Theorem 5.1 from Lemma 5.1, whose proof will be given in
next subsection.

Proof of Theorem 5.1. Suppose ϕD = ϕ′ + ϕ′′ where ϕ′ is plurisubharmonic and
ϕ′′ is smooth, and suppose s is a section of KD + L|D over D with

∫

D
〈s〉2h|D < ∞.

Let ϕ′ε = ϕ′∗ρε and ϕ′′ε = ϕ′′∗ρε on the subdomain of Ω where they can be defined.
We choose a sequence of pseudoconvex domains Ω1 b · · · b Ων b Ων+1 b · · ·
with smooth boundary exhausting Y and a decreasing sequence {εν} converging
to zero such that the following conditions hold:

(1) RΩν > εν and κεν = κ∗ρεν is a smooth plurisubharmonic function on Ων .
(2) For each N ∈ N, the sequences {κεν}ν>N and {ϕ′εν

}ν>N decrease to κ

and ϕ′ on ΩN , respectively.
(3) For each ν, we have |sD|2e−ϕ′′εν 6 2|sD|2e−ϕ′′ on Ων . (Here |sD|2 is taken

by viewing sD as a function via the global trivialization of D. Note that on
each relatively compact set e−ϕ′′ε converges to e−ϕ′′ as ε → 0. Therefore for
each ν we only need to choose εν so small that |e−ϕ′′εν −e−ϕ′′ | 6 infΩν e−ϕ′′

on Ων .)

Therefore

supΩν
|sD|ϕεν

6
√

2 ess. supΩ|sD|ϕD 6
√

2M

for each ν. Clearly, κεν is not identically −∞ on D ∩ Ων .
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The curvature condition

µ
√−1Θκ >

√−1ΘϕD

implies that there is a plurisubharmonic function ψ such that µκ−ϕD = ψ a.e. on
Y . Then µκεν − ϕεν = ψ ∗ ρεν a.e. on Ων . Since ψ ∗ ρεν is plurisubharmonic, we
get

µ
√−1Θκεν

>
√−1Θϕεν

on Ων . Having assumed the validity of Lemma 5.1, we can obtain such an exten-
sion s̃Ων . Since κεν > κ, we obtain

(5.1)
∫

ΩN

〈s̃Ων 〉2ϕεν +κεν
6 C

∫

D∩ΩN

〈s〉2κεν
6 C

∫

D
〈s〉2κ

for all ν > N . (Here we abuse the notation by using weight functions to stand
for their associated metrics.) Notice that the RHS is independent of n (C only
depends on M and µ). By (iii) in E(Y, ϕD, κ, s), for each N ∈ N, the weight
function ϕ + κ is bounded from above on ΩN+1 by a number MN > 0. By
the definition of convolution ϕεν + κεν are bounded from above by the same
number MN on ΩN for sufficiently large ν. By diagonal method we can select
a subsequence {s̃Ωνk

}k∈N such that {s̃Ωνk
}k>N converges uniformly on ΩN for

each N ∈ N. This way we obtain a section s̃Y ∈ H0(Y, KY + D + L) by setting
s̃Y |ΩνN

= lim
k→∞

s̃Ωνk
. We let χΩN

be the characteristic function of ΩN on Y . (5.1)

can be rephrased as
∫

Y
χΩN

〈s̃Ων 〉2ϕεν +κεν
6 C

∫

D
〈s〉2κ.

Applying Fatou’s lemma, we obtain the desired inequality
∫

Y
〈s̃Y 〉2ϕ+κ 6 C

∫

D
〈s〉2κ.

¤

The rest of this appendix is devoted to proving Lemma 5.1.

5.2. Proof of Lemma 5.1. ¿From now on, we assume that Y, Ω and s are as
in Lemma 5.1. Let ρ be a defining function of Ω. We follow almost the same
argument as Siu’s in [19].

Definition 5.1. Let (z1, . . . , zn) be local coordinates on some open set U and let
eU be a local holomorphic frame of L. We put e−ψ = h(eU , eU ).
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(1) For u, v being L-valued (p, q)-forms with measurable coefficients, we set

〈u, v〉h := 〈u, v〉gω⊗h dVω

and |u|2h := 〈u, u〉h where g is a hermitian metric on Ω with ω being
its associated (1, 1)-form. We will sometimes write 〈u, v〉ψ = 〈u, v〉h by
abusing the notation. Note that when (p, q) = (n, 0) we have |u|2h = 〈u〉2h
as in Definition 2.1.

(2) Given an L-valued (n, 1)-form u. Locally we have u =
∑

β

uβ eU⊗dz∧dzβ

where dz := dz1 ∧ · · · ∧ dzn. We define an (n, 0)-form

ιαu :=
∑

β

gαβuβ eU ⊗ dz.

For a continuous (1, 1)-form Ξ which has a local expression
√−1ξαβdzα∧

dzβ . We set Ξ[u]h :=
∑

α,β

ξαβ

〈
ιαu, ιβu

〉
ψ
.

We also need the following standard result from functional analysis:

Lemma 5.2. Let T : H1 → H2 and S : H2 → H3 be closed, densely defined
operators between Hilbert spaces with ST = 0, and let C > 0 be a constant.
Given g ∈ H2 with Sg = 0. Then there exists v ∈ H1 such that Tv = g and
‖v‖ 6 C if and only if

(5.2) |(u, g)|2 6 C2(‖T ∗u‖2 + ‖Su‖2)

for all u ∈ Dom S ∩Dom T ∗.

Let ϕ, η and γ be smooth functions with η, γ > 0. Set ηe−ψ = e−ϕ. We recall
the twisted Bochner–Kodaira formula (see [19], Proposition 3.4)∫

Ω
|∂∗ψu|2ϕ +

∫

Ω
|∂u|2ϕ =

∫

∂Ω

√−1∂∂ρΩ[u]ϕ +
∫

Ω
|∇0,1u|2ϕ

+
∫

Ω

(
η
√−1∂∂ψ −√−1∂∂η

)
[u]ψ + 2Re

∫

Ω

〈
ι∂ηu, ∂

∗
ψu

〉
ψ

(5.3)

for each L-valued smooth (n, 1)-form u in Dom ∂
∗
ψ ∩Dom ∂.

Remark 5.2. For En,1
c

(
Ω, L

)
being the space of L-valued smooth (n, 1)-forms with

compact supports, En,1
c

(
Ω, L

)∩Dom ∂
∗
ψ∩Dom ∂ is dense in Dom ∂

∗
ψ∩Dom ∂ with

respect to the graph norm. Therefore, to get a priori estimate from Lemma 5.2
we only need to consider smooth u with compact supports.
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Since Ω is pseudoconvex, the Levi form of ρΩ is semipositive at each point of

∂Ω. Adding
∫

Ω
γ|∂∗ψu|2ψ to both side of (5.3) and using ηe−ψ = e−ϕ, the twisted

Bochner–Kodaira formula becomes
∫

Ω
(η + γ) |∂∗ψu|2ψ +

∫

Ω
η|∂u|2ψ

>
∫

Ω

(
η
√−1∂∂ψ −√−1∂∂η

)
[u]ψ + 2Re

∫

Ω

〈
ι∂ηu, ∂

∗
ψu

〉
ψ

+
∫

Ω
γ|∂∗ψu|2ψ.

(5.4)

We set r(x) := |sD(x)|hD
for x ∈ Ω. We first assume that 1

µ > 2M2 and let
c be a positive constant to be specified later. We set N0 := max{1,

√
eM2c}.

Choose any positive number A > N0. Let

ε0 =

√(
A√
e

)1/c
−M2.

For each positive ε 6 ε0, we let

η = log
A

(r2 + ε2)c

and

γ =
2c2

r2 + ε2
.

Then η > 1/2 on Ω. Applying the Cauchy–Schwarz inequality and ∂η = − 2cr
r2+ε2 ∂r,

we obtain
∣∣∣∣2Re

∫

Ω

〈
ι∂ηu, ∂

∗
ψu

〉
ψ

∣∣∣∣ 6 2
∫

Ω
|ι∂ηu|ψ|∂∗ψu|ψ

= 2
∫

Ω

2cr

r2 + ε2
|ι∂ru|ψ|∂∗ψu|ψ

=
∫

Ω

2r2

r2 + ε2
|ι∂ru|2ψ +

∫

Ω

2c2

r2 + ε2
|∂∗ψu|2ψ

=
∫

Ω

2r2

r2 + ε2
|ι∂ru|2ψ +

∫

Ω
γ|∂∗ψu|2ψ.

¿From (5.4) it follows that
∫

Ω
(η + γ)|∂∗ψu|2ψ +

∫

Ω
η|∂u|2ψ

>
∫

Ω

(
η
√−1∂∂ψ −√−1∂∂η

)
[u]ψ −

∫

Ω

2r2

r2 + ε2
|ι∂ru|2ψ

(5.5)
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Now we compute −∂∂η. Since r2∂∂log r2 = 2r∂∂r − 2∂r ∧ ∂r, it follows that
√−1∂∂r2 = 2

√−1∂r ∧ ∂r + 2r
√−1∂∂r

= r2
√−1∂∂log r2 + 4

√−1∂r ∧ ∂r.

By the Poincaré–Lelong formula,
√−1∂∂log r2 = 2π[D]−√−1∂∂ϕD,

where [D] is the current of integration over D. Hence

(5.6)
√−1∂∂r2 = 4

√−1∂r ∧ ∂r − r2
√−1∂∂ϕD.

The term involving the current of integration vanishes since r2 ≡ 0 on D.

We let η0 = − log (r2 + ε2). From ∂∂r2 = ∂∂
(
e−η0

)
it follows that

∂∂r2 = e−η0
(
∂η0 ∧ ∂η0 − ∂∂η0

)

=
4r2

r2 + ε2
∂r ∧ ∂r − (

r2 + ε2
)
∂∂η0.

(5.7)

Using (5.6), (5.7) and ∂∂η = c∂∂η0, we get

(5.8) −√−1∂∂η = − cr2

r2 + ε2

√−1∂∂ϕD +
4cε2

(r2 + ε2)2
√−1∂r ∧ ∂r.

Choose ψ = κ + r2

2µM2 . Using (5.6) and (5.8) we get

η
√−1∂∂ψ −√−1∂∂η = η

√−1∂∂κ

− η

(
r2

2µM2
+

cr2

η (r2 + ε2)

)√−1∂∂ϕD +
(

4η

2µM2
+

4cε2

(r2 + ε2)2

)√−1∂r ∧ ∂r.

(5.9)

Since η > 1/2 we get

(5.10)
r2

2µM2
+

cr2

η (r2 + ε2)
6 1

2µ
+ 2c.

We now choose c so that c 6 1
4µ . It follows that

(5.11)
√−1∂∂κ−

(
r2

2µM2
+

cr2

η (r2 + ε2)

)√−1∂∂ϕD > 0

where the inequality is from (5.10) and the curvature hypothesis.
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¿From (5.5), (5.9), (5.11) and 4η
2µM2 > 2 > 2r2

r2+ε2 we obtain

(5.12)
∫

Ω
(η + γ) |∂∗ψu|2ψ +

∫

Ω
η|∂u|2ψ >

∫

Ω

4cε2

(r2 + ε2)2
|ι∂ru|2ψ.

We now consider the modified ∂ operators T and S defined by

Tu = ∂
(√

η + γu
)

and Su =
√

η(∂u),

respectively. They are densely defined and S ◦ T = 0, and we can rewrite (5.12)
to obtain the following lemma. (See Remark 5.2.)

Lemma 5.3. For each L-valued (n, 1)-form u in Dom S ∩Dom T ∗ we have

(5.13) ‖T ∗u‖2
Ω,ψ + ‖Su‖2

Ω,ψ >
∫

Ω

4cε2

(r2 + ε2)2
|ι∂ru|2ψ.

Here ‖ · ‖Ω,ψ means the L2 norm for Ω with respect to the weight function e−ψ.

Since Y is Stein, there exists a (D + L)-valued n-form s̃0 on Y such that
s̃0|D = s ∧ dsD. Choose any number 0 < δ < 1. Let % ∈ C∞([0,+∞)) be a
cut-off function with 0 6 %(x) 6 1 so that % is identically 1 on [0, δ

2 ] and

(5.14) supp % ⊆ [0, 1] and sup |%′| 6 1 + δ.

Let %ε := %
(

r2

ε2

)
and let

αε :=
2r

ε2
%′

(
r2

ε2

)
∂r ∧ (

s−1
D ⊗ s̃0

)
.

Note that αε is smooth because the singularity of ∂r ∧ (
s−1
D ⊗ s̃0

)
lies in the zero

locus D of sD and %′
(

r2

ε2

)
equals zero in the tubular neighborhood r2 < δ

2ε2.
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Then we have

|(u, αε)Ω,ψ|2 =

(∫

Ω

∣∣∣∣∣
〈

u,
2r

ε2
%′

(
r2

ε2

)
∂r ∧ (

s−1
D ⊗ s̃0

)〉

ψ

∣∣∣∣∣

)2

=

(∫

Ω

∣∣∣∣∣
〈

ι∂ru,
2r

ε2
%′

(
r2

ε2

)
s−1
D ⊗ s̃0

〉

ψ

∣∣∣∣∣

)2

6
(∫

Ω
2|ι∂ru|ψ

∣∣∣∣
r

ε2
%′

(
r2

ε2

)
s−1
D ⊗ s̃0

∣∣∣∣
ψ

)2

6
(∫

Ω

∣∣∣∣
r

ε2
%′

(
r2

ε2

)
s−1
D ⊗ s̃0

∣∣∣∣
2

ψ

(r2 + ε2)2

cε2

)

×
(∫

Ω

4cε2

(r2 + ε2)2
|ι∂ru|2ψ

)

6 Cε

(‖T ∗u‖2
Ω,ψ + ‖Su‖2

Ω,ψ

)
,

where the last inequality is from Lemma 5.3, and we have used the notation

Cε :=
∫

Ω

∣∣∣∣
r

ε2
%′

(
r2

ε2

)
s−1
D ⊗ s̃0

∣∣∣∣
2

ψ

(r2 + ε2)2

cε2
.

By Lemma (5.2), we can solve the equation Tβε = ∂̄
(√

η + γβε

)
= αε such that

(5.15)
∫

Ω
|βε|2ψ 6 Cε.

5.3. Estimate the constant Cε. Now we estimate the constant Cε. Take y ∈ Y

an arbitrary point and (zj = xj + iyj) local coordinates on a open set Uy centered
at y, and let eL (respectively, eD) be local frames of L (respectively, D) such that
the following conditions holds:

(1) sD = zn ⊗ eD on Uy;
(2) If ζ = ξ+iτ := zne−

ϕD
2 , then (x1, y1, · · · , ξ, τ) forms a coordinate system;

(3) Uy = Pn−1 × {r < ε} where Pn−1 is a (n− 1)-dimensional polydisc;
(4) We have

s̃0 = σ̃UyeD ⊗ eL ⊗ dz1 ∧ · · · ∧ dzn and s = σUyeL ⊗ dz1 ∧ · · · ∧ dzn−1

on Uy. (Note that s̃0 is defined not only on Ω but on Y .)

Since s̃0|D = s ∧ dsD, we get

σ̃Uy(z
1, · · · , zn−1, 0) = σUy(z

1, · · · , zn−1)
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on Uy. Choose a partition of unity {ρj} subordinate to a finite subcover {Uj} ⊂
{Uy}y∈Ω of Ω. Then

Cε =
∫

Ω

(r2 + ε2)2

cε6
r2

∣∣∣%′
(

r2

ε2

) ∣∣∣
2
|s−1

D ⊗ s̃0|2ψ

6 (1 + δ)2

c

∫

Ω∩{
√

δ
2
ε6r6ε}

(r2 + ε2)2

ε6
r2|s−1

D ⊗ s̃0|2ψ.

For each j we let Vj := Uj ∩ Ω ∩ {
√

δ
2ε 6 r 6 ε} and

Ij =
∫

Vj

ρj
(r2 + ε2)2

ε6
r2|s−1

D ⊗ s̃0|2ψ

=
∫

Vj

ρj
(r2 + ε2)2

ε6

∣∣σ̃Uj

∣∣2e−κ− r2

2µM2 e−ϕDdx1 ∧ dy1 ∧ · · · ∧ dyn.

Therefore

Cε 6 (1 + δ)2

c

∑
j
Ij .

A direct computation yields

e−ϕDdx1 ∧ dy1 ∧ · · · ∧ dyn

= (1 + O(r)) dx1 ∧ dy1 ∧ · · · ∧ dyn−1 ∧ dξ ∧ dτ.

Let f := ρj

∣∣σ̃Uj

∣∣2e−κ. Then

Ij 6
∫

Vj

ρj

∣∣σ̃Uj

∣∣2e−κ (r2 + ε2)2

ε6
(1 + O(r))r dx1dy1 · · · dyn−1dr dθ

= I(j) + II(j) + III(j),

where

I(j) =
∫

Pn−1∩D
f(z1, · · · , zn−1, 0) dx1dy1 · · · dyn−1

(
2π

∫ ε

0

(r2 + ε2)2

ε6
r dr

)
,

II(j) =
∫

Vj

(f(z1, · · · , zn)− f(z1, · · · , 0))
(r2 + ε2)2

ε6
r dx1dy1 · · · dr dθ,

III(j) =
∫

Vj

f(z1, · · · , zn)
(r2 + ε2)2

ε6
O(r)r dx1dy1 · · · dr dθ.
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Note that the term f(z1, · · · , zn)−f(z1, · · · , 0) in II(j) produces a factor r. Thus
II(j) and III(j) converge to zero as ε tend 0+. Then

lim sup
ε→0+

Cε 6 (1 + δ)2

c

∑
j
I(j)

=
2π(1 + δ)2

c

( ∫

Ω∩D
〈s〉2h

)
lim sup

ε→0+

∫ ε

0

(r2 + ε2)2

ε6
r dr

=
7π

3c
(1 + δ)2

∫

Ω∩D
〈s〉2h.

(5.16)

5.4. Extension and the L2 norm bound. Now we set

S̃ε := %εs̃0 −
√

η + γ (sD ⊗ βε) .

Then S̃ε is a holomorphic section by construction and
∫

Ω
|%εs̃0|2hD⊗h → 0 as ε → 0+,

because s̃0 is smooth in the relatively compact set Ω and the support of %εs̃0

approaches a set of measure zero in Ω as ε → 0+.

The supremum norm of r
√

η + γ on Ω ⊆ {r 6 M} is no more than the square
root of

sup
0<x6M

x2

(
log A + c log

1
x2 + ε2

+
2c2

x2 + ε2

)
6 M2 log A +

c

e
+ 2c2,

because the maximum of y log 1
y on (0,+∞) occurs at y = 1

e .

Take A → N+
0 , δ → 0+. By using (5.16) and

∫

Ω
|βε|2h 6 e

1
2µ Cε

from (5.15) and r 6 M , we get

lim sup
ε→0+

∫

Ω
〈S̃ε〉2hD⊗h 6 C0

∫

Ω
〈s〉2h

where C0 = 7π
3 e

1
2µ

√(
M
c

)2 log N0 + 1
ce + 2. Then the limit s̃Ω (up to subse-

quences) is an D + L-valued holomorphic n-form on Ω whose restriction to D

is s ∧ dsD with the following estimate
∫

Ω
〈s̃Ω〉2hD⊗h 6 C0

∫

D
〈s〉2h.
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If 1
µ < 2M2, we replace the metric hD by the metric h′D := 1

2µM2 hD. Then
supΩ |T |h′D = 1√

2µ
. This finishes the proof of Theorem 5.1.

Remark 5.3. In the statement of Theorem 5.1 the requirement that D and L

being trivial bundles is used only for smoothing the metrics on them. Therefore
the same argument shows that E

(
Ω, (D, hD), (L, h), s

)
holds if Ω is Stein, (D, hD)

and (L, h) are smoothly metrized, and s ∈ H0(D, KD + L|D).

6. Appendix 2

The following lemma about generalized multiplication maps is used in 3.2 to
select the auxiliary ample divisor to fulfill (A3). For the convenience of the readers
we give a proof in this appendix. Some of its special cases are well known in [9],
[16]. The proof presented below is a modification of their arguments.

Lemma 6.1. Let D and E be ample Cartier divisors on a scheme X. For any co-
herent sheaves F1 and F2 on X, there is a positive integer m0 = m0(D, E,F1,F2)
such that

H0
(
X, F1 ⊗ OX(aD)

)⊗H0
(
X, F2 ⊗ OX(bE)

) →
H0

(
X, F1 ⊗F2 ⊗ OX(aD + bE)

)

is surjective for all a, b > m0.

Proof. First we assume that F1 and F2 are locally free. Consider on X ×X the
exact sequence

(6.1) 0 −→ I∆ −→ OX×X −→ ∆∗OX −→ 0

where ∆ is the diagonal morphism. Let p1 and p2 be the two projections and

aD ¢ bE = p∗1(aD)⊗ p∗2(bE)

and

G = p∗1F1 ⊗ p∗2F2.

By tensoring (6.1) with G , we get

0 −→ G ⊗I∆ −→ G −→ G ⊗∆∗OX −→ 0.
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Twisting by OX×X(aD¢bE) and taking cohomology, we obtain an exact sequence

H0
(
X ×X, G (a, b)

) → H0
(
X ×X, (G ⊗∆∗OX)(a, b)

) →
H1

(
X ×X, (G ⊗I∆)(a, b)

)

where we use (a, b) to denote the twisting ⊗OX×X(aD ¢ bE). It suffices to verify
that there is a positive integer m0 such that

(6.2) H1
(
X ×X,

(
G ⊗I∆

)
(a, b)

)
= 0.

for a, b > m0. Indeed, there is an isomorphism of cohomology groups

H0
(
X ×X, G (a, b)

) ∼=
H0

(
X, F1 ⊗ OX(aD)

)⊗H0
(
X, F2 ⊗ OX(bE)

)
.

By the projection formula,
(
G ⊗∆∗OX

)
(a, b) ∼= ∆∗

(
∆∗G (a, b)

)
.

By definition of the diagonal morphism we have pi∆ = idX , hence

∆∗(p∗1F1 ⊗ p∗2F2 ⊗ p∗1(aD)⊗ p∗2(bE)
) ∼= F1 ⊗F2 ⊗ OX(aD + bE).

Therefore the cohomology group

H0
(
X ×X, (G ⊗∆∗OX)(a, b)

) ∼= H0
(
X ×X, ∆∗∆∗G (a, b)

)

is isomorphic to

H0
(
X, ∆∗G (a, b)

) ∼= H0
(
X, F1 ⊗F2 ⊗ OX(aD + bE)

)

as desired.

Now we prove (6.2). To this end, we use the ample divisor aD¢bE to construct
a (possibly non-terminating) resolution

(6.3) · · · −→
⊕

OX×X(−p1,−p1) −→
⊕

OX×X(−p0,−p0) −→ G ⊗I∆ −→ 0

for suitable integers 0 6 p0 6 p1 6 · · · where again (a, b) means the twisting
⊗OX×X(aD ¢ bE). Set d = dim X ×X. By dimension shifting, to prove (6.2) it
is enough to produce an integer m0 such that

H i
(
X ×X, OX×X(a− pi−1, b− pi−1)

)
= 0
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whenever a, b > m0 and i = 0, 1, . . . , d− 1. In fact, we have then

H1
(
X ×X,

(
G ⊗I∆

)
(a, b)

) ∼= H2
(
X ×X, K0(a, b)

)

...

∼= Hd
(
X ×X, Kd−2(a, b)

)

∼= Hd+1
(
X ×X, Kd−1(a, b)

)
= 0

where Ki is the kernel of the morphism
⊕

OX×X(−pi,−pi) →
⊕

OX×X(−pi−1,−pi−1)

for i > 0 and K0 is the kernel of
⊕

OX×X(−p0,−p0) → G ⊗I∆ → 0.

The last group vanishes by dimension reason. The existence of the required
integer m0 then follows from Serre’s vanishing theorem.

For general coherent sheaves Fj , we can write Fj as a quotient of a sheaf
Ej which is a finite direct sum of sheaves of the form OX(qi). We consider the
following exact sequence

0 −→ K −→ E1 ⊗ E2 −→ F1 ⊗F2 −→ 0.

Choose a positive integer m0 such that

(1) H1(X, K ⊗ OX(aD + bE)) vanishes for a, b > m0, and
(2) the multiplication map

H0
(
X, E1 ⊗ OX(aD)

)⊗H0
(
X, E2⊗OX(bE)

) →
H0

(
X, E1 ⊗ E2 ⊗ OX(aD + bE)

)

is surjective whenever a, b > m0.

Consider the commutative diagram

H0
(
X, E1 ⊗ OX(aD)

)⊗H0
(
X, E2 ⊗ OX(bE)

)
//

²²

H0
(
X, E1 ⊗ E2 ⊗ OX(aD + bE)

)

²²
H0

(
X, F1 ⊗ OX(aD)

)⊗H0
(
X, F2 ⊗ OX(bE)

)
// H0

(
X, F1 ⊗F2 ⊗ OX(aD + bE)

)

If a, b > m0, the right vertical map is surjective by (1), and the upper horizontal
map is surjective by (2). So the lower horizontal multiplication map is surjective
for a, b > m0. This completes the proof. ¤



1162 Chen-Yu Chi, Chin-Lung Wang and Sz-Sheng Wang

Remark 6.1. In the case X being smooth the resolution (6.3) is actually finite by
the Hilbert Syzygy Theorem.
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[7] L. Hörmander; L2 estimates and existence theorems for the ∂ operator, Acta. Math. 113

(1965). 89–152.

[8] C.D. Hacon and J. McKernan: Existence of minimal models for varieties of general type,

II; J. Amer. Math. Soc. 23 no. 2, (2010), 469–490.

[9] R. Lazarsfeld; “Positivity in Algebraic Geometry I”, Erg. Math. 48, Springer, 2004.
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