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1. Introduction

Let V be a nonsingular projective 3-fold of general type. Assume X is a
minimal model of V with at worst Q-factorial terminal singularities. When the
geometric genus pg(X) ≥ 2, the canonical map ϕ1 := Φ|KX | is usually a key tool
for birational classification. If ϕ1 is generically finite, Hacon [13] gave an example
to show that deg(ϕ1) is usually not bounded from above. If ϕ1 is non-constant
and not generically finite (i.e. 0 < dimϕ1(X) < 3), then ϕ1 is said to be of fiber
type. In this situation V (or X) is said to be canonically of fiber type. Let F be
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a birational smooth model of the generic irreducible component in the general
fiber of ϕ1. Denote by g(F ) (resp. pg(F )) the genus (resp. the geometric genus)
of F when F is a curve (resp. a surface). Clearly F is of general type and
nonsingular by simple addition formula and the Bertini theorem. We say that X

is canonically fibred by curves F (resp. surfaces F ). It is interesting to see if the
birational invariants of F are bounded from above. Unfortunately such kind of
boundedness was only proved when X is Gorenstein (see Chen-Hacon [9]).

Restricting our interest to Gorenstein minimal 3-folds X which are canoni-
cally of fiber type, Chen-Hacon [9, Theorem 1.1] proved the desired boundedness
theorem like g(F ) ≤ 487 (resp. pg(F ) ≤ 434). However, even if we assume
pg(X) À 0, the upper bounds (see, for instance, Chen [8, Theorem 0.1]) for g(F )
(resp. pg(F )) might be far from optimal. Besides, among all known examples,
the biggest value of g(F ) (resp. pg(F )) is 5.

The motivation of this paper is to study the following:

Question 1.1. (cf. Chen-Hacon [9, Question 4.2]) (1) For canonically fibred
Gorenstein minimal 3-folds X of general type, find optimal upper bounds of the
invariants of fibers.

(2) Find new examples of X such that the generic irreducible component in
the general fiber of ϕ1 has birational invariants as large as possible.

First of all, we aim at improving known upper bounds for g(F ) (resp. pg(F ))
and shall prove the following theorem.

Theorem 1.2. Let X be a Gorenstein minimal projective 3-fold of general type.
Assume that X is canonically of fiber type. Let F be a smooth model of the generic
irreducible component in the general fiber of ϕ1. Then

(i) g(F ) ≤ 91 when F is a curve and pg(X) ≥ 183;
(ii) pg(F ) ≤ 37 when F is a surface and pg(X) ≥ 3890.

The second and the more important purpose of this paper is to present several
new classes of 3-folds such as:

(1) XS,19 (see Example 5.4), canonically fibred by surfaces of general type
of geometric genus pg(F ) = 19;
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(2) XC,ν,13 (see Example 5.5), canonically fibred by curves of genus g(F ) =
13, where ν ≥ 3;

(3) YS,19 (see Example 5.6);
(4) YC,ν,13 (see Example 5.7), ν ≥ 3;
(5) ZS,19 (see Example 5.8);
(6) ZC,ν,13 (see Example 5.9), ν ≥ 3;
(7) XS,16 (see Example 5.10);
(8) XC,ν,11 (see Example 5.11), ν ≥ 3;
(9) XS,13 (see Example 5.12);

(10) XC,ν,9 (see Example 5.13), ν ≥ 3.

An earlier result due to Beauville [2] says that an algebraic surface S of general
type can be canonically fibred by curves of genus at most 5, as long as χ(OS) ≥ 21.
However, there are no known examples of canonically fibred surfaces with fiber
genus > 3. All above examples hint that, unlike the situation of surfaces, there
might be plenty of canonically fibred minimal 3-folds.

A reward of above 3-fold structure is that we have actually found, in the
last section, a new class of general type surfaces (see Example 6.1) which are
canonically fibred by curves of genus 13.

As known to several experts, the main idea to treat this kind of questions is
to deduce an effective inequality of Noether type while translating Miyaoka-Yau
inequality ([21, 32, 33]) in terms of pg(X). We will go a little bit further in both
sides in order to prove Theorem 1.2. In the authors’ opinion, those examples in
the last section are more interesting. Naively we feel that pg(F ) ≤ 37 in Theorem
1.2 (ii) is a nearly optimal upper bound.

Throughout we prefer to use “∼” to denote linear equivalence whereas “≡”
means numerical equivalence.

We would like to thank Fabrizio Catanese, Yongnam Lee, Margarida Mendes
Lopes and Roberto Pignatelli for the consultant of relevant results on surfaces of
general type with pg = 0. We thank Christopher D. Hacon for effective discussions
through emails. Many thanks to the anonymous referee whose suggestion greatly
improved the exposition of this note.
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2. Technical preparation

2.1. Set up for ϕ1.

Let X be a Gorenstein minimal 3-fold of general type with pg(X) := h0(X, ωX) ≥
2. We denote by ϕ1 the canonical rational map ϕ1 : X 99K Ppg(X)−1. By Hi-
ronaka’s theorem on resolution of singularities, we can take successive blow-ups
π : X ′ → X along smooth centers, such that

(i) X ′ is nonsingular;
(ii) the movable part of |KX′ | is base point free;
(iii) for a fixed Weil divisor K0 ∼ KX , the support of π∗(K0) + E is of simple

normal crossing, where E is the exceptional divisor of π on X ′.

Set g := ϕ1 ◦ π. Then g : X ′ → W ⊆ Ppg(X)−1 is a morphism. Taking the Stein
factorization of g, one gets X ′ f→ Γ s→ W where s is finite, Γ is normal and f is
a fiber space. So we have the following commutative diagram:

X

X ′

W

Γ-

? ?

@
@

@
@

@R- - - - - - - - - - --

f

sπ

ϕ1

g

The fibration f : X ′ → Γ is referred to as an induced fibration of ϕ1. Write
KX′ = π∗(KX)+E and |KX′ | = |M |+Z where |M | is the movable part of |KX′ |,
E is exceptional and Z the fixed part. Since π∗(KX) ≥ M , one may also write
π∗(KX) ∼ M + E′ where E′ is an effective divisor. In fact, E′ ≤ Z.

If dimϕ1(X) ≥ 2, a general member S of |M | is a nonsingular projective
surface of general type.

If dim ϕ1(X) = 1, denote by F a general fiber of f and set S = F . Then S

is still a nonsingular projective surface of general type. Under this situation, one
has

M =
a1∑

i=1

Fi ≡ a1F.

where the F ′
i s are smooth fibers of f and, clearly, a1 ≥ pg(X)− 1.



On Canonically Fibred Algebraic 3-folds 1109

In both cases, we call S a generic irreducible element of |M | or |KX′ |. Set

p =





1 if dim(Γ) = 2,

a1 if dim(Γ) = 1.

Hence, we always have M ≡ pS.

2.2. Volume inequality.

Assume X is canonically of fiber type. Pick a generic irreducible element S of
|KX′ |. Suppose there is a movable linear system |G| on S with a smooth generic
irreducible element C. Then, by Kodaira Lemma, there exists a positive rational
number β such that π∗(KX)|S − βC is numerically equivalent to an effective
Q-divisor. As being recognized in [6, Inequality (2.1)], one has the following
inequality:

(2.1) K3
X ≥ pβξ

where ξ := (π∗(KX).C)X′ .

2.3. An inequality bounding ξ from below.

Keep the same notation as above. By [6, Inequality (2.2)], one has

(2.2) ξ ≥ 2g(C)− 2

1 +
1
p

+
1
β

.

3. The canonical family of curves

Assume dimΓ = 2 in this section. We have an induced fibration f : X ′ → Γ
with the general fiber a smooth curve C with g(C) ≥ 2. Keep the same notation
as in 2.1.

Proposition 3.1. Let X be a Gorenstein minimal projective 3-fold of general
type. If dimϕ1(X) = 2, then

K3
X ≥

⌈ 2g(C)− 2
2 + 1

pg(X)−2

⌉
(pg(X)− 2).

In particular, K3
X ≥ (g(C)− 1)(pg(X)− 2) when pg(X) ≥ 111.



1110 Meng Chen and Aoxiang Cui

Proof. Take |G| = |S|S | on a general member S. Then G ≡ βC with β ≥
pg(X)− 2. Thus the inequality (2.1) gives

K3
X ≥ (π∗(KX).C)(pg(X)− 2).

By inequality (2.2), one has

π∗(KX).C ≥ 2g(C)− 2
2 + 1

pg(X)−2

.

The proof of Chen-Hacon [9, Theorem 1.1(1)] actually implies g(C) ≤ 164
whenever pg(X) ≥ 111. Now under the condition pg(X) ≥ 111, one gets π∗(KX).C >

g(C)− 2. Since π∗(KX).C is an integer, we get π∗(KX).C ≥ g(C)− 1. ¤

Combining Miyaoka-Yau inequality (Miyaoka [21] and Yau [32, 33]) and The-
orem 3.1, we only need to get an upper bound of χ(ωX). In Chen-Hacon [9,
Proposition 2.1], we know that

χ(ωX) ≤ (1 +
1

pg(Vy)
)pg(V ),

where V is the smooth model of X, and Vy is a generic irreducible component in
the general fiber of Albanese morphism of V .

In the following theorem, we will bound χ(ωX) with a careful classification.

Theorem 3.2. Let X be a Gorenstein minimal projective 3-fold of general type.
Assume that X is canonically fibred by curves C. Then g(C) ≤ 91 whenever
pg(X) ≥ 183.

Proof. Assume q(X) ≤ 2, then χ(ωX) ≤ pg(X) + 1 and one can easily verify the
statement.

Assume q(X) ≥ 3. Take a smooth birational model V of X. Denote by Vy a
generic irreducible component in the general fiber of the Albanese morphism of
V . Note that pg(Vy) > 0 since pg(V ) = pg(X) > 0.

Case (1). As long as Vy is not a surface with q(Vy) = 0 and pg(Vy) ≤ 3,
then Chen-Hacon [9, Proposition 2.1] implies χ(ωX) ≤ 5

4pg(X). Provided that
pg(X) ≥ 111, one has:

(g(C)− 1)(pg(X)− 2) ≤ K3
X ≤ 72 · 5

4
pg(X).
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So, by calculation, one has g(C) ≤ 91 when pg(X) ≥ 183.

Case (2). If Vy is a surface with q(Vy) = 0 and pg(Vy) = 1, the canonical map
Φ|KV | maps Vy to a point, which contradicts to the assumption dim Γ = 2. Thus
this is an impossible case.

Case (3). If Vy is a surface with q(Vy) = 0 and pg(Vy) = 2, the assumption
dimΓ = 2 implies that the natural restriction j : H0(V, KV ) → H0(Vy,KVy) is
surjective. This means Φ|KV |(Vy) = P1. In other words, ϕ1|Vy = Φ|KVy |. Taking
further birational modification to X ′ and V , we may assume X ′ = V and the
relative canonical map of AlbV is a morphism. Thus C, as a general fiber of f ,
is nothing but a generic irreducible element of the movable part of |KVy |. By the
result of Beauville [2], one easily gets, at worst, g(C) ≤ K2

Vy
+1 ≤ 9χ(OVy)+1 ≤

28.

Case (4). If Vy is a surface with q(Vy) = 0 and pg(Vy) = 3, we will discuss it
in details. In fact, |KVy | can be either composed with a pencil of curves or not.
We may still investigate the natural map j. Note that dim Im(j) ≥ 2. First, we
consider the case dim Im(j) = 2. Then |KV ||Vy is a sub-pencil of |KVy |. Clearly
the generic irreducible element of the movable part of |KV ||Vy is numerically
equivalent to C, a general fiber of f contained in Vy. Denote by Vy,0 the minimal
model of Vy. Noting that χ(OVy,0) ≤ 4, one has

2g(C)− 2 ≤ 2K2
Vy,0

≤ 18χ(OVy,0),

which yields g(C) ≤ 37. Next, we consider the case dim Im(j) = 3. This says j is
surjective. So Φ|KV ||Vy = Φ|KVy |. When |KVy | is composed with a pencil, then the
general fiber C of f contained in Vy is nothing but a generic irreducible element
in the movable part of |KV,y|. By Beauville [2], one has g(C) ≤ 36. When
dimΦ|KV |(Vy) = 2, we hope to prove dimϕ1(V ) = 3 which contradicts to the
assumption dim Γ = 2. In fact, denote by a : V → Y the induced fibration after
the Stein factorization of the Albanese map of V . Note that g(Y ) ≥ q(V ) ≥ 3.
Replace a by a relative minimal model â : Z → Y . Let Zy be a general fiber of â.
According to Fujita [12], one knows â∗ωZ/Y is semi-positive. The Riemann-Roch
on Y gives

h0(Y, â∗ωZ ⊗OY (−y)) ≥ 3(g(Y )− 2) > 0.

Take a general point y1 ∈ Y . Since |KZ − Zy1 | 6= ∅, we may take a non-
zero section s1 ∈ H0(Z, ωZ) such that s1 vanishes along Zy1 . Write div(s1) =
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Zy1 + G1 with G1 > 0. Pick another general fiber Zy2 such that Zy2 6≤ Zy1 + G2.
Then s1 does not vanish along Zy2 . For the same reason, we may find another
non-zero section s2 ∈ H0(Z, ωZ) such that s2 vanishes along Zy2 . This already
implies Φ|KZ |(Zy1) 6= Φ|KZ |(Zy2). Thus dim Φ|KZ |(Z) > dimΦ|KZ |(Zy1) = 2, a
contradiction. We have proved the theorem. ¤

4. The canonical family of surfaces

In this section we assume dimΓ = 1. Essentially we will study the case when
pg(F ) is large. Recall that Chen [7, Theorem 1] implies b = g(Γ) ≤ 1 whenever
pg(F ) > 2. First we will deduce a very delicate inequality of Noether type.

Proposition 4.1. Let X be a Gorenstein minimal projective 3-fold of general
type. Assume X is canonically fibred by surfaces F with pg(F ) > 2. Then

K3
X ≥





(K2
F0

+ 1
4(20K2

F0
+1)

)pg(X), when b = 1;

(K2
F0

+ 1
4(20K2

F0
+1)

)(pg(X)− 1)− 4K2
F0

2(20K2
F0

+1)
,

when b = 0 and

pg(X) ≥ 56.

Proof. The property we are discussing here is birationally invariant. For technical
reason, we need to choose a suitable minimal model. According to Kawamata [15,
Lemma 5.1], any Gorenstein minimal 3-fold is birational to a factorial Gorenstein
minimal model with at worst terminal singularities. So we may assume that X

is factorial. We keep the same notation as in 2.1. We have an induced fibration
f : X ′ → Γ onto the smooth curve Γ.

Pick a general fiber F of f . Set N := π∗(F ) and Z := π∗(E′). Then we have

KX ≡ a1N + Z.

As one knows (see, for instance, Chen-Chen-Zhang [5, 2.2]), KX .N2 is a non-
negative even integer.

In case b = 1, automatically KX .N2 = 0 since the movable part of |KX | is
base point free.

In case b = 0 and KX .N2 > 0 (which means KX .N2 ≥ 2), one has

K3
X ≥ a1K

2
X .N ≥ 2a1

2 ≥ 2(pg(X)− 1)2.

Noting that χ(ωX) ≤ 3
2pg(X) by Chen-Hacon [9, 2.2(2)], the Miyaoka-Yau in-

equality implies pg(X) ≤ 55. In other words, KX .N2 = 0 whenever pg(X) ≥ 56.
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Now we can work under the assumption KX .N2 = 0. Then one has π∗(KX)|F =
σ∗(KF0) by Chen-Chen-Zhang [5, Claim 3.3]. Therefore

K2
X .N = π∗(KX)2.F = (π∗(KX)|F )2 = σ∗(KF0)

2 = K2
F0

.

Recall that we are studying on the factorial minimal model X. According to
Lee [17], |4KX | is base point free. Take a general member S4 of |4KX |. Then S4

is a nonsingular projective surface of general type. We hope to do some delicate
calculation on S4. Clearly f(π∗(S4)) = Γ, which also means that S has a natural
fibration structure since (N |S4)

2 = 4KX .N2 = 0. Taking the restriction, one has:

KX |S4 ≡ a1N |S4 + Z|S4 .

The fact (N |S4)
2 = 0 also implies that f |π∗(S4) factors through S4, i.e. there

is a fibration ν : S4 → Γ. Since S4 and F are both general, one sees that
N |S4 = π(F |π∗(S4)) is irreducible and reduced and is exactly a general fiber of ν.

By abuse of notation, we set C := N |S4 and G := Z|S4 . Write G := Gv + Gh

where Gv is the vertical part while Gh :=
∑

i miGi (mi > 0) is the horizontal
part. Then we have

KX |S4 ≡ a1C + Gv +
∑

miGi.

Note that C is nef, C2 = 0, C.Gi > 0 for all i and pa(Gi) ≥ g(Γ). One has

4K2
F0

= 4(π∗(KX)|F )2 = 4K2
X .N

=
∑

mi(C.Gi) ≥
∑

mi.

Write k := 4K2
F0

. For each i, we have

KS4 .Gi + G2
i = 2pa(Gi)− 2 ≥ 2b− 2 = 2g(Γ)− 2.

On S4, take the divisor D := kKS4 + 2k(1− b)C + Gv +
∑

miGi. For each i,
one has

D.Gi≥ k(KS4 .Gi) + 2k(1− b)(C.Gi) + miG
2
i

≥mi(KS4 .Gi) + 2mi(1− b)(C.Gi) + mi(2b− 2−KS4 .Gi)

= 2mi((1− b)(C.Gi) + b− 1) ≥ 0.

Thus D.Gh ≥ 0. Explicitly,

D.Gh = k(KS4 .Gh) + 2k(1− b)(C.Gh) + Gv.Gh + G2
h ≥ 0.
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Since

KX |S4 .Gh = a1(C.Gh) + Gv.Gh + G2
h

and KS4 = (KX + S4)|S4 = 5KX |S4 , by summing up together, one gets

(5k + 1)(KX |S4 .Gh) ≥ (a1 − 2k(1− b))(C.Gh) ≥ a1 − 2k(1− b).

Finally, one has

K3
X =

1
4
(KX |S4)

2 ≥ 1
4
a1(KX |S4 .N |S4) +

1
4
(KX |S4 .Gh)

≥ (1 +
1

k(5k + 1)
)a1K

2
F0
− k

2(5k + 1)
(1− b)

which yields the statements of this proposition. ¤

Theorem 4.2. Let X be a Gorenstein minimal projective 3-fold of general type.
Assume that X is canonicaly fibred by surfaces. Let f : X ′ → Γ be an induced
fibration and denote by F a general fiber. Then pg(F ) ≤ 37 when either b =
g(Γ) > 0 or b = 0 and pg(X) À 0, say pg(X) ≥ 3890.

Proof. If b > 1, then pg(F ) ≤ 2 by Chen [7, Theorem 1].

If b = 1, we know that f∗ωX′ = f∗ωX′/Γ and R1f∗ωX′ = R1f∗ωX′/Γ are both
semi-positive (see Fujita [12], Kawamata [14], Kollár [16], Nakayama [22] and
Viehweg [26]). Furthermore R2f∗ωX′ = ωΓ

∼= OΓ. This implies χ(R1f∗ωX′) ≥ 0
and χ(R2f∗ωX′) = 0. Thus

χ(ωX′) = χ(f∗ωX′)− χ(R1f∗ωX′) + χ(R2f∗ωX′) ≤ χ(f∗ωX′) ≤ pg(X).

So Proposition 4.1 and Miyaoka-Yau inequality imply

(K2
F0

+
1

4(20K2
F0

+ 1)
)pg(X) ≤ 72pg(X)

which directly gives K2
F0

< 72, whence pg(F ) ≤ 37 by the Neother inequality
K2

F0
≥ 2pg(F )− 4.

If b = 0, we assume pg(X) ≥ 56. Clearly

χ(ωX) ≤ pg(X) + q(F )− 1.

A preliminary estimation in Chen-Hacon [9, 2.2(2)] gives K2
F0
≤ 108 when pg(X) ≥

327. We shall discuss by distinguishing the value of q(F ).
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Case (1). q(F ) > 0. By Debarre [11], one has K2
F0
≥ 2pg(F ). So Proposition

4.1 and Miyaoka-Yau inequality implies

K2
F0
≤ 72− 1

4(20K2
F0

+ 1)
+ (36K2

F0
+

2K2
F0

20K2
F0

+ 1
) · 1

pg(X)− 1
.

The calculation shows K2
F0
≤ 72 (whence pg(F ) ≤ 36) if pg(X) ≥ 3890; and

K2
F0
≤ 71 (whence pg(F ) ≤ 35) if pg(X) ≥ 33616518.

Case (2). q(F ) = 0. Similarly, we have

K2
F0
≤ 72− 1

4(20K2
F0

+ 1)
+

2K2
F0

20K2
F0

+ 1
· 1
pg(X)− 1

.

At least, when pg(X) ≥ 865, one has K2
F0

< 72 or pg(F ) ≤ 37.

To make the conclusion, when pg(X) ≥ 3890 and b = 0, one gets pg(F ) ≤
37. ¤

Theorem 3.2 and Theorem 4.2 imply Theorem 1.2.

5. New examples of canonically fibred 3-folds

An equally important task of birational classification is to provide supporting
examples. One may refer to Chen [8] and Chen-Hacon [9] for some examples
where the largest known value of g(F ) (resp. pg(F )) is 5. In fact, it has been an
open problem to look for general type 3-folds canonically fibred by curves (resp.
surfaces) with invariant of general fiber as large as possible. In this section we
would like to present some new examples.

5.1. Standard construction.

Let S be a minimal projective surface of general type with pg(S) = 0. Assume
there exists a divisor H on S such that |KS + H| is composed with a pencil of
curves and that 2H is linearly equivalent to a smooth divisor R. The existence
of such pair (S,H) is secured by Lemma 5.3. Let Ĉ be a generic irreducible
element of the movable part of |KS + H|. Assume Ĉ is smooth. Set d := Ĉ.H

and D := Ĉ
⋂

H.

Let C0 be a fixed smooth projective curve of genus 2. Let θ be a 2-torsion
divisor on C0. Set Y := S × C0. Denote by p1 : Y → S, p2 : Y → C0 the two
projections. Take δ := p∗1(H) + p∗2(θ) and pick a smooth divisor ∆ ∼ p∗1(2H).
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Then the pair (δ,∆) determines a smooth double covering π : X → Y and
KX = π∗(KY + δ). Clearly X is smooth, minimal and of general type.

Since KY +δ = p∗1(KS +H)+p∗2(KC0 +θ), pg(Y ) = 0 and h0(KC0 +θ) = 1, one
sees that |KX | = π∗|KY + δ| and that Φ|KX | factors through π, p1 and Φ|KS+H|.
Since |KS +H| is composed with a pencil of curves Ĉ, X is canonically fibred by
surfaces F and F is a double covering over T := Ĉ×C0 corresponding to the data
(q∗1(D) + q∗2(θ), q

∗
1(2D)) where q1 and q2 are projections. Denote by σ : F → T

the double covering. Then KF = σ∗(KT + q∗1(D) + q∗2(θ)). By calculation, one
has pg(F ) = 3g(Ĉ) when d = 0 and pg(F ) = 3g(Ĉ) + d− 1 whenever d > 0.

The 3-folds constructed in the above way will be denoted by XS,pg(F ) in the
context.

5.2. Variant—An Infinite Family.

In the construction 5.1, if we replace C0 by any smooth curve Cν of genus ν ≥ 3,
what we obtain is a smooth minimal 3-fold X canonically fibred by curves. In
fact, since h0(KC0 + θ) > 1, Φ|KX | factors through π and p1× p2. Thus a generic
irreducible component in the fibres of Φ|KX | is simply a double covering τ : F → Ĉ

branched along the divisor 2D. Thus Hurwitz formula gives

2g(F )− 2 = 2(2g(Ĉ)− 2) + 2d

and hence g(F ) = 2g(Ĉ) + d− 1.

Clearly pg(X) can be arbitrarily large as long as ν = g(Cν) is large. So such
kind of 3-folds X form an infinite family. We denote these 3-folds by XC,ν,g(F ).

Lemma 5.3. Let S be any smooth minimal projective surface of general type with
pg(S) = 0. Assume µ : S → P1 is a genus 2 fibration. Let H be a general fiber
of µ. Then |KS + H| is composed with a pencil of curves Ĉ of genus g(Ĉ) and
Ĉ.H = 2.

Proof. By Ramanujam’s vanishing theorem [1, P.131, Theorem 8.1], one has
H1(S,KS + H) = 0. Thus

h0(S,KS + H) =
1
2
(KS + H)H + χ(OS) = g(H) = 2

which gives that |KS + H| is naturally composed with a pencil of curves Ĉ of
genus g(Ĉ).
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Since q(S) ≤ pg(S) = 0, we have the surjective map

H0(S,KS + H) → H0(H, KH).

This means that |KS + H| is composed with a different pencil from |H|. Thus
µ(Ĉ) = P1. In other words, |H||Ĉ is movable. The Riemann-Roch and the
Clifford theorem simply imply Ĉ.H = 2 since g(H) = 2.

Finally, whenever K2
S ≥ 2, Xiao [30, Theorem 6.5] proved that S can not have

two different pencils of genus 2 on S. We thus see g(Ĉ) ≥ 3. ¤

We would like to look for those pairs (S,H) satisfying the conditions of Lemma
5.3.

Example 5.4. The 3-fold XS,19 which is canonically fibred by surfaces
F with pg(F ) = 19.

We take a pair (S,H) which was found by Xiao [28, P. 288], where S is a
numerical Compedelli surface with K2

S = 2, pg(S) = q(S) = 0 and Tor(S) =
(Z2)3. We need to recall the construction to determine the pencil |Ĉ| on S.

To start the construction, let P = P1 × P1. Denote by x, y ∈ P1 = C ∪ {∞}
the two coordinates of those points in P . Take four curves C1, C2, C3 and C4

defined by the following equations, respectively:

C1 : x = y;

C2 : x = −y;

C3 : xy = 1;

C4 : xy = −1.

These four curves intersect mutually at 12 ordinary double points:

(0, 0), (∞,∞), (0,∞), (∞, 0)

(±1,±1), (±√−1,±√−1).
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r(0, 0)

r(0,∞)

r(1, 1)

r(1,−1)

r(
√−1,

√−1)

r(
√−1,−√−1)

r(−
√−1,

√−1)

r(−
√−1,−√−1)

r(−1, 1)

r(−1,−1)

r(∞, 0)

r(∞,∞)

P0 P1 P√−1 P−√−1 P−1 P∞

Q0

Q1

Q√−1

Q−√−1

Q−1

Q∞

Denote by ϕ : P → P1 be the first projection. Let F1, . . . , F6 be the fibers of
ϕ over P0, P∞, P1, P−1, P√−1, P−√−1 ∈ P1, respectively. Note that each fiber Fi

contains exactly two double points. Furthermore we take the following divisors
of bi-degree (4, 2):

D1 = C1 + C2 + F1 + F2,

D2 = C1 + C3 + F3 + F4,

D3 = C2 + C3 + F5 + F6.

Being linearly equivalent, passing through the above 12 points and having no
common components, D1, D2 and D3 generate a linear system which has the
general smooth member D with D again passing through the 12 points. Let

R1 :=
4∑

i=1

Ci +
6∑

i=1

Fi + D

and δ1 be a divisor of bi-degree (7, 3) on P . Then the data (δ1, R1) determines
a singular double covering onto P . Noting that R1 has exactly 12 singularities
of multiplicity 4, we take the blowing up τ : P̃ → P resolving the 12 points.
Then, on P̃ , the strict transform R̃1 := τ−1∗ (R1) is smooth and the corresponding
double covering θ : S̃ → P̃ is smooth. Set f̃ := ϕ◦τ ◦θ. Then we have a fibration
f̃ : S̃ → P1. Clearly, on S̃, the strict transforms of F1, . . ., F6 are exactly the only
(−1)-curves and are contained in fibers of f̃ . These (−1)-curves are contracted
to get the relative minimal fibration f : S → P1 where S happens to be minimal
with K2

S = 2 and pg(S) = q(S) = 0. Denote by σ : S̃ → S the blow down.
Clearly f is a fibration of genus 2. Denote by H a general fiber of f . We would
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like to study the linear system |KS + H|.

S
σ←−−−− S̃

θ−−−−→ P̃

f

y
yf̃

yτ

P1 P1 ←−−−−
ϕ

P

Denote by Ei = θ−1∗ (F̃i) and F̃i := τ−1∗ (Fi) for i = 1, . . . , 6. We have known that
E1, . . . , E6 are all (−1)-curves. On P̃ , let J1, . . . , J12 are 12 exceptional curves
after the blowing up τ . Denote L = τ∗(1, 0). Then σ∗(H) ∼ θ∗(L).

Take δ̃1 = τ∗δ1 − 2
∑12

k=1 Jk. We have

KS̃ + σ∗(H) = θ∗(KP̃ + δ̃1 + L)

∼ θ∗(τ∗(KP + δ1 + (1, 0))−
12∑

k=1

Jk)

∼ θ∗(τ∗(6, 1)−
12∑

k=1

Jk)

∼ θ∗τ∗(0, 1) + 2
6∑

i=1

Ei.

Thus we see that σ∗(KS+H) ∼ θ∗τ∗(0, 1)+
∑6

i=1 Ei and that |KS+H| has exactly
6 base points, but no fixed parts. Clearly a general member Ĉ ∈ |KS + H| is
obtained by mapping a general curve θ∗τ∗(0, 1) onto S and Ĉ is a smooth curve
of genus 6. Lemma 5.3 tells that |KS + H| is composed with a pencil Ĉ.

Now we take the triple (S,H, Ĉ) and run Construction 5.1. What we get is
the 3-fold XS,19 which is canonically fibred by surfaces F with pg(F ) = 19. This
is a new record with regard to [9, Question 4.2].

Example 5.5. The 3-fold family XC,ν,13 which are canonically fibred by
curves F of genus g(F ) = 13.

We take the same triple (S,H, Ĉ) as in Example 5.4 and run Construction
5.2. What we shall get is a 3-fold family XC,ν,13 which are canonically fibred by
curves F of genus 13 where ν ≥ 3. This is again a new record with regard to [9,
Question 4.2].

Example 5.6. The 3-fold YS,19.
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We take an alternative pair (S,H) constructed by Weng ([27]) and rephrased by
Xiao as [31, Examples 4.4.8]. Let a, b ∈ C be two numbers satisfying a 6= 0,±1,
b 6= 0, ab 6= a + 1. Take P = P1 × P1. Denote by x, y ∈ P1 = C ∪ {∞} the
two coordinates of those points in P . Take four projective curves defined by the
following equations:

C1 : xy = 1;

C2 : xy = a;

C3 : abx3 + ab(a + 1)x + (a + 1)2y = (a + 1)xy2;

C4 : (a + 1)y2 + (a + 1)bx2y2 + (a + 1)bx3y = abx2.

These curves have bi-degrees (1, 1), (1, 1), (3, 2) and (3, 2), respectively. The
divisor Rp := C1 + C2 + C3 + C4 have the following triple points:

(0, 0), (0,∞), (∞, 0), (∞,∞);

(αi,
1
αi

), (αi,
a

αi
), i = 1, . . . , 4

where the α′is (i = 1, . . . , 4) are the roots of the following equation:

bx4 + (a + 1)bx2 + (a + 1) = 0.

Note that Rp has no more singular points. Take

R := Rp + p∗1(0 +∞+ α1 + α2 + α3 + α4).

For a divisor δ with 2δ ∼ R, the pair (δ,R) gives a double covering which induces
a minimal relative fibration f : S → P1 of genus 2, where S is a minimal surface
of general type with K2

S = 2 and pg(S) = q(S) = 0. Let H be a general fiber of
f . Since R has similar singularities as that in Example 5.4, similar calculation
shows that |KS +H| has exactly 6 base points, but no fixed parts. Thus a general
member Ĉ ∈ |KS+H| is a smooth curve of genus 6. Lemma 5.3 tells that |KS+H|
is composed with a pencil Ĉ.

Now if we take the triple (S,H, Ĉ) and run Construction 5.1. What we get is
the 3-fold YS,19 which is canonically fibred by surfaces F with pg(F ) = 19.

Example 5.7. The 3-fold family YC,ν,13.

Again we take the same triple (S,H, Ĉ) as in Example 5.6 and run Construction
5.2. What we obtain is the 3-fold family YC,ν,13 which are canonically fibred by
curves F of genus 13 with the parameter ν ≥ 3.
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Example 5.8. The 3-fold ZS,19.

We take one more pair (S,H) constructed by Weng and rephrased by Xiao as
[31, Examples 4.4.9]. Take P = P1×P1. Denote by x, y ∈ P1 = C∪{∞} the two
coordinates of those points in P . Let a ∈ C and a 6= ±1, ±√−1. For any point
c ∈ P1 = C ∪ {∞}, Fc denotes the fiber over c of the fibration (first projection)
p1 : P → P1. Consider the following five curves of bi-degree (1, 1):

D1 : x = y;

D2 : xy = 1;

D3 : a2y = x;

D4 : xy = a2;

D5 : a2xy = 1.

Take two curves of bi-degree (5, 3):

B1 = D1 + 2D5 + Fa + F−a,

B2 = D3 + 2D4 + F1 + F−1.

One sees that B1 and B2 have no common components and they both pass
through the following 12 points:

(0, 0), (∞,∞), (1, 1), (−1,−1), (a,
1
a
), (−a,−1

a
);

(0,∞), (∞, 0), (1,
1
a2

), (−1,− 1
a2

), (a, a), (−a,−a).

Furthermore, B1 and B2 each has double points along:

(0,∞), (∞, 0), (1,
1
a2

), (−1,− 1
a2

), (a, a), (−a,−a).

By Bertini theorem, the general member B of the linear system generated by
B1 and B2 is irreducible, B passes through the above 12 points and the above
mentioned 6 points are exactly the double points of B. Now take

R = B + D1 + D2 + D3 + F0 + F∞ + F1 + F−1 + Fa + F−a.

Then the 12 points are the only singular points of R and each point is of multi-
plicity 4. Take a divisor δ such that R ∼ 2δ. Then (δ,R) again induces a minimal
fibration f : S → P1 of genus 2, where S is a minimal surface of general type with
K2

S = 2 and pg(S) = q(S) = 0. Let H be a general fiber of f . Since R has similar
singularities as that in Example 5.4, similar calculation shows that |KS + H| has
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exactly 6 base points, but no fixed parts. Thus a general member Ĉ ∈ |KS + H|
is a smooth curve of genus 6. Lemma 5.3 tells that |KS + H| is composed with a
pencil Ĉ.

Now if we take the triple (S,H, Ĉ) and run Construction 5.1. What we get is
the 3-fold ZS,19 which is canonically fibred by surfaces F with pg(F ) = 19.

Example 5.9. The 3-fold family ZC,ν,13.

Still we take the same triple (S,H, Ĉ) as in Example 5.8 and run Construction
5.2. What we obtain is a 3-fold family ZC,ν,13 which are canonically fibred by
curves F of genus 13.

Example 5.10. The 3-fold XS,16.

We take a pair (S,H) found by Oort and Peters [23], where S is a numerical
Godeaux surface with K2

S = 1, pg(S) = q(S) = 0. Consider four curves in P2

defined by the following equations:

C1 : Y 2 + (X − 1)(2X − 3− 2Y ) = 0;

C2 : Y 2 + (X − 1)(2X − 3 + 2Y ) = 0;

C3 : Y 2 + X(X − 1)(X − 3) = 0;

C4 : (2−X)C3 + (X2 − 3X + 3)2 = 0.

where C1, C2 are quadratic curves and C3, C4 are cubic curves. These four plane
curves intersect at seven points:

P4 = (
3
2
, 0), Q1 = (1, 0), Q2 = (x+, x+), Q3 = (x−, x−),

Q4 = (x+,−x+), Q5 = (x−,−x−), P2 = (0, 1).

where

x+ =
3 +

√−3
2

, x− =
3−√−3

2
.

P4 Q1 Q2 Q3 Q4 Q5 P2

C1 1 1 1 1
C2 1 1 1 1
C3 1 1 1 1 1 1
C4 2 1 1 1 1 1
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Let D := C1 + C2 + C3 + C4 which is a curve of degree 10. Since P4 is
an ordinary double point of C4 and both C1, C2 pass through P4 with distinct
tangent directions, P4 is indeed an ordinary quadruple point of D. Triple points
Q1, . . . , Q5 are of type (3 → 3)(i.e. after single blowing ups, the triple points
become ordinary triple points) and P2 is an ordinary double point of D.

Let δ := OP2(5) be a divisor on P2. Covering data (δ,D) determines a singular
double covering over P2. D has five singular points of type (3 → 3), one singular
point of multiplicity 2 and one point of multiplicity 4. Take successive blow-ups
τ : P̃ → P2 to resolve these seven singularities.

Denote by EP2 , EP4 ∈ P̃ the complete transform of the exceptional curves of
P2 and P4, respectively. The resolution for Qi needs two-step blow-ups, denote by
EQi , E′

Qi
the two corresponding complete transforms of the exceptional curves.

Divisor D̃ := τ−1∗ (D) +
∑

EQi −
∑

E′
Qi

on P̃ is smooth, hence the double
covering θ : S̃ → P̃ is smooth. Denote by ϕ : P2 99K P1 the rational map
determined by the pencil of lines passing through P4 and let f̃ := ϕ ◦ τ ◦ θ. By
Hurwitz formula we know that f̃ is a fibration of genus 2. On S̃, all the (−1)-
curves are introduced by the desingularity of Q1, . . . , Q5. Contracting these five
(−1)-curves gives a relative minimal fibration f : S → P1 where S is in fact a
minimal general type surface with K2

S = 1 and pg(S) = q(S) = 0. Clearly f

is also a fibration of genus 2. Denote by H a general fiber of f . Again we can
determine the movable part of the linear system |KS + H|.

S

f

²²

S̃
σoo θ //

f̃
²²

P̃

τ

²²
P1 P1 P2

ϕ
oo_ _ _

Take

δ̃ = τ∗δ − EP2 − 2EP4 −
∑

EQi − 2
∑

E′
Qi

.

We have

KS̃ + σ∗(H) = θ∗(KP̃ + δ̃) + θ∗(τ∗(OP2(1)− EP4))

∼ θ∗(τ∗(OP2(3))− 2EP4 −
∑

E′
Qi

).
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Denote by Ei the five (−1)-curves on S̃, we have

σ∗(KS + H) = KS̃ + σ∗(H)−
∑

Ei

= θ∗(τ∗(OP2(3))− 2EP4 −
∑

EQi) +
∑

Ei.

Now we want to find curves of degree 3 in P2 satisfying the following conditions:

(1) they pass through P4 with multiplicity 2 and separated tangent directions;

(2) they pass through Q1, . . . , Q5 with different tangent directions from that
of C1, . . . , C4 at these five points.
A direct computation shows that these curves form a linear system. In fact, a
general curve of the following form:

u(2(X − 3
2
)2Y − 3(X − 3

2
)Y + Y 3) + v(4(X − 3

2
)3 + 2(X − 3

2
)2 + Y 2) = 0

can be an appropriate candidate. So we have seen that |KS + H| has exactly
6 base points, but no fixed parts. Thus a general member Ĉ ∈ |KS + H| is a
smooth curve of genus 5. Lemma 5.3 implies that |KS + H| is composed with a
pencil Ĉ.

Now if we take the triple (S,H, Ĉ) and run Construction 5.1. What we get
is the 3-fold XS,16 which is canonically fibred by general type surfaces F with
pg(F ) = 16.

Example 5.11. The 3-fold family XC,ν,11.

We take the same triple (S,H, Ĉ) as in Example 5.10 and run Construction
5.2. What we obtain is the 3-fold family XC,ν,11 which are canonically fibred by
curves F of genus 11 with the parameter ν ≥ 3.

Example 5.12. The 3-fold XS,13.

Let S be a minimal surface of general type with K2
S = 1 and pg(S) = 0.

Take H = KS . Then, among all known examples in Catanese-Pignatelli [4], Lee
[18, 19] and Reid [24], one knows that |2KS | is composed with a pencil of curves
Ĉ of genus 4, |2KS | has no fixed part and a generic irreducible element Ĉ of
|2KS | is smooth. Thus g(Ĉ) = 4. Also one gets d = Ĉ.H = 2K2

S = 2. Take the
triple (S,H, Ĉ) and fill in Construction 5.1. Then we get the 3-fold XS,13 which
is canonically fibred by general type surfaces F with pg(F ) = 13.

Example 5.13. The 3-fold family XC,ν,9.
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Take the same triple (S,H, Ĉ) as in Example 5.12 and run Construction 5.2,
one gets the 3-fold family XC,ν,9 which are canonically fibred by curves F of genus
g(F ) = 2g(Ĉ) + d− 1 = 9.

Finally it is very interesting to know the answer to the following question:

Question 5.14. Are there smooth (Gorenstein) minimal projective 3-folds of
general type which are canonically fibred by surfaces (resp. curves) F with
pg(F ) > 19 (resp. g(F ) > 13)?

6. A new class of canonically fibred surfaces of general type

Let M be a minimal projective surface of general type and assume that |KM |
is composed with a pencil of curves of genus g. The existence of such surfaces
with pg(M) ≥ 3 was known by Pompilij as early as 1984. In fact, there have been
studies by Beauville [2], Catanese [3], Debarre [10], Sun [25], Miyanishi-Yang [20],
Xiao [29] and others. Especially a minimal surface M with pg = 2 is automati-
cally canonically fibred by curves. However, among all known canonically fibred
surfaces, very few examples with g > 3 are known in literature.

Inspired by our construction in the last section. We are able to present here
at least 3 new examples with g = 13. Of course, our construction below has the
potential to illustrate other examples with g > 3.

Example 6.1. Take a pair (S,H) satisfying Lemma 5.3. Let ζ : Ŝ −→ S be the
double cover corresponding to the datum (δ,∆) = (H, H1 + H2) with H1 ∼ H,
H2 ∼ H. Since ∆ is smooth, we see that Ŝ is a minimal surface of general
type with K2

Ŝ
= 2(KS + H)2 and pg(Ŝ) = h0(S,KS + H) = 2. Thus |KŜ | is

automatically composed with a pencil of curves of genus g.

(6.1.1) The surface Ŝ1 with g = 13. If we take the same pair (S,H) as in
Example 5.4, what we get is a new surface Ŝ1 with K2

Ŝ1
= 12 and, corresponding

to the structure of Example 5.5, |KŜ1
| is composed with a pencil of curves of

genus g = 13, since a general member Ĉ ∈ |KS + H| is smooth as proved in
Example 5.4.

(6.1.2) The surface Ŝ2 with g = 13. Similarly if we take the same pair (S,H)
as in Example 5.6, what we get is another new surface Ŝ2 with K2 = 12 and
g = 13. This example is corresponding to Example 5.7.



1126 Meng Chen and Aoxiang Cui

(6.1.3) The surface Ŝ3 with g = 13. If we take the same pair (S,H) as in
Example 5.8, what we get is again a new surface Ŝ3 with K2 = 12 and g = 13.
This example is corresponding to Example 5.9.

More concrete examples may be found by choosing a suitable pair (S,H).

Finally we would like to ask the following:

Question 6.2. Can one find canonically fibred general type surfaces with g > 13?
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