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1. Introduction

Let X be a projective manifold of dimension n, a symmetric differential of
degree m is a section of the m-th symmetric power of the sheaf of holomorphic
1-forms, SmΩ1

X . A symmetric differential w of degree m is of rank 1 if it can be
locally written in the form w|U = fµm, where µ ∈ H0(U,Ω1

X) and f ∈ O(U).
Symmetric differentials of degree 1, i.e. holomorphic 1-forms, are trivially of rank
1. Holomorphic 1-forms µ on compact projective manifolds X have the following
properties:

i) µ ∈ H0(X, Ω1
X) are closed (and locally exact).

ii) The presence of a nontrivial holomorphic 1-form µ implies the existence of
a holomorphic map to an abelian variety A(X), f : X → A(X) and µ = f∗u
with u ∈ H0(A(X),Ω1

A(X)).

iii) The presence of a nontrivial holomorphic 1-form µ imply that the abelian-
ization of π1(X) is infinite.

In this work we will give an extension of these properties for rank 1 symmetric
differentials of all degrees.

The notions of closed and locally exact symmetric differentials will be gener-
alized to symmetric differentials of all degrees (and arbitrary rank). In essence a
symmetric differential w of degree m is closed (locally exact) if around the gen-
eral point (all points) of X w is the product of m exact 1-differentials. It will be
shown that any symmetric differential of rank 1, w, on a projective manifold X
is locally of the form w|U = (df)⊗m, outside of a locus of codimension 1. Hence
w is closed, but not necessarily locally exact. This result will be derived from
the existence of a ramified covering g : X ′ → X for which g∗w = µm, where
µ is a holomorphic 1-form on X ′. As a consequence, one has that the singular
foliation Fw defined by w either has a nonalgebraic integral or gives a fibration
over a curve.

With respect to property ii) it will be shown that the presence of a nontrivial
symmetric differential, w, of rank 1 of degree m on a projective manifold X
implies the existence a holomorphic map into a quotient of an abelian variety
Aw by a cyclic group, f : X → Aw/Zd (d | m), and w is is the pullback of an
orbifold symmetric differential on Aw/Zd.

The topological property iii) will have the following counterpart: there is a
divisor E which is contracted by the map f : X → Aw/Zd for which π1(X \
E) is infinite (in fact, π1(X \ E) has a subgroup of finite index with infinite
abelianization). The divisor E can be chosen to have the following negative
property: if S is a general complete intersection of X of dimension 2, then E ∩S
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is negative divisor of S. Thus if X has dimension two, then there is a contraction
of X to compact singular complex surface X ′ with the image of E consisting of
a finite set of points. It is clear in the case when dim f(X) = 2 but we show that
it holds even if f(X) is a curve.

The above results are also extended to twisted symmetric differentials of rank
1, i.e. sections of Sm(Ω1

X) ⊗ L, where L ∈ Picτ (X) is a C∗-flat line bundle
on X. Apart from their independent interest, twisted symmetric differentials of
rank 1 appear in the decomposition of closed symmetric differentials of higher
rank. Twisted symmetric differentials of rank 1 inherit some of the geometric
properties of twisted holomorphic differentials which were studied by Green-
Lazarsfeld, Beauville and Simpson [GrLa87], [Be92], [Si93] to understand the
cohomology locus S1(X) = {L ∈ Picτ (X)|H1(X, L) 6= 0}. The case where L is
torsion is similar to the nontwisted case. In the case where L is nontorsion one
obtains that the presence of a nontrivial w ∈ H0(X, SmΩ1

X ⊗ L) of rank 1 on X
implies the existence of a holomorphic map into a smooth curve of genus ≥ 1,
p : X → B, such that w is the pullback of twisted orbifold symmetric differential
on the curve B. Moreover, there is a divisor N with the same negative properties
as E above such that π1(X \N) is hyperbolic and the induced foliation Fw gives
a fibration over a curve.

2. Closed symmetric differentials

It is well known that in the case of holomorphic 1-forms, µ, the presence of
a nontrivial closed differential µ implies the topological property that the 1st-
Betti number dimH1(X,C) 6= 0. The condition of µ being closed, is necessary
since there are simply connected complex of manifolds of dimension ≥ 3 with
nontrivial holomorphic 1-forms. In the case X is a compact kahler manifold,
the connection between holomorphic 1-forms and the homology of X is always
present since all holomorphic 1-forms are closed and can be stated in the stronger
form: the dimension of H0(X, Ω1

X) determines the 1st-Betti number of X.

For differentials of higher degree the kahlerian condition on X is not sufficient
to guarantee a link between the presence of symmetric differentials on X and
the topology of X. An example of this fact is the noninvariance of the space
of symmetric differentials on families of smooth projective manifolds Xt despite
all Xt having the same underlying topological manifold (see [BoDeO06] for an
example of a family of simply connected projective surfaces for which the general
member of the family has no symmetric differentials while some special members
have infinitely many).
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To expect to derive topological properties one needs to introduce, as is done
in the case of holomorphic 1-forms, the notion of closed symmetric differentials.

Definition 2.1. Let w ∈ H0(X, SmΩ1
X) be a symmetric differential on a smooth

complex manifold X. The symmetric differential w is:

i) exact on an open subset U if w|U = (df1)m1 ...(dfk)mk , where
∑k

i=1 mi = m,
fi ∈ O(U) and dfi ∧ dfj 6= 0.

ii) locally exact on X if there is an open covering of X, {Ui}, such that w|Ui

is exact.
iii) closed on X if it is exact in a neighborhood of a general point of X.

Remarks:
i) the definition of a closed differential presented here is general (in particular, it
is not specific to rank 1 symmetric differentials).
ii) the condition of a symmetric differential being closed or exact is not linear for
degrees ≥ 2.
iii) the condition of being locally exact and the condition of being closed coin-
cide for symmetric differentials of degree 1, but that is no longer true for higher
degrees even in the case of rank 1. This fact is reflected nontrivially on the topo-
logical geometric properties that can be derived from either type of symmetric
differentials of rank 1, see next section.

The next proposition describes the locus where a closed symmetric differential
fails to be locally exact and describes the local form of closed but non locally
exact symmetric differentials.

Proposition 2.2. Let w ∈ H0(X, SmΩ1
X) be a closed symmetric differential of

rank 1. The locus where w is not locally exact is the divisor D ⊂ (w)0 ((w)0 =∑k
i=1 miDi the zero divisor w) with D = ∪αDα, α ∈ {i| m 6 |mi}.

Proof. Any x ∈ X has a neighborhood Ux where

(2.1) w|Ux
= fµ′m

with f ∈ O(Ux) and µ′ ∈ H0(Ux,Ω1
X) not vanishing outside codimension 2. If

x ∈ X \ (w)0, then f has an m-th root on Ux (shrink Ux if necessary) and one
has

(2.2) w|Ux = µm
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with µ ∈ H0(X, Ω1
X). Since w is closed, there is a neighborhood Uy of a general

point of y ∈ Ux where w|Uy
= (dg)m. This implies that µ is closed on the

whole Ux and hence locally exact on Ux. The same argument also shows that if
x ∈ D0 and f in (2.1) has locally an m-th root, then w is exact on some open Ux

containing x. Hence by covering X \D with such Ux, it follows that w is locally
exact on X \D0.

If x is a general point in D, then there is a sufficiently small neighborhood Ux

of x and a local system of coordinates where D ∩ Ux = {z1 = 0} and f = zmα
1

with m 6 |mα. If w was locally exact at x, then after possible shrinking the
neighborhood Ux, the following holds zmα

1 µ′m = (dh)m, where the left side is as
in (2.1) and h ∈ O(Ux). This is impossible since the order of vanishing of the
right side along D is a multiple of m. Hence D is the locus where w is not locally
closed.

The next step consists of showing that all symmetric differentials of rank 1 on
projective manifolds are closed. This result will be a consequence of the result
stating that there are ramified coverings where the pullback of the symmetric
differentials of rank 1 are the m-th power of a global holomorphic 1-forms. To
achieve this last result it is useful to translate symmetric differentials of degree
m on X to sections of the line bundle OP(Ω1

X)(m) on the Pn−1-bundle P(Ω1
X)

over X . Given a symmetric differential w ∈ H0(X, SmΩ1
X) on X we denote by:

Zw ⊂ P(Ω1
X)

the divisor of P(Ω1
X) defined by the zero locus of the section of OP(Ω1

X)(m) asso-
ciated with w.

The subvariety Zw can be decomposed into the sum of the horizontal and
vertical components relative to the projection π : P(Ω1

X) → X:

(2.3) Zw = Zw,h + Zw,v

The vertical component is the pullback of the divisor of zeros of w, Zw,v = π∗D0.
The differential w is of rank 1 if the horizontal divisor is of the form:

(2.4) Zw,h = mZ

As described before (2.4) is equivalent to the symmetric differential w to be
locally of the form w|U = fµm, with µ ∈ H0(U,Ω1

X) and f ∈ O(U). A symmetric
differential of rank 1 defines at every x ∈ X \ D0 a single hyperplane in TxX
passing through the origin (in general a symmetric differential of degree m defines
a cone on TxX defined by a homogeneous polynomial of degree m).
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Theorem 2.3. Let X be a projective manifold and w ∈ H0(X, SmΩ1
X) symmet-

ric differential of rank 1, then the following holds:
i) if m divides the multiplicity of all components of the zero divisor of w,

then there is an unramified cyclic covering of degree d|m, g : X ′ → X, where
g∗w = µm with µ ∈ H0(X ′,Ω1

X′).
ii) otherwise, there is a ramified covering of degree d, d|m, g : X ′ → X,

where X ′ is smooth and g∗w = µm with µ ∈ H0(X ′,Ω1
X′). The covering X ′

can be such that it has a cyclic Zd action and the quotient variety X ′/Zd has a
birational morphism onto X.

iii) w is closed (moreover, it is locally exact in case i)).

Proof. Given a symmetric differential w of degree m and rank 1 on X, we can
find a covering {Ui} of X where w|Ui

= fiµ
⊗m
i , fi ∈ O(Ui) and µi = Ω1

X(Ui). If
all the fi have an m-th root, then one has w|Ui

= µ̄⊗m
i with µ̄i ∈ Ω1

X(Ui). On
the intersections Uij , µ̄i = εijµ̄j , with εij m-th roots of unity. Associated with
the 1-cocycle {εij} ∈ H1(X,Zm) there is an unramified covering g : X ′ → X
of degree d, d|m, where the pullback of the 1-cocycle becomes cohomologous to
zero. Hence one can multiply the pullbacks g∗µ̄i by m-th roots of unity to form
a holomorphic 1-form µ on X ′ such that µm = g∗w. Since global 1-forms on X ′

are closed, it follows that the µ̄i are closed and finally that w is closed.
In the case some of the fi have no m-th in O(Ui), one needs to show that

there is a smooth ramified covering g : X ′ → X where the fi acquire m-th roots
and g∗w = µ⊗m with µ ∈ H0(X ′,Ω1

X′).
The divisor Zw in P(Ω1

X) associated with w has the decomposition Zw =
mZ +π∗D0, where Z is an horizontal divisor and D0 is the divisor of zeros of w.
The line bundle O(Z) is of the form O(Z) ' OP(Ω1

X)(1)⊗ π∗L, where L is a line
bundle on X satisfying Lm = O(−D0), since O(Zw) ' OP(Ω1

X)(m). The twisted
holomorphic 1-form µ̃ ∈ H0(X, Ω1

X ⊗ L) corresponding to the canonical section
of O(Z) satisfies µ̃m ⊗ s = w, s is the canonical section associated with the zero
divisor D0.

The desired covering g : X ′ → X follows from the standard covering con-
structions (see [Bo78] and also [La01] for an overview of the covering construc-
tions). The key step is building an intermediate covering c : X ′′ → X for
which c∗s = (s′′)m, where s′′ ∈ H0(X ′′,O(D′′

0 )) and mD′′
0 = c∗D0. Consider

the irreducible decomposition of the zero divisor, D0 =
∑k

i=1 miDi and let
r = gcd(m,m1, ..., mk). Then build the cyclic covering of X associated with
(L∗)m/r = O(1/rD0), the reason for factoring r is to make the cyclic covering
irreducible but note that X ′′ is generically singular. The cyclic cover c is such
that c∗L = O(−D′′

0 ) and c∗D0 = mD′′
0 . Let s′′ be the canonical section of O(D′′

0 )
such that s′′m = c∗s. To finalize, let g = σ ◦ c : X ′ → X where σ : X ′ → X ′′ is a
resolution of singularities of X ′′. Set D′

0 = σ∗D′′
0 and s′ = σ∗s′′ and µ = g∗µ̃⊗s′,
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then µm = g∗w as desired since g∗L = O(−D′
0), mD′

0 = g∗D0 and s′m = g∗s,
completing step i).

The variety X ′ can be constructed with an action of Zd since X ′′ has a cyclic
action and one can do an equivariant of X ′′ ([AbWa97].

The claim iii) follows from i) and ii) since away from the ramification locus w
is locally the m-th power of a holomorphic 1-form whose pullback by g is closed.

A symmetric differential w of rank 1 defines a foliation Fw whose leaves are
the hypersurfaces on which the pullback of w vanishes. Using theorem 2.3 one
has that there is a ramifified cover for which the pre-image of the leaves of Fw

are the leaves of a foliation defined by a holomorphic 1-form, this leads to:

Corollary 2.4. A symmetric differential of rank 1, w ∈ H0(X, SmΩ1
X), defines

a singular holomorphic foliation Fw on X with the property that either:
i) Fw has a nonalgebraic integral, or
ii) Fw gives a fibration over a curve.

Proof. Theorem 2.3 gives a cyclic ramified covering f : X ′ → X for which f∗w =
µ⊗m with µ ∈ H0(X ′,Ω1

X′). The pre-image of the leaves of the foliation Fw are
the leaves of the foliation Fµ defined by the holomorphic 1-form µ on X ′, for
which the desired dichotomy holds. If Fw has a 1-dimensional family of compact
leaves, then so does Fµ and hence there is a map onto a curve h : X ′ → C ′ whose
fibers are the leaves of Fµ. Moreover the map h comes from the Albanese map
aX′ : X ′ → A(X ′) composed with the quotient map p : A(X ′) → A/Tµ, where
Tµ is the maximal abelian subvariety of A(X ′) contained in a leaf of the form
µ′ ∈ H0(A(X ′),Ω1

A(X′)) whose pullback is a∗X′µ′ = µ. The cyclic action on X ′

induces a cyclic action on A(X’) which descends to A/Tµ (µ′ is an eigenvector
for the associated linear action on H0(A(X ′),Ω1

A(X′))). The curve C ′ is just the
image of X ′ under the map p ◦ aX′ which is an equivariant map for the cyclic
action, hence the map h : X ′ → C ′ descends to a map f : X → C, where C is
the cyclic quotient of C ′, giving the desired fibration on X.

3. Holomorphic maps and topological properties
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The purpose of this section is to describe the complex geometric and topolog-
ical properties associated with the presence of symmetric differentials of rank 1
on a projective manifold.

3.1. Structure theorem.

As a starting point, it will be shown that if a complex manifold X has a sym-
metric differential of rank 1 that is locally exact, then there are purely topological
implications on X.

Proposition 3.1. Let X be a compact complex manifold with a nontrivial locally
exact w ∈ H0(X, SmΩ1

X) of rank 1. Then π1(X) is infinite, in fact, π1(X) has
a subgroup with infinite abelianization.

Proof. The condition of local exactness on w states that it exists an open covering
of X {Ui} where w|Ui

= (dfi)m. Hence

(3.1) dfi = εijdfj

on Uij with εij an m-th root of unity. Associated with the 1-cocycle {εij} in
H1(X,Zm), there is a flat line bundle Lε and a finite unramified d-covering with
d|m, f : X ′ → X, where the pullback f∗Lε ' OX′ . The condition (3.1) gives
a nontrivial element in µ ∈ H0(X, Ω1

X ⊗ Lε) and hence a nontrivial element of
f∗µ ∈ H0(X ′,Ω1

X′) since f∗Lε ' OX′ .
The conclusion follows from the fact that if the abelianization of π1(X ′) is

finite, then the periods of f∗µ would be trivial and its integral would define a
nonconstant holomorphic function on X ′.

It was shown in the previous section that the hypothesis of the above propo-
sition hold if X is a kahler manifold and w is a m-symmetric differential of rank
1 for which all multiplicities of the components of its zero divisor are divisible
by m.

As was described and announced in the previous section, there are global sym-
metric differentials of rank 1 which are not locally exact and different geometric
properties should be expected from their presence. One of the key differences is
that in contrast with the above proposition, there are simply connected compact
kahler manifolds nontrivial symmetric differentials of rank 1.
Example: there are simply connected surfaces with nontrivial closed differentials.
The example to be described is inspired in our previously example [BDeO06]. Let
A3 be a 3-dimensional abelian variety. Consider a surface X which is a smooth
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hypersurface section of A3 of sufficiently high degree, invariant under the natural
involution θ = −id and passes through one and only one (for simplicity) of the
fixed points of θ, call this point p. The claim is that the minimal resolution of
X̃ of X/θ is one of the desired examples.

The manifold X̃ is simply connected since H0(X̃, Ω1
X̃

) = H0(X, Ω1
X)θ = 0

(there are no invariant forms under θ) and π1(X̃) is abelian. The fundamental
group π1(X̃) is abelian since π1(X) = π1(A3) = H1(A3,Z), π1(X) → π1(X/θ) is
surjective (every loop with base point the singular point of X/θ lifts to a loop
with base point the fixed point of X by θ) and π1(X̃) = π1(X/θ) (the exceptional
locus is P1).

To produce a nontrivial symmetric differential of rank 1 on X̃ one picks the 1-
differential w ∈ H0(A3,Ω1

A3) which is trivial on TpX, then w2 induces the desired
differential on X̃. Denote the induced differential on X induced by w also by
w. The differential w2 is invariant under the involution and hence it induces a
differential w̃2 on X̃ \E, where E is the (−2)-curve over the nodal singularity of
X/θ. What remains to be shown is that w̃2 extends to a holomorphic differential
of degree 2 on the whole X̃.

To see this we opt for an explicit description. After the appropriate choice
of coordinates around p on A3, X can be locally described by {z3 = f(z1, z2)}
where:

(3.2) f(z1, z2) =
∞∑

l=1

∑

m1+m2=2l+1

am1m2z
m1
1 zm2

2

where l ≥ 1 (this form guarantees invariance under θ and dz3|TxX = 0). The
differential w is given by w = dz3 = df . Let X ′ be the auxiliary surface obtained
by blowing up X at p. This surface comes with the blow up map at p, σ : X ′ →
X, and a double cover map onto X̃, g : X ′ → X̃. A point in σ−1(p) has a
neighborhood (U, (u, v)) on which σ(u, v) = (u, uv) and g(u, v) = (u2, v). The
condition for an invariant symmetric differential on X ′ to be the pullback of a
holomorphic differential on X̃ is that the coefficients of the terms (du)k(dv)m−k

must vanish along u = 0 with multiplicity at least k. This is guaranteed for σ∗w2

since σ∗f = urh(u, v) with r ≥ 3 by (3.2). Note that since the Taylor expansion
of σ∗f have always u to an odd power, that the differential w̃2 on X̃ induced
from (σ∗df)2 can not be locally exact along E.

The example just described has the key characteristics of the general case as
the following result shows.
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Theorem 3.2. (Structure Theorem) Let X be a projective manifold and w ∈
H0(X, SmΩ1

X) a nontrivial symmetric differential of rank 1. If (w)0 =
∑

i liDi,
Di irreducible, is the zero divisor of w and E =

∑
j∈{i|m-li}Dj , then:

i) There is a holomorphic map from X to a quotient with isolated singularities
of an abelian variety Aw by a cyclic group Zd with d|m, aw : X → Aw/Zd, such
that w = aw

∗(u) and u ∈ H0(Aw/Zd, S
m
orbΩ1

Aw/Zd
).

ii) π1(X \ E) is infinite. More precisely, π1(X \ E) has a normal subgroup Γ
for which π1(X \E)/Γ is cyclic of order ≤ m and its abelianization, Γ/[Γ,Γ], is
an infinite group. The divisor E is nonpositive in the sense that it is contracted
to a point by the map aw : X → Aw/Zd (dim aw(X) ≥ 1).

Proof. Recall that theorem 2.3 constructed a covering f : X ′ → X ramified
over the divisor E for which f∗w = µm, µ ∈ H0(X ′,Ω1

X′). The degree d of
the constructed covering map f is minimal among all the degrees of coverings
f : X̃ → X with the property that exists µ ∈ H0(X̃, Ω1

X̃
) satisfying f∗w = µm.

Moreover, the covering manifold X ′ is built with a Zd action and the covering
f : X ′ → X factors through the quotient X ′/Zd where the induced map σ :
X ′/Zd → X a birational morphism.

The universal property of the Albanese implies that the action of Zd on X ′ in-
duces an action on the Albanese variety of X ′ with respect to which the Albanese
map aX′ : X ′ → A(X ′) is equivariant. The next two lemmas, of independent
interest, will be used to build an invariant abelian subvariety Aµ of A(X ′) with
quotient A = A(X ′)/Aµ such that: a translate of each connected component
of E is contained in Aµ; µ is a pullback of a differential on A; A/Zd only has
isolated singularities.

Lemma 3.3. Let Y be a kahler manifold with a Zd action, aY : Y → A(Y ) the
Albanese map and u ∈ H0(Y, Ω1

Y ) an eigenvector associated with a faithful char-
acter of the induced action on H0(Y,Ω1

Y ). Then there exists an invariant subtorus
i : Tm ↪→ A(Y ), such that u is induced from A(Y )/Tm and [A(Y )/Tm]/Zd is an
orbifold with isolated singularities.

Proof. The action of Zd on A(Y ) is an affine action where the linear part of the
action is the dual of the faithful, by the hypothesis, action of Zd on H0(Y,Ω1

Y ).
Associated with the faithful linear action of Zd on A(Y ), one has a cyclic sub-
group < f >⊂ End(A(Y )) isomorphic to Zd where f is the endomorphism
associated with the action of a generator of Zd. From the action one also has the
decomposition H0(Y,Ω1

Y )∗ =
⊕d−1

i=0 Eχi , where the χi’s are the d characters of
Zd.

Consider the endomorphisms I − fs ∈ End(A(Y )), where s|d but s 6= d, the
identity component of Ker (I − fs) is a subtorus Ts ⊂ A(Y ). Let Tm = SpansTs

be the subtorus consisting of the span of the subtori Ts and i : Tm ↪→ A(Y ) its
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embedding. Let u′ ∈ H0(A(Y ),Ω1
A(Y )) be the differential such that a∗Y u′ = u,

then i∗u′ = 0 since Tm it is the subtorus associated with the linear subspace⊕
j Eχj where the χj are not faithful characters. This implies that u′ and hence

u are pullbacks of a differential u′′ on the quotient torus A(Y )/Tm.
The quotient variety [A(Y )/Tm] have an induced Zd-action, the choice subtori

Tm was to guarantee that all characters associated to this action are faithful. This
implies that [A(Y )/Tm]/Zd is an orbifold with only isolated singularities (the set
of fixed points for the action is finite).

Lemma 3.4. Let Y be a kahler manifold with an action of a finite group G, and
i : Z↪→Y an invariant subvariety with connected components Z̄α. Then there
exists an invariant subtorus TZ of the Albanese A(Y ) with quotient A(Y, Z) =
A(Y )/TZ for which

(3.3) a∗Y,Z(H0(A(Y, Z),Ω1
A(Y,Z))) = {µ ∈ H0(Y,Ω1

Y )|∀α, Z̄α ⊂ Lα, Lα ∈ Lµ}
where aY,Z : Y → A(Y, Z) is the composition of the Albanese map with the
quotient map and Lµ the set of leaves of µ.

Proof. Let aY : Y → A(Y ) be the Albanese map and let Z = ∪Zi, Zi irre-
ducible, ii : Zi ↪→ Y be the inclusion maps and σi : Ẑi → Zi be resolutions of
the Zi. For each map ji = ii ◦ σi : Ẑi → Y comes a Lie group homomorphism
ai : A(Ẑi) → A(Y ). Each subtori ai(A(Ẑi)) is defined by the subspace Vi of
H0(A(Y ),Ω1

Y ) consisting of the differentials whose pullback to Zi is trivial. The
subtorus TZ = Spani[ai(A(Ẑi))] by construction contains a translate of aY (Z̄α)
of each connected component Z̄α. Since the subvariety Z is invariant this im-
plies that the subspaces Vi are permuted under the action and hence TZ is also
invariant.

With respect to the equality (3.3), the inclusion a∗Y,Z(H0(A(Y, Z),Ω1
A(Y,Z))) ⊂

{µ ∈ H0(Y,Ω1
Y )|∀α, Z̄α ⊂ L,L ∈ Lµ} follows from the fact that a translate of

aY (Z̄α) is contained in TZ . To see the reverse inclusion, for each µ ∈ H0(Y,Ω1
Y )

denote by µ′ ∈ H0(A(Y ),Ω1
A(Y )) the differential for which a∗Y µ′ = µ, the con-

dition that each Z̄α ⊂ L, with L ∈ Lµ implies that ai(A(Ẑi)) are contained in
leaves of µ′. Hence TZ is contained in a leaf of µ′ from which follows that µ′ is
the pullback of a differential on A(Y, Z) finishing the proof.

Returning to the proof of theorem we observe two facts:
1) the holomorphic 1-form µ satisfying µ⊗m = f∗w is an eigenvector associated

with a faithful character of the Zd action on H0(X ′,Ω1
X′). This holds since d is

the minimal degree for the coverings where f∗w has a m-th root.
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2) The pre-image of the ramification locus f−1E is Zd-invariant, in fact, the
strict pre-image of E is fixed by the action.

Let Aµ′ be the maximal abelian subvariety of A(X ′) that is contained in a leaf
of µ′, where µ′ is the differential on A(X ′) such that a∗X′µ′ = µ. The subtorus
Aµ′ is Zd-invariant, since µ′ is an eigenvector for the action. Let q : A(X ′) →
Aw = A(X ′)/Aµ′ be the standard quotient map and aµ = q ◦ aX′ : X ′ → Aw.

The abelian subvarieties Tm and Tf−1(E) of A(X ′) coming respectively from
applying lemma 3.3 to pair (X ′, µ) and lemma 3.4 to the pair (X ′,f−1(E)) are
contained in Aµ′ since they are both contained in the leaf of µ′ passing through
the origin. Hence one has all the desired properties: there is µ′′ ∈ H0(Aw,Ω1

Aw
)

such that aµ
∗µ′′ = µ, aµ contracts each connected component of f−1E to a

point and that the Zd action descends to Aw making Aw/Zd an orbifold with
only isolated singularities. Finally we have the diagram:

(3.4)

X ′ aµ−−−−→ Aw

f

y g

y
X

aw−−−−→ Aw/Zd

The Zd-invariant symmetric differential µ′′⊗m gives a section u of the sheaf
Sm

orbΩ
1
Aw/Zd

of symmetric m-th differentials on the orbifold Aw/Zd
(by defini-

tion). The pullback of this symmetric differential is w finishing the proof of
i).

Part ii) is a direct consequence of the theorem 2.3 as the theorem implies
that H1(X ′,Z) is infinite and therefore H1(X ′ \ f−1(E),Z) is also infinite. The
induced covering f : X ′ \ f−1(E) → X \E is a cyclic unramified covering of the
degree d. Hence the exact sequence 0 → π1(X ′\f−1(E)) → π1(X \E) → Zd → 0
holds and part ii) follows. The part of E being contracted follows from i).

Concerning the negative properties of the divisor E appearing in the Struc-
ture Theorem one has two distinct cases: 1) aw(X ′) has dimension ≥ 2, then the
relevant negative property of the divisor E is that E is contracted via a holomo-
morphic map to a locus of codimension ≥ 2; 2) aw(X ′) = 1, in this case E needs
not have negative properties. The next section addresses second case and it will
be shown that one can find a divisor N ⊂ E with negative properties,

.
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3.2. Symmetric differentials induced from curves.

We consider the case when the symmetric differential of rank 1, w, on X
is induced from a curve C, i.e. there is a holomorphic map f : X → C and
an orbifold symmetric differential u in C such that f∗u = w. This occurs for
example when in the structure theorem the image aw(X) ⊂ Aw/Zd is curve.
Note that in this case the foliation defined by w is algebraic.

One of aims of this section is to show that also when w is induced from a curve
one can find a divisor N on X such that π1(X \N) is infinite and N has negative
properties. Actually, the result shown will be stronger: in the case w is induced
from a curve one has: either π1(X) is infinite or exists an N with the negative
properties (a general complete intersection S of dimension 2 in X has N ∩ S as
a negative divisor) such that π1(X \ N) is hyperbolic, i.e. it has a subgroup of
finite index which surjects onto a free group Fn, n ≥ 2. The negative properties
of N follow from the fact that its connected components are properly contained
in the fibers of f .

Theorem 3.2 for the case w is induced from a curve gives in particular the
following diagram:

(3.5)

X ′ âµ−−−−→ C ′

f

y g

y
X

âw−−−−→ C

C ′ is the normalization of the curve aµ(X ′) in Aw and C is the quotient of C ′ by
Zd (also smooth). The symmetric differential w ∈ H0(X, SmΩ1

X) is the pullback
w = âwu, where u ∈ H0(C, Sm

orbΩ1
C′/Zd

).

To extract the desired geometric properties for X (i.e. the existence of a
divisor N ⊂ X with negative properties such that π1(X \N) is infinite) the only
requirements needed on X will be existence of a holomorphic map f : X → C
such that the pullback of an orbifold symmetric differential on C (relative to
some orbifold structure on C) is holomorphic on X.

Theorem 3.5. Let X be a projective manifold with a holomorphic map f : X →
C to a smooth curve C such that there is an orbifold symmetric differential u on
C with holomorphic pullback f∗u. Then X has a divisor N which is contained
in the fibers of f but does not contain any fiber such that:
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i) π1(X \N) is infinite.
ii) If f∗u vanishes on any fiber, then π1(X \N) is hyperbolic.

Proof. One can assume the fibers of the map f are connected (if f is not con-
nected use the connected map from the Stein factorization of f and the fact that
the orbifold symmetric differentials are preserved via pullback by the finite map
in the factorization). If the genus of C is g ≥ 1, then i) is immediate and ii)
follows from the arguments described below for the case C = P1 plus the fact
that the orbifold fundamental group of an elliptic curve with nontrivial orbifold
structure is hyperbolic.

What remains is the case C = P1. An orbifold symmetric differential u of
P1 of degree m is a meromorphic section of K⊗m

P1 whose poles, u|Ux
= z−ldzm,

have order l < m (for z−ldzm to be resolved via a covering map t → td it needs
l < m). Since the deg K⊗m

P1 = −2m and the poles of u are of order < m, it
follows, in particular, that there are at least 3 distinct poles.

More generally, u has r poles pi ∈ P1 with orders li, i = 1, ..., r for which

(3.6)
r∑

i=1

li = 2m

The condition that the pullback f∗u is holomorphic implies that the multiplicities
of irreducible components Dij of the fibers Fi = f−1(pi) =

∑
j dijDij satisfy:

(3.7) dij ≥ m/(m− li)

This follows from the fact that the pullback of z−l(dz)m via a map ψ : (∆, t) →
(∆, z) given by ψ(t) = td is t(d−1)m−dl(dt)m. Let di = min(dij), then (3.7) gives
also di ≥ m/(m− li).

Denote by Di ⊂ Fi the divisor that is union of all the Dij which have multiplic-
ity di, Ni the union of all irreducible components of Fi not in Di and N = ∪Ni.
The fibration f : X → P1 implies the following surjection between the funda-
mental group of X \ N and the orbifold fundamental group of P1 with orbifold
structure given by the multiple fibers Di (see for example [CaKeOg]).

(3.8) π1(X \N) → πorb
1 (P1|(d1, ..., dr)) → 1

πorb
1 (P1|(d1, ..., dr)) = π1(P1\{p1, ..., pr})/Rd1...dr , Rd1...dr is the smallest normal

subgroup of π1(P1 \ {p1, ..., pr}) containing the γdi
i where the γi are the simple

loops around pi’s.
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The orbifold fundamental group πorb
1 (P1|(d1, ..., dr)) is infinite if

(3.9)
r∑

i=1

1/di ≤ r − 2

and is hyperbolic if the strict inequality holds. Finally the bounds (3.7) and the
equality (3.6) give exactly (3.9) (

∑r
i=1 1/di ≤

∑r
i=1(m− li)/m = r − 2). Hence

item i) is proved.

The hypothesis of item ii) (f∗u vanishes along a fiber of f), implies that one
of following holds: a) u vanishes somewhere on P1; b) f∗u vanishes along one of
the fibers Fi above the poles of u; c) f∗u vanishes along a fiber f−1(p) not over
a pole. The case a) and b) imply respectively that

∑r
i=1 li > 2m and one of the

di > m/(m − li), hence
∑r

i=1 1/di < r − 2 and the hyperbolicity of π1(X \ N)
follows. The case c) implies that the fiber f−1(p) is also multiple and hence the
surjection π1(X \ N) ³ πorb

1 (P1|(d1, ..., dr, dp)) with dp the multiplicity of the
fiber over p holds. Since

∑r
i=1 1/di + 1/dp < (r + 1) − 2 the hyperbolicity of

π1(X \N) is again guaranteed.

Corollary 3.6. Let X be a projective manifold with a symmetric differential
w ∈ H0(X, SmΩ1

X) of rank 1 induced from a curve (via the map f : X → C).
Then either:

i) π1(X) is infinite.
or
ii) ∃N a divisor with π1(X \N) hyperbolic and whose connected components

Ni ( Fi, where Fi are fibers of f .

Proof. If the divisor of zeros (w)0 is trivial, then by theorem 2.3 π1(X) is infinite.
Otherwise by hypothesis and theorem 3.2 there is a fibration f : X → C onto a
curve C with f∗u = w, u an orbifold symmetric differential on C. The divisor
of zeros (w)0 must be contained in the fibers of f and we are in the case ii) of
theorem 3.5 concluding the proof.

Concerning what negativity properties one can obtain on divisors whose com-
plement has infinite fundamental group, the next definition sets the goal.

Definition 3.7. A divisor D on a projective manifold is said to be s-negative if
its intersection D∩S with a complete intersection S of dimension 2 is a negative
divisor of S.
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Corollary 3.8. If X is a projective manifold with a nontrivial symmetric dif-
ferential of rank 1, then there is a s-negative divisor N with π1(X \N) infinite.

Proof. The Structure Theorem proves the result with N = E if dim aw(X) ≥ 2.
The case when the image aw(X) is a curve is settled using the N of corollary
3.6.

3.3. Twisted symmetric differentials of rank 1.

In this section one considers rank 1 twisted symmetric differentials, w ∈
H0(X, SmΩ1

X ⊗ L), where L is a C∗-flat line bundle on X (or equivalently
L has a trivial complex Chern class). The space of C∗-flat line bundle on
X will be denoted by Picτ (X). Twisted symmetric differentials of rank 1 in-
herit some of the geometric properties of twisted holomorphic differentials which
were studied in [GrLa], [Be], [Si] and [Ar] to understand the cohomology locus
S1(X) = {L ∈ Picτ (X)|H1(X, L) 6= 0}. The relevance of twisted symmetric dif-
ferentials of rank one on the topic of closed symmetric differentials comes from
the fact that they appear naturally in the decomposition of closed symmetric
differentials of higher rank, see [BoDeO10].

Theorem 3.9. Let X be a projective manifold with a nontrivial twisted symmet-
ric differential of rank 1, w ∈ H0(X, SmΩ1

X⊗L), for a non-torsion L ∈ Picτ (X).
Then ∃l ∈ N+ for which there is a holomorphic map into a smooth curve of genus
≥ 1, p : X → B, such that:

i) L⊗l = p∗L0 with L0 ∈ Pic0(B)

ii) w⊗l = p∗u with u ∈ H0(B,Slm
orbΩ

1
B ⊗ L⊗l

0 ).

Proof. The line bundle L ∈ Picτ (X) might not be divisible by m. So one does
the abelian Galois covering h : Y → X associated with the surjection of π1(X)
to H1(X,Z)tor to make h∗L ∈ Pic0(Y ) and hence divisible. Let L1 be such that
L⊗m

1 = h∗L, then h∗w ∈ H0(Y, Sm(Ω1
Y ⊗ L1)), before proceeding set w1 = h∗w.

The next step is the use of the straightforward generalization of theorem 2.3
for Ω1

Y ⊗ L1 that gives a finite cyclic ramified covering f : Y ′ → Y such that
f∗w1 = µ⊗m with µ ∈ H0(Y ′,Ω1

Y ′ ⊗ f∗L1).

One then proceeds to apply the results of [Gr-La87], [Be92], [Si93]. Set L2 =
f∗L1, L2 being unitary gives H1(Y ′, L∗2) ' H0(Y ′,Ω1

Y ′ ⊗L2) and hence its dual



SYMMETRIC DIFFERENTIALS OF RANK 1 AND HOLOMORPHIC MAPS 1101

L∗2 ∈ S1(Y ′) = {L ∈ Picτ (Y ′)|H1(Y ′, L) 6= 0}. Since L∗2 is non torsion, the work
of Simpson [Si93] gives that L∗2 must be in a positive dimensional component of
S1(Y ′). The results of Green-Lazarsfeld [Gr-La87], then imply that there exists
a v ∈ H0(Y ′,Ω1

Y ′) such that the following sequence, coming from a derivative
complex, is totally not exact at the middle:

(3.10) H0(Y ′, L2)
∧v−−−−→ H0(Y ′,Ω1

Y ′ ⊗ L2)
∧v−−−−→ H0(Y ′,Ω2

Y ′ ⊗ L2)

that is, all α ∈ H0(Y ′,Ω1
Y ′ ⊗ L2) with α ∧ v = 0 are such that α 6= v ⊗ φ with

φ ∈ H0(Y ′, L2).
The above gives in particular that there is a v ∈ H0(Y ′,Ω1

Y ′) such that µ ∧
v = 0 and µ 6= v ⊗ φ with φ ∈ H0(Y ′, L2) (a non-proportionality condition).
These two conditions give due to Beauville [Be92] a Castelnouvo-De Franchis
type theorem. The Castelnuovo-De Franchis type theorem states that Y ′ has a
connected holomorphic map, q′ : Y ′ → C ′, onto a curve of genus g ≥ 1,

(3.11) µ ∈ H0(Y ′, q′∗Ω1
C′ ⊗ L2)

and L2 ∈ Picτ (X, q′) (i.e L2 is flat and is trivial in one fiber of q′).

The cyclic action on Y ′ and the abelian action on Y have respectively f∗w1

and w1 = h∗w as an invariant. Hence from the connected map q′ : Y ′ → C ′,
whose fibers are the leaves of the foliation defined by f∗w1, one obtains the
following commutative diagram where the horizontal maps are connected and
their targets smooth curves.

(3.12)

Y ′ q′−−−−→ C ′

f

y f̄

y
Y

q−−−−→ C

h

y h̄

y
X

p−−−−→ B

The map f̄ is a cyclic ramified covering and h̄ is an unramified Galois covering.
The line bundle L ∈ Picτ (X, p) since L2 ∈ Picτ (Y ′, q′). This implies L =

p∗H⊗O(
∑

kiFi) with H ∈ Pic0(B), Fi the multiple fibers of p and
∑

ki/mi = 0
(mi the multiplicities of the multiple fibers). If l = l.c.m{mi}, then line bundle
O(

∑
kiFi)⊗l ∈ p∗Pic0(B). Hence there is a L0 ∈ Pic0(B) such that
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(3.13) L⊗l = p∗L0

and hence g(B) ≥ 1 since L0 must be non-torsion. From (3.11), (3.12) and (3.13)
it follows that µ⊗ml = q′∗t′ with t′ ∈ H0(C ′, SmlΩ1

C′ ⊗ (h̄ ◦ f̄)∗L0). The twisted
symmetric differential t′ is invariant under the cyclic action on C ′ and gives and
element t ∈ H0(C,Sml

orbΩ
1
C ⊗ h̄∗L0) which is invariant for the abelian action on

C and hence gives an the desired u ∈ H0(B,Slm
orbΩ

1
B ⊗ L⊗l

0 ).

Corollary 3.10. A twisted symmetric differential of rank 1, w ∈ H0(X, SmΩ1
X⊗

L), with L ∈ Picτ (X) non-torsion defines a singular holomorphic foliation Fw

on X which is a fibration over a curve.

Proof. Immediate consequence of the previous theorem.

Theorem 3.11. Let X be a projective manifold with w ∈ H0(X, SmΩ1
X ⊗ L) a

nontrivial twisted symmetric differential of rank 1. Then:

i) if L is torsion, then there is a s-negative divisor N of X such that π1(X \N)
has a subgroup G of finite index with infinite abelianization, G/[G,G].

ii) if L is non torsion, then π1(X) surjects onto π1(B) with B a curve with
g(B) ≥ 1 and there is a s-negative divisor N of X such that π1(X \ N) is
hyperbolic.

Proof. i) follows from corollary 3.8 since there is an l such that L⊗l = O and
hence w⊗l is an ordinary symmetric differential of rank 1 on X.

ii) is a consequence of theorem 3.9 and the arguments of theorem 3.5. Consider
the holomorphic map p : X → C built in theorem 3.9 where g(C) ≥ 1. If none
of the fibers of p has multiplicity ≥ 2, then the twisted symmetric differential
u = H0(B,Slm

orbΩ
1
B ⊗ L⊗l

0 ) such that w⊗l = p∗u found in theorem 3.9 would be
in H0(C, SlmΩ1

C ⊗ L⊗l
0 ). This situation would force g(C) ≥ 2 since L0 is non-

torsion and Ω1
C ' O if C is elliptic. If some fibers have multiplicity ≥ 2 then

either π1(X) is hyperbolic (case all the irreducible components of the multiple
fibers have multiplicity equal to the multiplicity of the respective fiber) or set N
to be the union of all the irreducible components of the fibers whose multiplicity
differs from the multiplicity of the respective fiber. The conclusion follows from
the same arguments used in theorem 3.5.
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