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Abstract: Losev and Manin introduced fine moduli spaces Ln of stable
n-pointed chains of projective lines. The moduli space Ln+1 is isomorphic
to the toric variety X(An) associated with the root system An, which is
part of a general construction to associate with a root system R of rank n

an n-dimensional smooth projective toric variety X(R). In this paper we
investigate generalisations of the Losev-Manin moduli spaces for the other
families of classical root systems.
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Introduction

In [LM00] Losev and Manin introduced fine moduli spaces Ln of stable n-
pointed chains of projective lines. These Losev-Manin moduli spaces are similar
to the moduli spaces M0,n+2, but whereas M0,n+2 parametrises trees of projective
lines with n+2 marked points that are not allowed to coincide, the moduli space
Ln parametrises chains of projective lines with two poles and n marked points
that may coincide.

The Losev-Manin moduli space Ln+1 has the structure of an n-dimensional
smooth projective toric variety such that the boundary divisors parametrising
reducible curves correspond to the torus invariant divisors; it coincides with the
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toric variety X(An) associated with the root system An. This is part of a general
construction to associate with a root system R of rank n an n-dimensional smooth
projective toric variety X(R) ([Kl85], [Pr90]). In the introduction to [LM00] the
authors asked about generalisations of the moduli spaces Ln for the other families
of classical root systems. In the present paper we address this problem.

Concerning the family of root systems of type B we present a variant of the
Losev-Manin moduli problem by considering chains of projective lines of odd
length with an involution permuting the two poles having one marked point s0

invariant under the involution and n pairs of marked points s±i that are inter-
changed by the involution. We show that these pointed curves admit a fine moduli
space L

0,±
n which is isomorphic to the toric variety X(Bn) such that the boundary

divisors of the moduli space get identified with the torus invariant divisors.
It is well known that for the Losev-Manin moduli spaces, as for the moduli

spaces M0,n, the universal curve over Ln+1 is the next moduli space Ln+2 to-
gether with a natural forgetful morphism Ln+2 → Ln+1. In [BB11] we developed
functorial properties of the toric varieties X(R) with respect to maps of root
systems and observed that this morphism Ln+2 = X(An+1) → Ln+1 = X(An)
is induced by the inclusion of root systems An → An+1. Furthermore, the n+1
sections X(An) → X(An+1) come from projections of root systems An+1 → An

along the n + 1 additional pairs of opposite roots in An+1 not contained in An.
All this generalises to the family of root systems of type B: the morphism

X(Bn+1) → X(Bn) coming from the inclusion of root systems Bn → Bn+1 is flat
and its fibres have the structure of chains of projective lines of odd length. The
2n + 1 additional pairs of opposite roots in Bn+1 give 2n + 1 sections. There is
a symmetry of Bn+1 fixing Bn which induces an involution I of X(Bn+1) over
X(Bn) such that the sections are grouped into n pairs of sections s±i interchanged
by the involution and one section s0 invariant under the involution. We show that
X(Bn+1) → X(Bn) together with these sections and the involution I forms the
universal family over the fine moduli space L

0,±
n = X(Bn). On the other hand,

we will see that the toric varieties X(Rn) for R = C, D do not form fine moduli
spaces of pointed reduced curves having X(Rn+1) → X(Rn) as universal family.

In the case of root systems of type C the morphism X(Cn+1) → X(Cn) is flat
with one-dimensional fibres having the structure of 2n-pointed chains of projec-
tive lines of odd length with involution except that over a certain torus invariant
divisor nonreduced components occur. On the one hand we can consider families
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of pointed curves as in the Bn-case but without the section s0 and thereby allow-
ing an additional involution as isomorphism. This gives rise to a toric Deligne-
Mumford stack X (Cn) which is an orbifold having the toric variety X(Cn) as
coarse moduli space with stacky points over the divisor determined by the nonre-
duced fibres. On the other hand we can describe X(Cn) as a fine moduli space
L
±
n of 2n-pointed chains of projective lines of odd and even length with involu-

tion with each of the marked points corresponding to a pair of opposite roots in
Cn+1 \Cn that defines a projection Cn+1 → Cn. The universal family arises from
X(Cn+1) → X(Cn) by contracting the nonreduced components in the fibres.

In the case of the remaining family of root systems of type D the morphism
X(Dn+1) → X(Dn) is not flat. There are 2-dimensional fibres that occur over
closures of certain torus orbits of codimension 2, over the other points as fibres
we have 2n-pointed chains of projective lines with involution.

We observe that in the cases of all families of root systems R = A,B, C, D the
torus fixed points of X(Rn) correspond to pointed curves having the form of the
Dynkin diagram for the root system Rn+1.

Outline of the paper. In the first sections 1–5 we deal with the case of
root systems of type B. In section 1 we formulate a moduli problem of (2n + 1)-
pointed chains of projective lines called Bn-curves, which is a variant of the
Losev-Manin moduli problem. In section 2 we collect some facts about the toric
varieties X(Bn) associated with root systems of type B. Section 3 is about
the morphism X(Bn+1) → X(Bn), which, together with its sections and the
involution, forms a flat family of Bn-curves, and in section 4 we prove that the
toric variety L

0,±
n = X(Bn) is a fine moduli space of Bn-curves with universal

family X(Bn+1) → X(Bn). To show that the moduli functor of Bn-curves is
isomorphic to the functor of the toric variety X(Bn) we use the description of
the functor of toric varieties associated with root systems given in [BB11, 1.3];
our proof is a variation of our new proof of the respective statement for root
systems of type A given in [BB11, 3.3]. In section 5 we present some results on
the (co)homology of the spaces L

0,±
n =X(Bn), giving descriptions similar to the

case of the Losev-Manin moduli spaces Ln+1 =X(An).
In the remaining sections 6 and 7 the cases of the root systems of type C and

D are investigated.



1056 Victor Batyrev and Mark Blume

1. Pointed chains of projective lines with involution

Definition 1.1. A chain of projective lines of length m over an algebraically
closed field K is a projective curve C = C1 ∪ . . . ∪ Cm over K such that every
irreducible component Cj of C is a projective line with poles p−j , p+

j and these
components intersect as follows: different components Ci and Cj intersect only
if |i − j| = 1 and in this case Cj , Cj+1 intersect transversally in the single point
p+

j = p−j+1. For p−1 ∈ C1 and p+
m ∈ Cm we write s− and s+. Two chains of

projective lines (C, s−, s+) and (C ′, s′−, s′+) are called isomorphic if there is an
isomorphism ϕ : C → C ′ such that ϕ(s−) = s′−, ϕ(s+) = s′+.

Definition 1.2. A chain of projective lines with involution (C, I, s−, s+) is a
chain of projective lines together with an isomorphism I : C → C such that
I2 = idC and I(s−) = s+. In this case we use the following notation: if the
chain has odd length denote by (C0, p

−
0 , p+

0 ) the central component; denote by
(Cj , p

−
j , p+

j ), (C−j , p
−
−j , p

+
−j) the pairs of I-conjugate components (i.e. I(Cj) =

C−j , I(p−j ) = p+
−j , I(p+

j ) = p−−j) such that p+
j = p−j+1, p−−j = p+

−(j+1) and in case
of odd lenght p+

0 = p−1 , p−0 = p+
−1 whereas in case of even length p+

−1 = p−1 . In
particular, we have s− = p−−m, s+ = p+

m if the chain has length 2m or 2m + 1.
Two chains of projective lines with involution (C, I, s−, s+) and (C ′, I ′, s′−, s′+)
are called isomorphic if there is an isomorphism of chains of projective lines
ϕ : (C, s−, s+) → (C ′, s′−, s′+) such that ϕ ◦ I = I ′ ◦ ϕ.

In the following we are concerned with certain compactifications of the al-
gebraic torus (2Gm)n parametrising n pairs of points of the form (z, 1

z ) in
(Gm, 1) ⊂ (P1, 0,∞, 1), i.e. pairs of points which are interchanged by the in-
volution of P1 that fixes the point 1 and interchanges the two poles 0 and ∞.
These compactifications, which will be associated with root systems, parametrise
isomorphism classes of certain pointed chains of projective lines with an involu-
tion. We now define the type of pointed curve which will be relevant in the case
of root systems of type B.

Definition 1.3. A (2n + 1)-pointed chain of projective lines with involution

(C, I, s−, s+, s0, s
±
1 , . . . , s±n ) is a chain of projective lines with involution

(C, I, s−, s+) of odd length together with (possibly coinciding) marked points
s0, s

±
i ∈ C different from the poles such that I(s0) = s0, I(s−i ) = s+

i .
Two (2n + 1) - pointed chains of projective lines with involution
(C, I, s−, s+, s0, s

±
1 , . . . , s±n ) and (C ′, I ′, s′−, s′+, s′0, s

′
1
±, . . . , s′n

±) are called
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isomorphic if there is an isomorphism ϕ : (C, I, s−, s+) → (C ′, I ′, s′−, s′+) of
the underlying chains of projective lines with involution such that ϕ(s0) = s′0,
ϕ(s±j ) = s′j

±. A (2n + 1)-pointed chain of projective lines with involution
(C, I, s−, s+, s0, s

±
1 , . . . , s±n ) is called stable if each component of C contains at

least one of the points s0, s
±
j . A Bn-curve over an algebraically closed field K is

a stable (2n + 1)-pointed chain of projective lines over K.

s−= p−−3

p+
−3=p−−2

p+
−2=p−−1

p+
−1=p−0

p+
3 =s+

p+
2 =p−3

p+
1 =p−2

p+
0 =p−1

s0

s+
5 s−5s−4 s+

4s+
2 s−2s+

3 s−3

s−1 s+
1

I
¼ j

¼ j

Definition 1.4. Let Y be a scheme. A Bn-curve over Y is a collection
(π : C → Y, I, s−, s+, s0, s

±
1 , . . . , s±n ), where C is a scheme, π is a flat proper mor-

phism of schemes, I : C → C an involution over Y and s−, s+, s0, s
±
1 , . . . , s±n : Y →

C are sections such that for any geometric point y of Y the collection
(Cy, Iy, (s−)y, (s+)y, (s0)y, (s±1 )y, . . . , (s±n )y) is a Bn-curve over y. An isomor-
phism of Bn-curves over Y is an isomorphism of Y -schemes that is compatible
with the involution and the sections. We define the moduli functor of Bn-curves

as the functor

L
0,±
n : (schemes)◦ → (sets)

Y 7→ {Bn-curves over Y } / ∼
that associates to a scheme Y the set of isomorphism classes of Bn-curves over
Y and to a morphism of schemes the map obtained by pulling back Bn-curves.

We will show in section 4 that a fine moduli space of Bn-curves L
0,±
n exists and

that it is isomorphic to the toric variety associated with the root system Bn.

2. Toric varieties X(Bn)

For a root system R of rank n we have the n-dimensional smooth projective
toric variety X(R) associated with the fan that consists of the Weyl chambers
of the root system and their faces ([Kl85], [Pr90], see also [BB11, 1.1]). Here we
consider the particular case of root systems of type B.

Let E be an n-dimensional Euclidean space with basis u1, . . . , un. The root
system Bn in E consists of the following 2n2 roots:

±ui for i ∈ {1, . . . , n}; ±(ui + uj),±(ui − uj) for i, j ∈ {1, . . . , n}, i < j.
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The root lattice M(Bn) ∼= Zn of the root system Bn is the lattice in E gener-
ated by u1, . . . , un. The following is a set of simple roots:

u1 − u2, u2 − u3, . . . , un−1 − un, un.

The Weyl group (Z/2Z)n o Sn acts by ui 7→ ±ui and by permuting the ui. So
there are 2nn! sets of simple roots, these are of the form ε1ui1 − ε2ui2 , ε2ui2 −
ε3ui3 , . . . , εn−1uin−1−εnuin , εnuin for orderings i1, . . . , in of the set {1, . . . , n} and
signs ε1, . . . , εn. For later use we list linear relations between positive roots of
Bn.

Lemma 2.1. Let B+
n be the set of positive roots of Bn corresponding to the set of

simple roots u1−u2, u2−u3, . . . , un−1−un, un and put βij = ui−uj, γij = ui +uj

for i, j ∈ {1, . . . , n}, i 6= j. Then B+
n = {u1, . . . , un} ∪ {βij | i < j} ∪ {γij | i 6= j}

and the tripels of positive roots α, β, γ ∈ B+
n satisfying α+β = γ are the following:

βij + uj = ui (i, j ∈ {1, . . . , n}, i < j)
ui + uj = γij (i, j ∈ {1, . . . , n}, i 6= j)

βij + βjk = βik (i, j, k ∈ {1, . . . , n}, i < j < k)
βij + γjk = γik (i, j, k ∈ {1, . . . , n}, i < j, k 6= i, j)

Let N(Bn) be the lattice dual to the root lattice M(Bn) and v1, . . . , vn the
basis of N(Bn) dual to u1, . . . , un. The fan Σ(Bn) is defined as the fan of Weyl
chambers in N(Bn), i.e. its maximal cones are the Weyl chambers σS = S∨ =
{v ∈ N(Bn)Q | ∀ α ∈ S : 〈α, v〉 ≥ 0} for sets of simple roots S of the root
system Bn and all cones arise as faces of these. For the set of simple roots S =
{u1−u2, u2−u3, . . . , un−1−un, un} has the dual basis v1, v1 +v2, . . . , v1 + . . .+vn

of N(Bn), the Weyl chamber σS is equal to 〈v1, v1 + v2, . . . , v1 + . . .+ vn〉Q≥0
. All

Weyl chambers, i.e. all maximal cones of the fan Σ(Bn), arise as translates of σS

under the action of the Weyl group on N(Bn)Q, thus they are generated by sets
of elements of the form ε1vi1 , ε1vi1 + ε2vi2 , . . . , ε1vi1 + . . . + εnvin for orderings
i1, . . . , in of the set {1, . . . , n} and signs εi ∈ {±1}. The fan Σ(Bn) has 3n − 1
one-dimensional cones generated by the elements of the form ε1vi1 +. . .+εkvik for
k ∈ {1, . . . , n}. These are via vB :=

∑
εii∈B εivi ↔ B in bijection with the set B of

all subsets ∅ 6= B ⊂ {±1, . . . ,±n} such that B∩{i,−i} 6= {i,−i} for i = 1, . . . , n.
The one-dimensional cones for a family of such sets B(1), . . . , B(k) form a higher
dimensional cone whenever they can be ordered such that B(i1) ( . . . ( B(ik).
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We have the n-dimensional smooth projective toric variety X(Bn) associated
with the fan Σ(Bn) with respect to the lattice N(Bn). As usual, any element
u ∈ M(Bn) defines a character of the open dense torus T (Bn) (resp. a rational
function on X(Bn)) denoted by xu. The toric variety X(Bn) has the following
covering by affine spaces. For any set S of simple roots we have the maximal
cone σS = S∨ and the chart US = SpecZ[σ∨S ∩M(Bn)] ∼= An, for example if S =
{u1 − u2, u2 − u3, . . . , un−1 − un, un} then Z[σ∨S ∩M(Bn)] = Z[x1

x2
, . . . , xn−1

xn
, xn].

The Weyl group W (Bn) = (Z/2Z)noSn acts on X(Bn), it permutes these affine
charts.

By [BB11, 1.2] the closures of torus orbits in X(Bn) are isomorphic to
products X(Bn1) × X(An2) × . . . × X(Ank

). The torus invariant divisor for
the one-dimensional cone generated by ε1vi1 + . . . + εkvik is isomorphic to
X(Bn−k) ×X(Ak−1), in particular for ε1vi1 + . . . + εnvin we have a divisor iso-
morphic to X(An−1).

3. The universal curve

We construct a Bn-curve over X(Bn), which later turns out to be the universal
curve over the moduli space of Bn-curves, by using functorial properties of the
toric varieties associated with root systems developed in [BB11, 1.2]. We fix the
following notations for roots of Bn and Bn+1: βij = ui − uj , γij = ui + uj for
i, j ∈ {1, . . . , n}, i 6= j and α+

i = un+1 + ui, α−i = un+1 − ui for i ∈ {1, . . . , n}.

Construction 3.1. (The universal Bn-curve.)
Consider the root subsystem Bn ⊂ Bn+1 consisting of the roots in the subspace
spanned by u1, . . . , un. The inclusion of root systems Bn ⊂ Bn+1 determines a
proper surjective morphism X(Bn+1) → X(Bn).

There are 2n + 1 additional pairs of opposite roots, the pairs ±α+
i and ±α−i

for i ∈ {1, . . . , n} and the pair ±un+1. Each of these defines a projection onto
the root subsystem Bn ⊂ Bn+1 in the sense of [BB11, 1.2], thus the pairs ±α+

i

and ±α−i define sections s+
i , s−i : X(Bn) → X(Bn+1) and an additional section

s0 : X(Bn) → X(Bn+1) is given by the projection with kernel generated by un+1.
Further, we have two sections s± : X(Bn) → X(Bn+1) which are inclusions

of X(Bn) into X(Bn+1) as torus invariant divisors (cf. [BB11, Prop. 1.9, Rem.
1.11]) corresponding to the one-dimensional cones of the fan Σ(Bn+1) generated
by ±vn+1. Locally, the image of s− (resp. s+) is given by the equations x−α±i = 0,
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x−un+1 = 0 (resp. xα±i = 0, xun+1 = 0) on the affine charts of X(Bn+1) corre-
sponding to the sets of positive roots containing −α±i ,−un+1 (resp. α±i , un+1).

There is an involution I of X(Bn+1) over X(Bn) corresponding to the involu-
tion of Bn+1 which fixes Bn ⊂ Bn+1 determined by the linear map ui 7→ ui for
i ∈ {1, . . . , n} and un+1 7→ −un+1. This element of the Weyl group W (Bn+1) is
the reflection determined by the root ±un+1. The section s0 is invariant under
I, whereas for each i ∈ {1, . . . , n} the sections s+

i and s−i and also s− and s+ are
interchanged.

Proposition 3.2. The collection (X(Bn+1) → X(Bn), I, s−, s+, s0, s
±
1 , . . . , s±n )

of construction 3.1 is a Bn-curve over X(Bn).

Proof. The morphism X(Bn+1) → X(Bn) is proper. We can show that it is flat
by considering the covering of X(Bn+1) and X(Bn) by affine toric charts similar
as in the case of root systems of type A (see [BB11, Prop. 3.7]).

That any fibre is a Bn-curve follows from the results below. Remark 3.5 de-
scribes the universal curve in terms of equations, proposition 3.7 shows that such
equations define a Bn-curve. It only remains to show that any Bn-data arises as
in proposition 3.7 from a Bn-curve. This is done in lemma 3.8. ¤

Definition 3.3. We call the object (X(Bn+1) → X(Bn), I, s−, s+, s0, s
±
1 , . . . , s±n )

of construction 3.1 the universal Bn-curve over X(Bn).

Example 3.4. We picture the universal curve X(B2) over X(B1) ∼= P1 with the
sections s−, s+, s0, s

±
1 . The generic fibre is a P1, whereas the fibres over the two

torus fixed points x−u = 0 and xu = 0 of X(B1) are chains consisting of three
projective lines.

X(B2)

X(B1)
x−u = 0 xu = 0

s+

s−

s0

s+
1

s−1
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This universal curve is constructed using the root system B2 with its root sub-
system B1 = {±u1} and the corresponding map of fans Σ(B2) → Σ(B1).

B2

B1

6

?

-¾

µI

Rª

u1−u1

α+
1 =u1+u2

u2
α−1

−α−1 =u1−u2−u2

−α+
1

6 6

-¾ u−u

Σ(B2)

Σ(B1)

6

?

-¾

µI

Rª

v1−v1

v1+v2

v2−v1+v2

v1−v2−v2

−v1−v2

? ?
-¾ v−v

By [BB11, 1.2] pairs of opposite roots {±α} in a root system R give rise to
morphisms X(R) → P1. We write P1

{±α} for the corresponding copy of P1 with
homogeneous coordinates zα, z−α such that the rational function xα on X(R) is
the pull-back of zα

z−α
. Further, the collection of these morphisms for all pairs of

opposite roots {±α} in R, i.e. root subsystems isomorphic to A1, defines a closed
embedding X(R) → ∏

{±α}⊆RP
1
{±α} =: P (R). By [BB11, 1.3] the equations

defining the image of X(R) in P (R) come from root subsystems of type A2 in R

or equivalently linear relations between positive roots of R.

Remark 3.5. Consider X(Bn+1) and X(Bn) as embedded X(Bn+1) ⊆ P (Bn+1),
X(Bn) ⊆ P (Bn). Then the morphism X(Bn+1) → X(Bn) is induced by
the projection onto the subproduct P (Bn+1) → P (Bn). The subvarieties
X(Bn+1) (resp. X(Bn)) are determined by the homogeneous equations
zαzβz−γ = z−αz−βzγ for roots α, β, γ such that α + β = γ, i.e. root subsys-
tems of type A2 in Bn+1 (resp. Bn).
If we first consider the product P (Bn+1) and the equations coming from root
subsystems of type A2 in Bn, we have

P (Bn+1/Bn)X(Bn) =
( ∏

A1
∼=R⊆Bn+1\Bn

P1
R

)
X(Bn)

=
( ∏n

i=1P
1
{±α+

i }
×∏n

i=1P
1
{±α−i }

× P1
{±un+1}

)
X(Bn)

Therein, X(Bn+1) is the closed subvariety given by the equations corresponding
to root subsystems of type A2 in Bn+1 which are not contained in Bn. We choose
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the set of positive roots B+
n+1 corresponding to the set of simple roots {un+1 −

u1, u1 − u2, u2 − u3, . . . , un−1 − un, un}. Then B+
n+1 \ B+

n = {un+1, α
±
1 , . . . , α±n }

and we can write these equations as follows

(1) tβzα2z−α1 = t−βz−α2zα1

for α1, α2 ∈ {un+1, α
±
1 , . . . , α±n }

such that β = α1 − α2 is a root of Bn

where t±β are the homogeneous coordinates of P1
{±β} (consider X(Bn) as em-

bedded in P (Bn)) or equivalently the two generating sections of the line bundle
L{±β} being part of the universal data on X(Bn) as defined in [BB11, 1.3].
The sections s±i : X(Bn) → X(Bn+1) for i ∈ {1, . . . , n} are given by the addi-
tional equations zα±i

= z−α±i
, the section s0 by zun+1 = z−un+1 . The sections s−

(resp. s+) are given by z−un+1 = 0, z−α±i
= 0 for i = 1, . . . , n (resp. zun+1 = 0,

zα±i
= 0 for i = 1, . . . , n).

Example 3.6. The universal B1-curve X(B2)⊂(P1
{±α+

1 }
×P1

{±α−1 }
×P1

{±u2})X(B1)

over X(B1) is given by the homogeneous equations

tu1zu2z−α+
1

= t−u1z−u2zα+
1
, tu1zα−1

z−u2 = t−u1z−α−1
zu2

where (L{±u1}, {tu1 , t−u1}) is the universal B1-data on X(B1) ∼= P1. We picture
the B1-curves defined by these equations for (tu1 : t−u1) = (0 : 1), (a : b), (1 : 0).
If (tu1 : t−u1) = (a : b) 6= (0 : 1), (1 : 0) we have a projective line, we draw
its projection onto P1

{±u2} and write the sections in terms of the homogeneous
coordinates zu2 , z−u2 . Over the two torus fixed points of X(B1) the curve is a
chain of three projective lines in P1

{±α+
1 }
× P1

{±α−1 }
× P1

{±u2}.

(tu1 : t−u1) = (1 : 0)

s+

s−

s+
1

s−1

s0

(tu1 : t−u1) = (a : b)

s+ = (0 : 1)

s− = (1 : 0)

s0 = (1 : 1)

s+
1 = (b : a)

s−1 = (a : b)

(tu1 : t−u1) = (0 : 1)

s+

s−

s−1

s+
1

s0

By remark 3.5 the universal Bn-curve over X(Bn) can be embedded into a
product P (Bn+1/Bn)X(Bn)

∼= (P1)2n+1
X(Bn) and the embedded curve is given by

equations (1) determined by the universal Bn-data. We show that any Bn-curve
C over a field can be embedded into a product (P1)2n+1 and extract Bn-data
such that C is described by the same equations as the universal curve.
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We fix the following notation: given a Bn-curve (C →
Y, I, s−, s+, s0, s

±
1 , . . . , s±n ) we associate with the sections s0, s

−
i , s+

i the roots
un+1, α

−
i , α+

i of B+
n+1\B+

n = {un+1, α
±
1 , . . . , α±n } (cf. remark 3.5 and construction

3.1); we will write αs for the positive root associated with the section s and
conversely sα for the section associated with the root.

Proposition 3.7. Let (C, I, s−, s+, s0, s
±
1 , . . . , s±n ) be a Bn-curve over a field. For

any s ∈ {s0, s
±
1 , . . . , s±n } let zαs , z−αs ∈ H0(C,OC(s)) be a basis of H0(C,OC(s))

such that z−αs(s−) = 0, zαs(s+) = 0, z−αs(s) = zαs(s) 6= 0 (cf. remark 3.5 for
this choice). We will write P1

{±αs} for P(H0(C,OC(s))). Then by

(tβ : t−β) = (z−α2(s1) : zα2(s1))

if β = α1 − α2 is a root of Bn and α1, α2 are roots corresponding to distinct
marked points s1, s2 ∈ {s0, s

±
1 , . . . , s±n }, we can define Bn-data (tβ : t−β){±β}⊆Bn

and the morphism

C → ∏n
i=1P

1
{±α+

i }
×∏n

i=1P
1
{±α−i }

× P1
{±un+1} = P (Bn+1/Bn)

is an isomorphism onto the closed subvariety C ′ ⊆ P (Bn+1/Bn) determined by
the homogeneous equations

(2) tβzα2z−α1 = t−βz−α2zα1

for α1, α2 ∈ {un+1, α
±
1 , . . . , α±n }

such that β = α1 − α2 is a root of Bn

Furthermore, C ′ together with the marked points s′0 resp. s′i
± defined by the

additional equations zun+1 = z−un+1 resp. zα±i
= z−α±i

, the poles s′− resp.
s′+ defined by z−un+1 = 0, z−α±i

= 0 (i = 1, . . . , n) resp. zun+1 = 0,
zα±i

= 0 (i = 1, . . . , n) and the involution I ′ given by P1
{±α+

i }
↔ P1

{±α−i }
,

zα+
i
↔ z−α−i

and P1
{±un+1} ↔ P1

{±un+1}, zun+1 ↔ z−un+1 is a Bn-curve and

(C, I, s−, s+, s0, s
±
1 , . . . , s±n ) → (C ′, I ′, s′−, s′+, s′0, s

′
1
±, . . . , s′n

±) an isomorphism of
Bn-curves.

Proof. The data (tβ : t−β) is defined as position of a marked point s1 relative to
another marked point s2 of C if β = αs1 −αs2 . We also write s1/s2 for this data.
We have the following cases:

βij = α+
i − α+

j = α−j − α−i
γij = α+

i − α−j = α+
j − α−i

ui = α+
i − un+1 = un+1 − α−i



1064 Victor Batyrev and Mark Blume

Note that because of the symmetry of the Bn-curve with respect to the involution
I we have for the corresponding data s+

i /s+
j = s−j /s−i , s+

i /s−j = s+
j /s−i , s+

i /s0 =
s0/s−i , so the data (tβ : t−β){±β}⊆Bn

is well defined.
The rest of the proof is similar to the proof of [BB11, Prop. 3.12]. To check that

(tβ : t−β){±β}⊆Bn
is Bn-data, we have to check the equations tβtγt−δ = t−βt−γtδ

for the linear relations β + γ = δ given in lemma 2.1; these equations can be
written in the form s1/s2 · s2/s3 = s1/s3 for some sections s1, s2, s3. ¤

We will continue to use the notations s′/s = (tβ : t−β) for β = αs′ − αs, we
have s−/s = (0 : 1) and s+/s = (1 : 0) (points s′, s−, s+ with respect to the
coordinates (z−αs : zαs)).

Lemma 3.8. Any Bn-data over a field arises as Bn-data extracted from a Bn-
curve by the method of proposition 3.7.

Proof. Let (tβ : t−β){±β}⊆Bn
be Bn-data over a field.

We can define an ordering ≺ on the set of positive roots {un+1, α
±
1 , . . . , α±n } =

B+
n+1 \ B+

n : for distinct α, α′ define α′ ≺ α (resp. α′ ¹ α) if (tβ : t−β) = (0 :
1) (resp. (tβ : t−β) 6= (1 : 0)) for β = α′ − α. This defines a decomposition
{un+1, α

±
1 , . . . , α±n } = P−m t . . . t Pm into nonempty equivalence classes such

that α′ ≺ α ⇐⇒ α′ ∈ Pk′ , α ∈ Pk for k′ < k. We have the symmetries un+1 ≺ α±i
⇐⇒ α∓i ≺ un+1 and αεi

i ≺ α
εj

j ⇐⇒ α
−εj

j ≺ α−εi
i and these symmetries imply

un+1 ∈ P0 and α+
i ∈ Pk ⇐⇒ α−i ∈ P−k.

Now it is easy to construct a Bn-curve such that the Bn-data extracted from
it by the method of proposition 3.7 is the given Bn-data by taking a chain of
projective lines of length 2m+1 with involution (C, I, s−, s+) (see definition 1.2)
and choosing suitable marked points satisfying s0 ∈ C0 and s±i ∈ Ck ⇐⇒ α±i ∈
Pk. ¤

Let C be a Bn-curve over a field. It decomposes into irreducible components
C = C−m ∪ . . . ∪ Cm with s− ∈ C−m, s+ ∈ Cm. The decomposition

{0,±1, . . . ,±n} = P−m t . . . t Pm

such that 0 ∈ P0 and εi ∈ Pk ⇐⇒ sε
i ∈ Ck, we will call the combinatorial type of

the Bn-curve (or of the corresponding Bn-data) over a field. We will also write
this in the form s−ε1

i1
. . . s−εl

il
| . . . |sε1

i1
. . . sεl

il
with the sections for the different sets

Pk separated by the symbol ”| ” starting on the left with P−m. Considering the
fibres of the universal Bn-curve resp. the universal Bn-data, these combinatorial
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types determine a stratification of X(Bn) which coincides with the stratification
of this toric variety into torus orbits.

Proposition 3.9. Over the torus orbit in X(Bn) corresponding to the one-dimen-
sional cone generated by εi1vi1 + . . . + εikvik we have the combinatorial type

s
εi1
i1
· · · s

εik
ik
|s0s

±
ik+1

· · · s±in |s
−εi1
i1

· · · s
−εik
ik

Proof. The universal Bn-data over each point of the closure of the orbit
corresponding to a generator of a one-dimensional cone generated by v has
the property (tβ : t−β) = (0 : 1) if 〈β, v〉 > 0 (see [BB11, Rem. 1.21]).
For v = εi1vi1 + . . . + εikvik this in particular implies s

εil
il

/s0 = s0/s
−εil
il

=
(tεil

uil
: t−εil

uil
) = (0 : 1) = s−/s0. ¤

4. Moduli space of Bn-curves

In this section we show that there is a fine moduli space of Bn-curves L
0,±
n

which is isomorphic to the toric variety X(Bn) by constructing an isomorphism
between the moduli functor of Bn-curves and the functor of X(Bn). For the
second functor we use the description in [BB11, 1.3] in terms of Bn-data.

To relate Bn-curves to Bn-data we consider an embedding of arbitrary Bn-
curves over a scheme Y into a product (P1)2n+1

Y that generalises the embedding
in proposition 3.7 to the relative situation. The main tool are the following
contraction morphisms (cf. [BB11, 3.3]): for a subset {s1, . . . , sl} of the sections
of a pointed chain of projective lines C there is a line bundle OC(s1 + . . . + sl)
on C and a morphism C → C{s1,...,sl} ⊆ PY (π∗OC(s1 + . . . + sl)) such that the
morphisms Cy → (C{s1,...,sl})y on the fibres are isomorphisms on the components
containing one of the sections si(y) and contract all other components (see [BB11,
Constr. 3.15]).

We will make use of the particular cases of contraction with respect to one
section onto a P1-bundle, with respect to two sections onto an A1-curve and with
respect to three sections onto an A2-curve; we will apply [BB11, Constr. 3.16;
Lemma 3.17 and 3.18].

We associate with the sections s0, s
±
i the roots un+1, α

±
i as we did be-

fore proposition 3.7. For a Bn-curve (C → Y, I, s−, s+, s±1 , . . . , s±n ) we de-
note the contraction morphisms with respect to one section s0, s

−
i resp. s+

i by
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p0 : C → (P1
{±un+1})Y , p−i : C → (P1

{±α−i }
)Y resp. p+

i : C → (P1
{±α+

i }
)Y , where

(P1
{±un+1})Y , (P1

{±α−i }
)Y resp. (P1

{±α+
i }

)Y is a copy of P1
Y with homogeneous co-

ordinates zun+1 , z−un+1 resp. zα−i
, z−α−i

resp. zα+
i
, z−α+

i
such that in these coordi-

nates s−, s+, s0 resp. s−, s+, s−i resp. s−, s+, s+
i become the (1 : 0), (0 : 1), (1 : 1)-

section of P1
Y .

Theorem 4.1. There exists a fine moduli space L
0,±
n of Bn-curves isomorphic to

the toric variety X(Bn) with universal family X(Bn+1) → X(Bn).

Proof. We show that the moduli functor of Bn-curves L
0,±
n as defined in section

1 is isomorphic to the functor FBn of the toric variety X(Bn) as described in
[BB11, 1.3].

Let Y be a scheme. For Bn-data on Y we construct a Bn-curve C over Y

via equations in P (Bn+1/Bn)Y as in remark 3.5 with the given Bn-data on Y

replacing the universal Bn-data on X(Bn). This is a Bn-curve: any Bn-data is
pull-back of the universal Bn-data on X(Bn), so the constructed curve is pull-
back of the universal Bn-curve over X(Bn).

In the other direction, given a Bn-curve over Y we extract Bn-data. For each
pair of distinct sections s1, s2 ∈ {s0, s

±
1 , . . . , s±n } we have a contraction morphism

C → C{s1,s2} onto an A1-curve over Y . From (C{s1,s2}, s1, s2) we extract A1-data
(L{1,2}, {t1,2, t2,1}) as in [BB11, Constr. 3.16]: we put L{±β} := L{1,2}, tβ := t1,2,
t−β := t2,1 for β = αs1 − αs2 (then (tβ : t−β) measures the position of s1 relative
to s2, we write this as s1/s2). We have the following cases:

βij = α+
i − α+

j = α−j − α−i
γij = α+

i − α−j = α+
j − α−i

ui = α+
i − un+1 = un+1 − α−i

Because of the symmetry of the Bn-curve with respect to the involution we have
for the corresponding data s+

i /s+
j = s−j /s−i , s+

i /s−j = s+
j /s−i , s+

i /s0 = s0/s−i , so
the data (L{±β}, {tβ, t−β}){±β}⊆Bn

is well defined.
We show that the data obtained this way is Bn-data. Let β, γ, δ be pos-

itive roots of Bn such that β + γ = δ. We have to verify that the collec-
tion {(L{±β}, {tβ, t−β}), (L{±γ}, {tγ , t−γ}), (L{±δ}, {tδ, t−δ})} satisfies tβtγt−δ =
t−βt−γtδ, which means that it is A2-data. By lemma 2.1 we have the following
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cases:
βij + uj = ui (i, j ∈ {1, . . . , n}, i < j)
ui + uj = γij (i, j ∈ {1, . . . , n}, i 6= j)

βij + βjk = βik (i, j, k ∈ {1, . . . , n}, i < j < k)
βij + γjk = γik (i, j, k ∈ {1, . . . , n}, i < j, k 6= i, j)

In each of these cases we can write β = αs1−αs2 , γ = αs2−αs3 for three distinct
sections s1, s2, s3 ∈ {s0, s

±
1 , . . . , s±n }. Then these equations can be interpreted

as relations between the relative positions of pairs of sections in a set of three
sections, we write this as s1/s2 · s2/s3 = s1/s3:

βij + uj = ui, βij = α+
i − α+

j , uj = α+
j − un+1, s+

i /s+
j · s+

j /s0 = s+
i /s0

ui + uj = γij , ui = α+
i − un+1, uj = un+1 − α−j , s+

i /s0 · s0/s−j = s+
i /s−j

βij + βjk = βik, βij = α+
i − α+

j , βjk = α+
j − α+

k , s+
i /s+

j · s+
j /s+

k = s+
i /s+

k

βij + γjk = γik, βij = α+
i − α+

j , γjk = α+
j − α−k , s+

i /s+
j · s+

j /s−k = s+
i /s−k

We have a contraction morphism C → C{s1,s2,s3} over Y onto an A2-
curve C{s1,s2,s3} over Y . The data {(L{±β}, {tβ, t−β}), (L{±γ}, {tγ , t−γ}),
(L{±δ}, {tδ, t−δ})} coincides with the data extracted from this A2-curve and is
A2-data by [BB11, Lemma 3.18].

Both constructions commute with base-change and thus define morphisms of
functors FBn → L

0,±
n and L

0,±
n → FBn . As in the proof of [BB11, Thm. 3.19] one

shows that they are inverse to each other. ¤

Remark 4.2. The moduli space L
0,±
n embeds naturally into L2n+1. A morphism

L
0,±
n → L2n+1 is given by considering a Bn-curve with sections s−1 , . . . , s−n , s0,

s+
n , . . . , s+

1 as an A2n-curve with sections s1, . . . , sn+1, . . . , s2n+1. This corre-
sponds to the toric morphism X(Bn) → X(A2n) given by the projection of root
systems A2n → Bn mapping ui−un+1 7→ ui, u2n+2−i−un+1 7→ −ui (i = 1, . . . , n)
with kernel generated by ui + u2n+2−i − 2un+1 (i = 1, . . . , n).

5. (Co)homology of L
0,±
n = X(Bn)

We show that the (co)homology of the moduli space L
0,±
n = X(Bn) over the

complex numbers has a description similar to that of the (co)homology of the
Losev-Manin moduli spaces Ln = X(An) (cf. [BB11, 2.2]).

The torus invariant divisors of L
0,±
n = X(Bn) correspond to elements of the set

B (see section 2 and prop. 3.9). Here, as in the case of the toric varieties X(An),
all primitive collections consist of two elements corresponding to non comparable
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sets B,B′ ∈ B. As usual the integral cohomology is torsion free and confined
to the even degrees and standard methods from toric geometry (see e.g. [Dan,
(10.8)]) give:

Proposition 5.1. For the cohomology ring of the toric variety X(Bn) over the
complex numbers we have

H∗(X(Bn),Z) ∼= Z[ lB : B ∈ B ]/(R1 + R2)

where R1 is the ideal generated by the elements ri =
∑

i∈B lB −
∑
−i∈B lB for i =

1, . . . , n and R2 the ideal generated by the elements rB,B′ = lBlB′ for B,B′ ∈ B
such that B 6⊆ B′, B′ 6⊆ B.

We proceed by determining the Betti numbers and the Poincaré polynomial
and obtain the following closed formula which is an analogue to [LM00, (2.3)].

Proposition 5.2. Let pX(Bn)(t) =
∑n

i=0 β2i(X(Bn))ti be the Poincaré polyno-
mial of X(Bn) with β2i(X(Bn)) = rkH2i(X(Bn),Z) the Betti numbers. Then we
have

∞∑

n=0

pX(Bn)(t)
n!

yn = ey(t−1) t− 1
t− e2y(t−1)

∈ Z[t][[y]]

Proof. We have pX(Bn)(t) =
∑n

m=0 dm(Bn)(t − 1)n−m (see [Ful, p. 92]
or [Dan, (10.8)]; this can be shown in different ways, one pos-
sibility is by counting points over finite fields as in [LM00])
with dm(Bn) = number of (n−m)-dimensional torus orbits of X(Bn) =
number of m-dimensional cones of Σ(Bn). Inserting this into

∑∞
n=0

pX(Bn)(t)

n! yn

and interchanging summation by n and m, we get

∞∑
n=0

pX(Bn)(t)

n! yn =
∞∑

m=0

1
(t−1)m

∞∑
n=m

dm(Bn)
n! (t− 1)nyn

The number dm(Bn) can be calculated as

1
n!dm(Bn) =

∑
(a0,a1,...,am)

1
a0!

2a1

a1! · · · 2am

am!

where the sum runs over sequences a0 ∈ Z≥0, a1 ∈ Z>0, . . ., am ∈ Z>0 such that∑
i ai = n (note that any family B(m) ( . . . ( B(1) of elements of B corresponding

to an m-dimensional cone of Σ(Bn) determines such a partition by am = |B(m)|,
am−1 = |B(m−1)| − |B(m)|, . . . , a0 = n − |B(1)|, in addition we have orderings
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and signs). Making use of the fact that 1
n!dm(Bn) coincides with the coefficient

of xn in the power series ex(e2x − 1)m, we obtain

∞∑
n=0

pX(Bn)(t)

n! yn = ey(t−1)
∞∑

m=0

1
(t−1)m (e2y(t−1) − 1)m

which yields the result. ¤

In particular we have χ(X(Bn)) = 2nn! (this reflects the fact that we have
2nn! maximal cones), β2(X(Bn)) = 3n−n− 1 (corresponding to the fact that we
have 3n − 1 one-dimensional cones) and for the first Poincaré polynomials

pX(B1)(t) = t + 1, pX(B2)(t) = t2 + 6t + 1, pX(B3)(t) = t3 + 23t2 + 23t + 1
pX(B4)(t) = t4 + 76t3 + 230t2 + 76t + 1

pX(B5)(t) = t5 + 237t4 + 1682t3 + 1682t2 + 237t + 1
pX(B6)(t) = t6 + 722t5 + 10543t4 + 23548t3 + 10543t2 + 722t + 1

The ring Z[ lB : B ∈ B ]/R2 is the Stanley-Reisner ring for the triangula-
tion of the (n − 1)-dimensional sphere determined by the fan Σ(Bn). It is a
Cohen-Macaulay ring and the elements r1, . . . , rn that generate R1 form a reg-
ular sequence. The calculation of the Poincaré polynomial of a toric variety in
[Dan, (10.8)] in terms of the numbers of cones of dimension d = 1, . . . , n only
depends on the Hilbert-Poincaré series of the Stanley-Reisner ring of the fan and
the fact that the quotient by an ideal generated by a regular sequence is taken.
In [Re01] a ring has been defined by taking the same Stanley-Reisner ring (over
a field) but instead of R1 an ideal generated by a different regular sequence, so
by construction this ring has the same Poincaré polynomial as the cohomology
ring of X(Bn).

The Z-module Z[ lB : B ∈ B ]/(R1 + R2) is generated by the classes of square-
free monomials (see [Dan, (10.7.1)]). We can restrict to monomials each of which
has only factors corresponding to one-dimensional faces of one maximal cone.
Such a monomial

∏m
i=1 lB(i) corresponds to an m-dimensional face of the respec-

tive maximal cone and on the other hand to a collection B(m) ( . . . ( B(1)

of elements of B. We denote the Z-submodule of Z[ lB : B ∈ B ] generated
by these monomials by G. There is the canonical isomorphism of Z-modules
G/U ∼= Z[ lB : B ∈ B ]/(R1 + R2) where U = (R1 + R2) ∩ G. As usual, the
module G/U can be identified with the homology module H∗(X(Bn),Z). The
monomial

∏m
i=1 lB(i) then corresponds to the class of the orbit closure for the cone
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determined by the collection B(m) ( . . . ( B(1), in particular the monomials of
G of degree m generate H2(n−m)(X(Bn),Z).

The maximal cones of the fan Σ(Bn) correspond to collections B(n) ( . . . (
B(1) of elements of B and these correspond to so called signed permutations,
that is elements of the Weyl group W (Bn) = (Z/2Z)n o Sn =: S±n . A signed
permutation w ∈ S±n corresponds via (w(1), . . . , w(n)) to a sequence of distinct
elements in {±1, . . . ,±n} for any i not containing both −i and i. For a collection
B(n) ( . . . ( B(1) of elements of B the corresponding signed permutation σ ∈ S±n
is given by {w(k)} = B(k)\B(k+1) for k = 1, . . . , n (put B(n+1) = ∅). The descent
set of a signed permutation w ∈ S±n is the set (put w(0) = 0)

Desc(w) = {k ∈ {1, . . . , n} | w(k − 1) > w(k)}
For any w ∈ S±n we define a monomial in G by

lw =
∏

k 6∈Desc(w) l{w(k),...,w(n)}

this way we have defined 2nn! distinct monomials.

Proposition 5.3. The classes of the monomials lw for w ∈ S±n form a basis
of the homology module G/U = H∗(X(Bn),Z). The module of relations U is
generated by the elements

ri,j((B(h))h, k) =
( ∑

i∈B
j 6∈B

lB −
∑

j∈B
i 6∈B

lB

) ∏m
h=1 lB(h)

(sums over sets B(k+1) ( B ( B(k)) for collections B(m) ( . . . ( B(1), m ≥ 1 of
elements of B and k ∈ {1, . . . , m}, i, j ∈ B(k) \ B(k+1) (put B(m+1) = ∅), i 6= j,
and by the elements

ri((B(h))h) =
( ∑

i∈B lB −
∑
−i∈B lB

) ∏m
h=1 lB(h)

(sums over sets B ∈ B such that B(1) ( B if m ≥ 1) for collections B(m) ( . . . (
B(1), m ≥ 0 of elements of B and i ∈ {1, . . . , n} such that −i, i 6∈ B(1) if m ≥ 1.

Proof. We observe that the given relations are contained in U . We have 2nn!
monomials lw, this number coincides with the rank of G/U . Thus it remains to
show that every monomial in G via the given relations is equivalent to a linear
combination of the monomials lw.

For a monomial
∏m

k=1 lB(k) corresponding to a collection B(m) ( . . . ( B(1),
m ≥ 1 we define the number

d(
∏m

k=1 lB(k)) := |{k ∈ {1, . . . , m} | minPk−1 > max Pk}| ∈ Z≥0
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in terms of the associated partition Pm = B(m), Pm−1 = B(m−1) \ B(m), . . . ,
P1 = B(1) \ B(2), P0 = {0,±1, . . . ,±n} \ {±i | i ∈ B(1) or − i ∈ B(1)}. The
monomials y ∈ G satisfying d(y) = 0 are exactly the monomials of the form lw.
We define the following ordering ≺ of the monomials of G: take the partition
(Pk)k=0,...,m associated with a monomial and consider the sequence that arises by
taking the sets Pm, . . . , P1 in this order and by ordering the elements of each Pk

according to their size, on these sequences we take the lexicographic order.
We show that every monomial in G modulo U is equivalent to a linear combi-

nation of the monomials lw, w ∈ S±n by showing that every monomial y ∈ G with
d(y) > 0 modulo a relation is equivalent to a linear combination of monomials y′

with y ≺ y′. In fact, let B(m) ( . . . ( B(1), m ≥ 1 be a collection of elements of
B (put B(m+1) := ∅) with associated partition (Pk)k=0,...,m such that the corre-
sponding monomial y =

∏m
k=1 lB(k) satisfies d(y) > 0. Take k ∈ {1, . . . , m} such

that i := min Pk−1 > max Pk =: j. If k ∈ {2, . . . , m} then

ri,j((B(h))h 6=k, k − 1) =
( ∑

i∈B
j 6∈B

lB −
∑

j∈B
i 6∈B

lB

) ∏
h 6=k lB(h)

(sums over sets B such that B(k+1) ( B ( B(k−1)) is a relation that contains y

as the unique monomial minimal with respect to ≺. If k = 1 then

r−j((B(h))h 6=1) =
( ∑

−j∈B lB −
∑

j∈B lB

) ∏m
h=2 lB(h)

(sums over sets B ∈ B such that B(2) ( B) is such a relation. ¤

The proposition implies that the Betti numbers of X(Bn) coincide with the
number of signed permutations with prescribed number of descents, for this see
also [DL94, Section 4], [St94]. Our basis of H∗(X(Bn),Z) coincides with the basis
given in [Kl85], [Kl95] in the general case of toric varieties associated with root
systems (see the following remark).

Remark 5.4. In [Kl85] a basis of the homology H∗(X(R),Z) is constructed
as follows. For a fixed set of simple roots S ⊂ R and the corresponding Weyl
chamber σS = S∨ consider for each w ∈ W (R) the face σw ⊆ wσS given as
the intersection of those walls of wσS that separate σS and wσS , i.e. we have
the intersection of wσS with those subspaces (wα)⊥, α ∈ S, for which wα is a
negative root. The cycles corresponding to the family of cones (σw)w∈W (R) form
a basis of H∗(X(R),Z).
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In our case we may choose the set of simple roots S = {un − un−1, . . . , u2 −
u1, u1} ⊂ Bn; the corresponding Weyl chamber is generated by vn, vn−1 +
vn, . . . , v1+ . . .+vn. Then for w ∈ W (Bn) = S±n we have w(uk−uk−1) is negative
⇐⇒ w(k− 1) > w(k) for k ∈ {2, . . . , n} and w(u1) is negative ⇐⇒ 0 > w(1). So,
each root α ∈ S such that wα is negative corresponds to an element of Desc(w).
Since (w(uk−uk−1))⊥∩wσS is generated by {w(vn), . . . , w(v1+. . .+vn)}\{w(vk+
. . . + vn)} and (w(u1))⊥ ∩ wσS by {w(vn), . . . , w(v2 + . . . + vn)}, it follows that
σw is generated by {v{w(k),...,w(n)} | k 6∈ Desc(w)} and the class of the respective
torus invariant cycle corresponds to the monomial lw.

6. Root systems of type C

Consider an n-dimensional Euclidean space E with basis u1, . . . , un. The root
system Cn in E consists of the 2n2 roots:

±2ui for i ∈ {1, . . . , n}; ±(ui + uj),±(ui − uj) for i, j ∈ {1, . . . , n}, i < j.

The following is a set of simple roots:

u1 − u2, u2 − u3, . . . , un−1 − un, 2un.

Let M(Cn) be the root lattice. The Weyl group (Z/2Z)n o Sn acts by ui 7→ ±ui

and by permuting the ui. So there are 2nn! sets of simple roots, these are of
the form ε1ui1 − ε2ui2 , ε2ui2 − ε3ui3 , . . . , εn−1uin−1 − εnuin , 2εnuin for orderings
i1, . . . , in of the set {1, . . . , n} and signs ε1, . . . , εn.

The vector space E∗ dual to E with basis v1, . . . , vn dual to u1, . . . , un contains
the lattice N(Cn) dual to M(Cn). To describe the fan Σ(Cn) in the lattice N(Cn)
we describe a Weyl chamber. For the set of simple roots S = {u1 − u2, u2 −
u3, . . . , un−1 − un, 2un} has the dual basis v1, v1 + v2, . . . , v1 + . . . + vn−1,

1
2(v1 +

. . . + vn) of N(Cn), the Weyl chamber σS is equal to 〈v1, v1 + v2, . . . , v1 + . . . +
vn−1,

1
2(v1 + . . . + vn)〉Q≥0

. All Weyl chambers are generated by collections of
elements of the form ε1vi1 , ε1vi1 + ε2vi2 , . . . ,

1
2(ε1vi1 + . . . + εnvin) for orderings

i1, . . . , in of the set {1, . . . , n} and signs εi. There are 3n − 1 one-dimensional
cones generated by elements of the form ε1vi1 + . . . + εkvik for k ∈ {1, . . . , n− 1}
or of the form 1

2(ε1v1 + . . . + εnvn).

The torus invariant divisor for the one-dimensional cone generated by
ε1vi1+. . .+εkvik is isomorphic to X(Cn−k)×X(Ak−1), that for 1

2(ε1v1+. . .+εnvn)
is isomorphic to X(An−1).
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X(Cn+1) over X(Cn). Consider the proper surjective morphism X(Cn+1) →
X(Cn) induced by the root subsystem Cn ⊂ Cn+1 consisting of the roots in the
subspace generated by u1, . . . , un. As in the B-case one shows that X(Cn+1) is
flat over X(Cn).

The automorphism of Cn+1 given as the reflection for the root ±un+1 fixes
Cn ⊂ Cn+1 and induces an involution I of X(Cn+1) over X(Cn). We have
two sections s−, s+ defined as in the B-case. There are 2n + 1 additional pairs
of opposite roots, the pairs ±α+

i = ±(un+1 + ui), ±α−i = ±(un+1 − ui) for
i ∈ {1, . . . , n} and the pair ±2un+1. Any pair ±α+

i , ±α−i defines a projection
onto the root subsystem Cn ⊂ Cn+1 in the sense of [BB11, 1.2], thus we have
sections s+

i and s−i . The pair ±2un+1 does not define a projection of root systems
Cn+1 → Cn, so it does not induce a section. However, we can consider the
morphism X(Cn+1) → P1

{±2un+1} and the preimage of the point (1 : 1). We
denote this subscheme of X(Cn+1) by S0; it is finite flat of degree 2 over X(Cn)
(see below), such a subscheme we will call a double-section.

If we consider X(Cn+1) and X(Cn) as embedded X(Cn+1) ⊆ P (Cn+1),
X(Cn) ⊆ P (Cn), then the morphism X(Cn+1) → X(Cn) is induced by the
projection onto the subproduct P (Cn+1) → P (Cn) and X(Cn+1) is given in
P (Cn+1/Cn)X(Cn) =

( ∏n
i=1P

1
{±α+

i }
×∏n

i=1P
1
{±α−i }

×P1
{±2un+1}

)
X(Cn)

by the ho-

mogeneous equations involving the universal Cn-data on X(Cn)

(3) zα−i
zα+

i
z−2un+1 = z−α−i

z−α+
i
z2un+1 , i ∈ {1, . . . , n}

(4) tβzα2z−α1 = t−βz−α2zα1 , α1, α2 ∈ {α±1 , . . . , α±n }, α1 6= α2, β = α1 − α2

Example 6.1. We picture the inclusion of root systems C1 ⊂ C2 and the map
of fans Σ(C2) → Σ(C1).

C2

C1

6

?

-¾
µI

Rª

2u1−2u1

α+
1 =u1+u2

2u2

α−1

−α−1 =u1−u2

−2u2

−α+
1

6 6

-¾ 2u−2u

Σ(C2)

Σ(C1)

6

?

-¾
µI

Rª

v1−v1

1
2 (v1+v2)

v2
1
2 (−v1+v2)

1
2 (v1−v2)

−v2

1
2 (−v1−v2)

? ?
-¾

1
2v− 1

2v
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The fibres of X(Cn+1) → X(Cn) can be studied for example using the above
description in terms of equations or by employing the description of X(Cn) as
quotient of X(Bn) (see below). We obtain the following result, in particular the
fibres over a union of torus invariant divisors are not reduced.

Proposition 6.2. We define D ⊂ X(Cn) to be the union of the torus invari-
ant divisors corresponding to the one-dimensional cones of Σ(Cn) generated by
elements of the form 1

2(ε1v1 + . . . + εnvn). For the structure of the fibres of the
morphism X(Cn+1) → X(Cn) together with the involution I, the sections s±i and
the double-section S0, there are the following two situations.

Over X(Cn) \D the fibres are Bn-curves except that instead of the section s0

we have a double-section S0 which consists of the two fixed points under I. In
this case the central component contains some of the sections s±i .

Over D the fibres are Bn-curves except that the central component is nonreduced
of the form P1

K[ε]/〈ε2〉 with the double-section S0
∼= Spec K[ε]/〈ε2〉 concentrated

in one point. The intersection of the central component with the other compo-
nents locally is isomorphic to the subscheme in A2

K = Spec K[x, y] defined by the
equation x2y = 0. All sections s±i are on the other components.

In both cases the combinatorial types over the torus invariant divisors, after
the appropriate modifications, are given by the description in the B-case (prop.
3.9).

X(Cn) as quotient of X(Bn). We investigate the description of X(Cn) as a
quotient X(Bn)/µ2. On the moduli side this leads to a characterisation of X(Cn)
as the coarse moduli space of a toric Deligne-Mumford stack. For simplicity, in
this part we will work over the field of complex numbers.

On the moduli space L
0,±
n of Bn-curves we have an involution J that transforms

a Bn-curve over a scheme Y to the Bn-curve with the other fixed point section
with respect to the involution I as section s0, i.e. we apply the automorphism of
the central component that commutes with I (see the following remark) to the
section s0.

Remark 6.3. Let (C, I, s−, s+) be a chain of projective lines with involution of
odd length over C. Consider the central component (C0, p

−
0 , p+

0 ) which we identify
with (P1

C, 0,∞) such that I|C0 : x 7→ 1
x . Then there are two automorphisms of

(C0, p
−
0 , p+

0 ) that commute with I, namely the identity and x 7→ −x, determined
by the action on the fixed points {1,−1} of I|C0 .
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Identifying L
0,±
n with X(Bn), the involution J is given on the functor of Bn-

data (see [BB11, 1.3]) by (L{±ui}, {tui , t−ui}) 7→ (L{±ui}, {tui ,−t−ui}) or equiv-
alently f±ui 7→ −f±ui on the part corresponding to the roots ±u1, . . . ,±un,
whereas the part corresponding to the other roots remains unchanged.

In both the Cn-case and the Bn-case we start with the same vector space
E with basis u1, . . . , un. The root lattice M(Cn) is a sublattice of the root
lattice M(Bn) of index 2 and dually N(Bn) ⊂ N(Cn) of index 2, whereas the
fan Σ(Cn) as a set of cones in N(Cn)Q = N(Bn)Q is the same as the fan Σ(Bn).
Thus, the toric variety X(Cn) is the quotient of X(Bn) by the involution that
maps xui 7→ −xui . This involution on X(Bn) coincides with the involution J .
Locally, we have quotients An/µ2 by the action of µ2 that changes the sign of one
coordinate of An. In particular, X(Bn) is flat over X(Cn) of degree 2. X(Cn)
can be considered as the µ2-Hilbert scheme of X(Bn), then X(Bn) → X(Cn)
forms the universal family of µ2-clusters, the fibres over X(Cn)\D consist of two
points, the fibres over D are nonreduced µ2-clusters.

Concerning the double-section S0 ⊂ X(Cn+1) we obtain:

Lemma 6.4. The scheme S0 is isomorphic to X(Bn) over X(Cn).

Proof. Let S̃0 ⊂ X(Bn+1) be the fixed point subscheme of the involution I on
X(Bn+1). The scheme S̃0 over X(Bn) consists of two components s0(X(Bn))
and another copy of X(Bn) such that J : X(Bn+1) → X(Bn+1) restricts to an
isomorphism between these components over J : X(Bn) → X(Bn). The scheme
S0 arises as quotient of S̃0 by J , the section s0 : X(Bn) → S̃0 determines an
isomorphism X(Bn) → S0 over X(Cn) = X(Bn)/µ2. ¤

We are led to the following type of curves to be parametrised by X(Cn).

Definition 6.5. (First definition of Cn-curves). A Cn-curve over a scheme Y is
a collection (π : C → Y, I, s−, s+, s±1 , . . . , s±n ) which arises from a Bn-curve over
Y by omitting the section s0.

Equivalently, we can replace the section s0 of a Bn-curve C → Y by the
subscheme s0(Y ) ∪ J(s0(Y )), which coincides with the fixed point subscheme
of the involution I on C. The section s0 selects one of the two components
of this fixed point subscheme. Forgetting this information, the Bn-curves for
points y, Jy in the moduli space L

0,±
n = X(Bn) define Cn-curves related by an

isomorphism of Cn-curves. If the central component contains sections s±i , then
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two nonisomorphic Bn-curves over a field give rise to isomorphic Cn-curves. If the
central component does not contain a section s±i , then one Bn-curve corresponds
to one Cn-curve, but Cn-curves of this type have an extra automorphism that
interchanges the two fixed points of I (cf. remark 6.3).

This functor of Cn-curves cannot be representable by a scheme. However, we
can consider the stack of Cn-curves.

Theorem 6.6. The category of Cn-curves forms a Deligne-Mumford stack X (Cn)
isomorphic to the quotient stack [X(Bn)/µ2] with the group operation given by
J : X(Bn) → X(Bn).

Proof. Let X (Cn) be the category of Cn-curves, i.e. an object of X (Cn) over a
scheme Y is a Cn-curve C over Y , a morphism (C → Y ) → (C ′ → Y ′) over
Y → Y ′ is a cartesian diagram compatible with the involution I and the sections.
This is a category fibred in groupoids, we show that it is equivalent as a fibred
category to the Deligne-Mumford stack [X(Bn)/µ2].

An object of [X(Bn)/µ2] over a scheme Y is a µ2-torsor T → Y together with
a µ2-equivariant map T → X(Bn). A morphism (T → Y, α : T → X(Bn)) →
(T ′ → Y ′, α′ : T ′ → X(Bn)) over Y → Y ′ is a cartesian diagram of µ2-torsors
given by a morphism θ : T → T ′ such that α′◦θ = α. We will use that the functor
of X(Bn) is isomorphic to the functor of Bn-curves and fix an isomorphism resp.
a universal family over X(Bn).

We define a morphism of fibred categories Φ: [X(Bn)/µ2] → X (Cn). For an
object (T → Y, α : T → X(Bn)) we have a Bn-curve B → T corresponding to the
equivariant morphism α such that the action of µ2 on T is given by interchanging
the two possible choices of s0. After forgetting the section s0, the quotient of
B → T by µ2 gives a Cn-curve C → Y using the canonical isomorphism T/µ2

∼=
Y . For a morphism (T → Y, α : T → X(Bn)) → (T ′ → Y, α′ : T ′ → X(Bn)) we
obtain a cartesian diagram of Cn-curves (C → Y ) → (C ′ → Y ′).

We define a morphism of fibred categories Ψ: X (Cn) → [X(Bn)/µ2]. Let
C → Y be a Cn-curve over Y . Consider the fixed point subscheme T ⊂ C

under I, this is a µ2-torsor over Y . Let B be the pull-back of the Cn-curve
C → Y to T , with the section s0 defined as the diagonal of T ×Y T ⊂ B this is
a Bn-curve and defines a µ2-equivariant morphism α : T → X(Bn). A morphism
(C → Y ) → (C ′ → Y ′) given by γ : C → C ′ determines a cartesian diagram of
Bn-curves by γ × γ : B = C ×Y T → B′ = C ′ ×Y ′ T ′ over a cartesian diagram
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of µ2-torsors given by γ : T → T ′. So the diagram formed by γ : T → T ′ and
T, T ′ → X(Bn) is commutative.

The compositions Φ ◦Ψ and Ψ ◦Φ are isomorphic to the respective identities.
In the case of Φ ◦Ψ the quotient of the pull-back of a Cn-curve C → Y to T ⊂ C

is canonically isomorphic to C → Y . In the case of Ψ ◦ Φ the quotient of a Bn-
curve B → T over a µ2-torsor T gives a Cn-curve C → Y , together these form
a cartesian square. The section s0 : T → B determines an inclusion T ⊂ C as
fixed point subscheme with respect to I. Applying the functor Ψ we recover a
Bn-curve canonically isomorphic to the original Bn-curve. ¤

Corollary 6.7. The toric variety X(Cn) is a coarse moduli space of Cn-curves.

The stack X (Cn) is a toric Deligne-Mumford stack as introduced in [BCS04]
(see also [FMN10]): we define the stacky fan Σ(Cn) as the fan Σ(Cn) in the lattice
N(Cn) with the difference that we choose on the rays generated by 1

2(ε1v1 + . . .+
εnvn) the second lattice points ε1v1 + . . .+εnvn. In comparision to the fan Σ(Bn)
the underlying lattice is finer and the toric DM stack associated with Σ(Cn)
coincides with the quotient stack [X(Bn)/µ2].

Corollary 6.8. The stack X (Cn) is isomorphic to the toric Deligne-Mumford
stack associated with the stacky fan Σ(Cn).

Example 6.9. The stacky fan Σ(C2) in the lattice Z1
2v ∼= Z consists of the two

cones Q≥0v,Q≥0(−v) with chosen lattice points v,−v. The associated toric DM
stack is X (C2) ∼= [P1/µ2] (cf. also [FMN10, example 7.31]), it is an orbifold with
two stacky points.

X(Cn) as fine moduli space. We give a characterisation of X(Cn) as a fine
moduli space L

±
n of 2n-pointed chains of projective lines. Here the universal curve

is not X(Cn+1) → X(Cn), however, the universal curve and the general notion
of a Cn-curve are defined naturally in terms of the inclusion of root systems
Cn → Cn+1.

We have the root subsystem Cn ⊂ Cn+1 in the subspace generated by the roots
u1, . . . , un. Take those pairs of opposite roots in Cn+1\Cn which define projections
Cn+1 → Cn in the sense of [BB11, 1.2]; these are ±α−1 ,±α+

1 , . . . ,±α−n ,±α+
n but

not ±2un+1. To each of these pairs ±α−i and ±α+
i we associate a section s−i and

s+
i . The element of the Weyl group given as the reflection for the root ±2un+1
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mapping un+1 7→ −un+1 and ui 7→ ui for i ∈ {1, . . . , n} is an isomorphism of
Cn+1 fixing Cn ⊂ Cn+1. It maps α−i ↔ −α+

i . This leads us to the following
definition.

Definition 6.10. (Second definition of Cn-curves). A Cn-curve over an alge-
braically closed field K is a chain of projective lines with involution of odd or
even length with 2n (possibly coinciding) marked points s±1 , . . . , s±n different from
the poles, the involution interchanging s−i ↔ s+

i , such that every component con-
tains at least one of the points s±i . We define a Cn-curve over an arbitrary scheme,
isomorphisms of Cn-curves and the moduli functor of Cn-curves in the same way
as we did in the case of Bn-curves.

Construction 6.11. Let the subscheme

C(Cn+1/Cn) ⊂ ( ∏n
i=1P

1
{±α−i }

×∏n
i=1P

1
{±α+

i }
)
X(Cn)

be defined by the equations (4) using the universal Cn-data on X(Cn). This
morphism C(Cn+1/Cn) → X(Cn) has the sections s−, s+, s±i , where s− is defined
by z−α±i

= 0 (i = 1, . . . , n), s+ is defined by zα±i
= 0 (i = 1, . . . , n) and the

sections s±i by the equations zα±i
= z−α±i

. The involution maps P1
{±α−i }

↔
P1
{±α+

i }
, (zα−i

: z−α−i
) ↔ (z−α+

i
: zα+

i
).

Remark 6.12. The toric variety C(Cn+1/Cn) arises from X(Cn+1) by contract-
ing certain torus invariant prime divisors. The fibres of X(Cn+1) → X(Cn) over
the divisors corresponding to the rays generated by elements of the form
1
2(ε1v1 + . . . + εnvn) (forming D in proposition 6.2) have a central com-
ponent containing none of the sections s±i . In X(Cn+1) the support
of the central components of the fibers over the divisor corresponding to
1
2(ε1v1 + . . . + εnvn) forms a torus invariant divisor which corresponds
to the ray in Σ(Cn+1) generated by ε1v1 + . . . + εnvn and is iso-
morphic to X(C1) × X(An−1) ∼= P1 × X(An−1). We contract these divisors
P1 × X(An−1) to X(An−1) by omitting the rays in Σ(Cn+1) generated by ele-
ments of the form ε1v1 + . . . + εnvn, but retaining the two-dimensional cones〈

1
2(ε1v1 + . . . + εnvn − vn+1), 1

2(ε1v1 + . . . + εnvn + vn+1)
〉
Q≥0

. On the fibers
over D the central components are contracted.
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Proposition 6.13. The morphism C(Cn+1/Cn) → X(Cn) with the involution I

and the sections s−, s+, s±1 , . . . , s±n is a Cn-curve. The combinatorial types of the
fibres over the torus orbits corresponding to one-dimensional cones are as follows:

εi1vi1 sε1
i1
|s±i2 · · · s±in |s−ε1

i1

εi1vi1 + εi2vi2 sε1
i1

sε2
i2
|s±i3 · · · s±in |s−ε2

i2
s−ε1
i1

...
...

εi1vi1 + . . . + εin−2vin−2 sε1
i1
· · · sεn−2

in−2
|s±in−1

s±in |s
−εn−2

in−2
· · · s−ε1

i1

εi1vi1 + . . . . . . + εin−1vin−1 sε1
i1
· · · sεn−1

in−1
|s±in |s

−εn−1

in−1
· · · s−ε1

i1
1
2(εi1vi1 + . . . . . . . . . + εinvin) sε1

i1
· · · sεn

in
|s−εn

in
· · · s−ε1

i1

Definition 6.14. We call C(Cn+1/Cn) → X(Cn) together with the involution I

and the sections s−, s+, s−1 , s+
1 , . . . , s−n , s+

n the universal Cn-curve over X(Cn).

By the same procedure as in the case of root systems of type A and B we can
prove the following.

Theorem 6.15. There exists a fine moduli space L
±
n of Cn-curves isomorphic to

the toric variety X(Cn) with universal family C(Cn+1/Cn) → X(Cn).

Remark 6.16. There is a natural closed embedding of the moduli spaces
L
±
n = X(Cn) → L2n = X(A2n−1) determined by considering a Cn-curve with

sections s−1 , . . . , s−n , s+
n , . . . , s+

1 as an A2n−1-curve with sections s1, . . . , s2n. The
toric morphism X(Cn) → X(A2n−1) is given by the projection of root systems
A2n−1 → Cn induced by

⊕2n
i=1Zui → M(Cn), ui 7→ ui, u2n+1−i 7→ −ui for

i = 1, . . . , n. The kernel in M(A2n−1) is generated by u2n+1−i +ui−u2n+1−j−uj

for some fixed j and i ∈ {1, . . . , n} \ {j}. By employing this embedding we have
an alternative approach to prove the above statements.

7. Root systems of type D

Consider for n ≥ 2 an n-dimensional Euclidean space E with basis u1, . . . , un.
The root system Dn in E consists of the 2n(n− 1) roots

±(ui + uj),±(ui − uj) for i, j ∈ {1, . . . , n}, i < j.

The following is a set of simple roots:

u1 − u2, u2 − u3, . . . , un−1 − un, un−1 + un.
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The Weyl group (Z/2Z)n−1 o Sn acts by ui 7→ εiui, where the εi are signs such
that

∏
i εi = 1, and by permuting the ui. So there are 2n−1n! sets of simple roots,

these are of the form ε1ui1−ε2ui2 , ε2ui2−ε3ui3 , . . . , εn−1uin−1−εnuin , εn−1uin−1 +
εnuin for orderings i1, . . . , in of the set {1, . . . , n} and signs ε1, . . . , εn (note that
εn = 1 and εn = −1 give the same set).

The vector space E∗ dual to E with basis v1, . . . , vn dual to u1, . . . , un contains
the lattice N(Dn) dual to the root lattice M(Dn). To describe the fan Σ(Dn)
in the lattice N(Dn) we determine a Weyl chamber. The set of simple roots
u1 − u2, u2 − u3, . . . , un−1 − un, un−1 + un has the dual basis v1, v1 + v2, . . . , v1 +
. . .+vn−2,

1
2(v1+. . .+vn−1−vn), 1

2(v1+. . .+vn−1+vn) of N(Dn) which generates
the corresponding Weyl chamber. There are 3n−n2n−1−1 one-dimensional cones
generated by elements of the form

∑
i∈A εivi for A ⊂ {1, . . . , n}, 1 ≤ |A| ≤ n− 2

or of the form 1
2(ε1v1 + . . . + εn−1vn−1 + εnvn), where the εi are signs.

The torus invariant divisor for the one-dimensional cone generated by
ε1vi1 + . . . + εkvik , 1 ≤ k ≤ n − 2 is isomorphic to X(Dn−k) × X(Ak−1),
that for ε1v1 + . . . + εn−2vn−2 is isomorphic to X(A1) × X(A1) × X(An−3) ∼=
X(D2) × X(An−3) and that for 1

2(ε1v1 + . . . + εnvn) is isomorphic to X(An−1)
(see [BB11, 1.2]).

X(Dn+1) over X(Dn). Consider the proper surjective morphism X(Dn+1) →
X(Dn) induced by the root subsystem Dn ⊂ Dn+1 consisting of the roots in
the subspace generated by u1, . . . , un. We have a projection of fans Σ(Dn+1) →
Σ(Dn) along the subspace generated by vn+1. The generic fibre is P1. Note that
the torus invariant divisor in X(Dn+1) corresponding to v1 + . . . + vn−1 is lying
over the closure of the torus orbit in X(Dn) of codimension 2 corresponding to the
2-dimensional cone generated by 1

2(v1+. . .+vn−1+vn), 1
2(v1+. . .+vn−1−vn); here

(and on the translates under the Weyl group W (Bn)) we have fibres of dimension
2. This implies that the morphism X(Dn+1) → X(Dn) is not flat.

There are 2n additional pairs of opposite roots, the pairs ±α+
i = ±(un+1 +ui)

and ±α−i = ±(un+1−ui) for i ∈ {1, . . . , n}. The projections along the subspaces
generated by these do not define projections of root systems Dn+1 → Dn in the
sense of [BB11, 1.2]: we have α+

i −α−i = 2ui, so the projection along the subspace
generated by α+

i (resp. α−i ) maps α−i (resp. α+
i ) to 2ui which is not a multiple of

a root of Dn. Instead we can consider the preimages of (1 : 1) ∈ P1
{±α−i }

,P1
{±α+

i }
with respect to the projections X(Dn+1) → P1

{±α−i }
,P1

{±α+
i }

determined by the
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inclusions of root systems {±α−i }, {±α+
i } ⊂ Dn+1, we denote these subschemes

by s−i , s+
i . As in the B and C-case we have sections s−, s+; further we have an

involution I coming from the automorphism of Dn+1 fixing Dn ⊂ Dn+1 which
maps un+1 7→ −un+1, ui 7→ ui for i ∈ {1, . . . , n} and is not an element of the
Weyl group W (Dn+1).

As in the other cases we can study X(Dn+1) over X(Dn) via the embed-
ding into P (Dn+1/Dn)X(Dn) =

( ∏n
i=1P

1
{±α−i }

× ∏n
i=1P

1
{±α+

i }
)
X(Dn)

. The sub-

scheme X(Dn+1) ⊂ P (Dn+1/Dn)X(Dn) is given by the homogeneous equations
parametrised by the universal Dn-data

tβzα2z−α1 = t−βz−α2zα1

for α1, α2 ∈ {α±1 , . . . , α±n }
such that β = α1 − α2 is a root of Dn

We will see that over the complement of a closed subset of codimension 2 the
fibres are chains of projective lines with sections s±i . Over these points we have
a combinatorial type for a fibre resp. for the universal Dn-data as in the B-case
(see proposition 3.9), we use the notation introduced there.

Example 7.1. X(D3) over X(D2).
The root system D2 consists of the 4 roots ±u1 ± u2. It is contained in the root
system D3, this has the 8 additional roots ±α−1 = ±(u3−u1), ±α+

1 = ±(u3 +u1),
±α−2 = ±(u3 − u2), ±α+

2 = ±(u3 + u2). Because of the isomorphism of root
systems D2

∼= A1 × A1 we have X(D2) ∼= P1 × P1. The fan Σ(D2) has 4
one-dimensional cones generated by 1

2(±v1 ± v2). The fan Σ(D3) has 14 one-
dimensional cones, 6 of the form ±vi and 8 of the form 1

2(ε1v1 + ε2v2 + ε3v3).
The projection Σ(D3) → Σ(D2) maps the generator of the one-dimensional cone
1
2(ε1v1 +ε2v2 +ε3v3) to the generator of the one-dimensional cone 1

2(ε1v1 +ε2v2),
the vector ±vi for i = 1, 2 is not mapped to a one-dimensional cone of D2 but
into the interior of the 2-dimensional cone 〈±vi + vj ,±vi − vj〉Q≥0

.
In P (D3/D2)X(D2) =

(
P1
{±α−1 }

×P1
{±α+

1 }
×P1

{±α−2 }
×P1

{±α+
2 }

)
X(D2)

the subscheme

X(D3) is given by 4 equations parametrised by the universal D2-data on X(D2).
For each point we have D2-data of the form (tβ12 : t−β12), (tγ12 : t−γ12) where
β12 = u1−u2, γ12 = u1+u2. Over the affine chart SpecZ[x1

x2
, x1x2] corresponding

to the cone 〈12(v1 − v2), 1
2(v1 + v2)〉Q≥0

for the set of simple roots β12, γ12 this
data has the property (tβ12 : t−β12) 6= (1 : 0), (tγ12 : t−γ12) 6= (1 : 0) (see
[BB11, Rem. 1.21]). We study the fibres of X(D3) → X(D2) over this affine
chart. Over the dense torus we have a P1, over the torus orbit corresponding
to 1

2(v1 − v2) (resp. 1
2(v1 + v2)) we have chains of two P1 of combinatorial type

s+
1 s−2 |s−1 s+

2 (resp. s+
1 s+

2 |s−1 s−2 ). Over the torus fixed point corresponding to the



1082 Victor Batyrev and Mark Blume

cone 〈12(v1−v2), 1
2(v1+v2)〉Q≥0

we have D2-data of the form (tβ12 : t−β12) = (0 : 1),
(tγ12 : t−γ12) = (0 : 1) and the fibre decomposes into three irreducible components
P1,P1 × P1,P1.

P1

(z
α−1

: z−α−1
)

P1

(z
α+

1
: z−α+

1
)

P1 × P1

(z
α−2

: z−α−2
), (z

α+
2

: z−α+
2
)

s−2

s+
2

s−

s+

s+
1

s−1

The general case can be studied using the same methods, see also the Bn-case
and in particular proposition 3.9, here details will be left to the reader. We
define Z ⊂ X(Dn) to be the union of the closures of torus orbits correspond-
ing to the 2-dimensional cones of the form 〈12(ε1vi1 + . . . + εn−1vin−1 + εinvin),
1
2(ε1vi1 + . . . + εn−1vin−1 − εnvin)〉Q≥0

.

Proposition 7.2. Over X(Dn)\Z the fibres of the morphism X(Dn+1) → X(Dn)
are chains of projective lines of odd or even length with sections s±i . The combi-
natorial types of the fibres over the torus orbits corresponding to one-dimensional
cones are as follows:

εi1vi1 sε1
i1
|s±i2 · · · s±in |s−ε1

i1

εi1vi1 + εi2vi2 sε1
i1

sε2
i2
|s±i3 · · · s±in |s−ε2

i2
s−ε1
i1

...
...

εi1vi1 + . . . + εin−2vin−2 sε1
i1
· · · sεn−2

in−2
|s±in−1

s±in |s
−εn−2

in−2
· · · s−ε1

i1
1
2(εi1vi1 + . . . + εin−2vin−2 + εin−1vin−1 + εinvin) sε1

i1
· · · sεn

in
|s−εn

in
· · · s−ε1

i1
1
2(εi1vi1 + . . . + εin−2vin−2 + εin−1vin−1 − εinvin) sε1

i1
· · · s−εn

in
|sεn

in
· · · s−ε1

i1

Over Z the fibres are 2-dimensional and decompose into irreducible components
isomorphic to P1 and P1 × P1 intersecting transversally. We have a central
component P1 ×P1 with action of I that interchanges two torus fixed points and
leaves the other two fixed. Further, we have chains of P1 emanating from the
two torus fixed points of P1 × P1 interchanged by I with the sections s± on the
outer components. Concerning the subschemes s±i , each of them intersects only
with one component, those intersecting with one of the P1 locally are sections,
one pair s−i , s+

i intersects with P1 × P1 as (1 : 1)× P1, P1 × (1 : 1).



Generalisations of Losev-Manin Moduli Spaces 1083

Remark 7.3. The combinatorial type of fibres of X(Rn+1) over the torus fixed
points of X(Rn) can be pictured in form of the Dynkin diagram of the root system
Rn+1 such that a component P1 with one section corresponds to a vertex.
In the An-case (see [BB11]) we have a string starting with the section si1 on the
component containing s− and ending with the section sin+1 on the component
containing s+ in the form of the Dynkin diagram for the root system An+1:

si1 si2 si3 . . . sin+1

In the Bn-case, because of the involution I, it suffices to consider the central
component containing the section s0 and one of the two chains emanating from
the central component. This forms a Dynkin diagram of type Bn+1:

s0 sε1
i1

sε2
i2

. . . sεn
in

In the Cn-case we have the double-section S0 replacing the section s0:

S0 sε1
i1

sε2
i2

. . . sεn
in

Finally, in the Dn-case we can take the torus invariant divisors in the central
component P1 × P1 and their intersection with the fibres of the schemes s±i .
Together with the other components we have a Dynkin diagram of type Dn+1:

s+
i1

s−i1

sε2
i2

sε3
i3

. . . sεn
in
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