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Abstract: We give model theoretic constructions for a zoo of examples
and counterexamples: first we build generalized n-gons satisfying strong
transitivity properties. An ultraproduct of these yields a forest from which
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1 Introduction

The classification of the Moufang polygons by Tits and Weiss [18] establishes a
close connection between Moufang polygons (and higher rank spherical buildings)
and classical or algebraic groups. Weak versions of the Moufang condition have
been shown to be sufficient for the classification [13, 14, 15]. While in the finite
case and in the case of compact connected topological buildings the Moufang
condition is in fact equivalent to the existence of a BN-pair, examples (such as the
ones constructed below) show that this fails in general. Therefore, it is of interest
to explore the extend to which the Moufang condition might be weakened. We
here construct examples satisfying rather strong homogeneity conditions. This
construction is much more straightforward than the one given in [12] and has
different properties. In Section 5 we use these examples to obtain twin trees with
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large automorphism groups. Finally we consider the ultralimit of these spaces in
Section 6.

2 Generalized polygons - free constructions

Generalized polygons are exactly the spherical buildings of rank 2. A generalized
n-gon Γ is a bipartite graph with valencies at least 3, diameter n and girth 2n.
Without the assumption on the valencies, such a graph is called a weak nn-gon.
We call (x0, . . . xk) a simple path if the xi are pairwise distinct and xi is adjacent
to xi+1 for i = 0, . . . k − 1. The natural graph theoretic distance function on Γ
is denoted by d or sometimes dn. The set of elements at distance i from some
element x ∈ Γ is denoted by Γi(x). Elements at distance n are called opposite.

The following easy lemma is a special case of [8].

2.1 Lemma If Γ is a generalized n-gon and α ∈ Aut(Γ), there exists some x ∈ Γ
with d(x, α(x)) ≥ n− 1.

Proof. Let x ∈ Γ be such that k = d(x, α(x)) is maximal and suppose k ≤
n − 2. For i = 1, 2, 3 let yi ∈ Γ1(x) and let y1 be the unique element with
d(y1, α(x)) = k − 1. Clearly, α(yi) ∈ Γ1(α(x)). Therefore, there is at most one
i ∈ {1, 2, 3} with d(y1, α(yi)) = k − 2. Hence without loss of generality we have
d(y1, α(y1)) = d(y1, α(y2)) = k and therefore d(y2, α(y2)) = k + 2.

¤

If G ≤ Aut(Γ), we denote by G
[i]
x0 the subgroup of G fixing all elements of Γi(x0)

and for elements x0, . . . , xk, we set G
[i]
x0,x1,...,xk = G

[i]
x0 ∩G

[i]
x1 ∩ . . . ∩G

[1]
xk .

For every simple path (x0, . . . xn+1) of length n + 1 and every i with 0 ≤ i ≤ n,
we have Gx0,...xn+1 ∩G

[1]
xi,xi+1 = 1 (see e.g. [20] 4.4.2 (v)).

For 2 ≤ k ≤ n, the generalized n-gon Γ is said to be k-Moufang with respect
to G ≤ Aut(Γ) if for each simple k-path (x0, . . . xk) the group G

[1]
x1,...,xk−1 acts

transitively on the set of 2n-cycles through (x0, . . . xk). If Γ is 4-Moufang with
respect to some group G, then Γ is in fact n-Moufang with respect to the same
group G and we say that Γ is a Moufang polygon (see e.g. [20] 6.8.2). If Gx0,x1
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acts transitively on the set of 2n-cycles through (x0, x1) for all paths (x0, x1)
(sometimes referred to as the 1-Moufang condition), then G acts transitively on
the set of ordered 2n-cycles of Γ, or strongly transitively on Γ. This is equivalent
to G having a spherical BN-pair of rank 2, which is in general too weak to allow
a classification, see examples below and the ones in [17, 12].

We call a generalized n-gon Γ almost-2-Moufang with respect to G if for every
finite set A ⊆ Γ1(x1), and any path (x0, x1, x2) the group GA acts transitively on
the 2n-cycles containing (x0, x1, x2). Similarly, one can define almost-3-Moufang
for paths (x0, x1, x2, x3) and finite subsets A ⊆ Γ1(x1) ∪ Γ1(x2).

It was shown in [15] that the 2-Moufang condition implies the Moufang condition
for generalized n-gons with n ≤ 6. We here construct generalized n-gons for
all n ≥ 3 which are almost-2-Moufang, but not Moufang (and in fact not even
almost-3-Moufang)

It is well-known that finite or Moufang generalized n-gons exist only for n =
3, 4, 6, 8. Background on the Moufang condition for generalized n-gons can be
found in [20] and [18].

The following well-known construction shows the existence of many generalized
n-gons for any n ≥ 3.

2.2 Free n-completion: Let Γ0 be a connected bipartite graph not containing
any k-cycles for k < 2n. Then we obtain the free n-completion of Γ0 in stages
in the following way: at stage i ≥ 1 we obtain Γi from Γi−1 by adding a new
path of length n − 1 for each pair of elements x, y at distance n + 1 in Γi−1.
Then Γ =

⋃
Γi is called the free n-completion of Γ0 and we say that Γ is freely

generated over Γ0. If Γ0 contains at least two pairs x1, y1 and x2, y2 of elements
with d(x1, y1) = d(x2, y2) = n + 1 in Γ0 and d(x1, x2) is prime to n, then Γ is in
fact a generalized n-gon (see e.g. [20] 1.3.13).

Obviously, if Γ0
∼= ∆0 then also their free n-completions are isomorphic, but the

converse need not hold: the free n-completions of Γ0 and Γi are obviously the
same.

However, there is a necessary criterion for the free completions of connected
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bipartite graphs to be isomorphic, which can be stated in terms of the rank
function δn.

2.3 Definition (i) For any finite graph Γ = (V, E) with vertex set V and edge
set E we define δn(Γ) = (n− 1)|V | − (n− 2)|E|.

(ii) We say that the finite graph Γ0 is n-strong in some graph Γ (and we write
Γ0 ≤n Γ) if Γ0 ⊆ Γ and for each finite graph A ⊆ Γ,Γ0 ⊆ A we have
δn(Γ0) ≤ δn(A).

The function δn was denoted y in [12] and was also used for n = 3 in [5]. The
≤-relation was also considered in [12]. We will use the following easy fact (see
[12] 2.4):

2.4 Fact If A ≤n B and C ⊆ B, then A ∩ C ≤n C.

We say that a generalized n-gon Γ is generated by a subset A ⊆ Γ if no generalized
n-gon properly contained in Γ contains A. Γ is said to be finitely generated if it
is generated by a finite subset. Similarly, a subpolygon Γ′ ⊆ Γ is generated by
A ⊆ Γ if Γ′ is the smallest subpolygon of Γ containing A.

2.5 Proposition The following are equivalent for a generalized n-gon Γ gener-
ated by a finite connected set Γ0:

(i) Γ is the free n-completion of Γ0;

(ii) Γ0 ≤n Γ.

Proof. To see that (i) implies (ii), just notice that it follows immediately from the
definition of δn and the definition of free extensions that we have δn(Γ0) = δn(Γi)
for all i. Thus Γ0 ≤n Γi for all i. As any finite set B containing Γ0 will be
contained in some stage Γi, the claim follows from 2.4.

For the other direction, suppose that Γ0 ≤ Γ. We want to show that Γ is the
free completion of Γ0. Let Γi be the ith stage of the free completion of Γ0. We
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show by induction on i that Γi ⊆ Γ. The claim obviously holds for i = 0. Now
suppose Γi ⊆ Γ and x, y ∈ Γi have distance n + 1 in Γi. Since Γ is a generalized
n-gon, there is a unique path (x0 = x, x1, . . . xn−1 = y) in Γ. Clearly, this path
cannot lie entirely in Γi. We claim that x1, . . . xn−2 6∈ Γi. Suppose xj ∈ Γi

with 1 ≤ j ≤ n − 2 minimal. Then Γi ∪ {x1, . . . , xj−1} is a finite subgraph of Γ
containing Γ0, but δn(Γ0) = δn(Γi) < δn(Γi ∪ {x1, . . . , xj−1}) contradicting our
assumption.

Since Γ is generated by Γ0 and
⋃

Γi is a generalized polygon containing Γ0, the
claim follows.

¤

2.6 Corollary Suppose A0 and B0 are finite connected graphs whose free n-com-
pletions A and B are isomorphic generalized n-gons. Then δn(A0) = δn(B0).

Proof. Let A0, B0 be finite connected graphs and let A,B be their respective
n-completions. Suppose that δn(A0) > δn(B0), but A ∼= B via some isomorphism
ϕ. Then ϕ(A0) is contained in some finite stage Bi of the free completion and
ϕ−1(Bi) contains A0. But clearly δn(ϕ−1(Bi)) = δn(Bi) = δn(B0) < δn(A0),
contradicting Proposition 2.5. ¤

2.7 Lemma If Γ is a generalized n-gon freely generated over the finite set Γ0,
then every finitely generated sub-n-gon ∆ is also freely generated over a finite set.

Proof. This is clear since there is some stage Γi of the free n-completion which
contains every element of the finite generating set for ∆. Then ∆ is the free
completion of ∆ ∩ Γi. ¤

2.8 Corollary The class of generalized n-gons freely generated over a finite con-
nected subgraph is countably infinite.

Proof. Each simple path γ of length k ≥ n + 2 gives rise to a generalized n-gon.
Notice that δn(γ) = (n− 2)+ k and so paths of different lengths give rise to non-
isomorphic polygons. On the other hand, clearly, there are at most countably
many finite connected graphs. ¤
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2.9 Remark Note that by Tits’ fundamental work [16], spherical buildings of
rank greater than two all arise from algebraic groups. Thus, there is no way to
obtain similar free constructions in this case.

3 Amalgamation

We will use Fräıssé’s Amalgamation technique for a first order language to obtain
new generalized polygons. Fräıssé’s Theorem states the following (see [6] 7.1.2
for a proof):

3.1 Theorem Suppose L is a first-order language and C is a class of finitely
generated L-structures which is closed under finitely generated substructures sat-
isfying the following additional properties:

• (Joint Embedding Property) for A,B ∈ C, there is some C ∈ C such that
both A and B are embeddable in C;

• (Amalgamation Property) for A,B, C ∈ C, and embeddings e : A −→ B, f :
A −→ C, there is some D ∈ C and embeddings g : B −→ D, h : C −→ D

such that ge = hf

Then there is a countable L-structure M , unique up to isomorphism, satisfying:

(i) Every finitely generated substructure of M is isomorphic to an element of
C;

(ii) Every element of C embeds into M .

(iii) If A ∈ C, then Aut(M) acts transitively on the set of substructures of M

isomorphic to A.

The model M is also called the Fräıssé limit of the class C. Note that Fräıssé
limits are existentially closed (that is, if there is some existential sentence which
is true in some extension of the structure then it is already true in that structure).
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We now fix a first order language L = {fk: k ∈ N} containing binary functions
fk. Any (partial) generalized n-gon becomes an L-structure if we interpret these
functions as follows: fk(x, y) = xk if (x = x0, . . . , xk, . . . y) is the unique shortest
path from x to y. If there is no unique such path, then we let fk(x, y) = x. Notice
that edges of the graph can be defined in this language: in a generalized n-gon
Γ the pair (x, y) is an edge if and only if f1(x, y) = y. Thus, the axioms of a
generalized n-gon are expressible in this language.

Clearly, the language L has the following property: If Γ is a generalized n-gon
and A ⊆ Γ, then the L-substructure 〈A〉 of Γ generated by A is the same as the
(possibly weak) sub-n-gon generated by A in Γ.

3.2 Definition Let Cn be the class of all finitely generated L-substructures of all
free n-completions of finite connected bipartite graphs not containing any k-cycles
for k < 2n.

Then Cn is countable by Corollary 2.8 and closed under finitely generated L-
substructures.

3.3 Remark Cn contains in particular the following structures:

(i) the empty structure (making the Joint Embedding Property a special case
of the Amalgamation Property) ;

(ii) all paths of length at most n, and more generally any ’hat-rack’, i.e. any
path (x0, . . . xk), k ≤ n together with finite subsets of Γ1(xi), i = 1, . . . , k−1;

(iii) a 2n-cycle, and more generally all finite weak n-gons containing at most 2
thick elements (at distance n);

(iv) any finite generalized n-gon (these exist for n = 3, 4, 6, 8 only);

(v) arbitrarily large finite discrete sets if n is even and a discrete set of order
two if n is odd.

In order to show that we may apply Fräıssé’s Theorem to our class Cn, it suffices to
show that the Amalgamation Property holds for this class (as the empty structure
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is included in Cn, which makes the Joint Embedding Property a special case of
the Amalgamation Property.

3.4 Lemma Cn has the Amalgamation Property.

Proof. Let A,B, C ∈ Cn, and suppose that A is a substructure in both B and
C. Then let D be the free n-completion of the free amalgam of B and C over A.
Obviously, D is in Cn.

¤

3.5 Theorem For all n ≥ 3 there is a countable generalized n-gon Γn whose
automorphism group acts transitively on all finitely generated Ln-substructures
of given isomorphism type.

Proof. This follows at once from Fräıssé’s Theorem if we show that the Fräıssé
limit Γn of Cn is indeed a generalized n-gon. We first show that Γn has diameter
n. Let x, y ∈ Γn and let A be the Ln-substructure generated by x, y. Then
either A is a path from x to y (this happens if d(x, y) < n), or A = {x, y}. Let
γ = (x0, . . . xn) be a path of length n, then γ ∈ Cn and hence γ can be embedded
into Γ̃. The images z0, zn of x0, xn will have distance n in Γn, and hence {z0, zn}
is a finitely generated Ln-substructure of Γn isomorphic to A. By homogeneity
there is an automorphism of Γn taking {z0, zn} to {x, y}, taking a path from z0

to zn to a path from x to y and proving d(x, y) = n in Γn.

Clearly, Γn does not contain any k-cycles for k < 2n as such a cycle would
generate a substructure isomorphic to an element of Cn, which is impossible.

Finally, since the substructure generated by a single vertex in Γn is just this
vertex, the automorphism group is transitive on vertices. Now the existence of
vertices of valency at least 3 immediately implies that all vertices have valency
at least 3.

¤

3.6 Corollary In particular, G = Aut(Γn) has the following transitivity proper-
ties:



Free Polygons, Twin Trees, and CAT(1)-Spaces 1045

(i) G acts transitively on ordered 2n-cycles, so G has a BN-pair;

(ii) for any x ∈ Γn, Gx acts highly transitively on Γ1(x), i.e., Gx is k-transitively
for any k ∈ N on Γ1(x);

(iii) G acts transitively on finite weak n-gons of the same cardinality. In partic-
ular, Γn is almost-2-Moufang.

(iv) Let γ = (x0, x1, . . . x2n = x0) be a 2n-cycle. Then the pointwise stabilizer
of γ acts highly transitively on Γ1(x1) \ {x0, x2}.

(v) For any finite set A of vertices of Γ, the elements Fix(GA) fixed by GA are
exactly the substructure of Γn generated by A.

(vi) Γn is not almost-3-Moufang.

Proof. Properties (i)-(iv) all follow from the fact that the corresponding struc-
tures are isomorphic to elements of Cn and their isomorphism types are uniquely
determined by their cardinality.

One inclusion of the claim in (v) is obvious. For the other inclusion, it suffices to
notice that if a /∈ 〈A〉, then there is b /∈ 〈A〉 with 〈A, a〉 ∼= 〈A, b〉. Thus there is
an automorphism of Γn fixing A pointwise and taking a to b, so a /∈ Fix(GA).

For (vi), let γ = (x0, . . . x2n−1, x0) be a 2n-cycle and a ∈ Γ1(x1) \ {x0, x2}, b ∈
Γ1(x2)\{x1, x3}. Then the free n-completion A of γ∪{a, b} and also a completion
B of γ∪{a, b} which is not free in a finite number of stages are both contained in
Cn. Since G acts transitively on hat-racks of the form (x0, x1, x2, x3) ∪ {a, b}, we
find embeddings ϕ1, ϕ2 of A and B into Γ which agree on (x0, x1, x2, x3)∪{a, b}.
The generalized polygons generated by the respective images of γ ∪ {a, b} in Γ
are not isomorphic, so there is no g ∈ Ga,b taking φ1(γ) to φ2(γ). ¤

3.7 Remark We have shown that for a path (x0, x1, x2, x3) and a ∈ Γ1(x1) \
{x0, x2},
b ∈ Γ1(x2) \ {x1, x3} the group Ga,b is not transitive on 2n-cycles containing
(x0, . . . x3). In particular, Γ is not Moufang.

The proof of (vi) also shows that G is not transitive on 2n + 2-cycles of Γn in
contrast to the examples constructed in [12].
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4 Groups with highly transitive torus

4.1 Definition Let Γ be a generalized n-gon and G ≤ Aut(Γ). Then G has a
highly transitive torus if for every 2n-cycle γ = (x0, x1, . . . x2n = x0) the pointwise
stabilizer Gγ acts highly transitively on Γ1(x1) \ {x0, x2}.

Note that a highly transitive torus implies the existence of a BN-pair. Also, if G

has a highly transitive torus, then Gx acts highly transitively on Γ1(x). As stated
in Corollary 3.6, for each of the generalized n-gons Γn constructed in Section 3,
Aut(Γn) has a highly transitive torus.

We will need the following easy fact (see e.g. [4] Ex. 2.1.6):

4.2 Fact Every nontrivial normal subgroup of a highly transitive group is again
highly transititive.

4.3 Lemma If G has a highly transitive torus in its action on a generalized
n-gon Γ, then for any x ∈ Γ, the group Gx acts faithfully on Γ1(x).

Proof. Suppose G
[1]
x 6= 1. Let i be maximal such that for some path (x1 . . . xi)

the group G
[1]
x1,...,xi is nontrivial. Then we must have i < n and we can extend

(x1 . . . xi) to a 2n-cycle γ = (x0, x1, . . . , x2n = x0). Let γ′ =
(xj . . . x0, x1 . . . xi+1, xi+2, . . . xk) be a maximal path in γ such that H = G

[1]
x1,...,xi∩

Gγ′ 6= 1. We claim that γ′ = γ. For if H 6= 1, then H E Gγ′ acts highly transi-
tively on Γ1(xk)\{xk−1} and hence Hxk+1

6= 1. Thus, γ′ = γ and therefore i = 1.
Since G

[1]
x1 ∩Gγ is normal in Gγ , it acts highly transitively on Γ1(x2) \ {x1}. Let

u ∈ G
[1]
x0 ∩Gx2 \Gx3 . (Such an element exists.) Then for any v ∈ (G[1]

x1 ∩Gγ)\Gxu
3

we have [u, v] ∈ G
[1]
x0,x1 \ {1}, a contradiction. ¤

4.4 Proposition Let Γ be a generalized n-gon, and suppose that G acts strongly
transitively on Γ. Suppose that Fix(Gx0,x1,x2) = {x0, x1, x2} and Fix(Gx0,...,x4) =
{x0, . . . , x4} for any path (x0, x1, x2, x3, x4) of length 4 (where we allow x1 = x3).
Then Nx0 6= 1 for any non-trivial normal subgroup N of G.
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Proof. Since G is primitive on vertices of a fixed type, N is transitive on each type
of vertices. If Nx0 = 1, then G = N oGx0 and N acts regularly on the vertices.
Now let y1, y2 ∈ Γ2(x0) and for i = 1, 2 let ni ∈ N with xni

0 = xi. Then Gx0,yi

equals the centralizer of ni in Gx0 . By assumption the only vertices of this type
fixed by Gx0,yi are x0 and yi showing ni to be an involution for i = 1, 2. Similarly
we see that n1n2 is an involution. Thus, the elements of N corresponding to
Γ2(x0) form an elementary abelian 2-group. This is invariant under the action of
Gx0 contradicting the maximality of Gx0 .

4.5 Theorem If G has a highly transitive torus in its action on a generalized
n-gon Γ, then any nontrivial normal subgroup N also has a highly transitive torus
and hence a BN -pair.

Proof. Let γ = (x0, x1, . . . x2n = x0) be a 2n-cycle and let N be a normal subgroup
of G. By Lemma 4.2 it suffices to show that Nγ is non-trivial.

Since G has a highly transitive torus, it is easy to see that the conditions of
Proposition 4.4 are satisfied and so Nx0 is non-trivial and does not act trivially
on Γ1(x0) by Lemma 4.3. Since Nx0 E Gx0 , Nx0 is highly transitive on Γ1(x0).
Thus, Nx0,x1 is nontrivial and acts nontrivially and hence highly transitively on
Γ1(x1) by Lemmas 4.3 and 4.2. Inductively, we thus show that Nγ is nontrivial
and acts nontrivially and hence highly transitively on Γ1(x1), proving the claim.

¤

The random graph can be constructed in an entirely similar way as the Fraisse
limit of finite graphs. As its automorphism group turns out to be simple (see
[19] or, more generally, [7]) we conjecture that also G = Aut(Γn) is simple.
Theorem 4.5 seems a first step towards showing this simplicity.

5 Twin trees and multiple trees

Recall the definition of a twin tree [11]:
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5.1 Definition Let T+, T− be trees without endpoints. A twinning on (T+, T−)
is given by a codistance function cod : T+ × T− ∪ T− × T+ −→ N satisfying the
following condition for all x+ ∈ T+, y− ∈ T−:

If cod(x+, y−) = m, then cod(x+, y′−) ∈ {m + 1,m − 1} for every neighbour y′−
of y− ∈ T−. If m > 0, there is a unique y′− with cod(x+, y′−) = m + 1, similarly
with + and − interchanged.

We call x+ and y− opposite if cod(x+, y−) = 0. Similarly, edges e+, e− are called
opposite if the vertices of e+ are opposite the vertices of e−. Recall also that a
group G acting transitively on the ordered doubly infinite paths through T+ has
an affine BN-pair of type Ã1. If G acts codistance-preserving and transitively on
pairs of opposite edges in (T+, T−), then G has a twin BN-pair of type Ã1.

For each n ∈ N, n ≥ 3, we now fix a generalized almost 2-Moufang n-gon Γn with a
highly transitive torus as constructed in Section 3 and let Gn = Aut(Γn). We now
consider the 3-sorted structures consisting of the graphs Γn with distance function
d, its automorphism group Gn, and the natural numbers N, where the distance
function takes its values. Note that each Γn comes with a natural opposition
relation opp and codistance function cod defined by cod(x, y) = n − d(x, y) for
x, y ∈ Γn. For x, y ∈ Γn the codistance cod(x, y) is the smallest k ≤ n such that
there is some z opposite x with k = d(z, y).

Let µ be a nonprincipal ultrafilter on N and consider the ultraproduct

(Γ, G,N∗) = Πµ(Γn, Gn,N)

again in the language of metric graphs with a distance function d taking values
in N. This ultraproduct is obtained from the cartesian product Πn∈N(Γn, Gn,N)
by taking its elements to be equivalence classes modulo the equivalence relation
∼µ where

(ai)i∈N ∼µ (bi)i∈N ⇔ {i ∈ N: ai = bi} ∈ µ.

We denote the elements of the ultraproduct by (an)µ. Then in the ultraproduct
the sorts carry the structure of a graph with distance function d, a group of
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automorphisms of Γ and a discretely ordered (non-archimedean) abelian semi-
group, respectively. (See [6] for details.)

It is easy to see that Γ is a forest, i.e., a graph with the property that each
connected component is a tree, and the distance function takes values in N∗ =
ΠµN. Let ω = (n)µ ∈ N∗, so x, y ∈ Γ are opposite if and only if d(x, y) = ω.
Then Γ is a generalized ωN∗-gon in the sense of C. Bennett [2].

5.2 Theorem (i) If T is a connected component of Γ, then G{T} acts faith-
fully on T and has a BN -pair of type Ã1. Here, G{A} denotes the setwise
stabilizer of a set A.

(ii) Connected components T1, T2 of Γ containing opposite vertices form a twin
tree with the twinning given by cod(x, y) = ω − d(x, y) for x ∈ T1, y ∈ T2.

(iii) If T1, T2 are connected components of Γ containing opposite vertices, then
G{T1} ∩G{T2} has a twin BN -pair of type Ã1.

Proof. Part (i) and (iii) follow from Lemma 4.3 and the fact that each Gn acts
transitively on pairs of opposite vertices in Γn. It is left to see that the condistance
function cod : T1 × T2 ∪ T2 × T1 −→ N∗ has the required properties. Clearly, if
x ∈ T1, y ∈ T2 are vertices with cod(x, y) = m ∈ N∗, then by the corresponding
properties of each Γn it is easy to see that if m > 0, then y has a unique neighbour
z ∈ T2 with cod(x, z) = m + 1 and cod(x, z′) = m − 1 for all other neighbours
z′ of y. If m = 0, then for all neighbours z of y the codistance cod(z, x) = 1.
Since T1, T2 contains a pair of opposite vertices, whose codistance is 0, it follows
inductively that for all x ∈ T1, y ∈ T2 we have in fact cod(x, y) ∈ N.

5.3 Remark
⋂

G{T} = 1 where the intersection is taken over all connected com-
ponents T of Γ and if T1, T2 are connected components of Γ containing opposite
vertices, then GT1∪T2 = 1 .

Proof. The first part follows easily from Lemma 2.1. The second part follows
from the fact that G

[2]
x,y = {1} for any group G acting on a generalized n-gon with

opposite elements x, y (see e.g. [20] 4.4.2 (v)). ¤
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If the even numbers have measure zero with respect to µ (i.e., {2n:n ∈ N} 6∈ µ),
then a set of pairwise opposite elements will have at most two elements, otherwise
we can find a countably infinite such set by Remark 3.3. By pruning the trees
adequately, it might also be possible to construct multiple trees in the sense of
Ronan [10].

6 Homogeneous CAT(1)-spaces

For each n ∈ N, n ≥ 3, let Γn and Gn = Aut(Γn) be as in Section 5 and let
Γ be the ultraproduct with respect to some nonprincipal ultrafilter µ. We now
construct the ultralimit Γ̃ of the (bounded metric) spaces Γn from Γ by scaling
the N∗-metric d on Γ by the factor π/ω and identifying points x, y ∈ Γ such that
d(x, y)π/ω < 1/n for all n ∈ N. (Note that we could just as well have rescaled the
metric on each Γn by the factor π/n.) In particular, each connected component
of Γ is ’shrunk’ to a point. By construction, Γ̃ contains antipodal points and any
two antipodal points are contained in an isometrically embedded 1-sphere, but
Γ̃ does not contain any manifold points. Similar examples without group actions
were constructed by Nagano [9]. By Lemma 5.3 the group G acts faithfully on
Γ̃, and if T is a connected component of Γ, then G{T} ≤ Gx for some (any) point
x ∈ T . Also, by construction G acts transitively on the set of pointed 1-spheres
contained in Γ̃.

Balser and Lytchak [1] prove that if X is an n-dimensional CAT(1) space that has
at least one pair of antipodes and such that each pair of antipodes is contained
in some Sn, then X is a spherical building provided that X contains a relatively
compact open subset. If a group acts transitively on the pointed n-spheres of
a compact spherical building X, the work of Burns and Spatzier [3] shows that
such a group is a non-compact real Lie group. Thus a similar statement is far
from true without further topological assumptions.
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