Pure and Applied Mathematics Quarterly Volume 7, Number 3 (Special Issue: In honor of Jacques Tits) 1007—1035, 2011

Generalized Ovals in $PG(3n-1, q)$, with q Odd

J.A. Thas

Abstract: In 1954 Segre proved that every oval of $PG(2,q)$, with q odd, is a nonsingular conic. The proof relies on the "Lemma of Tangents". A generalized oval of $PG(3n-1,q)$ is a set of $q^{n}+1$ $(n-1)$ -dimensional subspaces of PG(3n – 1, q), every three of them generate PG(3n – 1, q); a generalized oval with $n = 1$ is an oval. The only known generalized ovals are essentially ovals of $PG(2,q^n)$ interpreted over $GF(q)$. If the oval of $PG(2, q^n)$ is a conic, then we call the corresponding generalized oval classical. Now assume q odd. In the paper we prove several properties of classical generalized ovals. Further we obtain a strong characterization of classical generalized ovals in $PG(3n-1, q)$ and an interesting theorem on generalized ovals in $PG(5, q)$, developing a theory in the spirit of Segre's approach. So for example a "Lemma of Tangents" for generalized ovals is obtained. We hope such an approach will lead to a classification of all generalized ovals in $PG(3n-1, q)$, with q odd.

Keywords: oval, generalized oval, generalized quadrangle, Laguerre plane, quadric

1 Introduction

An oval of $PG(2, q)$ is a set of $q+1$ points no three of which are collinear. In 1954 Segre [1954] proved his celebrated theorem, stating that every oval of $PG(2, q)$,

Received July 21, 2008.

with q odd, is a nonsingular conic. For q even there are many infinite classes of ovals which are not conics; see e.g. Hirschfeld [1998]. In 1971 Thas [1971] generalized ovals to *pseudo-ovals* or *generalized ovals* of $PG(3n-1, q)$ with $n \geq 1$. Here the elements are $(n-1)$ -dimensional subspaces of PG $(3n-1, q)$. For $n = 1$ pseudo-ovals are ovals. If the pseudo-oval is embedded in a regular $(n-1)$ -spread of $PG(3n-1, q)$ it is called *regular* or *elementary*. In such a case there exists an oval of $PG(2,q^n)$ such that its interpretation over $GF(q)$ is the pseudo-oval. If the oval is a conic of $PG(2, q^n)$ the corresponding regular pseudo-oval is called a classical pseudo-oval or a pseudo-conic. In fact all known pseudo-ovals are regular and, for q odd, all known pseudo-ovals are classical.

In 1985 Casse, Thas and Wild [1985] obtained an elegant characterization of classical pseudo-ovals, for q odd, and in Thas, K. Thas and Van Maldeghem [2006] many other characterization theorems of particular pseudo-ovals can be found.

Generalized ovals are equivalent to translation generalized quadrangles of order s, with $s \neq 1$; see Thas [1974] and Thas, K. Thas and Van Maldeghem [2006]. Hence many characterizations of generalized ovals are described in terms of generalized quadrangles, and conversely. Also, generalized ovals of $PG(3n-1, q)$, for q odd, are equivalent to particular Laguerre planes of order $s = q^n$; see Payne and Thas [1976, 1984].

In recent years there has been great interest in generalized ovals of $PG(5, q)$, with q odd, whose lines are contained in some nonsingular elliptic quadric $Q^-(5, q)$ of $PG(5, q)$; see Shult [2005], Cossidente, Ebert, Marino and Siciliano [2006] and Cossidente, King and Marino [2006]. It is no surprise that the classical pseudooval in $PG(5, q)$, with q odd, is the only known example.

In this paper we will prove an interesting characterization of pseudo-conics in PG(3n – 1,q) and some strong new results on generalized ovals, for q odd. To that purpose we generalize the approach of Segre, used to prove his famous theorem on ovals. In particular we find an analogue of his well-known "Lemma of Tangents".

2 Ovals, the Lemma of Tangents and Segre's Theorem

A k-arc of $PG(2, q)$ is a set of k points of $PG(2, q)$ no three of which are collinear. Then clearly $k \le q+2$. By Bose [1947], for q odd, $k \le q+1$. Further, any nonsingular conic of $PG(2, q)$ is a $(q + 1)$ -arc. It can be shown that each $(q + 1)$ arc K of PG(2, q), q even, extends to a $(q+2)$ -arc $K \cup \{x\}$ (see, e.g. Hirschfeld [1998], p. 177); the point x, which is uniquely defined by K , is called the kernel or nucleus of K. The $(q + 1)$ -arcs of PG(2, q) are called *ovals*.

For any k-arc K with $3 \leq k \leq q+1$, choose three of its points as the vertices of the triangle of reference $u_0u_1u_2$ of the coordinate system. The lines intersecting K in one point are called the *tangent lines* of K. A tangent line of K through one of u_0, u_1, u_2 has respective equation

$$
X_1 - dX_2 = 0, X_2 - dX_0 = 0, X_0 - dX_1 = 0,
$$

with $d \neq 0$. We call d the *coordinate* of such a line. Suppose the $t = q + 2 - k$ tangent lines at each of u_0, u_1, u_2 are

$$
X_1 - a_i X_2 = 0, X_2 - b_i X_0 = 0, X_0 - c_i X_1 = 0,
$$

 $i = 1, 2, \dots, t$. Then Segre [1954] proves the following important lemma.

Lemma 2.1 (Lemma of Tangents). The coordinates a_i, b_i, c_i of the tangent lines at u_0, u_1, u_2 of a k-arc K through these points satisfy

$$
\Pi_{i=1}^t a_i b_i c_i = -1.
$$

Proof. Let $K = \{u_0, u_1, u_2, y_1, y_2, \dots, y_{k-3}\},\$ with $y_j = (x_0^j, x_1^j, y_2^j, \dots, y_{k-3}^j)$ $j\atop 0,x_1^j$ $\frac{j}{1}, x_2^j$ $2^j, j = 1, 2, \cdots, k-1$ 3. Then

$$
u_0y_j: X_1 - d_0^jX_2 = 0, u_1y_j: X_2 - d_1^jX_0 = 0, u_2y_j: X_0 - d_2^jX_1 = 0,
$$

with

$$
d_0^j = x_1^j/x_2^j, d_1^j = x_2^j/x_0^j, d_2^j = x_0^j/x_1^j, j = 1, 2, \cdots, k-3.
$$

Hence

$$
d_0^j d_1^j d_2^j = 1
$$
, with $j = 1, 2, \dots, k - 3$.

As the product of the nonzero elements of $GF(q)$ is -1 , we have

$$
\Pi_{i=1}^t a_i \Pi_{j=1}^{k-3} d_0^j = -1, \Pi_{i=1}^t b_i \Pi_{j=1}^{k-3} d_1^j = -1, \Pi_{i=1}^t c_i \Pi_{j=1}^{k-3} d_2^j = -1.
$$

Hence

$$
\Pi_{i=1}^t a_i b_i c_i = -1. \quad \Box
$$

For an oval K we have $t = 1$, and so the lemma becomes $abc = -1$. Geometrically this means that for q odd the triangles formed by three points of an oval and the tangent lines at these points are in perspective, or, equivalently, that for any three distinct points u_0, u_1, u_2 on an oval there is a (unique) nonsingular conic containing these points u_0, u_1, u_2 and having as tangent lines at u_0, u_1, u_2 the tangent lines of the oval at u_0, u_1, u_2 ; for q even the condition means that the tangent lines at any three points of the oval are concurrent.

Now we state the celebrated theorem of Segre [1954]. In the original proof Lemma 2.1 is applied to several triangles $u_0u_1u_2$ on the oval K, and this involves some calculations. We present here a proof relying on Lemma 2.1, but without any calculation.

Theorem 2.2 In $PG(2,q)$, q odd, every oval is a nonsingular conic.

Proof. Let $K = \{u_0, u_1, \dots, u_q\}$ be an oval of PG(2, q), q odd. The tangent line of K at u_i is denoted by L_i , with $i = 0, 1, \dots, q$. By Lemma 2.1, for any three points u_i, u_j, u_k of K there is a nonsingular conic C containing u_i, u_j, u_k and tangent to L_i, L_j, L_k . Let C_l be the conic defined by $\{u_i, u_j, u_k\}$, with $\{i, j, k, l\}$ $\{0, 1, 2, 3\}$. Assume, by way of contradiction, that $C_0 \neq C_1$. Now we consider the cubic curves $C_0 \cup L_0$ and $C_1 \cup L_1$. The common points of these curves are u_0, u_1, u_2, u_3 , each counted twice, and $L_0 \cap L_1$. Next, we consider the cubic curve $C_2 \cup L_2$. This curve contains eight common points of $C_0 \cup L_0$ and $C_1 \cup L_1$ $(u_0, u_1, u_2, u_3, \text{ each counted twice})$. So $C_2 \cup L_2$ contains $L_0 \cap L_1$; see e.g. Semple and Roth [1949], p. 42. Hence L_2 contains $L_0 \cap L_1$, clearly a contradiction as L_0, L_1, L_2 are tangent to C_3 . So $C_0 = C_1$. Similarly, $C_0 = C_1 = C_2 = C_3$. Consequently, C_3 contains u_3 ; similarly, C_3 contains u_4, u_5, \dots, u_q . So $K \subseteq C_3$ and as $|C_3| = |K| = q + 1$, it follows that $K = C_3$.

For q even Theorem 2.2 is only valid for $q \in \{2, 4\}$; see e.g. Hirschfeld [1998] Section 8.4.

3 Generalized Ovals

A generalized oval or pseudo-oval in PG $(3n-1, q), n \ge 1$, is a set of $q^{n}+1$ $(n-1)$ dimensional subspaces any three of which generate $PG(3n-1, q)$; see Thas [1971] and Thas, K. Thas and Van Maldeghem [2006]. For $n = 1$ a generalized oval is the same as an oval. Let $O = {\pi_0, \pi_1, \cdots, \pi_{q^n}}$ be a generalized oval in PG(3*n* - 1, *q*). Then for each π_i there is exactly one $(2n - 1)$ -dimensional subspace τ_i such that $\pi_i \subset \tau_i$ and $\tau_i \cap (\pi_0 \cup \cdots \cup \pi_{i-1} \cup \pi_{i+1} \cup \cdots \cup \pi_{q^n}) = \emptyset; \tau_i$ is called the *tangent* space of O at π_i , $i = 0, 1, \dots, q^n$. Generalized ovals play an important role in the theory of finite generalized quadrangles; see Payne and Thas [1984] and Thas, K. Thas and Van Maldeghem [2006]. In fact, the theory of generalized ovals is equivalent to the theory of finite translation generalized quadrangles of order s.

If q is even, then all tangent spaces of a generalized oval contain a common $(n-1)$ -dimensional space; see Thas [1971] and Thas, K. Thas and Van Maldeghem [2006]. This common space is called the kernel or nucleus of the generalized oval. If q is odd, then each point not in an element of the generalized oval O is contained in either 0 or 2 tangent spaces, and each hyperplane not containing a tangent space contains either 0 or 2 elements of O ; see e.g. Thas, K. Thas and Van Maldeghem [2006].

Now we define the regular generalized ovals. In the extension $PG(3n-1, q^n)$ of PG $(3n-1,q)$ we consider n planes $PG⁽ⁱ⁾(2,qⁿ) = \xi_i$, with $i = 1, 2, \dots, n$, which are conjugate with respect to the extension $GF(q^n)$ of $GF(q)$, that is, which form an orbit of the Galois group corresponding to this extension, and which span PG(3n – 1, q^n). In ξ_1 we consider an oval $O_1 = \{x_0^{(1)}\}$ $\binom{10}{0}, x_1^{(1)}$ $x_1^{(1)}, \cdots, x_{q^n}^{(1)}\}.$ Further, let $x_i^{(1)}$ $\binom{1}{i}, x_i^{(2)}$ $x_i^{(2)}, \dots, x_i^{(n)}$ $i^{(n)}$, with $i = 0, 1, \dots, q^n$, be conjugate with respect to the extension $GF(q^n)$ of $GF(q)$. The points $x_i^{(1)}$ $\binom{1}{i}, x_i^{(2)}$ $x_i^{(2)}, \dots, x_i^{(n)}$ $i^{(n)}$ define an $(n-1)$ dimensional space $PG^{(i)}(n-1,q) = \pi_i$ over $GF(q)$, with $i = 0, 1, \dots, q^n$. Then $O = {\pi_0, \pi_1, \cdots, \pi_{q^n}}$ is a generalized oval of PG(3n – 1, q). Here we speak of a regular or elementary generalized oval. No other generalized ovals are known. If O_1 is a conic, then O is called a *classical* generalized oval or a *pseudo-conic*. By Segre's Theorem, for q odd each regular generalized oval is classical.

Assume that q is odd. Fix a space π_i of the generalized oval $O = {\pi_0, \pi_1, \cdots, \pi_{q^n}}$. Let τ_j be the tangent space of O at π_j , with $j = 0, 1, \dots, q^n$. Then the elements $\pi_i, \tau_i \cap \tau_j$, with $j \neq i$, are the elements of a $(n-1)$ -spread S_i of τ_i , that is, they

1012 *J.A. Thas*

form a partition of τ_i . Also, the spaces $\langle \pi_i, \pi_j \rangle$ generated by π_i and π_j , with $j \neq i$, together with τ_i intersect a given $PG(2n-1, q)$ skew to π_i in the elements of a $(n-1)$ -spread S_i^* of PG(2n – 1, q). The following characterization theorem is due to Casse, Thas and Wild [1985].

Theorem 3.1 If at least one of the spreads $S_0, S_1, \dots, S_{q^n}, S_0^*, S_1^*, \dots, S_{q^n}^*$ is regular, then they all are and O is classical.

For characterizations of particular classes of generalized ovals in the even case we refer to Chapter 8 of Thas, K. Thas and Van Maldeghem [2006].

Let q be odd. Then for each n even any classical generalized oval of $PG(3n - 1)$ 1, q) belongs to a nonsingular elliptic quadric $Q^-(3n-1, q)$ and to a nonsingular hyperbolic quadric $Q^+(3n-1, q)$, and for each n odd, any classical generalized oval of $PG(3n-1, q)$ belongs to a nonsingular parabolic quadric; see Shult and Thas [1995]. In each of these cases the tangent space at any element π of the generalized oval coincides with the tangent space at π of any of the corresponding quadrics. For $n = 2$ any classical generalized oval O is the intersection of some $Q^-(5, q)$ and some $Q^+(5, q)$; it is contained in $(q + 1)/2$ nonsingular elliptic quadrics and $(q + 1)/2$ nonsingular hyperbolic quadrics, and at each element L of O these quadrics have a common tangent space which coincides with the tangent space of O at L .

The following theorem is due to Shult and Thas [1994].

Theorem 3.2 If O is a generalized oval of lines contained in a nonsingular hyperbolic quadric $Q^+(5, q)$ of PG(5, q), with q odd, then O is classical.

As for q even all tangent spaces of a generalized oval contain a common $(n-1)$ dimensional space, it follows that for $n > 1$ the generalized oval is never contained in a nonsingular quadric.

In recent years there was great interest in generalized ovals consisting of q^2+1 lines of $Q^-(5, q)$, with q odd. Such a generalized oval is equivalent to a set of $q^2 + 1$ points of the nonsingular Hermitian variety $H(3, q^2)$ in PG(3, q^2), such that the plane defined by any three distinct points of this set is nontangent to

 $H(3, q^2)$; see Payne and Thas [1984]. This object was studied in different contexts by Shult [2005], Cossidente, Ebert, Marino and Siciliano [2006] and Cossidente, King and Marino [2006].

Let π_1, π_2, π_3 be mutually skew $(n-1)$ -dimensional subspaces of PG(3n−1, q), let τ_i be a $(2n-1)$ -dimensional space containing π_i but skew to π_j and π_k , with ${i, j, k} = {1, 2, 3}$, and let $\tau_i \cap \tau_j = \eta_k$, with ${i, j, k} = {1, 2, 3}$. The space generated by η_i and π_i will be denoted by ζ_i , with $i = 1, 2, 3$. If the $(2n - 1)$ dimensional spaces $\zeta_1, \zeta_2, \zeta_3$ have a $(n-1)$ -dimensional space in common, then we say that $\{\pi_1, \pi_2, \pi_3\}$ and $\{\tau_1, \tau_2, \tau_3\}$ are in *perspective*; if $\zeta_1, \zeta_2, \zeta_3$ have a nonempty intersection, then we say that $\{\pi_1, \pi_2, \pi_3\}$ and $\{\tau_1, \tau_2, \tau_3\}$ are in semi-perspective.

Let O be a regular generalized oval in $PG(3n-1, q)$, with q odd. Then for any three distinct elements π_i, π_j, π_k of O the sets $\{\pi_i, \pi_j, \pi_k\}$ and $\{\tau_i, \tau_j, \tau_k\}$ are in perspective, where τ_l is the tangent space of O at π_l , $l \in \{i, j, k\}$. This follows immediately from the fact that in the odd case, by the Lemma of Tangents, this property holds for every oval.

4 Projective Spaces over Matrix Algebras

Here we rely on Thas $[1971]$ where the *m*-dimensional projective space $S_m(M_n(\text{GF}(q)))$ over the total matrix algebra $M_n(\text{GF}(q))$ of the $n \times n$ -matrices with elements in $GF(q)$ is studied.

Let π be an $(n-1)$ -dimensional subspace of PG $(mn + n - 1, q)$ and let $p_1(x_0^1, x_1^1, \dots, x_{mn+n-1}^1), \dots, p_n(x_0^n, x_1^n, \dots, x_{mn+n-1}^n)$ be *n* independent points of π . Further, let \overline{a} \overline{a} \overline{a} \overline{a}

$$
\begin{bmatrix} x_0^1 & \cdots x_0^n \\ x_1^1 & \cdots x_1^n \\ \vdots & \vdots \\ x_{mn+n-1}^1 \cdots x_{mn+n-1}^n \end{bmatrix} = \begin{bmatrix} \xi_0 \\ \xi_1 \\ \vdots \\ \xi_m \end{bmatrix} = \mathcal{A},
$$

where $\xi_0, \xi_1, \dots, \xi_m$ are $n \times n$ -matrices over GF(q). Clearly,

$$
rank \mathcal{A} = n.
$$

We write $\pi = (\xi_0, \xi_1, \dots, \xi_m)$ or $\pi(\xi_0, \xi_1, \dots, \xi_m)$; we say that π is a point of the projective space $S_m(M_n(\text{GF}(q)))$, having $\xi_0, \xi_1, \dots, \xi_m$ as projective coordinates. The coordinates $\xi_0, \xi_1, \dots, \xi_m$ are determined by π up to a right factor of proportion $\rho \in M_n(\mathrm{GF}(q))$, with $|\rho| \neq 0$.

Let τ be a $(mn-1)$ -dimensional subspace of PG $(mn+n-1, q)$, and let

$$
\beta_1 : a_0^1 X_0 + a_1^1 X_1 + \dots + a_{mn+n-1}^1 X_{mn+n-1} = 0,
$$

\n
$$
\vdots
$$

\n
$$
\beta_n : a_0^n X_0 + a_1^n X_1 + \dots + a_{mn+n-1}^n X_{mn+n-1} = 0
$$

be *n* independent hyperplanes containing τ . Further, let

$$
\begin{bmatrix} a_0^1 a_1^1 \cdots a_{mn+n-1}^1 \\ a_0^2 a_1^2 \cdots a_{mn+n-1}^2 \\ \vdots & \vdots & \vdots \\ a_0^n a_1^n \cdots a_{mn+n-1}^n \end{bmatrix} = [\alpha_0 \alpha_1 \cdots \alpha_m] = \mathcal{B},
$$

where $\alpha_0, \alpha_1, \cdots, \alpha_m$ are $n \times n$ -matrices over GF(q). Clearly,

$$
rank \mathcal{B} = n.
$$

We write $\tau = (\alpha_0, \alpha_1, \cdots, \alpha_m)$ or $\tau(\alpha_0, \alpha_1, \cdots, \alpha_m)$; we say that τ is a hyperplane of the projective space $S_m(M_n(\text{GF}(q)))$, having $\alpha_0, \alpha_1, \cdots, \alpha_m$ as projective coordinates. We also say that

$$
\alpha_0 \chi_0 + \alpha_1 \chi_1 + \dots + \alpha_m \chi_m = 0
$$

is an equation of the hyperplane. The coordinates $\alpha_0, \alpha_1, \cdots, \alpha_m$ are determined by τ up to a left factor of proportion $\rho' \in M_n(\mathrm{GF}(q))$, with $|\rho'| \neq 0$.

If $\pi(\xi_0, \xi_1, \dots, \xi_m)$ is a point of $S_m(M_n(\text{GF}(q)))$ and if $\tau(\alpha_0, \alpha_1, \dots, \alpha_m)$ is a hyperplane of $S_m(M_n(\text{GF}(q)))$, then we say that π is contained in or is incident with τ if the corresponding $(n-1)$ -dimensional space is contained in the corresponding $(mn - 1)$ -dimensional projective space. Algebraically this is equivalent to

$$
\alpha_0 \xi_0 + \alpha_1 \xi_1 + \cdots + \alpha_m \xi_m = 0.
$$

For more details on $S_m(M_n(\text{GF}(q)))$ we refer to Thas [1971].

5 A Property of Quadrics

Now we prove a property of quadrics in $PG(5, q)$, with q odd. Then this result will be generalized to $PG(3n-1, q)$, with $n \ge 1$ and q odd.

Theorem 5.1 Let Q be a nonsingular quadric in $PG(5, q)$, with q odd, and let L_1, L_2, L_3 be distinct lines on Q with generate $PG(5, q)$. The tangent space of Q at L_i is denoted by τ_i , with $i = 1, 2, 3$. Further, assume that $L_i \cap \tau_j = \emptyset$, for all $i \neq j$. If $\{L_1, L_2, L_3\}$ and $\{\tau_1, \tau_2, \tau_3\}$ are in semi-perspective, then they are in perspective.

Proof. Consider a nonsingular quadric Q in PG(5, q), q odd, with equation

$$
X_0^2 + aX_1^2 + X_2X_3 + X_4X_5 = 0
$$
, with $a \neq 0$.

Coordinates are chosen in such a way that

$$
L_1 = \langle (0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 1, 0) \rangle,
$$

\n
$$
L_2 = \langle (0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 1) \rangle,
$$

\n
$$
L_3 = \langle (1, 0, a_2, a_3, a_4, a_5), (0, 1, b_2, b_3, b_4, b_5) \rangle,
$$

with

$$
1 + a_2a_3 + a_4a_5 = 0,
$$

\n
$$
a + b_2b_3 + b_4b_5 = 0,
$$

\n
$$
a_2b_3 + a_3b_2 + a_4b_5 + a_5b_4 = 0,
$$

\n
$$
a_3b_5 - a_5b_3 \neq 0,
$$

\n
$$
a_2b_4 - a_4b_2 \neq 0.
$$

\n(4)

Let θ be the orthogonal polarity defined by Q . Then

$$
\tau_1 = L_1^{\theta} : X_3 = X_5 = 0,
$$

\n
$$
\tau_2 = L_2^{\theta} : X_2 = X_4 = 0,
$$

\n
$$
\tau_3 = L_3^{\theta} : 2X_0 + a_3X_2 + a_2X_3 + a_5X_4 + a_4X_5 = 0,
$$

\n
$$
2aX_1 + b_3X_2 + b_2X_3 + b_5X_4 + b_4X_5 = 0.
$$

Further,

$$
M_2 = \tau_1 \cap \tau_3 : X_3 = X_5 = 2X_0 + a_3X_2 + a_5X_4 = 2aX_1 + b_3X_2 + b_5X_4 = 0,
$$

\n
$$
M_1 = \tau_2 \cap \tau_3 : X_2 = X_4 = 2X_0 + a_2X_3 + a_4X_5 = 2aX_1 + b_2X_3 + b_4X_5 = 0,
$$

\n
$$
M_3 = \tau_1 \cap \tau_2 : X_2 = X_3 = X_4 = X_5 = 0.
$$

1016 *J.A. Thas*

Consequently,

$$
\zeta_1 = \langle L_1, M_1 \rangle: 2X_0 + a_2X_3 + a_4X_5 = 2aX_1 + b_2X_3 + b_4X_5 = 0,
$$

\n
$$
\zeta_2 = \langle L_2, M_2 \rangle: 2X_0 + a_3X_2 + a_5X_4 = 2aX_1 + b_3X_2 + b_5X_4 = 0,
$$

\n
$$
\zeta_3 = \langle L_3, M_3 \rangle = \{(u, v, ra_2 + r'b_2, ra_3 + r'b_3, ra_4 + r'b_4, ra_5 + r'b_5) :
$$

\n
$$
(u, v, r, r') \neq (0, 0, 0, 0)\}.
$$

The points of $\zeta_1 \cap \zeta_2 \cap \zeta_3$ are obtained by solving the following system of linear equations: \overline{a}

$$
\begin{cases}\n2u + a_2(ra_3 + r'b_3) + a_4(ra_5 + r'b_5) = 0, (6) \\
2av + b_2(ra_3 + r'b_3) + b_4(ra_5 + r'b_5) = 0, (7) \\
2u + a_3(ra_2 + r'b_2) + a_5(ra_4 + r'b_4) = 0, (8) \\
2av + b_3(ra_2 + r'b_2) + b_5(ra_4 + r'b_4) = 0. (9)\n\end{cases}
$$

Adding (6) and (8), and taking account of (1) and (3), we obtain $r = 2u$; similarly $r' = 2v$. So the system of equations becomes

$$
\begin{cases}\nr = 2u, \\
r' = 2v, \\
r(b_2a_3 + b_4a_5) = 0, \\
r'(b_2a_3 + b_4a_5) = 0.\n\end{cases}
$$

Consequently, $\zeta_1 \cap \zeta_2 \cap \zeta_3 = \emptyset$ if $b_2a_3 + b_4a_5 \neq 0$ and $\zeta_1 \cap \zeta_2 \cap \zeta_3$ is a line if $b_2a_3 + b_4a_5 = 0.$

For general n we have the following theorem.

Theorem 5.2 Let Q be a nonsingular quadric in $PG(3n-1, q)$, q odd, and let π_1, π_2, π_3 be distinct $(n-1)$ -dimensional spaces on Q which generate PG(3n-1, q). The tangent space of Q at π_i is denoted by τ_i , with $i = 1, 2, 3$. Further, assume that $\pi_i \cap \tau_j = \emptyset$, for all $i \neq j$. Let $\eta_k = \tau_i \cap \tau_j$ with $\{i, j, k\} = \{1, 2, 3\}$ and let $\zeta_i = \langle \eta_i, \pi_i \rangle$, with $i = 1, 2, 3$. Then the dimension of $\zeta_1 \cap \zeta_2 \cap \zeta_3$ has the same parity as $n-1$. In particular, if n is odd, then $\{\pi_1, \pi_2, \pi_3\}$ and $\{\tau_1, \tau_2, \tau_3\}$ are always in semi-perspective.

Sketch of the proof. The proof is quite similar to the proof of Theorem 5.1, so we just give a sketch of it.

Consider a nonsingular quadric Q in $PG(3n-1, q)$, q odd, with equation

$$
X_0^2 + X_1^2 + \dots + aX_{n-1}^2 + X_nX_{n+1} + X_{n+2}X_{n+3} + \dots + X_{3n-2}X_{3n-1} = 0, a \neq 0.
$$

Let e_i be the point with 1 in the $(i + 1)$ -th position and 0 elsewhere. Coordinates are chosen in such a way that

$$
\pi_1 = \langle e_n, e_{n+2}, \cdots, e_{3n-2} \rangle,
$$

\n
$$
\pi_2 = \langle e_{n+1}, e_{n+3}, \cdots, e_{3n-1} \rangle,
$$

\n
$$
\pi_3 = \langle y_1, y_2, \cdots, y_n \rangle
$$
, where

$$
y_i = (0, \dots, 0, 1, 0, \dots, 0, a_n^{(i)}, a_{n+1}^{(i)}, \dots, a_{3n-1}^{(i)}),
$$

with $i = 1, 2, \dots, n$ and the 1 in position *i*.

Also,

$$
1 + a_n^{(i)} a_{n+1}^{(i)} + a_{n+2}^{(i)} a_{n+3}^{(i)} + \dots + a_{3n-2}^{(i)} a_{3n-1}^{(i)} = 0, \text{ for } i = 1, 2, \dots, n-1,
$$

$$
a + a_n^{(n)} a_{n+1}^{(n)} + a_{n+2}^{(n)} a_{n+3}^{(n)} + \dots + a_{3n-2}^{(n)} a_{3n-1}^{(n)} = 0,
$$

and

$$
a_n^{(i)} a_{n+1}^{(j)} + a_n^{(j)} a_{n+1}^{(i)} + \dots + a_{3n-2}^{(i)} a_{3n-1}^{(j)} + a_{3n-2}^{(j)} a_{3n-1}^{(i)} = 0
$$
, for all $i \neq j$ with $i, j \in \{1, 2, \dots, n\}$.

Further,

$$
|a_j^{(i)}| \neq 0
$$
, with $i = 1, 2, \dots, n$ and $j = n + 1, n + 3, \dots, 3n - 1$,

and

$$
|a_j^{(i)}| \neq 0
$$
, with $i = 1, 2, \dots, n$ and $j = n, n + 2, \dots, 3n - 2$.

The points

$$
z = (u_0, u_1, \dots, u_{n-1}, \sum_{i=1}^n r_i a_n^{(i)}, \sum_{i=1}^n r_i a_{n+1}^{(i)}, \dots, \sum_{i=1}^n r_i a_{3n-1}^{(i)})
$$

of ζ_3 in $\zeta_1 \cap \zeta_2$ are determined by the following system of linear equations:

$$
r_{i+1} = 2u_i,
$$

with $i = 0, 1, \dots, n - 1$,

$$
\sum_{i=1}^{n} r_i b_{ij} = 0
$$
, with $j = 1, 2, \dots, n$,
where $b_{ij} = a_n^{(i)} a_{n+1}^{(j)} + a_{n+2}^{(i)} a_{n+3}^{(j)} + \dots + a_{3n-2}^{(i)} a_{3n-1}^{(j)}$,
with $i \neq j$, and $b_{ii} = 0$.

The system consisting of the last n equations has a skew-symmetric matrix M . Hence rank M is even. This proves the theorem. \Box

Remark 5.3 . Since we are mainly interested in generalized ovals we assume in Theorem 5.2 that q is odd. In the even case the statement is quite different, so for example if q is even and $n = 2$ we always have $\zeta_1 \cap \zeta_2 \cap \zeta_3 = \emptyset$.

Theorem 5.4 Let O be a generalized oval of $PG(3n-1, q)$, with q odd, contained in a nonsingular quadric Q of $PG(3n-1, q)$. If $\pi \in O$, then the tangent spaces at π of O and Q coincide.

Proof. Let $\pi \in O$, let τ be the tangent space of Q at π , and let η be a $(n-1)$ dimensional subspace of τ skew to π . Further, let $\eta \cap Q = Q'$. If $y \in \eta - Q'$, then $\langle \pi, y \rangle$ has no point in common with $Q - \pi$, so has no point in common with any element of $O - \{\pi\}$. So $\langle y, \pi \rangle$ belongs to the tangent space τ' of O at π . The spaces $\langle \pi, y \rangle$ generate τ , so $\tau \subseteq \tau'$. As dim $\tau = \dim \tau'$, we have $\tau = \tau'$ \Box

Corollary 5.5 Let O be a generalized oval of $PG(3n-1, q)$, with q odd, contained in a nonsingular quadric Q of $PG(3n-1, q)$. Then any three distinct elements π_1, π_2, π_3 of O satisfy the requirements in the statement of Theorem 5.2.

6 A Characterization of Pseudo-conics

Assume that the triples $\{\pi_0, \pi_1, \pi_2\}$ and $\{\tau_0, \tau_1, \tau_2\}$ are in perspective in PG(3n – 1, q), with q odd; here π_i is $(n-1)$ -dimensional, τ_i is $(2n-1)$ -dimensional and $\pi_i \subset \tau_i$, with $i = 0, 1, 2$. Let $\tau_i \cap \tau_j = \eta_k$, with $\{i, j, k\} = \{0, 1, 2\}$, $\langle \eta_k, \pi_k \rangle = \zeta_k$ with $k = 0, 1, 2$, and $\zeta_0 \cap \zeta_1 \cap \zeta_2 = \zeta$; the space ζ is $(n-1)$ -dimensional.

Coordinates can be chosen in such a way that $\pi_0(\varepsilon, 0, 0), \pi_1(0, \varepsilon, 0),$ $\pi_2(0, 0, \varepsilon), \tau_0(0, \varepsilon, \varepsilon), \tau_1(\varepsilon, 0, \varepsilon), \tau_2(\varepsilon, \varepsilon, 0), \zeta(\varepsilon, \varepsilon, \varepsilon),$ with ε the identity matrix of order n , and 0 the zero matrix of order n .

The spaces $\pi_i, \tau_i, \eta_i, \zeta_i, \zeta$, with $i = 0, 1, 2$, all belong to the Segre variety

$$
S_{n-1;2} = \{(x_0y_0, x_0y_1, \cdots, x_0y_{n-1}, x_1y_0, x_1y_1, \cdots, x_1y_{n-1}, x_2y_0, x_2y_1, \cdots, x_2y_{n-1}) : (x_0, x_1, x_2) \in GF(q)^3 - \{(0, 0, 0)\}, (y_0, y_1, \cdots, y_{n-1}) \in GF(q)^n - \{(0, 0, \cdots, 0)\}\}.
$$

For more on Segre varieties see Sections 25.5 and 25.6 of Hirschfeld and Thas [1991].

Let π_3 be an $(n-1)$ -dimensional space of PG(3n – 1, q), let τ_3 be a $(2n-1)$ dimensional space of PG(3n – 1, q), let $\pi_3 \subset \tau_3$, and assume that $\langle \pi_i, \pi_j, \pi_3 \rangle =$ $PG(3n-1, q), \pi_3 \cap \tau_i = \emptyset$ and $\tau_3 \cap \pi_i = \emptyset$, with $i \neq j$ and $i, j \in \{0, 1, 2\}$. Further, let $\pi_3(\xi_0, \xi_1, \xi_2)$ and $\tau_3(\alpha_0, \alpha_1, \alpha_2)$. By Section 4 we have

$$
\alpha_0 \xi_0 + \alpha_1 \xi_1 + \alpha_2 \xi_2 = 0.
$$

Now we put

$$
\gamma_0 = \xi_1 + \xi_2, \n\gamma_1 = \xi_2 + \xi_0, \n\gamma_2 = \xi_0 + \xi_1.
$$

Further, let us assume $\gamma_0 = \varepsilon$ (as $\pi_3 \not\subset \tau_0$ we have $\gamma_0 \neq 0$, and $\gamma_0, \gamma_1, \gamma_2$ are determined up to a right factor).

Lemma 6.1 If for all $i \neq j$ and $i, j \in \{0, 1, 2\}$ the triples $\{\pi_i, \pi_j, \pi_3\}$ and $\{\tau_i, \tau_j, \tau_3\}$ are in perspective, then

$$
\gamma_1 \gamma_2 = \gamma_2 \gamma_1, \text{ and}
$$

$$
(\varepsilon - \gamma_1 - \gamma_2)^2 = 4\gamma_1 \gamma_2.
$$

Proof. Coordinates of $\tau_3 \cap \tau_0 = \eta_0' : (\alpha_0^{-1}(\alpha_2 - \alpha_1), \varepsilon, -\varepsilon).$ Coordinates of $\tau_3 \cap \tau_1 = \eta'_1 : (\varepsilon, \alpha_1^{-1}(\alpha_2 - \alpha_0), -\varepsilon).$ Coordinates of $\tau_0 \cap \tau_1 = \eta_2 : (\varepsilon, \varepsilon, -\varepsilon)$.

Now we intersect $\langle \pi_1, \eta'_0 \rangle$ and $\langle \pi_0, \eta'_1 \rangle$ and obtain

$$
(\alpha_0^{-1}(\alpha_2-\alpha_1),\alpha_1^{-1}(\alpha_2-\alpha_0),-\varepsilon).
$$

Then we express that this element is contained in $\langle \pi_3, \eta_2 \rangle$:

$$
\begin{cases}\n\alpha_0^{-1}(\alpha_2 - \alpha_1) = \xi_0 \rho + \rho', \\
\alpha_1^{-1}(\alpha_2 - \alpha_0) = \xi_1 \rho + \rho', \\
-\varepsilon = \xi_2 \rho - \rho'.\n\end{cases}
$$

It follows that

$$
\begin{cases}\n\alpha_0(\xi_2\rho + \varepsilon) = \alpha_2 - \alpha_1 - \alpha_0\xi_0\rho, \\
\alpha_1(\xi_2\rho + \varepsilon) = \alpha_2 - \alpha_0 - \alpha_1\xi_1\rho.\n\end{cases}
$$

 \overline{a}

So

$$
\begin{cases}\n\alpha_0(\xi_2 + \xi_0)\rho = \alpha_2 - \alpha_1 - \alpha_0, \\
\alpha_1(\xi_2 + \xi_1)\rho = \alpha_2 - \alpha_1 - \alpha_0.\n\end{cases}
$$

Consequently,

 $\alpha_0(\xi_2 + \xi_0) = \alpha_1(\xi_2 + \xi_1).$

Similarly,

$$
\begin{cases} \alpha_1(\xi_0 + \xi_1) = \alpha_2(\xi_0 + \xi_2), \\ \alpha_2(\xi_1 + \xi_2) = \alpha_0(\xi_1 + \xi_0). \end{cases}
$$

Also,

$$
\alpha_0 \xi_0 + \alpha_1 \xi_1 + \alpha_2 \xi_2 = 0.
$$

We may put $\alpha_0 = \varepsilon$. Consequently,

$$
\begin{cases}\n\gamma_1 = \alpha_1, \\
\alpha_1 \gamma_2 = \alpha_2 \gamma_1, \\
\gamma_2 = \alpha_2, \\
(\gamma_1 + \gamma_2 - \varepsilon) + \alpha_1 (\varepsilon + \gamma_2 - \gamma_1) + \alpha_2 (\varepsilon + \gamma_1 - \gamma_2) = 0\n\end{cases}
$$

It follows that

$$
\gamma_1 \gamma_2 = \gamma_2 \gamma_1, \text{ and}
$$

$$
(\varepsilon - \gamma_1 - \gamma_2)^2 = 4\gamma_1 \gamma_2.
$$

In Lemma 6.2 and Lemma 6.3 we assume that q is odd and that $\{\pi_i, \pi_j, \pi_k\}$ and $\{\tau_i, \tau_j, \tau_k\}$ are in perspective for all $i \neq j \neq k \neq i$ and $i, j, k \in \{0, 1, 2, 3\}.$

Lemma 6.2 Assume γ_1 has n distinct eigenvalues which form an orbit of the Galois group of $GF(q^n)$ with respect to $GF(q)$. Then the spaces $\pi_0, \pi_1, \pi_2, \pi_3$ are elements of a common pseudo-conic O of $PG(3n-1, q)$, such that the tangent spaces of O at $\pi_0, \pi_1, \pi_2, \pi_3$ respectively are $\tau_0, \tau_1, \tau_2, \tau_3$.

Proof. Coordinates are chosen in such a way that $\pi_0(0, \varepsilon, \varepsilon), \pi_1(\varepsilon, 0, \varepsilon)$, $\pi_2(\varepsilon, \varepsilon, 0)$ and $\zeta_1 \cap \zeta_2 \cap \zeta_3 = \zeta(\varepsilon, \varepsilon, \varepsilon)$. Then $\pi_3(\varepsilon, \gamma_1, \gamma_2)$. Further, $\tau_0(\varepsilon, 0, 0), \tau_1(0, \varepsilon, 0), \tau_2(0, 0, \varepsilon)$ and $\tau_3(\gamma_1 + \gamma_2 - \varepsilon, \varepsilon - \gamma_1 + \gamma_2, \varepsilon + \gamma_1 - \gamma_2).$

Now we determine the intersections of π_3 with the Segre variety $\mathcal{S}_{n-1;2}$ defined earlier in this section. Let

$$
\gamma_1 = [a_{ij}]_{0 \le i,j \le n-1}, \gamma_2 = [b_{ij}]_{0 \le i,j \le n-1}.
$$

Then $S_{n-1;2} \cap \pi_3$ is determined by

$$
\begin{cases}\nx_0y_0 = r_0, \\
x_0y_1 = r_1, \\
\vdots \\
x_0y_{n-1} = r_{n-1}, \\
x_1y_0 = r_0a_{00} + \dots + r_{n-1}a_{0,n-1}, \\
x_1y_1 = r_0a_{10} + \dots + r_{n-1}a_{1,n-1}, \\
\vdots \\
x_1y_{n-1} = r_0a_{n-1,0} + \dots + r_{n-1}a_{n-1,n-1}, \\
\vdots \\
x_2y_0 = r_0b_{00} + \dots + r_{n-1}b_{0,n-1}, \\
\vdots \\
x_2y_{n-1} = r_0b_{n-1,0} + \dots + r_{n-1}b_{n-1,n-1}.\n\end{cases}
$$

Put $x_0 = 1$. Then we first solve the following equation:

$$
\begin{bmatrix} a_{00} - x_1 a_{01} & \cdots a_{0,n-1} \\ a_{10} & a_{11} - x_1 \cdots a_{1,n-1} \\ \vdots & \vdots & \vdots \\ a_{n-1,0} & a_{n-1,1} & \cdots a_{n-1,n-1} - x_1 \end{bmatrix} \begin{bmatrix} r_0 \\ r_1 \\ \vdots \\ r_{n-1} \end{bmatrix} = 0.
$$
 (10)

This yields *n* solutions for $(x_1, r_0, r_1, \dots, r_{n-1})$, up to a factor of proportion for $(r_0, r_1, \dots, r_{n-1})$. From Lemma 6.1 it follows that the solution spaces for $(r_0, r_1, \dots, r_{n-1})$ of (10) are also solution spaces for $(r_0, r_1, \dots, r_{n-1})$ of

$$
\begin{bmatrix} b_{00} - x_2 b_{01} & \cdots b_{0,n-1} \\ b_{10} & b_{11} - x_2 \cdots b_{1,n-1} \\ \vdots & \vdots & \vdots \\ b_{n-1,0} & b_{n-1,1} & \cdots b_{n-1,n-1} - x_2 \end{bmatrix} \begin{bmatrix} r_0 \\ r_1 \\ \vdots \\ r_{n-1} \end{bmatrix} = 0.
$$
 (11)

Coordinates of n linearly independent hyperplanes containing τ_3 are determined by the \boldsymbol{n} rows of the matrix

$$
[\gamma_1 + \gamma_2 - \varepsilon \varepsilon - \gamma_1 + \gamma_2 \varepsilon + \gamma_1 - \gamma_2].
$$

The intersection of these hyperplanes with $S_{n-1;2}$ are determined by

$$
[\gamma_1 + \gamma_2 - \varepsilon \varepsilon - \gamma_1 + \gamma_2 \varepsilon + \gamma_1 - \gamma_2] \begin{bmatrix} x_0 y_0 \\ x_0 y_1 \\ \vdots \\ x_2 y_{n-1} \end{bmatrix} = 0. \quad (12)
$$

Assume that $(x'_1, r_0, r_1, \dots, r_{n-1})$ and $(x'_2, r_0, r_1, \dots, r_{n-1})$ are solutions (with $(r_0, r_1, \dots, r_{n-1}) \neq (0, 0, \dots, 0)$ of (10) and (11).

Equation (12) is equivalent to

$$
[x_0(\gamma_1 + \gamma_2 - \varepsilon) + x_1(\varepsilon - \gamma_1 + \gamma_2) + x_2(\varepsilon + \gamma_1 - \gamma_2)] \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{n-1} \end{bmatrix} = 0.
$$

Now we consider equation

$$
[x_0(\gamma_1 + \gamma_2 - \varepsilon) + x_1(\varepsilon - \gamma_1 + \gamma_2) + x_2(\varepsilon + \gamma_1 - \gamma_2)] \begin{bmatrix} r_0 \\ r_1 \\ \vdots \\ r_{n-1} \end{bmatrix} = 0.
$$

This equation becomes

$$
(x_0(x'_1 + x'_2 - 1) + x_1(1 - x'_1 + x'_2) + x_2(1 + x'_1 - x'_2))\begin{bmatrix} r_0 \\ r_1 \\ \vdots \\ r_{n-1} \end{bmatrix} = 0,
$$

hence

$$
x_0(x'_1 + x'_2 - 1) + x_1(1 - x'_1 + x'_2) + x_2(1 + x'_1 - x'_2) = 0.
$$
 (13)

With the *n* solutions of (10) and the corresponding solutions of (11) there correspond *n* planes $\beta_1, \beta_2, \dots, \beta_n$ of the extension of $\mathcal{S}_{n-1,2}$ to $GF(q^n)$, which are conjugate with respect to that extension and generate $PG(3n-1, q^n)$. From (13) follows that the extension of τ_3 to $GF(q^n)$ intersects each of the planes $\beta_1, \beta_2, \cdots, \beta_n$ in a line. The extension of π_i to $GF(q^n)$ is also denoted by π_i , and the extension of τ_i to $GF(q^n)$ is also denoted by τ_i , with $i = 0, 1, 2, 3$. Let $\pi_i \cap \beta_j =$ x_{ij} and $\beta_j \cap \tau_i = L_{ij}, i = 0, 1, 2, 3$ and $j = 1, 2, \dots, n$. Then $\{x_{ij}, x_{kj}, x_{lj}\}$ and $\{L_{ij}, L_{kj}, L_{lj}\}$, with $j \in \{1, 2, \dots, n\}$ and i, l, k distinct elements of $\{0, 1, 2, 3\}$, are in perspective. From the proof of Theorem 2.2 follows that there is a nonsingular conic C_j in β_j , which contains $x_{0j}, x_{1j}, x_{2j}, x_{3j}$ and for which L_{ij} is the tangent line at x_{ij} , with $i = 0, 1, 2, 3$. Hence $\pi_0, \pi_1, \pi_2, \pi_3$ are elements of a pseudo-conic O of PG(3n - 1, q) such that the tangent spaces of O at π_0 , π_1 , π_2 , π_3 respectively are $\tau_0, \tau_1, \tau_2, \tau_3.$

Lemma 6.3 Assume that s_1, s_2, \dots, s_h are h distinct simple eigenvalues of γ_1 which form an orbit of the Galois group of $GF(q^h)$ with respect to $GF(q)$. Then there are h distinct planes $\beta_1, \beta_2, \cdots, \beta_h$ over $GF(q^h)$ which generate a $(3h -$ 1)-dimensional subspace of PG(3n – 1, q) and with each plane β_i containing a nonsingular conic C_i such that $C_i \cap \pi_j$ is a point p_{ij} and $C_i \cap \tau_j$ is the tangent line of C_i at p_{ij} , with $i = 1, 2, \dots, h$.

Proof. This is similar to the proof of Lemma 6.2. \Box

Theorem 6.4 Assume that $O = {\pi_0, \pi_1, \cdots, \pi_{q^n}}$ is a pseudo-oval of PG(3n – 1, q), q odd, and let τ_i be the tangent space of O at π_i , with $i = 0, 1, \dots, q^n$. If for any three distinct i, j, k with $i, j, k \in \{0, 1, \dots, q^n\}$ the triples $\{\pi_i, \pi_j, \pi_k\}$ and $\{\tau_i, \tau_j, \tau_k\}$ are in perspective, then O is a pseudo-conic. The converse also holds.

Proof. Consider $\pi_0, \pi_1, \pi_2, \pi_3, \pi_4$ and choose coordinates as in the proof of Lemma 6.2. Hence $\pi_0 = (0, \varepsilon, \varepsilon), \pi_1 = (\varepsilon, 0, \varepsilon), \pi_2 = (\varepsilon, \varepsilon, 0), \tau_0 = (\varepsilon, 0, 0), \tau_1 =$ $(0, \varepsilon, 0), \tau_2 = (0, 0, \varepsilon), \pi_3 = (\varepsilon, \gamma_1, \gamma_2), \pi_4 = (\varepsilon, \delta_1, \delta_2).$ Then

$$
\gamma_1 \gamma_2 = \gamma_2 \gamma_1,
$$

\n
$$
(\varepsilon - \gamma_1 - \gamma_2)^2 = 4\gamma_1 \gamma_2,
$$

\n
$$
\delta_1 \delta_2 = \delta_2 \delta_1,
$$

\n
$$
(\varepsilon - \delta_1 - \delta_2)^2 = 4\delta_1 \delta_2.
$$

1024 J.A. Thas

Now we express that $\{\pi_0, \pi_3, \pi_4\}$ and $\{\tau_0, \tau_3, \tau_4\}$ are in perspective. By the proof of Lemma 6.2 we have

$$
\tau_3(\gamma_1 + \gamma_2 - \varepsilon, \varepsilon + \gamma_2 - \gamma_1, \varepsilon + \gamma_1 - \gamma_2),
$$

$$
\tau_4(\delta_1 + \delta_2 - \varepsilon, \varepsilon + \delta_2 - \delta_1, \varepsilon + \delta_1 - \delta_2).
$$

Also,

$$
\tau_0 \cap \tau_3 = (0, \varepsilon + \gamma_1 - \gamma_2, \gamma_1 - \gamma_2 - \varepsilon).
$$

Let

$$
\alpha_0 \chi_0 + \alpha_1 \chi_1 + \alpha_2 \chi_2 = 0
$$

be the 3-dimensional space ψ_4 joining $\tau_0 \cap \tau_3$ to π_4 . Then we may put

$$
\alpha_1 = \varepsilon - \gamma_1 + \gamma_2
$$

\n
$$
\alpha_2 = \varepsilon + \gamma_1 - \gamma_2
$$

\n
$$
\alpha_0 = (\gamma_1 - \gamma_2 - \varepsilon)\delta_1 + (\gamma_2 - \gamma_1 - \varepsilon)\delta_2.
$$

Similarly, if

 $\beta_0 \chi_0 + \beta_1 \chi_1 + \beta_2 \chi_2 = 0$

is the 3-dimensional space ψ_3 joining $\tau_0 \cap \tau_4$ to π_3 , then

$$
\beta_1 = \varepsilon - \delta_1 + \delta_2
$$

\n
$$
\beta_2 = \varepsilon + \delta_1 - \delta_2
$$

\n
$$
\beta_0 = (\delta_1 - \delta_2 - \varepsilon)\gamma_1 + (\delta_2 - \delta_1 - \varepsilon)\gamma_2.
$$

The space joining $\psi_3 \cap \psi_4$ and $\pi_0(0, \varepsilon, \varepsilon)$ is represented by

$$
\alpha \chi_0 + \chi_1 - \chi_2 = 0
$$

for some α . As $\alpha_1 - \beta_1 = \beta_2 - \alpha_2$, we have

$$
\alpha = (\alpha_1 - \beta_1)^{-1}(\alpha_0 - \beta_0),
$$

hence

$$
\alpha = (\gamma_2 - \gamma_1 + \delta_1 - \delta_2)^{-1}(\gamma_1\delta_1 + \gamma_2\delta_2 - \delta_1\gamma_1 - \delta_2\gamma_2 + \delta_2\gamma_1
$$

+
$$
\delta_1\gamma_2 - \gamma_2\delta_1 - \gamma_1\delta_2 - \delta_1 - \delta_2 + \gamma_1 + \gamma_2).
$$

The space joining $\tau_3 \cap \tau_4$ and $\pi_0(0, \varepsilon, \varepsilon)$ is represented by

$$
\beta \chi_0 + \chi_1 - \chi_2 = 0
$$

for some β . Substracting corresponding coordinates of τ_3 and τ_4 , we see that

$$
\beta = (\gamma_2 - \gamma_1 + \delta_1 - \delta_2)^{-1}(\gamma_1 + \gamma_2 - \delta_1 - \delta_2).
$$

As $\{\pi_0, \pi_3, \pi_4\}$ and $\{\tau_0, \tau_3, \tau_4\}$ are in perspective, we have $\alpha = \beta$ and so

$$
\gamma_1\delta_1+\gamma_2\delta_2-\delta_1\gamma_1-\delta_2\gamma_2+\delta_2\gamma_1+\delta_1\gamma_2-\gamma_2\delta_1-\gamma_1\delta_2-\delta_1-\delta_2+\gamma_1+\gamma_2=\gamma_1+\gamma_2-\delta_1-\delta_2.
$$

It follows that

$$
(\gamma_1 - \gamma_2)(\delta_1 - \delta_2) = (\delta_1 - \delta_2)(\gamma_1 - \gamma_2).
$$

Let $\mathcal{R} = (r_0, r_1, \dots, r_{n-1})$ be an eigenvector of γ_1 and γ_2 with corresponding eigenvalues x_1 and x_2 . Clearly R is an eigenvector of $\gamma_1 - \gamma_2$ with eigenvector $x_1 - x_2$. Hence

$$
(\gamma_1 - \gamma_2)(\delta_1 - \delta_2)\mathcal{R} = (\delta_1 - \delta_2)(\gamma_1 - \gamma_2)\mathcal{R} = (x_1 - x_2)(\delta_1 - \delta_2)\mathcal{R},
$$

and so $(\delta_1 - \delta_2)\mathcal{R} = \mathcal{R}'$ is an eigenvector of $\gamma_1 - \gamma_2$ with eigenvalue $x_1 - x_2$. In the eigenspace of $\gamma_1 - \gamma_2$ which corresponds with $x_1 - x_2$, there is at least one eigenvector $\mathcal{R}_0 \neq 0$, with coordinates in $GF(q^n)$, for which $(\delta_1 - \delta_2)\mathcal{R}_0 = l\mathcal{R}_0$ for some l in GF(qⁿ). By Lemma 6.1 we have $(\delta_1 - \delta_2)^2 = 2(\delta_1 + \delta_2) - \varepsilon$, and so \mathcal{R}_0 is an eigenvector of $\delta_1 + \delta_2$. It follows that \mathcal{R}_0 is an eigenvector of δ_1 and of δ_2 . Also, \mathcal{R}_0 is an eigenvector of γ_1 and γ_2 . It is clear that the eigenvector \mathcal{R}_0 of γ_1 corresponds to the eigenvalue x_1 . Hence, by the proof of Lemma 6.2, for each eigenvalue of γ_1 there is a plane β of PG(3n – 1, q^n) which intersects each of $\pi_0, \pi_1, \pi_2, \pi_3, \pi_4$ in a point and each of $\tau_0, \tau_1, \tau_2, \tau_3, \tau_4$ in a line. Now we consider all eigenvectors \mathcal{R}_0 with eigenvalue x_1 of γ_1 , eigenvalue x_2 of γ_2 , which are also eigenvectors of δ_1 . Then a similar reasoning yields that for $\pi_5 \in O - \{\pi_0, \pi_1, \pi_2, \pi_3, \pi_4\}$ with corresponding tangent space τ_5 , there is a plane of PG(3n – 1, q^n) which intersects each of $\pi_0, \pi_1, \dots, \pi_5$ in a point and each of $\tau_0, \tau_1, \dots, \tau_5$ in a line. Proceeding like this we obtain for each eigenvalue of γ_1 a plane β of PG(3n – 1, qⁿ) which intersects each element of O in a point and each tangent space of O in a line.

Let β be such a plane corresponding to the eigenvalue x_1 of γ_1 . Put $\beta \cap \pi_i =$ $\{y_i\}$, with $i = 0, 1, \dots, q^n$. Assume y_i is defined over $GF(q^{h_i})$ with $h_i \leq n$ minimal, $i = 0, 1, \dots, q^n$. If G is the Galois group defined by the extension $GF(q^n)$ of $GF(q)$, then let us consider the planes β^{θ} with $\theta \in G$. If not all h_i are

equal, then there are distinct planes β^{θ} and $\beta^{\theta'}$, with $\theta, \theta' \in G$, which intersect. This contradicts the fact that β^{θ} and $\beta^{\theta'}$ are generators of the Segre-variety $\mathcal{S}_{n-1,2}$ defined by π_0, π_1, π_2 ; here the extension of $\mathcal{S}_{n-1,2}$ to $GF(q^n)$ is also denoted by $\mathcal{S}_{n-1,2}$. Hence $h_0 = h_1 = \cdots = h_{q^n} = h$. Consequently $y_0, y_1, \cdots, y_{q^n}$ belong to $PG(2, q^h)$. As $\{y_0, y_1, \dots, y_{q^n}\} = C$ is a conic, we necessarily have $h = n$. Now it easily follows that each point of β is defined over $GF(q^n)$, but over no smaller field.

If for some $i \in \{0, 1, \dots, q^n\}$ the *n* points y_i^{θ} , with $\theta \in G$, are linearly independent, then, as the *n* planes β^{θ} are generators of $\mathcal{S}_{n-1,2}$, the *n* points y_j^{θ} are linearly independent for all $j = 0, 1, \dots, q^n$.

Assume, by way of contradiction, that the planes β and β' , with $\beta \neq \beta'$, correspond to the same eigenvalue x_1 of γ_1 . If $\beta' = \beta^{\theta}$, with $\theta \in G$, then $y_i \mapsto y_i^{\theta}$, with $i = 0, 1, \dots, q^n$, is induced by a linear projectivity of β onto β^{θ} . This yields a contradiction. Hence γ_1 has n distinct eigenvalues which form an orbit of the Galois group G. It follows that the points y_3^{θ} , $\theta \in G$, of π_3 are linearly independent. Hence the planes $\beta^{\theta}, \theta \in G$, generate the space $PG(3n-1, q^n)$.

We conclude that O is a pseudo-conic of $PG(3n-1, q)$. \Box

We will now give the formulation of Theorem 6.4 in terms of generalized quadrangles and Laguerre planes. Generalized quadrangles were introduced by Tits [1959] in his celebrated paper on triality, and in Payne and Thas [1984] it is shown that generalized quadrangles of odd order s, $s \neq 1$, with an antiregular point are equivalent to Laguerre planes of odd order s.

Let $S = (P, B, I)$ be a generalized quadrangle of order s, with $s \neq 1$. Then S is called a translation generalized quadrangle with center or base point x if S admits an abelian group of automorphisms fixing every line incident with x and acting regularly on the points of S not collinear with x. In Payne and Thas [1984] it is shown that the theory of translation generalized quadrangles is equivalent to the theory of generalized ovals; see also Thas, K. Thas and Van Maldeghem [2006]

Theorem 6.5 Let $S = (P, B, I)$ be a translation generalized quadrangle of order s, s odd and $s \neq 1$, with base point x. Further let L_1, L_2, L_3 be distinct lines incident with x, and let $y_i L_i$, $x \neq y_i$, with $i = 1, 2, 3$. Then S is isomorphic to the generalized quadrangle $Q(4, s)$ arising from a nonsingular quadric of $PG(4, s)$ if and only if there are s points z_1, z_2, \dots, z_s not collinear with x such that the line M_{ij} incident with z_i and concurrent with L_j contains a point collinear with y_k and y_l , with $\{j, k, l\} = \{1, 2, 3\}$ and $i = 1, 2, \dots, s$ (one of the points z_1, z_2, \dots, z_s is collinear with y_1, y_2, y_3 .

Next, let $\mathcal{L} = (P, B_1 \cup B_2, I)$ be a Laguerre plane of odd order s; here P is the point set, B_1 the line set, B_2 the circle set, and I the (symmetric) incidence relation. For more details on Laguerre planes we refer to Thas, K. Thas and Van Maldeghem [2006]. We say that $\mathcal L$ is a translation Laguerre plane if $\mathcal L$ admits and abelian automorphism group fixing each element of B_1 and acting regularly on B_2 .

Theorem 6.6 Let $\mathcal{L} = (P, B_1 \cup B_2, I)$ be a translation Laguerre plane of odd order s, let L_1, L_2, L_3 be distinct lines in B_1 and let $y_i L_i$, with $i = 1, 2, 3$. Then $\mathcal L$ is isomorphic to the classical Laguerre plane arising from a quadratic cone of $PG(3, s)$ if and only if there are s circles C_1, C_2, \cdots, C_s in B_2 such that C_i is tangent at the common point m_{ij} of C_i and L_j to the circle containing m_{ij} , y_k and y_l , with $\{j, k, l\} = \{1, 2, 3\}$ and $i = 1, 2, \dots, s$ (one of these circles is the circle containing y_1, y_2, y_3 .

7 A Second Property on Quadrics

In this section we generalize a well-known property on conics.

Theorem 7.1 Let π_0, π_1, π_2 be mutually skew $(n-1)$ -dimensional subspaces of $PG(3n-1, q)$, and let τ_i be a $(2n-1)$ -dimensional space containing π_i but skew to π_j and π_k , with $\{i, j, k\} = \{0, 1, 2\}$. Coordinates are chosen in such a way that $\pi_0(\varepsilon, 0, 0), \pi_1(0, \varepsilon, 0), \pi_2(0, 0, \varepsilon)$. Then $\tau_0(0, \varepsilon, \alpha), \tau_1(\beta, 0, \varepsilon), \tau_2(\varepsilon, \gamma, 0)$ with $det(\alpha\beta\gamma) \neq 0$. Then there is a quadric containing π_0, π_1, π_2 and having τ_i as tangent space at π_i , with $i = 0, 1, 2$, if and only if the matrix equation

$$
Z\theta = Z^T, \text{ with } \theta = \alpha\beta\gamma,
$$

has a nonsingular solution for the $n \times n$ -matrix Z. Moreover, for q even with n even and for q odd, the quadric is nonsingular if and only if $\theta + \varepsilon$ is nonsingular, that is, if and only if $\tau_0 \cap \tau_1 \cap \tau_2 = \emptyset$.

Proof. Let Q be any quadric containing π_0, π_1, π_2 . Then $Q: \sum_{\substack{i,j=0 \ i\neq j}}^{3n-1} a_{ij} X_i X_j = 0$, where i, j do not both belong to either $\{0, 1, \dots, n-1\}$, or $\{n, n+1, \dots, 2n-1\}$, or $\{2n, 2n+1, \dots, 3n-1\}.$

For $i > j$ we define a_{ij} to be a_{ji} .

Let

$$
U = \begin{bmatrix} a_{0n} & a_{0,n+1} & \cdots & a_{0,2n-1} \\ a_{1n} & a_{1,n+1} & \cdots & a_{1,2n-1} \\ \vdots & \vdots & & \vdots \\ a_{n-1,n} & a_{n-1,n+1} & \cdots & a_{n-1,2n-1} \end{bmatrix},
$$

\n
$$
V = \begin{bmatrix} a_{n,2n} & a_{n,2n+1} & \cdots & a_{n,3n-1} \\ a_{n+1,2n} & a_{n+1,2n+1} & \cdots & a_{n+1,3n-1} \\ \vdots & \vdots & & \vdots \\ a_{2n-1,2n} & a_{2n-1,2n+1} & \cdots & a_{2n-1,3n-1} \end{bmatrix},
$$

\n
$$
W = \begin{bmatrix} a_{2n,0} & a_{2n,1} & \cdots & a_{2n,n-1} \\ a_{2n+1,0} & a_{2n+1,1} & \cdots & a_{2n+1,n-1} \\ \vdots & \vdots & & \vdots \\ a_{3n-1,0} & a_{3n-1,1} & \cdots & a_{3n-1,n-1} \end{bmatrix}.
$$

Then

$$
\tau_0: U\begin{bmatrix} X_n \\ \vdots \\ X_{2n-1} \end{bmatrix} + W^T \begin{bmatrix} X_{2n} \\ \vdots \\ X_{3n-1} \end{bmatrix} = 0,
$$

$$
\tau_1: U^T \begin{bmatrix} X_0 \\ \vdots \\ X_{n-1} \end{bmatrix} + V \begin{bmatrix} X_{2n} \\ \vdots \\ X_{3n-1} \end{bmatrix} = 0,
$$

$$
\tau_2: W \begin{bmatrix} X_0 \\ \vdots \\ X_{n-1} \end{bmatrix} + V^T \begin{bmatrix} X_n \\ \vdots \\ X_{2n-1} \end{bmatrix} = 0.
$$

Now we express that $\tau_0(0, \varepsilon, \alpha), \tau_1(\beta, 0, \varepsilon), \tau_2(\varepsilon, \gamma, 0)$, that is,

$$
\alpha = U^{-1}W^{T}
$$

$$
\beta = V^{-1}U^{T}
$$

$$
\gamma = W^{-1}V^{T}.
$$

This yields a system of $3n^2$ linear homogeneous equations with $3n^2$ unknowns.

If such a quadric Q exists, then

$$
\alpha \beta \gamma = U^{-1} W^T V^{-1} U^T W^{-1} V^T,
$$

so

$$
Z\theta = Z^T, \quad (14)
$$

with

$$
\theta = \alpha \beta \gamma, Z = V(W^T)^{-1}U
$$
 and Z nonsingular.

Conversely, assume that (14), with $\theta = \alpha \beta \gamma$, has a nonsingular solution Z. Then we put

$$
V = Z\alpha,
$$

\n
$$
U = (\gamma^T)^{-1}Z,
$$

\n
$$
W = \alpha^T Z^T \gamma^{-1}.
$$

Now assume that either q is even with n even or that q is odd. Then the quadric is nonsingular if and only if the matrix

$$
\begin{bmatrix} 0 & U & W^T \\ U^T & 0 & V \\ W & V^T & 0 \end{bmatrix}
$$

is nonsingular, that is, if and only if $Z^T + Z$ is nonsingular, that is, if and only if $\theta + \varepsilon$ is nonsingular. It is easy to check that this condition is equivalent to $\tau_0 \cap \tau_1 \cap \tau_2 = \emptyset.$

Corollary 7.2 (i) We adopt the notations of Theorem 7.1. There is a quadric containing π_0, π_1, π_2 and having τ_i as tangent space at π_i , with $i = 0, 1, 2$, if and only if the following three conditions hold

- (a) the matrix θ is similar to its inverse,
- (b) the rank of $(\theta \varepsilon)^{2j+1}$ has the same parity for every nonnegative j,

(c) for q odd, the rank of $(\theta + \varepsilon)^{2j}$ has the same parity for every nonnegative j;

(ii) For $n = 2$ such a quadric exists if and only if $det(\theta) = 1$ with either $Tr(\theta) \neq 2$ or $\theta = \varepsilon$, that is, with either $\det(\theta - \varepsilon) \neq 0$ or $\theta = \varepsilon$.

Proof. (i) For the proof of (i) we refer to Theorem 3.8 of Ballantine [1978/79].

(ii) For $n = 2$ the equation $Z\theta = Z^T$ has nonzero solution for Z if and only if either $det(\theta) = 1$ or $det(\theta - \varepsilon) = 0$. If $\theta = \varepsilon$, then the quadric exists. Assume now $\theta \neq \varepsilon$. If $\det(\theta - \varepsilon) = 0$, then one checks that $\det(Z) = 0$ for each solution of $Z\theta = Z^T$. If $\det(\theta) = 1$, then $Z\theta = Z^T$ has a solution with $\det(Z) \neq 0$ if and only if $\text{Tr}(\theta) \neq 2$.

Remark 7.3 The condition $\theta \in \{\varepsilon, -\varepsilon\}$ is equivalent for $\{\pi_0, \pi_1, \pi_2\}$ and $\{\tau_0, \tau_1, \tau_2\}$ to be in perspective $(\theta = -\varepsilon$ is equivalent with $\tau_0 \cap \tau_1 \cap \tau_2$ being $(n-1)$ -dimensional); $det(\theta - \varepsilon)det(\theta + \varepsilon) = 0$ is equivalent for $\{\pi_0, \pi_1, \pi_2\}$ and $\{\tau_0, \tau_1, \tau_2\}$ to be in semiperspective.

8 A "Lemma of Tangents" for Generalized Ovals in $PG(5, q)$

In this section we will prove a "Lemma of Tangents" for generalized ovals O of $PG(5, q)$, with q odd.

Lemma 8.1 (Lemma of Tangents). Let $O = \{L_0, L_1, \cdots, L_{q^2}\}$ be a generalized oval in PG(5,q), q odd, and let τ_i be the tangent space of O at L_i , i = $0, 1, \cdots, q^2$. If $L_0(\varepsilon, 0, 0), L_1(0, \varepsilon, 0), L_2(0, 0, \varepsilon), \tau_0(0, \varepsilon, -\alpha), \ \tau_1(-\beta, 0, \varepsilon),$ $\tau_2(\varepsilon, -\gamma, 0)$, then

$$
det(\alpha \beta \gamma) = 1.
$$

Proof. Let $L_i(\xi_0^i, \xi_1^i, \xi_2^i)$, with $i = 3, 4, \dots, q^2$. Remark that $\det(\xi_0^i \xi_1^i \xi_2^i) \neq 0$. For $i \in \{3, 4, \cdots, q^2\}$ the space $\langle L_0, L_i \rangle$ has equation

$$
\chi_1 = \xi_1^i (\xi_2^i)^{-1} \chi_2,
$$

the space $\langle L_1, L_i \rangle$ has equation

$$
\chi_2 = \xi_2^i (\xi_0^i)^{-1} \chi_0,
$$

and the space $\langle L_2, L_i \rangle$ has equation

$$
\chi_0 = \xi_0^i (\xi_1^i)^{-1} \chi_1.
$$

If

$$
\xi_1^i(\xi_2^i)^{-1} = \delta_0^i, \xi_2^i(\xi_0^i)^{-1} = \delta_1^i, \xi_0^i(\xi_1^i)^{-1} = \delta_2^i,
$$

then for $i = 3, 4, \cdots, q^2$ we have

$$
\delta^i_0 \delta^i_1 \delta^i_2 = \varepsilon.
$$

Then

$$
\langle L_0, L_i \rangle \cap \langle L_1, L_2 \rangle = L_i^0(0, \delta_0^i, \varepsilon),
$$

$$
\langle L_1, L_i \rangle \cap \langle L_2, L_0 \rangle = L_i^1(\varepsilon, 0, \delta_1^i),
$$

$$
\langle L_2, L_i \rangle \cap \langle L_0, L_1 \rangle = L_i^2(\delta_2^i, \varepsilon, 0),
$$

with $i = 3, 4, \cdots, q^2$.

If
$$
\tau_i \cap \langle L_j, L_k \rangle = T'_i
$$
, with $\{i, j, k\} = \{0, 1, 2\}$, then
\n $\{T'_0, L_1, L_2, L_3^0, L_4^0, \dots, L_{q^2}^0\}$ is a linespread S_0 of $\langle L_1, L_2 \rangle$,
\n $\{T'_1, L_2, L_0, L_3^1, L_4^1, \dots, L_{q^2}^1\}$ is a linespread S_1 of $\langle L_2, L_0 \rangle$, and
\n $\{T'_2, L_0, L_1, L_3^2, L_4^2, \dots, L_{q^2}^2\}$ is a linespread S_2 of $\langle L_0, L_1 \rangle$.

Replacing each space of the form

$$
\chi_1 = \rho \chi_2
$$

by its "coordinate" ρ , and defining the coordinate of $\chi_2 = 0$ to be ∞ , we obtain the set

$$
\{\alpha, 0, \infty, \delta_0^3, \delta_0^4, \cdots, \delta_0^{q^2}\}.
$$

Similarly, we obtain

$$
{\beta, 0, \infty, \delta_1^3, \delta_1^4, \cdots, \delta_1^{q^2}}, \text{and} \\{\{\gamma, 0, \infty, \delta_2^3, \delta_2^4, \cdots, \delta_2^{q^2}\}}.
$$

Clearly we have

$$
\det(\alpha \delta_0^3 \cdots \delta_0^{q^2} \beta \delta_1^3 \cdots \delta_1^{q^2} \gamma \delta_2^3 \cdots \delta_2^{q^2}) = \det(\alpha \beta \gamma). \quad (15)
$$

1032 J.A. Thas

Now we calculate

$$
\det(\gamma \delta_2^3 \delta_2^4 \cdots \delta_2^{q^2}).
$$

In the space $\langle L_0, L_1 \rangle$, that is, $\chi_2 = 0$, we consider the plane $\langle L_i^2, e_3 \rangle = \varphi_i^2$, with $e_3(0, 0, 0, 1, 0, 0)$. The plane φ_i^2 has equations

> \overline{a} $\overline{}$ $\overline{ }$ $\overline{}$ $\overline{ }$ $\overline{}$ $\overline{1}$

$$
X_4 = X_5 = 0
$$
, and
\n X_0 $X_1 X_2 X_3$
\n 0 0 0 1
\n $(\delta_2^i)^T$ ε 0

This last equation is equivalent to

$$
-d_2^i X_0 + c_2^i X_1 + \det(\delta_2^i) X_2 = 0,
$$

where

$$
\delta_2^i = \begin{bmatrix} a_2^i \ c_2^i \\ b_2^i \ d_2^i \end{bmatrix}.
$$

Similarly, the plane $\langle T_2', e_3 \rangle = \varphi^2$ has equations

$$
X_4 = X_5 = 0
$$
 and $-d_2X_0 + c_2X_1 + \det(\gamma)X_2 = 0$,

where

$$
\gamma = \begin{bmatrix} a_2 \, c_2 \\ b_2 \, d_2 \end{bmatrix}.
$$

In this way there arise the q^2-1 planes $l_0X_0+l_1X_1+X_2=0$, with $(l_0, l_1)\neq (0, 0)$, of $\langle L_0, L_1 \rangle$ through e_3 .

First assume that $d_2 \neq 0$. Then

$$
\Pi_{\substack{i=3 \\ d_2^i \neq 0}}^{q^2} (d_2^i) d_2 = - \Pi_{\substack{i=3 \\ d_2^i \neq 0}}^{q^2} \det(\delta_2^i) \det(\gamma).
$$

There are $q-1$ indices i for which $d_2^i = 0$. Now we intersect the lines L_2^i and T'_2 with the plane $X_2 = 0$. We obtain the points $(c_2^i, d_2^i, 0, 1, 0, 0)$ and $(c_2, d_2, 0, 1, 0, 0)$. Hence

$$
\Pi_{\substack{i=3\\d_2^i \neq 0}}^{q^2} (d_2^i) d_2 = -1.
$$

Consequently

$$
\Pi_{\substack{i=3\\ d_2^i \neq 0}}^{q^2} \det(\delta_2^i) \det(\gamma) = 1.
$$

Now we have

$$
\Pi_{\substack{i=3\\ d_2^i=0}}^{q^2} c_2^i = -\Pi_{\substack{i=3\\ d_2^i=0}}^{q^2} \det(\delta_2^i)
$$

).

As

$$
\Pi_{\substack{i=3 \\ d_2^i=0}}^{q^2} c_2^i = -1,
$$

we have

$$
\Pi_{\substack{i=3 \\ d_2^i = 0}}^{q^2} \det(\delta_2^i) = 1.
$$

Hence

$$
\Pi_{i=3}^{q^2} \det(\delta_2^i) \det(\gamma) = 1.
$$

Next, we assume that $d_2 = 0$. Then $c_2 \neq 0$. We have

$$
\Pi_{\substack{i=3 \\ c^i_2 \neq 0}}^{q^2} (c^i_2)c_2 = -\Pi_{\substack{i=3 \\ c^i_2 \neq 0}}^{q^2} \det(\delta^i_2) \det(\gamma).
$$

There are $q-1$ indices i for which $c_2^i = 0$. As

$$
\Pi_{\substack{i=3\\c_2^i\neq 0}}^{q^2}(c_2^i)c_2=-1,
$$

we have

$$
\Pi_{\substack{i=3\\c_2^i\neq 0}}^{q^2} \det(\delta_2^i) \det(\gamma)=1.
$$

Now

$$
\Pi_{\substack{i=3\\c_2^i=0}}^{q^2}d_2^i=-\Pi_{\substack{i=3\\c_2^i=0}}^{q^2}\det(\delta_2^i),
$$

and as

$$
\Pi_{\stackrel{i=3}{c_2^i=0}}^{q^2}d^i_2=-1,
$$

we have

$$
\Pi_{\substack{i=3 \\ c_2^i = 0}}^{q^2} \det(\delta_2^i) = 1.
$$

Hence

$$
\Pi_{i=3}^{q^2} \det(\delta_2^i) \det(\gamma) = 1.
$$

1034 J.A. Thas

Similarly

$$
\Pi_{i=3}^{q^2} \det(\delta_1^i) \det(\beta) = \Pi_{i=3}^{q^2} \det(\delta_0^i) \det(\alpha) = 1.
$$

By (15) it then follows that

$$
\det(\alpha \beta \gamma) = 1.
$$

 \Box

Remark 8.2 Lemma 8.1 can be extended to all $n > 2$, but calculations become messy. Instead of considering the planes $\langle L_i^2, e_3 \rangle$ one has to consider the hyperplanes of $\langle \pi_0, \pi_1 \rangle$ generated by the spaces π_i^2 and $n-1$ points e_i belonging to $\pi_0 \cup \pi_1$ (here notations π_0, π_1, π_i^2 are used instead of L_0, L_1, L_i^2).

Theorem 8.3 Let $O = \{L_0, L_1, \dots, L_{q^2}\}$ be a generalized oval in PG(5, q), with q odd, and let τ_i be the tangent space of O at L_i , with $i = 0, 1, \dots, q^2$. Then for any three distinct i, j, k in $\{0, 1, \dots, q^2\}$ there is either a nonsingular quadric containing L_i, L_j, L_k and having τ_i, τ_j, τ_k as tangent spaces at respectively L_i, L_j, L_k or $\{L_i, L_j, L_k\}$ and $\{\tau_i, \tau_j, \tau_k\}$ are in semi-perspective but not in perspective.

Proof. With the notations of Lemma 8.1 we have $\det(\alpha \beta \gamma) = 1$. Assume there is no nonsingular quadric containing L_0, L_1, L_2 and having τ_0, τ_1, τ_2 as tangent spaces at respectively L_0, L_1, L_2 . Put $\theta = -\alpha \beta \gamma$. By Corollary 7.2(ii) we have $Tr(\theta) = 2$ with $\theta \neq \varepsilon$ (if $\theta = \varepsilon$, then $\{L_0, L_1, L_2\}$ and $\{\tau_0, \tau_1, \tau_2\}$ are in perspective, and hence there is such a quadric). Consequently $\det(\theta - \varepsilon) = 0$ with $\theta \neq \varepsilon$. By Remark 7.3 it follows that $\{L_0, L_1, L_2\}$ and $\{\tau_0, \tau_1, \tau_2\}$ are in semi-perspective but not in perspective.

References

- [1978/1979] C. S. Ballantine. Cosquares : complex and otherwise. Linear and Multilinear Algebra. 6 (1978/1979), 201–217.
- [1947] R. C. Bose. Mathematical theory of the symmetric factorial design, $Sankh y\bar{a}$ 8 (1947), 107–166.
- [1985] L. R. A. CASSE, J. A. THAS & P. R. WILD. $(q^{n}+1)$ -sets of PG $(3n-1, q)$, generalized quadrangles and Laguerre planes, Simon Stevin 59 (1985), 21–42.

- [2006] A. COSSIDENTE, G. L. EBERT, G. MARINO & A. SICILIANO. Shult sets and translation ovoids of the Hermitian surface, Adv. Geom. (6) 6 (2006), 523–542.
- [2006] A. COSSIDENTE, O. H. KING & G. MARINO. Special sets of the Hermitian surface and Segre invariants, European J. Combin. 27 (2006), 629–634.
- [1998] J. W. P. HIRSCHFELD. Projective Geometries over Finite Fields, Oxford University Press, second edition, 555 pp., 1998.
- [1991] J. W. P. HIRSCHFELD & J. A. THAS. General Galois Geometries, Oxford University Press, Oxford, 407 pp., 1991.
- [1976] S. E. Payne & J. A. Thas. Finite Generalized Quadrangles, Pitman, London, 312 pp., 1984.
- [1954] B. Segre. Sulle ovali nei piani lineari finiti, Atti Accad. Naz. Lincei Rend. 17 (1954) $1 - 2$.
- [1949] J. G. SEMPLE & L. ROTH. Introduction to Algebraic Geometry, Oxford University Press, Oxford, 446 pp., 1949.
- [2005] E. E. SHULT. Problems by the wayside, *Discrete Math.* **294** (2005), $175-201$.
- [1955] E. E. SHULT & J. A. THAS. Constructions of polygons from buildings, *Proc. London* Math. Soc. **71** (1995), 397-440.
- [1994] E. E. SHULT & J. A. THAS. m-systems of polar spaces, J. Combin. Theory Ser. A 68 (1994), 184–204.
- [1971] J. A. Thas. The m-dimensional projective space $S_m(M_n(GF(q)))$ over the total matrix algebra $M_n(GF(q))$ of the $n \times n$ -matrices with elements in the Galois field $GF(q)$, Rend. Mat. (6) 4 (1971), 459-532.
- [1974] J. A. Thas. Translation 4-gonal configurations, Atti Accad. Naz. Lincei Rend. 56, (1974), 303–314.
- [2006] J. A. THAS, K. THAS & H. VAN MALDEGHEM. Translation Generalized Quadrangles, World Scientific, Singapore, 369 pp., 2006.
- [1959] J. TITS. Sur la trialité et certains groupes qui s'en déduisent, Inst. Hautes Etudes Sci. Publ. Math. 2 (1959), 13–60.

J.A. Thas Department of Pure Mathematics and Computer Algebra Ghent University, Krijgslaan 281 - S22,9000 Gent Belgium Email: jat@cage.ugent.be