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Generalized Ovals in PG(3n− 1, q), with q Odd

J.A. Thas

Abstract: In 1954 Segre proved that every oval of PG(2, q), with q odd,
is a nonsingular conic. The proof relies on the “Lemma of Tangents”. A
generalized oval of PG(3n − 1, q) is a set of qn + 1 (n − 1)-dimensional
subspaces of PG(3n − 1, q), every three of them generate PG(3n − 1, q); a
generalized oval with n = 1 is an oval. The only known generalized ovals
are essentially ovals of PG(2, qn) interpreted over GF(q). If the oval of
PG(2, qn) is a conic, then we call the corresponding generalized oval classical.
Now assume q odd. In the paper we prove several properties of classical
generalized ovals. Further we obtain a strong characterization of classical
generalized ovals in PG(3n−1, q) and an interesting theorem on generalized
ovals in PG(5, q), developing a theory in the spirit of Segre’s approach. So
for example a “Lemma of Tangents” for generalized ovals is obtained. We
hope such an approach will lead to a classification of all generalized ovals in
PG(3n− 1, q), with q odd.
Keywords: oval, generalized oval, generalized quadrangle, Laguerre plane,
quadric

1 Introduction

An oval of PG(2, q) is a set of q+1 points no three of which are collinear. In 1954
Segre [1954] proved his celebrated theorem, stating that every oval of PG(2, q),
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with q odd, is a nonsingular conic. For q even there are many infinite classes
of ovals which are not conics; see e.g. Hirschfeld [1998]. In 1971 Thas [1971]
generalized ovals to pseudo-ovals or generalized ovals of PG(3n−1, q) with n ≥ 1.
Here the elements are (n− 1)-dimensional subspaces of PG(3n− 1, q). For n = 1
pseudo-ovals are ovals. If the pseudo-oval is embedded in a regular (n−1)-spread
of PG(3n− 1, q) it is called regular or elementary. In such a case there exists an
oval of PG(2, qn) such that its interpretation over GF(q) is the pseudo-oval. If
the oval is a conic of PG(2, qn) the corresponding regular pseudo-oval is called a
classical pseudo-oval or a pseudo-conic. In fact all known pseudo-ovals are regular
and, for q odd, all known pseudo-ovals are classical.

In 1985 Casse, Thas and Wild [1985] obtained an elegant characterization
of classical pseudo-ovals, for q odd, and in Thas, K. Thas and Van Maldeghem
[2006] many other characterization theorems of particular pseudo-ovals can be
found.

Generalized ovals are equivalent to translation generalized quadrangles of or-
der s, with s 6= 1; see Thas [1974] and Thas, K. Thas and Van Maldeghem [2006].
Hence many characterizations of generalized ovals are described in terms of gen-
eralized quadrangles, and conversely. Also, generalized ovals of PG(3n−1, q), for
q odd, are equivalent to particular Laguerre planes of order s = qn; see Payne
and Thas [1976, 1984].

In recent years there has been great interest in generalized ovals of PG(5, q),
with q odd, whose lines are contained in some nonsingular elliptic quadric Q−(5, q)
of PG(5, q); see Shult [2005], Cossidente, Ebert, Marino and Siciliano [2006] and
Cossidente, King and Marino [2006]. It is no surprise that the classical pseudo-
oval in PG(5, q), with q odd, is the only known example.

In this paper we will prove an interesting characterization of pseudo-conics
in PG(3n − 1, q) and some strong new results on generalized ovals, for q odd.
To that purpose we generalize the approach of Segre, used to prove his famous
theorem on ovals. In particular we find an analogue of his well-known “Lemma
of Tangents”.



Generalized Ovals in PG(3n− 1, q), with q Odd 1009

2 Ovals, the Lemma of Tangents and Segre’s Theorem

A k-arc of PG(2, q) is a set of k points of PG(2, q) no three of which are collinear.
Then clearly k ≤ q + 2. By Bose [1947], for q odd, k ≤ q + 1. Further, any
nonsingular conic of PG(2, q) is a (q + 1)-arc. It can be shown that each (q + 1)-
arc K of PG(2, q), q even, extends to a (q + 2)-arc K ∪ {x} (see, e.g. Hirschfeld
[1998], p. 177); the point x, which is uniquely defined by K, is called the kernel
or nucleus of K. The (q + 1)-arcs of PG(2, q) are called ovals.

For any k-arc K with 3 ≤ k ≤ q+1, choose three of its points as the vertices of
the triangle of reference u0u1u2 of the coordinate system. The lines intersecting
K in one point are called the tangent lines of K. A tangent line of K through
one of u0, u1, u2 has respective equation

X1 − dX2 = 0, X2 − dX0 = 0, X0 − dX1 = 0,

with d 6= 0. We call d the coordinate of such a line. Suppose the t = q + 2 − k

tangent lines at each of u0, u1, u2 are

X1 − aiX2 = 0, X2 − biX0 = 0, X0 − ciX1 = 0,

i = 1, 2, · · · , t. Then Segre [1954] proves the following important lemma.

Lemma 2.1 (Lemma of Tangents). The coordinates ai, bi, ci of the tangent
lines at u0, u1, u2 of a k-arc K through these points satisfy

Πt
i=1aibici = −1.

Proof. Let K = {u0, u1, u2, y1, y2, · · · , yk−3}, with yj = (xj
0, x

j
1, x

j
2), j = 1, 2, · · · , k−

3. Then

u0yj : X1 − dj
0X2 = 0, u1yj : X2 − dj

1X0 = 0, u2yj : X0 − dj
2X1 = 0,

with

dj
0 = xj

1/xj
2, d

j
1 = xj

2/xj
0, d

j
2 = xj

0/xj
1, j = 1, 2, · · · , k − 3.

Hence

dj
0d

j
1d

j
2 = 1, with j = 1, 2, · · · , k − 3.
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As the product of the nonzero elements of GF(q) is −1, we have

Πt
i=1aiΠk−3

j=1dj
0 = −1,Πt

i=1biΠk−3
j=1dj

1 = −1,Πt
i=1ciΠk−3

j=1dj
2 = −1.

Hence
Πt

i=1aibici = −1. 2

For an oval K we have t = 1, and so the lemma becomes abc = −1. Geomet-
rically this means that for q odd the triangles formed by three points of an oval
and the tangent lines at these points are in perspective, or, equivalently, that
for any three distinct points u0, u1, u2 on an oval there is a (unique) nonsingular
conic containing these points u0, u1, u2 and having as tangent lines at u0, u1, u2

the tangent lines of the oval at u0, u1, u2; for q even the condition means that the
tangent lines at any three points of the oval are concurrent.

Now we state the celebrated theorem of Segre [1954]. In the original proof
Lemma 2.1 is applied to several triangles u0u1u2 on the oval K, and this involves
some calculations. We present here a proof relying on Lemma 2.1, but without
any calculation.

Theorem 2.2 In PG(2, q), q odd, every oval is a nonsingular conic.

Proof. Let K = {u0, u1, · · · , uq} be an oval of PG(2, q), q odd. The tangent
line of K at ui is denoted by Li, with i = 0, 1, · · · , q. By Lemma 2.1, for any
three points ui, uj , uk of K there is a nonsingular conic C containing ui, uj , uk and
tangent to Li, Lj , Lk. Let Cl be the conic defined by {ui, uj , uk}, with {i, j, k, l} =
{0, 1, 2, 3}. Assume, by way of contradiction, that C0 6= C1. Now we consider
the cubic curves C0 ∪ L0 and C1 ∪ L1. The common points of these curves are
u0, u1, u2, u3, each counted twice, and L0 ∩ L1. Next, we consider the cubic
curve C2 ∪L2. This curve contains eight common points of C0 ∪L0 and C1 ∪L1

(u0, u1, u2, u3, each counted twice). So C2 ∪L2 contains L0 ∩L1; see e.g. Semple
and Roth [1949], p. 42. Hence L2 contains L0 ∩ L1, clearly a contradiction as
L0, L1, L2 are tangent to C3. So C0 = C1. Similarly, C0 = C1 = C2 = C3.
Consequently, C3 contains u3; similarly, C3 contains u4, u5, · · · , uq. So K ⊆ C3

and as |C3| = |K| = q + 1, it follows that K = C3. 2

For q even Theorem 2.2 is only valid for q ∈ {2, 4}; see e.g. Hirschfeld [1998]
Section 8.4.
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3 Generalized Ovals

A generalized oval or pseudo-oval in PG(3n−1, q), n ≥ 1, is a set of qn +1 (n−1)-
dimensional subspaces any three of which generate PG(3n−1, q); see Thas [1971]
and Thas, K. Thas and Van Maldeghem [2006]. For n = 1 a generalized oval is the
same as an oval. Let O = {π0, π1, · · · , πqn} be a generalized oval in PG(3n−1, q).
Then for each πi there is exactly one (2n− 1)-dimensional subspace τi such that
πi ⊂ τi and τi ∩ (π0 ∪ · · · ∪ πi−1 ∪ πi+1 ∪ · · · ∪ πqn) = ∅; τi is called the tangent
space of O at πi, i = 0, 1, · · · , qn. Generalized ovals play an important role in the
theory of finite generalized quadrangles; see Payne and Thas [1984] and Thas,
K. Thas and Van Maldeghem [2006]. In fact, the theory of generalized ovals is
equivalent to the theory of finite translation generalized quadrangles of order s.

If q is even, then all tangent spaces of a generalized oval contain a common
(n−1)-dimensional space; see Thas [1971] and Thas, K. Thas and Van Maldeghem
[2006]. This common space is called the kernel or nucleus of the generalized oval.
If q is odd, then each point not in an element of the generalized oval O is contained
in either 0 or 2 tangent spaces, and each hyperplane not containing a tangent
space contains either 0 or 2 elements of O; see e.g. Thas, K. Thas and Van
Maldeghem [2006].

Now we define the regular generalized ovals. In the extension PG(3n− 1, qn)
of PG(3n − 1, q) we consider n planes PG(i)(2, qn) = ξi, with i = 1, 2, · · · , n,
which are conjugate with respect to the extension GF(qn) of GF(q), that is,
which form an orbit of the Galois group corresponding to this extension, and
which span PG(3n− 1, qn). In ξ1 we consider an oval O1 = {x(1)

0 , x
(1)
1 , · · · , x(1)

qn }.
Further, let x

(1)
i , x

(2)
i , · · · , x(n)

i , with i = 0, 1, · · · , qn, be conjugate with respect to
the extension GF(qn) of GF(q). The points x

(1)
i , x

(2)
i , · · · , x(n)

i define an (n− 1)-
dimensional space PG(i)(n − 1, q) = πi over GF(q), with i = 0, 1, · · · , qn. Then
O = {π0, π1, · · · , πqn} is a generalized oval of PG(3n − 1, q). Here we speak of a
regular or elementary generalized oval. No other generalized ovals are known. If
O1 is a conic, then O is called a classical generalized oval or a pseudo-conic. By
Segre’s Theorem, for q odd each regular generalized oval is classical.

Assume that q is odd. Fix a space πi of the generalized oval O = {π0, π1, · · · , πqn}.
Let τj be the tangent space of O at πj , with j = 0, 1, · · · , qn. Then the elements
πi, τi ∩ τj , with j 6= i, are the elements of a (n− 1)-spread Si of τi, that is, they
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form a partition of τi. Also, the spaces 〈πi, πj〉 generated by πi and πj , with
j 6= i, together with τi intersect a given PG(2n− 1, q) skew to πi in the elements
of a (n− 1)-spread S∗i of PG(2n− 1, q). The following characterization theorem
is due to Casse, Thas and Wild [1985].

Theorem 3.1 If at least one of the spreads S0, S1, · · · , Sqn , S∗0 , S∗1 , · · · , S∗qn is reg-
ular, then they all are and O is classical.

For characterizations of particular classes of generalized ovals in the even case
we refer to Chapter 8 of Thas, K. Thas and Van Maldeghem [2006].

Let q be odd. Then for each n even any classical generalized oval of PG(3n−
1, q) belongs to a nonsingular elliptic quadric Q−(3n− 1, q) and to a nonsingular
hyperbolic quadric Q+(3n−1, q), and for each n odd, any classical generalized oval
of PG(3n− 1, q) belongs to a nonsingular parabolic quadric; see Shult and Thas
[1995]. In each of these cases the tangent space at any element π of the generalized
oval coincides with the tangent space at π of any of the corresponding quadrics.
For n = 2 any classical generalized oval O is the intersection of some Q−(5, q)
and some Q+(5, q); it is contained in (q + 1)/2 nonsingular elliptic quadrics and
(q + 1)/2 nonsingular hyperbolic quadrics, and at each element L of O these
quadrics have a common tangent space which coincides with the tangent space
of O at L.

The following theorem is due to Shult and Thas [1994].

Theorem 3.2 If O is a generalized oval of lines contained in a nonsingular hy-
perbolic quadric Q+(5, q) of PG(5, q), with q odd, then O is classical.

As for q even all tangent spaces of a generalized oval contain a common (n−1)-
dimensional space, it follows that for n > 1 the generalized oval is never contained
in a nonsingular quadric.

In recent years there was great interest in generalized ovals consisting of q2+1
lines of Q−(5, q), with q odd. Such a generalized oval is equivalent to a set of
q2 + 1 points of the nonsingular Hermitian variety H(3, q2) in PG(3, q2), such
that the plane defined by any three distinct points of this set is nontangent to
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H(3, q2); see Payne and Thas [1984]. This object was studied in different contexts
by Shult [2005], Cossidente, Ebert, Marino and Siciliano [2006] and Cossidente,
King and Marino [2006].

Let π1, π2, π3 be mutually skew (n−1)-dimensional subspaces of PG(3n−1, q),
let τi be a (2n− 1)-dimensional space containing πi but skew to πj and πk, with
{i, j, k} = {1, 2, 3}, and let τi ∩ τj = ηk, with {i, j, k} = {1, 2, 3}. The space
generated by ηi and πi will be denoted by ζi, with i = 1, 2, 3. If the (2n − 1)-
dimensional spaces ζ1, ζ2, ζ3 have a (n−1)-dimensional space in common, then we
say that {π1, π2, π3} and {τ1, τ2, τ3} are in perspective; if ζ1, ζ2, ζ3 have a nonempty
intersection, then we say that {π1, π2, π3} and {τ1, τ2, τ3} are in semi-perspective.

Let O be a regular generalized oval in PG(3n − 1, q), with q odd. Then for
any three distinct elements πi, πj , πk of O the sets {πi, πj , πk} and {τi, τj , τk} are
in perspective, where τl is the tangent space of O at πl, l ∈ {i, j, k}. This follows
immediately from the fact that in the odd case, by the Lemma of Tangents, this
property holds for every oval.

4 Projective Spaces over Matrix Algebras

Here we rely on Thas [1971] where the m-dimensional projective space
Sm(Mn(GF(q))) over the total matrix algebra Mn(GF(q)) of the n× n-matrices
with elements in GF(q) is studied.

Let π be an (n − 1)-dimensional subspace of PG(mn + n − 1, q) and let
p1(x1

0, x
1
1, · · · , x1

mn+n−1), · · · , pn(xn
0 , xn

1 , · · · , xn
mn+n−1) be n independent points of

π. Further, let 


x1
0 · · · xn

0

x1
1 · · · xn

1
...

...
x1

mn+n−1 · · · xn
mn+n−1




=




ξ0

ξ1

...
ξm




= A,

where ξ0, ξ1, · · · , ξm are n× n-matrices over GF(q). Clearly,

rankA = n.

We write π = (ξ0, ξ1, · · · , ξm) or π(ξ0, ξ1, · · · , ξm); we say that π is a point of
the projective space Sm(Mn(GF(q))), having ξ0, ξ1, · · · , ξm as projective coordi-
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nates. The coordinates ξ0, ξ1, · · · , ξm are determined by π up to a right factor of
proportion ρ ∈ Mn(GF(q)), with |ρ| 6= 0.

Let τ be a (mn− 1)-dimensional subspace of PG(mn + n− 1, q), and let

β1 : a1
0X0 + a1

1X1 + · · ·+ a1
mn+n−1Xmn+n−1 = 0,

...
βn : an

0X0 + an
1X1 + · · ·+ an

mn+n−1Xmn+n−1 = 0

be n independent hyperplanes containing τ . Further, let




a1
0 a1

1 · · · a1
mn+n−1

a2
0 a2

1 · · · a2
mn+n−1

...
...

...
an

0 an
1 · · · an

mn+n−1




= [α0 α1 · · ·αm] = B,

where α0, α1, · · · , αm are n× n-matrices over GF(q). Clearly,

rank B = n.

We write τ = (α0, α1, · · · , αm) or τ(α0, α1, · · · , αm); we say that τ is a hyper-
plane of the projective space Sm(Mn(GF(q))), having α0, α1, · · · , αm as projective
coordinates. We also say that

α0χ0 + α1χ1 + · · ·+ αmχm = 0

is an equation of the hyperplane. The coordinates α0, α1, · · · , αm are determined
by τ up to a left factor of proportion ρ′ ∈ Mn(GF(q)), with |ρ′| 6= 0.

If π(ξ0, ξ1, · · · , ξm) is a point of Sm(Mn(GF(q))) and if τ(α0, α1, · · · , αm) is a
hyperplane of Sm(Mn(GF(q))), then we say that π is contained in or is incident
with τ if the corresponding (n − 1)-dimensional space is contained in the corre-
sponding (mn− 1)-dimensional projective space. Algebraically this is equivalent
to

α0ξ0 + α1ξ1 + · · ·+ αmξm = 0.

For more details on Sm(Mn(GF(q))) we refer to Thas [1971].
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5 A Property of Quadrics

Now we prove a property of quadrics in PG(5, q), with q odd. Then this result
will be generalized to PG(3n− 1, q), with n ≥ 1 and q odd.

Theorem 5.1 Let Q be a nonsingular quadric in PG(5, q), with q odd, and let
L1, L2, L3 be distinct lines on Q with generate PG(5, q). The tangent space of Q

at Li is denoted by τi, with i = 1, 2, 3. Further,assume that Li ∩ τj = ∅, for all
i 6= j. If {L1, L2, L3} and {τ1, τ2, τ3} are in semi-perspective, then they are in
perspective.

Proof. Consider a nonsingular quadric Q in PG(5, q), q odd, with equation

X2
0 + aX2

1 + X2X3 + X4X5 = 0,with a 6= 0.

Coordinates are chosen in such a way that

L1 = 〈(0, 0, 1, 0, 0, 0), (0, 0, 0, 0, 1, 0)〉,
L2 = 〈(0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 1)〉,
L3 = 〈(1, 0, a2, a3, a4, a5), (0, 1, b2, b3, b4, b5)〉,

with
1 + a2a3 + a4a5 = 0, (1)
a + b2b3 + b4b5 = 0, (2)
a2b3 + a3b2 + a4b5 + a5b4 = 0, (3)
a3b5 − a5b3 6= 0, (4)
a2b4 − a4b2 6= 0. (5)

Let θ be the orthogonal polarity defined by Q. Then

τ1 = Lθ
1 : X3 = X5 = 0,

τ2 = Lθ
2 : X2 = X4 = 0,

τ3 = Lθ
3 : 2X0 + a3X2 + a2X3 + a5X4 + a4X5 = 0,

2aX1 + b3X2 + b2X3 + b5X4 + b4X5 = 0.

Further,

M2 = τ1 ∩ τ3 : X3 = X5 = 2X0 + a3X2 + a5X4 = 2aX1 + b3X2 + b5X4 = 0,

M1 = τ2 ∩ τ3 : X2 = X4 = 2X0 + a2X3 + a4X5 = 2aX1 + b2X3 + b4X5 = 0,

M3 = τ1 ∩ τ2 : X2 = X3 = X4 = X5 = 0.
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Consequently,

ζ1 = 〈L1,M1〉 : 2X0 + a2X3 + a4X5 = 2aX1 + b2X3 + b4X5 = 0,

ζ2 = 〈L2,M2〉 : 2X0 + a3X2 + a5X4 = 2aX1 + b3X2 + b5X4 = 0,

ζ3 = 〈L3,M3〉= {(u, v, ra2 + r′b2, ra3 + r′b3, ra4 + r′b4, ra5 + r′b5) :
(u, v, r, r′) 6= (0, 0, 0, 0)}.

The points of ζ1 ∩ ζ2 ∩ ζ3 are obtained by solving the following system of linear
equations: 




2u + a2(ra3 + r′b3) + a4(ra5 + r′b5) = 0, (6)
2av + b2(ra3 + r′b3) + b4(ra5 + r′b5) = 0, (7)
2u + a3(ra2 + r′b2) + a5(ra4 + r′b4) = 0, (8)
2av + b3(ra2 + r′b2) + b5(ra4 + r′b4) = 0. (9)

Adding (6) and (8), and taking account of (1) and (3), we obtain r = 2u; similarly
r′ = 2v. So the system of equations becomes





r = 2u,

r′ = 2v,

r(b2a3 + b4a5) = 0,

r′(b2a3 + b4a5) = 0.

Consequently, ζ1 ∩ ζ2 ∩ ζ3 = ∅ if b2a3 + b4a5 6= 0 and ζ1 ∩ ζ2 ∩ ζ3 is a line if
b2a3 + b4a5 = 0. 2

For general n we have the following theorem.

Theorem 5.2 Let Q be a nonsingular quadric in PG(3n − 1, q), q odd, and let
π1, π2, π3 be distinct (n−1)-dimensional spaces on Q which generate PG(3n−1, q).
The tangent space of Q at πi is denoted by τi, with i = 1, 2, 3. Further,assume
that πi ∩ τj = ∅, for all i 6= j. Let ηk = τi ∩ τj with {i, j, k} = {1, 2, 3} and let
ζi = 〈ηi, πi〉, with i = 1, 2, 3. Then the dimension of ζ1 ∩ ζ2 ∩ ζ3 has the same
parity as n − 1. In particular, if n is odd, then {π1, π2, π3} and {τ1, τ2, τ3} are
always in semi-perspective.

Sketch of the proof. The proof is quite similar to the proof of Theorem 5.1,
so we just give a sketch of it.
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Consider a nonsingular quadric Q in PG(3n− 1, q), q odd, with equation

X2
0 + X2

1 + · · ·+ aX2
n−1 + XnXn+1 + Xn+2Xn+3 + · · ·+ X3n−2X3n−1 = 0, a 6= 0.

Let ei be the point with 1 in the (i + 1)-th position and 0 elsewhere. Coordi-
nates are chosen in such a way that

π1 = 〈en, en+2, · · · , e3n−2〉,
π2 = 〈en+1, en+3, · · · , e3n−1〉,
π3 = 〈y1, y2, · · · , yn〉,where

yi = (0, · · · , 0, 1, 0, · · · , 0, a
(i)
n , a

(i)
n+1, · · · , a(i)

3n−1),
with i = 1, 2, · · · , n and the 1 in position i.

Also,

1 + a(i)
n a

(i)
n+1 + a

(i)
n+2a

(i)
n+3 + · · ·+ a

(i)
3n−2a

(i)
3n−1 = 0, for i = 1, 2, · · · , n− 1,

a + a(n)
n a

(n)
n+1 + a

(n)
n+2a

(n)
n+3 + · · ·+ a

(n)
3n−2a

(n)
3n−1 = 0,

and

a
(i)
n a

(j)
n+1 + a

(j)
n a

(i)
n+1 + · · ·+ a

(i)
3n−2a

(j)
3n−1 + a

(j)
3n−2a

(i)
3n−1 = 0, for all i 6= j

with i, j ∈ {1, 2, · · · , n}.
Further,

|a(i)
j | 6= 0, with i = 1, 2, · · · , n and j = n + 1, n + 3, · · · , 3n− 1,

and
|a(i)

j | 6= 0, with i = 1, 2, · · · , n and j = n, n + 2, · · · , 3n− 2.

The points

z = (u0, u1, · · · , un−1,
n∑

i=1

ria
(i)
n ,

n∑

i=1

ria
(i)
n+1, · · · ,

n∑

i=1

ria
(i)
3n−1)

of ζ3 in ζ1 ∩ ζ2 are determined by the following system of linear equations:

ri+1 = 2ui,

with i = 0, 1, · · · , n− 1,∑n
i=1 ribij = 0, with j = 1, 2, · · · , n,

where bij = a
(i)
n a

(j)
n+1 + a

(i)
n+2a

(j)
n+3 + · · ·+ a

(i)
3n−2a

(j)
3n−1,

with i 6= j, and bii = 0.
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The system consisting of the last n equations has a skew-symmetric matrix M.
Hence rank M is even. This proves the theorem. 2

Remark 5.3 . Since we are mainly interested in generalized ovals we assume in
Theorem 5.2 that q is odd. In the even case the statement is quite different, so
for example if q is even and n = 2 we always have ζ1 ∩ ζ2 ∩ ζ3 = ∅.

Theorem 5.4 Let O be a generalized oval of PG(3n−1, q), with q odd, contained
in a nonsingular quadric Q of PG(3n − 1, q). If π ∈ O, then the tangent spaces
at π of O and Q coincide.

Proof. Let π ∈ O, let τ be the tangent space of Q at π, and let η be a (n− 1)-
dimensional subspace of τ skew to π. Further, let η∩Q = Q′. If y ∈ η−Q′, then
〈π, y〉 has no point in common with Q− π, so has no point in common with any
element of O − {π}. So 〈y, π〉 belongs to the tangent space τ ′ of O at π. The
spaces 〈π, y〉 generate τ , so τ ⊆ τ ′. As dim τ = dim τ ′, we have τ = τ ′. 2

Corollary 5.5 Let O be a generalized oval of PG(3n−1, q), with q odd, contained
in a nonsingular quadric Q of PG(3n − 1, q). Then any three distinct elements
π1, π2, π3 of O satisfy the requirements in the statement of Theorem 5.2.

6 A Characterization of Pseudo-conics

Assume that the triples {π0, π1, π2} and {τ0, τ1, τ2} are in perspective in PG(3n−
1, q), with q odd; here πi is (n − 1)-dimensional, τi is (2n − 1)-dimensional and
πi ⊂ τi, with i = 0, 1, 2. Let τi ∩ τj = ηk, with {i, j, k} = {0, 1, 2}, 〈ηk, πk〉 = ζk

with k = 0, 1, 2, and ζ0 ∩ ζ1 ∩ ζ2 = ζ; the space ζ is (n− 1)-dimensional.

Coordinates can be chosen in such a way that π0(ε, 0, 0), π1(0, ε, 0),
π2(0, 0, ε), τ0(0, ε, ε), τ1(ε, 0, ε), τ2(ε, ε, 0), ζ(ε, ε, ε), with ε the identity matrix of
order n, and 0 the zero matrix of order n.

The spaces πi, τi, ηi, ζi, ζ, with i = 0, 1, 2, all belong to the Segre variety
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Sn−1;2 = {(x0y0, x0y1, · · · , x0yn−1, x1y0, x1y1, · · · , x1yn−1,

x2y0, x2y1, · · · , x2yn−1) : (x0, x1, x2) ∈ GF(q)3 − {(0, 0, 0)},
(y0, y1, · · · , yn−1) ∈ GF(q)n − {(0, 0, · · · , 0)}}.

For more on Segre varieties see Sections 25.5 and 25.6 of Hirschfeld and Thas
[1991].

Let π3 be an (n− 1)-dimensional space of PG(3n− 1, q), let τ3 be a (2n− 1)-
dimensional space of PG(3n − 1, q), let π3 ⊂ τ3, and assume that 〈πi, πj , π3〉 =
PG(3n− 1, q), π3∩ τi = ∅ and τ3∩πi = ∅, with i 6= j and i, j ∈ {0, 1, 2}. Further,
let π3(ξ0, ξ1, ξ2) and τ3(α0, α1, α2). By Section 4 we have

α0ξ0 + α1ξ1 + α2ξ2 = 0.

Now we put
γ0 = ξ1 + ξ2,

γ1 = ξ2 + ξ0,

γ2 = ξ0 + ξ1.

Further, let us assume γ0 = ε (as π3 6⊂ τ0 we have γ0 6= 0, and γ0, γ1, γ2 are
determined up to a right factor).

Lemma 6.1 If for all i 6= j and i, j ∈ {0, 1, 2} the triples {πi, πj , π3} and
{τi, τj , τ3} are in perspective, then

γ1γ2 = γ2γ1, and
(ε− γ1 − γ2)2 = 4γ1γ2.

Proof. Coordinates of τ3 ∩ τ0 = η′0 : (α−1
0 (α2 − α1), ε,−ε).

Coordinates of τ3 ∩ τ1 = η′1 : (ε, α−1
1 (α2 − α0),−ε).

Coordinates of τ0 ∩ τ1 = η2 : (ε, ε,−ε).
Now we intersect 〈π1, η

′
0〉 and 〈π0, η

′
1〉 and obtain

(α−1
0 (α2 − α1), α−1

1 (α2 − α0),−ε).

Then we express that this element is contained in 〈π3, η2〉:




α−1
0 (α2 − α1) = ξ0ρ + ρ′,

α−1
1 (α2 − α0) = ξ1ρ + ρ′,
−ε = ξ2ρ− ρ′.
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It follows that {
α0(ξ2ρ + ε) = α2 − α1 − α0ξ0ρ,

α1(ξ2ρ + ε) = α2 − α0 − α1ξ1ρ.

So {
α0(ξ2 + ξ0)ρ = α2 − α1 − α0,

α1(ξ2 + ξ1)ρ = α2 − α1 − α0.

Consequently,
α0(ξ2 + ξ0) = α1(ξ2 + ξ1).

Similarly, {
α1(ξ0 + ξ1) = α2(ξ0 + ξ2),
α2(ξ1 + ξ2) = α0(ξ1 + ξ0).

Also,
α0ξ0 + α1ξ1 + α2ξ2 = 0.

We may put α0 = ε. Consequently,




γ1 = α1,

α1γ2 = α2γ1,

γ2 = α2,

(γ1 + γ2 − ε) + α1(ε + γ2 − γ1) + α2(ε + γ1 − γ2) = 0

It follows that
γ1γ2 = γ2γ1, and
(ε− γ1 − γ2)2 = 4γ1γ2. 2

In Lemma 6.2 and Lemma 6.3 we assume that q is odd and that {πi, πj , πk}
and {τi, τj , τk} are in perspective for all i 6= j 6= k 6= i and i, j, k ∈ {0, 1, 2, 3}.

Lemma 6.2 Assume γ1 has n distinct eigenvalues which form an orbit of the
Galois group of GF(qn) with respect to GF(q). Then the spaces π0, π1, π2, π3 are
elements of a common pseudo-conic O of PG(3n − 1, q), such that the tangent
spaces of O at π0, π1, π2, π3 respectively are τ0, τ1, τ2, τ3.

Proof. Coordinates are chosen in such a way that π0(0, ε, ε), π1(ε, 0, ε),
π2(ε, ε, 0) and ζ1 ∩ ζ2 ∩ ζ3 = ζ(ε, ε, ε). Then π3(ε, γ1, γ2). Further,
τ0(ε, 0, 0), τ1(0, ε, 0), τ2(0, 0, ε) and τ3(γ1 + γ2 − ε, ε− γ1 + γ2, ε + γ1 − γ2).
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Now we determine the intersections of π3 with the Segre variety Sn−1;2 defined
earlier in this section. Let

γ1 = [aij ]0≤i,j≤n−1, γ2 = [bij ]0≤i,j≤n−1.

Then Sn−1;2 ∩ π3 is determined by





x0y0 = r0,

x0y1 = r1,
...
x0yn−1 = rn−1,

x1y0 = r0a00 + · · ·+ rn−1a0,n−1,

x1y1 = r0a10 + · · ·+ rn−1a1,n−1,
...
x1yn−1 = r0an−1,0 + · · ·+ rn−1an−1,n−1,
...
x2y0 = r0b00 + · · ·+ rn−1b0,n−1,
...
x2yn−1 = r0bn−1,0 + · · ·+ rn−1bn−1,n−1.

Put x0 = 1. Then we first solve the following equation:




a00 − x1 a01 · · · a0,n−1

a10 a11 − x1 · · · a1,n−1

...
...

...
an−1,0 an−1,1 · · · an−1,n−1 − x1







r0

r1

...
rn−1




= 0. (10)

This yields n solutions for (x1, r0, r1, · · · , rn−1), up to a factor of proportion
for (r0, r1, · · · , rn−1). From Lemma 6.1 it follows that the solution spaces for
(r0, r1, · · · , rn−1) of (10) are also solution spaces for (r0, r1, · · · , rn−1) of




b00 − x2 b01 · · · b0,n−1

b10 b11 − x2 · · · b1,n−1

...
...

...
bn−1,0 bn−1,1 · · · bn−1,n−1 − x2







r0

r1

...
rn−1




= 0. (11)
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Coordinates of n linearly independent hyperplanes containing τ3 are deter-
mined by the n rows of the matrix

[γ1 + γ2 − ε ε− γ1 + γ2 ε + γ1 − γ2].

The intersection of these hyperplanes with Sn−1;2 are determined by

[γ1 + γ2 − ε ε− γ1 + γ2 ε + γ1 − γ2]




x0y0

x0y1

...
x2yn−1




= 0. (12)

Assume that (x′1, r0, r1, · · · , rn−1) and (x′2, r0, r1, · · · , rn−1) are solutions (with
(r0, r1, · · · , rn−1) 6= (0, 0, · · · , 0)) of (10) and (11).
Equation (12) is equivalent to

[x0(γ1 + γ2 − ε) + x1(ε− γ1 + γ2) + x2(ε + γ1 − γ2)]




y0

y1

...
yn−1




= 0.

Now we consider equation

[x0(γ1 + γ2 − ε) + x1(ε− γ1 + γ2) + x2(ε + γ1 − γ2)]




r0

r1

...
rn−1




= 0.

This equation becomes

(x0(x′1 + x′2 − 1) + x1(1− x′1 + x′2) + x2(1 + x′1 − x′2))




r0

r1

...
rn−1




= 0,

hence

x0(x′1 + x′2 − 1) + x1(1− x′1 + x′2) + x2(1 + x′1 − x′2) = 0. (13)
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With the n solutions of (10) and the corresponding solutions of (11) there
correspond n planes β1, β2, · · · , βn of the extension of Sn−1;2 to GF(qn), which
are conjugate with respect to that extension and generate PG(3n− 1, qn). From
(13) follows that the extension of τ3 to GF(qn) intersects each of the planes
β1, β2, · · · , βn in a line. The extension of πi to GF(qn) is also denoted by πi, and
the extension of τi to GF(qn) is also denoted by τi, with i = 0, 1, 2, 3. Let πi∩βj =
xij and βj ∩ τi = Lij , i = 0, 1, 2, 3 and j = 1, 2, · · · , n. Then {xij , xkj , xlj} and
{Lij , Lkj , Llj}, with j ∈ {1, 2, · · · , n} and i, l, k distinct elements of {0, 1, 2, 3}, are
in perspective. From the proof of Theorem 2.2 follows that there is a nonsingular
conic Cj in βj , which contains x0j , x1j , x2j , x3j and for which Lij is the tangent
line at xij , with i = 0, 1, 2, 3. Hence π0, π1, π2, π3 are elements of a pseudo-conic
O of PG(3n−1, q) such that the tangent spaces of O at π0, π1, π2, π3 respectively
are τ0, τ1, τ2, τ3. 2

Lemma 6.3 Assume that s1, s2, · · · , sh are h distinct simple eigenvalues of γ1

which form an orbit of the Galois group of GF(qh) with respect to GF(q). Then
there are h distinct planes β1, β2, · · · , βh over GF(qh) which generate a (3h −
1)-dimensional subspace of PG(3n − 1, q) and with each plane βi containing a
nonsingular conic Ci such that Ci ∩ πj is a point pij and Ci ∩ τj is the tangent
line of Ci at pij, with i = 1, 2, · · · , h.

Proof. This is similar to the proof of Lemma 6.2. 2

Theorem 6.4 Assume that O = {π0, π1, · · · , πqn} is a pseudo-oval of PG(3n −
1, q) , q odd, and let τi be the tangent space of O at πi, with i = 0, 1, · · · , qn. If
for any three distinct i, j, k with i, j, k ∈ {0, 1, · · · , qn} the triples {πi, πj , πk} and
{τi, τj , τk} are in perspective, then O is a pseudo-conic. The converse also holds.

Proof. Consider π0, π1, π2, π3, π4 and choose coordinates as in the proof of
Lemma 6.2. Hence π0 = (0, ε, ε), π1 = (ε, 0, ε), π2 = (ε, ε, 0), τ0 = (ε, 0, 0), τ1 =
(0, ε, 0), τ2 = (0, 0, ε), π3 = (ε, γ1, γ2), π4 = (ε, δ1, δ2).
Then

γ1γ2 = γ2γ1,

(ε− γ1 − γ2)2 = 4γ1γ2,

δ1δ2 = δ2δ1,

(ε− δ1 − δ2)2 = 4δ1δ2.
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Now we express that {π0, π3, π4} and {τ0, τ3, τ4} are in perspective. By the
proof of Lemma 6.2 we have

τ3(γ1 + γ2 − ε, ε + γ2 − γ1, ε + γ1 − γ2),
τ4(δ1 + δ2 − ε, ε + δ2 − δ1, ε + δ1 − δ2).

Also,
τ0 ∩ τ3 = (0, ε + γ1 − γ2, γ1 − γ2 − ε).

Let
α0χ0 + α1χ1 + α2χ2 = 0

be the 3-dimensional space ψ4 joining τ0 ∩ τ3 to π4. Then we may put

α1 = ε− γ1 + γ2

α2 = ε + γ1 − γ2

α0 = (γ1 − γ2 − ε)δ1 + (γ2 − γ1 − ε)δ2.

Similarly, if
β0χ0 + β1χ1 + β2χ2 = 0

is the 3-dimensional space ψ3 joining τ0 ∩ τ4 to π3,then

β1 = ε− δ1 + δ2

β2 = ε + δ1 − δ2

β0 = (δ1 − δ2 − ε)γ1 + (δ2 − δ1 − ε)γ2.

The space joining ψ3 ∩ ψ4 and π0(0, ε, ε) is represented by

αχ0 + χ1 − χ2 = 0

for some α. As α1 − β1 = β2 − α2, we have

α = (α1 − β1)−1(α0 − β0),

hence
α = (γ2 − γ1 + δ1 − δ2)−1(γ1δ1 + γ2δ2 − δ1γ1 − δ2γ2 + δ2γ1

+δ1γ2 − γ2δ1 − γ1δ2 − δ1 − δ2 + γ1 + γ2).

The space joining τ3 ∩ τ4 and π0(0, ε, ε) is represented by

βχ0 + χ1 − χ2 = 0
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for some β. Substracting corresponding coordinates of τ3 and τ4, we see that

β = (γ2 − γ1 + δ1 − δ2)−1(γ1 + γ2 − δ1 − δ2).

As {π0, π3, π4} and {τ0, τ3, τ4} are in perspective, we have α = β and so

γ1δ1+γ2δ2−δ1γ1−δ2γ2+δ2γ1+δ1γ2−γ2δ1−γ1δ2−δ1−δ2+γ1+γ2 = γ1+γ2−δ1−δ2.

It follows that
(γ1 − γ2)(δ1 − δ2) = (δ1 − δ2)(γ1 − γ2).

Let R = (r0, r1, · · · , rn−1) be an eigenvector of γ1 and γ2 with corresponding
eigenvalues x1 and x2. Clearly R is an eigenvector of γ1 − γ2 with eigenvector
x1 − x2. Hence

(γ1 − γ2)(δ1 − δ2)R = (δ1 − δ2)(γ1 − γ2)R = (x1 − x2)(δ1 − δ2)R,

and so (δ1 − δ2)R = R′ is an eigenvector of γ1 − γ2 with eigenvalue x1 − x2. In
the eigenspace of γ1 − γ2 which corresponds with x1 − x2, there is at least one
eigenvector R0 6= 0, with coordinates in GF(qn), for which (δ1 − δ2)R0 = lR0

for some l in GF(qn). By Lemma 6.1 we have (δ1 − δ2)2 = 2(δ1 + δ2) − ε,
and so R0 is an eigenvector of δ1 + δ2. It follows that R0 is an eigenvector
of δ1 and of δ2. Also, R0 is an eigenvector of γ1 and γ2. It is clear that the
eigenvector R0 of γ1 corresponds to the eigenvalue x1. Hence, by the proof of
Lemma 6.2, for each eigenvalue of γ1 there is a plane β of PG(3n− 1, qn) which
intersects each of π0, π1, π2, π3, π4 in a point and each of τ0, τ1, τ2, τ3, τ4 in a line.
Now we consider all eigenvectors R0 with eigenvalue x1 of γ1, eigenvalue x2 of
γ2, which are also eigenvectors of δ1. Then a similar reasoning yields that for
π5 ∈ O−{π0, π1, π2, π3, π4} with corresponding tangent space τ5, there is a plane
of PG(3n − 1, qn) which intersects each of π0, π1, · · · , π5 in a point and each of
τ0, τ1, · · · , τ5 in a line. Proceeding like this we obtain for each eigenvalue of γ1 a
plane β of PG(3n− 1, qn) which intersects each element of O in a point and each
tangent space of O in a line.

Let β be such a plane corresponding to the eigenvalue x1 of γ1. Put β ∩ πi =
{yi}, with i = 0, 1, · · · , qn. Assume yi is defined over GF(qhi) with hi ≤ n

minimal, i = 0, 1, · · · , qn. If G is the Galois group defined by the extension
GF(qn) of GF(q), then let us consider the planes βθ with θ ∈ G. If not all hi are
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equal, then there are distinct planes βθ and βθ′ , with θ, θ′ ∈ G, which intersect.
This contradicts the fact that βθ and βθ′ are generators of the Segre-variety Sn−1;2

defined by π0, π1, π2; here the extension of Sn−1;2 to GF(qn) is also denoted by
Sn−1;2. Hence h0 = h1 = · · · = hqn = h. Consequently y0, y1, · · · , yqn belong to
PG(2, qh). As {y0, y1, · · · yqn} = C is a conic, we necessarily have h = n. Now
it easily follows that each point of β is defined over GF(qn), but over no smaller
field.

If for some i ∈ {0, 1, · · · , qn} the n points yθ
i , with θ ∈ G, are linearly inde-

pendent, then, as the n planes βθ are generators of Sn−1;2, the n points yθ
j are

linearly independent for all j = 0, 1, · · · , qn.

Assume, by way of contradiction, that the planes β and β′, with β 6= β′,
correspond to the same eigenvalue x1 of γ1. If β′ = βθ, with θ ∈ G, then yi 7→ yθ

i ,
with i = 0, 1, · · · , qn, is induced by a linear projectivity of β onto βθ. This
yields a contradiction. Hence γ1 has n distinct eigenvalues which form an orbit
of the Galois group G. It follows that the points yθ

3, θ ∈ G, of π3 are linearly
independent. Hence the planes βθ, θ ∈ G, generate the space PG(3n− 1, qn).

We conclude that O is a pseudo-conic of PG(3n− 1, q). 2

We will now give the formulation of Theorem 6.4 in terms of generalized
quadrangles and Laguerre planes. Generalized quadrangles were introduced by
Tits [1959] in his celebrated paper on triality, and in Payne and Thas [1984] it
is shown that generalized quadrangles of odd order s, s 6= 1, with an antiregular
point are equivalent to Laguerre planes of odd order s.

Let S = (P, B, I) be a generalized quadrangle of order s, with s 6= 1. Then
S is called a translation generalized quadrangle with center or base point x if S
admits an abelian group of automorphisms fixing every line incident with x and
acting regularly on the points of S not collinear with x. In Payne and Thas [1984]
it is shown that the theory of translation generalized quadrangles is equivalent
to the theory of generalized ovals; see also Thas, K. Thas and Van Maldeghem
[2006]

Theorem 6.5 Let S = (P, B, I) be a translation generalized quadrangle of order
s, s odd and s 6= 1, with base point x. Further let L1, L2, L3 be distinct lines
incident with x, and let yiILi, x 6= yi, with i = 1, 2, 3. Then S is isomorphic to
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the generalized quadrangle Q(4, s) arising from a nonsingular quadric of PG(4, s)
if and only if there are s points z1, z2, · · · , zs not collinear with x such that the line
Mij incident with zi and concurrent with Lj contains a point collinear with yk

and yl, with {j, k, l} = {1, 2, 3} and i = 1, 2, · · · , s (one of the points z1, z2, · · · , zs

is collinear with y1, y2, y3).

Next, let L = (P, B1 ∪ B2, I) be a Laguerre plane of odd order s; here P is
the point set, B1 the line set, B2 the circle set, and I the (symmetric) incidence
relation. For more details on Laguerre planes we refer to Thas, K. Thas and Van
Maldeghem [2006]. We say that L is a translation Laguerre plane if L admits and
abelian automorphism group fixing each element of B1 and acting regularly on
B2.

Theorem 6.6 Let L =(P, B1 ∪ B2, I) be a translation Laguerre plane of odd
order s, let L1, L2, L3 be distinct lines in B1 and let yiILi, with i = 1, 2, 3. Then
L is isomorphic to the classical Laguerre plane arising from a quadratic cone of
PG(3, s) if and only if there are s circles C1, C2, · · · , Cs in B2 such that Ci is
tangent at the common point mij of Ci and Lj to the circle containing mij, yk

and yl, with {j, k, l} = {1, 2, 3} and i = 1, 2, · · · , s (one of these circles is the
circle containing y1, y2, y3).

7 A Second Property on Quadrics

In this section we generalize a well-known property on conics.

Theorem 7.1 Let π0, π1, π2 be mutually skew (n − 1)-dimensional subspaces of
PG(3n− 1, q), and let τi be a (2n− 1)-dimensional space containing πi but skew
to πj and πk, with {i, j, k} = {0, 1, 2}. Coordinates are chosen in such a way
that π0(ε, 0, 0), π1(0, ε, 0), π2(0, 0, ε). Then τ0(0, ε, α), τ1(β, 0, ε), τ2(ε, γ, 0) with
det(αβγ) 6= 0. Then there is a quadric containing π0, π1, π2 and having τi as
tangent space at πi, with i = 0, 1, 2, if and only if the matrix equation

Zθ = ZT , with θ = αβγ,

has a nonsingular solution for the n× n-matrix Z. Moreover, for q even with n

even and for q odd, the quadric is nonsingular if and only if θ + ε is nonsingular,
that is, if and only if τ0 ∩ τ1 ∩ τ2 = ∅.
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Proof. Let Q be any quadric containing π0, π1, π2. Then Q :
∑3n−1

i,j=0
i〈j

aijXiXj = 0,

where i, j do not both belong to either {0, 1, · · · , n− 1}, or {n, n+1, · · · , 2n− 1},
or {2n, 2n + 1, · · · , 3n− 1}.
For i > j we define aij to be aji.

Let

U =




a0n a0,n+1 · · · a0,2n−1

a1n a1,n+1 · · · a1,2n−1

...
...

...
an−1,n an−1,n+1 · · · an−1,2n−1




,

V =




an,2n an,2n+1 · · · an,3n−1

an+1,2n an+1,2n+1 · · · an+1,3n−1

...
...

...
a2n−1,2n a2n−1,2n+1 · · · a2n−1,3n−1




,

W =




a2n,0 a2n,1 · · · a2n,n−1

a2n+1,0 a2n+1,1 · · · a2n+1,n−1

...
...

...
a3n−1,0 a3n−1,1 · · · a3n−1,n−1




.

Then

τ0 : U




Xn

...
X2n−1


 + W T




X2n

...
X3n−1


 = 0,

τ1 : UT




X0

...
Xn−1


 + V




X2n

...
X3n−1


 = 0,

τ2 : W




X0

...
Xn−1


 + V T




Xn

...
X2n−1


 = 0.

Now we express that τ0(0, ε, α), τ1(β, 0, ε), τ2(ε, γ, 0), that is,
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α = U−1W T

β = V −1UT

γ = W−1V T .

This yields a system of 3n2 linear homogeneous equations with 3n2 unknowns.

If such a quadric Q exists, then

αβγ = U−1W T V −1UT W−1V T ,

so
Zθ = ZT , (14)

with
θ = αβγ, Z = V (W T )−1U and Z nonsingular.

Conversely, assume that (14), with θ = αβγ, has a nonsingular solution Z.
Then we put

V = Zα,

U = (γT )−1Z,

W = αT ZT γ−1.

Now assume that either q is even with n even or that q is odd. Then the
quadric is nonsingular if and only if the matrix




0 U W T

UT 0 V

W V T 0




is nonsingular, that is, if and only if ZT + Z is nonsingular, that is, if and only
if θ + ε is nonsingular. It is easy to check that this condition is equivalent to
τ0 ∩ τ1 ∩ τ2 = ∅. 2

Corollary 7.2 (i) We adopt the notations of Theorem 7.1. There is a quadric
containing π0, π1, π2 and having τi as tangent space at πi, with i = 0, 1, 2, if and
only if the following three conditions hold

(a) the matrix θ is similar to its inverse,

(b) the rank of (θ − ε)2j+1 has the same parity for every nonnegative j,
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(c) for q odd, the rank of (θ + ε)2j has the same parity for every nonnegative j;

(ii) For n = 2 such a quadric exists if and only if det(θ) = 1 with either Tr(θ) 6= 2
or θ = ε, that is, with either det(θ − ε) 6= 0 or θ = ε.

Proof. (i) For the proof of (i) we refer to Theorem 3.8 of Ballantine [1978/79].

(ii) For n = 2 the equation Zθ = ZT has nonzero solution for Z if and only
if either det(θ) = 1 or det(θ − ε) = 0. If θ = ε, then the quadric exists. Assume
now θ 6= ε. If det(θ − ε) = 0, then one checks that det(Z) = 0 for each solution
of Zθ = ZT . If det(θ) = 1, then Zθ = ZT has a solution with det(Z) 6= 0 if and
only if Tr(θ) 6= 2. 2

Remark 7.3 The condition θ ∈ {ε,−ε} is equivalent for {π0, π1, π2} and {τ0, τ1, τ2}
to be in perspective (θ = −ε is equivalent with τ0∩τ1∩τ2 being (n−1)-dimensional);
det(θ−ε)det(θ+ε) = 0 is equivalent for {π0, π1, π2} and {τ0, τ1, τ2} to be in semi-
perspective.

8 A “Lemma of Tangents” for Generalized Ovals in

PG(5, q)

In this section we will prove a “Lemma of Tangents” for generalized ovals O of
PG(5, q), with q odd.

Lemma 8.1 (Lemma of Tangents). Let O = {L0, L1, · · · , Lq2} be a gener-
alized oval in PG(5, q), q odd, and let τi be the tangent space of O at Li, i =
0, 1, · · · , q2. If L0(ε, 0, 0), L1(0, ε, 0), L2(0, 0, ε), τ0(0, ε,−α), τ1(−β, 0, ε),
τ2(ε,−γ, 0), then

det(αβγ) = 1.

Proof. Let Li(ξi
0, ξ

i
1, ξ

i
2), with i = 3, 4, · · · , q2. Remark that det(ξi

0ξ
i
1ξ

i
2) 6= 0. For

i ∈ {3, 4, · · · , q2} the space 〈L0, Li〉 has equation

χ1 = ξi
1(ξ

i
2)
−1χ2,
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the space 〈L1, Li〉 has equation

χ2 = ξi
2(ξ

i
0)
−1χ0,

and the space 〈L2, Li〉 has equation

χ0 = ξi
0(ξ

i
1)
−1χ1.

If
ξi
1(ξ

i
2)
−1 = δi

0, ξ
i
2(ξ

i
0)
−1 = δi

1, ξ
i
0(ξ

i
1)
−1 = δi

2,

then for i = 3, 4, · · · , q2 we have

δi
0δ

i
1δ

i
2 = ε.

Then
〈L0, Li〉 ∩ 〈L1, L2〉 = L0

i (0, δi
0, ε),

〈L1, Li〉 ∩ 〈L2, L0〉 = L1
i (ε, 0, δi

1),
〈L2, Li〉 ∩ 〈L0, L1〉 = L2

i (δ
i
2, ε, 0),

with i = 3, 4, · · · , q2.

If τi ∩ 〈Lj , Lk〉 = T ′i , with {i, j, k} = {0, 1, 2}, then

{T ′0, L1, L2, L
0
3, L

0
4, · · · , L0

q2} is a linespread S0 of 〈L1, L2〉,
{T ′1, L2, L0, L

1
3, L

1
4, · · · , L1

q2} is a linespread S1 of 〈L2, L0〉, and

{T ′2, L0, L1, L
2
3, L

2
4, · · · , L2

q2} is a linespread S2 of 〈L0, L1〉.

Replacing each space of the form

χ1 = ρχ2

by its “coordinate” ρ, and defining the coordinate of χ2 = 0 to be ∞, we obtain
the set

{α, 0,∞, δ3
0 , δ

4
0 , · · · , δq2

0 }.
Similarly, we obtain

{β, 0,∞, δ3
1 , δ

4
1 , · · · , δq2

1 }, and

{γ, 0,∞, δ3
2 , δ

4
2 , · · · , δq2

2 }.

Clearly we have

det(αδ3
0 · · · δq2

0 βδ3
1 · · · δq2

1 γδ3
2 · · · δq2

2 ) = det(αβγ). (15)
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Now we calculate

det(γδ3
2δ

4
2 · · · δq2

2 ).

In the space 〈L0, L1〉, that is, χ2 = 0, we consider the plane
〈L2

i , e3〉 = ϕ2
i , with e3(0, 0, 0, 1, 0, 0). The plane ϕ2

i has equations

X4 = X5 = 0, and

∣∣∣∣∣∣∣

X0 X1 X2 X3

0 0 0 1
(δi

2)
T ε

∣∣∣∣∣∣∣
= 0.

This last equation is equivalent to

−di
2X0 + ci

2X1 + det(δi
2)X2 = 0,

where

δi
2 =

[
ai

2 ci
2

bi
2 di

2

]
.

Similarly, the plane 〈T ′2, e3〉 = ϕ2 has equations

X4 = X5 = 0 and − d2X0 + c2X1 + det(γ)X2 = 0,

where

γ =

[
a2 c2

b2 d2

]
.

In this way there arise the q2−1 planes l0X0+l1X1+X2 = 0, with (l0, l1) 6= (0, 0),
of 〈L0, L1〉 through e3.

First assume that d2 6= 0. Then

Πq2

i=3
di
2 6=0

(di
2)d2 = −Πq2

i=3
di
2 6=0

det(δi
2)det(γ).

There are q − 1 indices i for which di
2 = 0. Now we intersect the lines Li

2

and T ′2 with the plane X2 = 0. We obtain the points (ci
2, d

i
2, 0, 1, 0, 0) and

(c2, d2, 0, 1, 0, 0). Hence

Πq2

i=3
di
2 6=0

(di
2)d2 = −1.
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Consequently
Πq2

i=3
di
2 6=0

det(δi
2)det(γ) = 1.

Now we have
Πq2

i=3
di
2=0

ci
2 = −Πq2

i=3
di
2=0

det(δi
2).

As
Πq2

i=3
di
2=0

ci
2 = −1,

we have
Πq2

i=3
di
2=0

det(δi
2) = 1.

Hence
Πq2

i=3det(δi
2)det(γ) = 1.

Next, we assume that d2 = 0. Then c2 6= 0. We have

Πq2

i=3
ci
2 6=0

(ci
2)c2 = −Πq2

i=3
ci
2 6=0

det(δi
2)det(γ).

There are q − 1 indices i for which ci
2 = 0. As

Πq2

i=3
ci
2 6=0

(ci
2)c2 = −1,

we have
Πq2

i=3
ci
2 6=0

det(δi
2)det(γ) = 1.

Now
Πq2

i=3
ci
2=0

di
2 = −Πq2

i=3
ci
2=0

det(δi
2),

and as
Πq2

i=3
ci
2=0

di
2 = −1,

we have
Πq2

i=3
ci
2=0

det(δi
2) = 1.

Hence
Πq2

i=3det(δi
2)det(γ) = 1.
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Similarly

Πq2

i=3det(δi
1)det(β) = Πq2

i=3det(δi
0)det(α) = 1.

By (15) it then follows that

det(α β γ) = 1.

2

Remark 8.2 Lemma 8.1 can be extended to all n ≥ 2, but calculations become
messy. Instead of considering the planes 〈L2

i , e3〉 one has to consider the hyper-
planes of 〈π0, π1〉 generated by the spaces π2

i and n − 1 points ei belonging to
π0 ∪ π1 (here notations π0, π1, π

2
i are used instead of L0, L1, L

2
i ).

Theorem 8.3 Let O = {L0, L1, · · · , Lq2} be a generalized oval in PG(5, q), with
q odd, and let τi be the tangent space of O at Li, with i = 0, 1, · · · , q2. Then for
any three distinct i, j, k in {0, 1, · · · , q2} there is either a nonsingular quadric con-
taining Li, Lj , Lk and having τi, τj , τk as tangent spaces at respectively Li, Lj , Lk

or {Li, Lj , Lk} and {τi, τj , τk} are in semi-perspective but not in perspective.

Proof. With the notations of Lemma 8.1 we have det(αβγ) = 1. Assume there
is no nonsingular quadric containing L0, L1, L2 and having τ0, τ1, τ2 as tangent
spaces at respectively L0, L1, L2. Put θ = −αβγ. By Corollary 7.2(ii) we have
Tr(θ) = 2 with θ 6= ε (if θ = ε, then {L0, L1, L2} and {τ0, τ1, τ2} are in perspective,
and hence there is such a quadric). Consequently det(θ − ε) = 0 with θ 6= ε. By
Remark 7.3 it follows that {L0, L1, L2} and {τ0, τ1, τ2} are in semi-perspective
but not in perspective. 2
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