Pure and Applied Mathematics Quarterly Volume 7, Number 3 (Special Issue: In honor of Jacques Tits) 783—796, 2011

Piecewise Linear Parametrization of Canonical Bases

G. Lusztig

To Jacques Tits on the occasion of his 80th birthday

Abstract: We extend the known piecewise linear parametrization of the canonical basis of the plus part of an enveloping algebra of type ADE to the nonsimplylaced case.

Keywords: canonical basis, quantized enveloping algebra, piecewise linear, Cartan datum

INTRODUCTION

In [L1] the author introduced the canonical basis for the plus part of a quantized enveloping algebra of type A, D or E . (The same method applies for nonsimplylaced types, see [L3, 12.1].) Another approach to the canonical basis was later found in [Ka]. In [L1] we have also found that the set parametrizing the canonical basis has a natural piecewise linear structure that is, a collection of bijections with \mathbf{N}^N such that any two of these bijections differ by composition with a piecewise linear automorphism of N^N (an automorphism which can be expressed purely in terms of operations of the form $a + b$, $a - b$, min (a, b)). This led to the first purely combinatorial formula (involving only counting) for the dimension of a weight space of an irreducible finite dimensional representation [L1] or the dimension of the space of coinvariants in a triple tensor product [L2,

Received July 30, 2008.

Supported in part by the National Science Foundation.

6.5(f)]. (Later, different formulas in the same spirit were obtained by Littelmann [Li].) The construction of an analogous piecewise linear structure for the canonical basis in the nonsimplylaced case (based on a reduction to the simplylaced case) was only sketched in [L3] partly because it involved an assertion whose proof only appeared later (in [L4, 14.4.9]): as Berenstein and Zelevinsky write in [BZ, Proof of Theorem 5.2], "Lusztig (implicitly) claims that the transition map R_{2121}^{1212} for B_2 is obtained from the transition map $R_{132132}^{2132132}$ for type $A_3...$ ". In this paper we fill the gap in [L3] by making use of [L4, 14.4.9] which gives a relation between the canonical basis for a nonsimplylaced type and the canonical basis for a simplylaced type with a given (admissible) automorphism. At the same time we slightly extend [L4, 14.4.9] by allowing type A_{2n} with its non-admissible involution.

As an application we show that the canonical basis has a natural monoid structure and we define certain "Frobenius" endomorphisms of this monoid.

1. PARAMETRIZATION

1.1. In this paper a Cartan datum is understood to be a pair (I, \cdot) where I is a finite set and $(i \cdot j)$ is a symmetric positive definite matrix of integers indexed by $I \times I$ such that

 $i \cdot i \in 2\mathbb{N}_{>0}$ for any $i \in I$;

 $2\frac{i\cdot j}{i\cdot i}$ $\frac{i \cdot j}{i \cdot i} \in -\mathbf{N}$ for any $i \neq j$ in I ;

We say that (I, \cdot) as above is

-simply laced if $i \cdot j \in \{0, -1\}$ for any $i \neq j$ in I and $i \cdot i = 2$ for any $i \in I$; -irreducible if $I \neq \emptyset$ and there is no partition $I = I' \sqcup I''$ with $I' \neq \emptyset$, $I'' \neq \emptyset$, $i' \cdot i'' = 0$ for all $i' \in I', i'' \in I''$.

Let (I, \cdot) be a Cartan datum. For $i \neq j$ in I we have $\frac{2i \cdot j}{i \cdot i}$ $\frac{2j \cdot i}{j \cdot j} = 0, 1, 2 \text{ or } 3;$ accordingly, we set $h(i, j) = 2, 3, 4$ or 6. The Weyl group W of (I, \cdot) is the group with generators $s_i (i \in I)$ and relations $s_i^2 = 1$ for $i \in I$ and $s_i s_j s_i \cdots = s_i s_j s_i \cdots$ (both products have $h(i, j)$ factors) for $i \neq j$ in *I*. Let $l : W \to \mathbb{N}$ be the standard legth function relative to the generators s_i . Let w_0 be the unique element of W such that $l(w_0)$ is maximal. Let $N = l(w_0)$ and let X be the set of sequences $i_*(i_1, i_2, \ldots, i_N)$ in I such that $s_{i_1} s_{i_2} \ldots s_{i_N} = w_0$ (in W). We regard X as the set of vertices of a graph in which i_*, i'_* are joined if the sequences i_*, i'_* coincide except at the places $k, k + 1, k + 2, \ldots, k + r - 1$ where

 $(i_k, i_{k+1}, \ldots, i_{k+r-1}) = (p, p', p, \ldots), (i'_k, i'_{k+1}, \ldots, i'_{k+r-1}) = (p', p, p', \ldots),$ with $p \neq p'$ in I, $h(p, p') = r$. By a theorem of Matsumoto and Tits,

(a) this graph is connected.

1.2. Let $I = \{1, 2, ..., 2n\}, n \ge 1$. For $i, j \in I$ we set $i \cdot j = 2$ if $i = j, i \cdot j = -1$ if $i - j = \pm 1$ and $i \cdot j = 0$ otherwise. Then (I, \cdot) is a simply laced irreducible Cartan datum. Define a permutation $\sigma : I \to I$ by $\sigma(i) = 2n + 1 - i$ for all i. We have $\sigma(i) \cdot \sigma(j) = i \cdot j$ for any i, j in I.

1.3. Let $I = \{1, 2, ..., n-1, n, n'\}, n \ge 1$. For $i, j \in [1, n]$ we set $i \cdot j = 2$ if $i = j, i \cdot j = -1$ if $i - j = \pm 1$ and $i \cdot j = 0$ otherwise; we also set $n' \cdot n' = 2$, $(n-1) \cdot n' = n' \cdot (n-1) = -1$, $i \cdot n' = n' \cdot i = 0$ if $i < n-1$ or if $i = n$. Then (I, \cdot) is a simply laced irreducible Cartan datum. It is irreducible if $n \geq 2$. Define a permutation $\sigma: I \to I$ by $\sigma(i) = i$ for $i \in [1, n-1], \sigma(n) = n'$, $\sigma(n') = n$. We have $\sigma(i) \cdot \sigma(j) = i \cdot j$ for any i, j in I.

1.4. Let $I = \{\overline{1}, \overline{2}, \ldots, \overline{n}\}, n \ge 1$. For $i, j \in [1, n-1]$ we set $\overline{i} \circ \overline{j} = 2$ if $i = j$, $\bar{i} \circ \bar{j} = -1$ if $i - j = \pm 1$ and $\bar{i} \circ \bar{j} = 0$ otherwise; we also set $\bar{n} \circ \bar{n} = 4$, $\overline{n-1} \circ \overline{n} = \overline{n} \circ \overline{n-1} = -2$, $\overline{i} \circ \overline{n} = \overline{n} \circ \overline{i} = 0$ if $i < n-1$. Then (I, \circ) is an irreducible Cartan datum.

1.5. Let (I, \cdot) be a simply laced Cartan datum and let $\sigma : I \to I$ be a permutation such that $\sigma(i) \cdot \sigma(j) = i \cdot j$ for any i, j in I. Let I be the set of orbits of σ on I. For $\eta \in \underline{I}$ we set $\delta_{\eta} = 1$ if $\sigma(i) \cdot \sigma(j) = 0$ for any $i \neq j$ in η and $\delta_{\eta} = 2$, otherwise. We set $\delta = \max_{\eta \in I} \delta_{\eta} \in \{1, 2\}$. We will assume that

(a) either $\delta = 1$ or (I, \cdot) is irreducible.

For any $\eta \in \underline{I}$ we set $\eta \circ \eta = 2\delta^{-1}\delta_{\eta}|\eta|$. For any $\eta \neq \eta'$ in \underline{I} we set

 $\eta \circ \eta' = -\delta^{-1} \delta_{\eta} \delta_{\eta'} |\{(i,j) \in \eta \times \eta'; i \cdot j \neq 0\}|.$

We show that (\underline{I}, \circ) is a Cartan datum. Assume first that $\delta = 1$. Let $\{x_n; \eta \in \underline{I}\}\$ be a collection of real numbers, not all zero. Let $m =$ $\overline{}$ $\eta, \eta' \in \underline{I} \; x_{\eta} x_{\eta'} \eta \circ \eta'.$ it is enough to show that $m > 0$. For $i \in I$ let $y_i = x_\eta$ where $i \in \eta$. From the definitions we have $m = \sum_{i,i' \in I} y_i y_{i'} i \cdot i'$ and this is > 0 since $(i \cdot i')$ is positive definite. Assume next that $\delta = 2$. We can assume that $(I, \cdot), \sigma$ are as in 1.2. Denoting by \overline{i} the subset $\{i, 2n + 1 - i\}$ of I $(i \in [1, n])$ we see that (I, \circ) is the same as that in 1.4 hence it is a Cartan datum.

1.6. Let (I, \cdot) , σ be as in 1.3. We define (I, \circ) in terms of (I, \cdot) , σ as in 1.5.

Denoting by \overline{i} the subset $\{i\}$ of I $(i \in [1, n-1])$ and the subset $\{n, n'\}$ if $i = n$, we see that (I, \circ) is the same as that in 1.4.

1.7. Let (I, \cdot) be a simply laced Cartan datum. Let W, l, w_0, N be as in 1.1. Let K be either:

(i) a subgroup of the multiplicative group of a field which is closed under addition in that field;

(ii) a set with a given bijection $\iota : \mathbf{Z} \xrightarrow{\sim} K$ with the operations $a + b$, ab , a/b (on K) obtained by transporting to K the operations $min(a, b), a + b, a - b$ on **Z**;

(iii) the subset $\iota(\mathbf{N})$ of the set in (ii); this is stable under the operations $a + b$, ab , $a/(a + b)$.

Note that operations on K in (i) and (ii) have similar properties; they are both examples of "semifields". (See http://en.wikipedia.org/wiki/semifield.) The analogy between K in (ii) and K in (i) has been pointed out in $[L4, 42.2.7]$ in connection with observing the analogy of the combinatorics of canonical bases and the geometry involved in total positivity.

Let $\tilde{\mathcal{X}}$ be the set of all objects $i_1^{c_1} i_2^{c_2} \dots i_N^{c_N}$ (also denoted by $i_*^{c_*}$) where $i_* =$ $(i_1, i_2, \ldots, i_N) \in \mathcal{X}, c_* = (c_1, c_2, \ldots, c_N) \in K^N$. We regard $\tilde{\mathcal{X}}$ as the set of vertices of a graph in which two vertices $i_{*}^{c_{*}}$, $i_{*}'^{c_{*}'}$ are joined if either

the sequences i_*, i'_* coincide except at two places $k, k+1$ where $i'_k = i_{k+1}, i'_{k+1} =$ i_k and $i_k \tcdot i_{k+1} = 0$; the sequences c_*, c'_* coincide except at the places $k, k+1$ where $c'_{k} = c_{k+1}, c'_{k+1} = c_{k}$; or

the sequences i_*, i'_* coincide except at three places $k, k + 1, k + 2$ where

 $(i_k, i_{k+1}, i_{k+2}) = (p, p', p), (i'_k, i'_{k+1}, i'_{k+2}) = (p', p, p'),$

with $p \cdot p' = -1$; the sequences c_*, c'_* coincide except at the places $k, k + 1, k + 2$ where

 $(c_k, c_{k+1}, c_{k+2}) = (x, y, z), (c'_k, c'_{k+1}, c'_{k+2}) = (x', y', z')$ with $x' = yz/(x+z)$, $y' = x+z$, $z' = xy/(x+z)$ or equivalently $x = y'z'/(x'+z')$, $y = x' + z', z = x'y'/(x' + z').$

We shall write $R_{i_*}^{i'_*}(c_*)=c'_*$ whenever $i_{*}^{c_*}, i'_{*}^{c'_*}$ are joined in the graph $\tilde{\mathcal{X}}$. Then $R_{i_*}^{i'_*}: K^N \to K^N$ can be viewed as a bijection defined whenever i_*, i'_* are joined in the graph \mathcal{X} .

Let B be the set of connected components of the graph $\tilde{\mathcal{X}}$. For any $i_* \in \mathcal{X}$ we define $\alpha_{i_*}: K^N \to \mathcal{B}$ by $c_* \mapsto$ connected component of $i_*^{c_*}$. Note that:

(a) α_{i_*} is a bijection.

If K is as in 1.7(i) this follows from the proof of [L4, 42.2.4]. If K is as in 1.7(ii) then, as in [L4, 42.2.7], it can be viewed as a homomorphic image of a K as in 1.7(ii) so that (a) holds in this case. The case where K is as in 1.7(iii) follows immediately from the case where K is as in 1.7(ii), or it can be obtained directly from [L4, 42.1.9].

For any i_*, i'_* in X we define a bijection $R^{i'_*}_{i_*}: K^N \longrightarrow K^N$ as the composition $R_{i_*^t}^{i_*^{t-1}} \dots R_{i_*^1}^{i_*^2} R_{i_*^0}^{i_*^1}$ where $i_*^0, i_*^1, \dots, i_*^t$ is a sequence of vertices in $\tilde{\mathcal{X}}$ such that $(i_*^0, i_*^1), (i_*^1, i_*^2), \ldots, (i_*^{t-1}, i_*^t)$ are edges of the graph X and $i_*^0 = i_*$, $i_*^t = i'_*$ (such a sequence exists by $1.1(a)$). This agrees with the earlier definition in the case where i_*, i'_* are joined in X. Note that $R_{i_*}^{i'_*}$ is independent of the choice above; it is equal to $\alpha_{i'_*}^{-1} \alpha_{i_*}$.

1.8. Let (I, \cdot) , σ be as in 1.5. Define (I, \circ) as in 1.5. Define $W, l, w_0, N, \mathcal{X}$ as in 1.1. Let $\underline{W}, \underline{l}, \underline{w}_0, \underline{N}, \underline{\mathcal{X}}$ be the analogous objects defined in terms of (\underline{I}, \circ) . The generators of W are denoted by $s_i (i \in I)$ as in 1.1; similarly let $s_{\eta}(\eta \in \underline{I})$ be the generators of W. For any $\eta \in \underline{I}$ let $w_{\eta} \in W$ be the longest element in the subgroup of W generated by $\{s_i; i \in \eta\}$; let $N_{\eta} = l(w_{\eta})$. We can identify <u>W</u> with the subgroup of W generated by $\{w_{\eta}; \eta \in \underline{I}\}\)$ by sending \underline{s}_{η} to w_{η} . Then $\underline{w}_0=w_0$ and $\underline{\mathcal{X}}$ becomes the set of sequences $\eta_*=(\eta_1,\eta_2,\ldots,\eta_{\underline{N}})$ in $\underline{I}^{\underline{N}}$ such that $w_{\eta_1}w_{\eta_2}\dots w_{\eta_N}=w_0$. We have $\underline{W}=\{w\in W; \sigma(w)=w\}$ where $\sigma:W\to W$ is the automorphism given by $\sigma(s_i) = s_{\sigma(i)}$ for all i. For any $\eta \in \underline{I}$ let \mathcal{X}^{η} be the set of sequences $(h_1, h_2, \ldots, h_{N_{\eta}})$ in $\eta^{N_{\eta}}$ such that $s_{h_1} s_{h_2} \ldots s_{h_{N_{\eta}}} = w_{\eta}$.

Let $\tilde{\mathcal{X}}$ be as in 1.7. Let $\underline{\tilde{\mathcal{X}}}$ be the set of all objects $\eta_1^{\mathfrak{c}_1} \eta_2^{\mathfrak{c}_2} \dots \eta_N^{\mathfrak{c}_N}$ (also denoted by $\eta_*^{\mathfrak{c}_*}$) where $\eta_* = (\eta_1, \eta_2, \ldots, \eta_N) \in \underline{\mathcal{X}}$, $\mathfrak{c}_* = (\mathfrak{c}_1, \mathfrak{c}_2, \ldots, \mathfrak{c}_N) \in K^{\underline{N}}$.

Let $\hat{\mathcal{X}}$ be the set of all pairs $(\eta_*^{\mathfrak{c}_*}, \mathfrak{d}_*)$ where $\eta_*^{\mathfrak{c}_*} \in \underline{\tilde{\mathcal{X}}}$ and $\mathfrak{d}_* = (\mathfrak{d}_1, \mathfrak{d}_2, \ldots, \mathfrak{d}_N)$ is such that $\mathfrak{d}_j \in \mathcal{X}^{\eta_j}$ for $j \in [1, \underline{N}]$. Let $(\eta^{c_*}_*, \mathfrak{d}_*) \in \hat{\mathcal{X}}$. For $j \in [1, \underline{N}]$, $k \in [1, N_j]$ (where $N_j = N_{\eta_j}$) let $\epsilon_{j,k}$ be the number of $k' \in [1, N_j]$ such that $h_{k'} = h_k$ where $\mathfrak{d}_j = (h_1, h_2, \ldots, h_{N_j}).$ We have $\epsilon_{j,k} \in \{1,2\}.$ Let $\epsilon_j = \max_{k \in [1, N_j]} \delta_{j,k} \in \{1,2\}.$ Let $c_*^j = (\epsilon_j \epsilon_{j,1}^{-1} \mathfrak{c}_j, \epsilon_j \epsilon_{j,2}^{-1} \mathfrak{c}_j, \ldots, \epsilon_j \epsilon_{j,N_j}^{-1} \mathfrak{c}_j) \in K^{N_j}$. Let $c_* = c_*^1 c_*^2 \ldots c_*^N \in K^N$ be the concatenation of $c^1_*, c^2_*, \ldots, c^N_*$. Let $i_* = \mathfrak{d}_1 \mathfrak{d}_2 \ldots \mathfrak{d}_N$ be the concatenation of $\mathfrak{d}_1, \mathfrak{d}_2, \ldots, \mathfrak{d}_{N}$. We have $i_* \in \mathcal{X}$ and $i_*^{c_*} \in \tilde{\mathcal{X}}$.

We show that the connected component of $i^{c_*}_*$ in $\tilde{\mathcal{X}}$ depends only on $\eta_*^{\mathfrak{c}_*}$, not on \mathfrak{d}_* . Let $\mathfrak{d}'_* = (\mathfrak{d}'_1, \mathfrak{d}'_2, \dots, \mathfrak{d}'_N)$ be another sequence such that $\mathfrak{d}'_j \in \mathcal{X}^{\eta_j}$ for $j \in [1, \underline{N}]$. Let i'_{*} be the concatenation of $\mathfrak{d}'_1, \mathfrak{d}'_2, \ldots, \mathfrak{d}'_{\underline{N}}$. Define c'_{*} in terms of $(\eta_*^{\mathfrak{c}_*}, \mathfrak{d}_*)$ in the same way as c_* was defined in terms of $(\eta_*^{\mathfrak{c}_*}, \mathfrak{d}_*)$. We must show that $i^{c_*}_*, i'_*{}^{c'_*}_*$ are in the same connected component of $\tilde{\mathcal{X}}$. We may assume that I is a single σ -orbit η . Assume first that $\eta = \{i, i'\}$ with $i \cdot i' = -1$. It is enough to show that $i^{c}i'^{2c}i^{c}$ and $i'^{c}i^{2c}i'^{c}$ are joined in $\tilde{\mathcal{X}}$ (where $c \in K$). This is clear since $c + c = 2c$, $c(2c)/(c + c) = c$. Next assume that η is not of the form $\{i, i'\}$ with $i \cdot i' = -1$. Then $\eta = \{i_1, i_2, \dots, i_k\}$ where $s_{i_1}, s_{i_2}, \dots, s_{i_k}$ commute with each other. It is enough to show that the connected component of $i_1^c i_2^c \dots i_k^c$ in $\tilde{\mathcal{X}}$ does not depend on the order in which i_1, i_2, \ldots, i_k are written (where $c \in K$); this is obvious.

We see that the map $\hat{\mathcal{X}} \to \mathcal{B}$ given by $(\eta_*^{\mathfrak{c}_*}, \mathfrak{d}_*) \mapsto$ connected component of $i_*^{c_*}$ factors through a map $s : \tilde{\mathcal{X}} \to \mathcal{B}$ (\mathcal{B} as in 1.7).

We define a permutation $\sigma : \mathcal{X} \to \mathcal{X}$ by

 $i_ * = (i_1, i_2, \ldots, i_N) \mapsto (\sigma(i_1), \sigma(i_2), \ldots, \sigma(i_N))$

and a permutation $\sigma : \tilde{\mathcal{X}} \to \tilde{\mathcal{X}}$ by $i^{c_*}_* \mapsto \sigma(i_*)^{c_*}$. This last permutation respects the graph structure of $\tilde{\mathcal{X}}$ hence induces a permutation (denoted again by σ) of \mathcal{B} .

We show that the image of $s : \tilde{\mathcal{X}} \to \mathcal{B}$ is contained in the set \mathcal{B}^{σ} of fixed points of $\sigma : \mathcal{B} \to \mathcal{B}$. Let $(\eta^{c_*}_*, \mathfrak{d}_*) \in \hat{\mathcal{X}}$; we associate to it $i^{c_*}_* \in \tilde{\mathcal{X}}$ as above. For $j \in$ $[1, \underline{N}]$ we set $\mathfrak{d}'_j = (\sigma(h_1), \sigma(h_2), \ldots, \sigma(h_{N_j}))$ (where $\mathfrak{d}_j = (h_1, h_2, \ldots, h_{N_j}), N_j =$ N_{η_j}) and $\mathfrak{d}'_* = (\mathfrak{d}'_1, \mathfrak{d}'_2, \dots, \mathfrak{d}'_N)$. Let i'_* be the concatenation of $\mathfrak{d}'_1, \mathfrak{d}'_2, \dots, \mathfrak{d}'_N$. We have $i'_* \in \mathcal{X}$. Now $i'_*^{c_*}$ is associated to $(\eta_*^{c_*}, \mathfrak{d}'_*) \in \hat{\mathcal{X}}$ in the same way as $i_*^{c_*}$ is associated to $(\eta_{*}^{\epsilon_{*}}, \mathfrak{d}_{*}) \in \mathcal{X}$; hence $i_{*}^{c_{*}}, i_{*}^{\prime c_{*}}$ are in the same connected component of \mathcal{X} by an earlier argument. This verifies our claim.

Now let $\xi \in \mathcal{B}^{\sigma}$ and let $\eta_* \in \underline{\mathcal{X}}$. We show that $\xi = s(\eta_*^{\mathfrak{c}_*})$ for some $\mathfrak{c}_* \in$ $K^{\underline{N}}$. We can find $\mathfrak{d}_* = (\mathfrak{d}_1, \mathfrak{d}_2, \dots, \mathfrak{d}_N)$ such that $\mathfrak{d}_j \in \mathcal{X}^{\eta_j}$ for $j \in [1, \underline{N}]$. Let $i_* = \mathfrak{d}_1 \mathfrak{d}_2 \ldots \mathfrak{d}_N$ be the concatenation of $\mathfrak{d}_1, \mathfrak{d}_2, \ldots, \mathfrak{d}_N$. We have $i_* \in \mathcal{X}$ and by 1.1(a) we can find $c_* \in K^N$ such that $i_*^{c_*} \in \xi$. Let \mathfrak{d}'_* be obtained from \mathfrak{d}_* as in the previous paragraph and let i'_{*} be the concatenation of $\mathfrak{d}'_1, \mathfrak{d}'_2, \ldots, \mathfrak{d}'_{N}$. We have $i'_{*} = \sigma(i_{*}) \in \mathcal{X}$. Since ξ is σ -stable we see that $i_{*}^{c_{*}}, i_{*}^{c_{*}}$ are in the same connected component of $\tilde{\mathcal{X}}$. Now $c_* \in K^N$ can be viewed as the concatenation of $c^1_*, c^2_*, \ldots, c^N_*$ where $c^j_* = (c^j_1)$ $^{j}_{1}, c^{j}_{2}$ c_2^j, \ldots, c_l^j $(X_{N_j}^j) \in K^{N_j}, N_j = N_{\eta_j}.$ For $j \in [1, \underline{N}]$ we write $\mathfrak{d}_j=(h_1,h_2,\ldots,h_{N_j})\in\eta_j^{N_j}$ $j_j^{N_j}$ and we define $c'_*{}^j = (c'_1{}^j, c'_2{}^j, \ldots, c'_{N_j}{}^j) \in K^{N_j}$

by

(i) $c'_k{}^j = c^j_{k'}$ where $\sigma(h_k) = h_{k'}$ if $s_{h_1}, s_{h_2}, \ldots, s_{h_{N_j}}$ commute with each other and

(ii) $c'_1{}^j = c_2^j$ $_{2}^{j}c_{3}^{j}$ $\frac{j}{3}/(c_1^j + c_3^j)$ $(s_3^j), c_2^j = c_1^j + c_3^j$ $j_3^j, c'_3^j = c_1^j$ $\frac{j}{1}c_2^j$ $c_2^j/(c_1^j+c_3^j)$ $\binom{3}{3}$ if $h_1 \cdot h_2 = -1$, $h_1 = h_3$.

Let $c'_* \in K^N$ be the concatenation of $c'_*, 1, c'_*, \ldots, c'_*$. From the definitions we see that $i^{c_*}_*, i^{\prime, c'}_*$ are in the same connected component of $\tilde{\mathcal{X}}$. Hence $i^{\prime, c_*}_*, i^{\prime, c'}_*$ are in the same connected component of $\tilde{\mathcal{X}}$. Using the bijectivity of $\alpha_{i'_{*}} : K^N \to \mathcal{B}$ (see 1.7(a)) we deduce that $c_* = c'_*$. Hence in (i) we have $c_k^j = c_{k'}^j$ whenever $\sigma(h_k) = h_{k'}$, hence c_k^j \mathcal{L}_k^j is a constant \mathfrak{c}_j when k varies in $[1, N_j]$. Moreover in (ii) we have $c_1^j = c_2^j$ $_{2}^{j}c_{3}^{j}$ $\frac{j}{3}/(c_1^j + c_3^j)$ $(s_3^j), c_2^j = c_1^j + c_3^j$ $c_3^j, c_3^j = c_1^j$ $i_1^j c_2^j$ $\frac{j}{2}/(c_1^j + c_3^j)$ c_3^j) hence $c_2^j = 2c_j, c_1^j =$ $c_3^j = \mathfrak{c}_j$ for some $\mathfrak{c}_j \in K$. Let $\mathfrak{c}_* = (\mathfrak{c}_1, \mathfrak{c}_2, \ldots, \mathfrak{c}_N) \in K^{\underline{N}}$. From the definitions we see that $s(\eta_*^{\mathfrak{c}_*})$ is the connected component of $i_*^{\mathfrak{c}_*}$. Our claim is verified.

Assume that $\eta_* \in \underline{\mathcal{X}}$, $\mathfrak{c}_* \in K^{\underline{N}}$, $\mathfrak{c}'_* \in K^{\underline{N}}$ are such that $s(\eta_*, \mathfrak{c}_*) = s(\eta_*, \mathfrak{c}'_*)$. We show that $\mathfrak{c}_* = \mathfrak{c}'_*$. We can find $\mathfrak{d}_* = (\mathfrak{d}_1, \mathfrak{d}_2, \dots, \mathfrak{d}_N)$ such that $\mathfrak{d}_j \in \mathcal{X}^{\eta_j}$ for $j \in [1, \underline{N}]$. We define $i^{c_*}_* \in \tilde{\mathcal{X}}$ in terms of $(\eta^{c_*}_*, \mathfrak{d}_*)$ as above and we define similarly $i'_*{}^{c'_*} \in \tilde{\mathcal{X}}$ in terms of $(\eta_*^{\mathsf{c}'_*}, \mathfrak{d}_*)$. Note that $i_* = i'_*$. By assumption, $i_*^{\mathsf{c}_*}, i_*^{\mathsf{c}'_*}$ are in the same connected component of $\tilde{\mathcal{X}}$. From 1.7(a) we see that $c_* = c'_*$. Now $c_* \in K^N$ is the concatenation of $c_*^1, c_*^2, \ldots, c_*^N$ where $c_*^j = (c_1^j)$ c_{1}^{j}, c_{2}^{j} c_2^j,\ldots,c_l^j $(X_{N_j}^j) \in K^{N_j},$ $N_j = N_{\eta_j}$. Similarly, $c'_* \in K^N$ is the concatenation of c'_*, c'_*, \ldots, c'_* where $c_*'{}^j = (c_1'{}^j, c_2'{}^j, \ldots, c_{N_j}'{}^j) \in K^{N_j}$ for $j \in [1, \underline{N}]$. We see that for any j and any $k \in [1, N_j]$ we have $c_k^j = c_k^j$. If $\epsilon_j = 1$ it follows that $\mathfrak{c}_j = \mathfrak{c}'_j$. If $\epsilon_j = 2$ it follows that $(c_j, 2c_j, c_j) = (c'_j, 2c'_j, c'_j)$ hence again $c_j = c'_j$. We see that $c_* = c'_*$ as required.

From the previous two paragraphs we see that for any $\eta_* \in \underline{\mathcal{X}}$ the map α_{η_*} : $K^{\underline{N}} \longrightarrow \mathcal{B}^{\sigma}$ given by $\mathfrak{c}_* \mapsto s(\eta^{c_*}_*)$ is a bijection.

For any η_*, η'_* in $\underline{\mathcal{X}}$ we define a bijection $R_{\eta_*}^{\eta'_*}: K^{\underline{N}} \to K^{\underline{N}}$ by $R_{\eta_*}^{\eta'_*} = \alpha_{\eta'_*}^{-1} \alpha_{\eta_*}$. We regard $\underline{\tilde{X}}$ as the set of vertices of a graph in which two vertices $\eta_*^{\mathfrak{c}_*}$, $\eta'_*^{\mathfrak{c}'_*}$ are joined if the sequences η_*, η'_* coincide except at the places $k, k+1, k+2, \ldots, k+1$ $r-1$ where

 $(\eta_k, \eta_{k+1}, \ldots, \eta_{k+r-1}) = (p, p', p, \ldots), (\eta'_k, \eta'_{k+1}, \ldots, \eta'_{k+r-1}) = (p', p, p', \ldots),$ with $p \neq p'$ in \underline{I} , $h(p, p') = r$ and $R_{\eta_*}^{\eta'_*}(\mathfrak{c}_*) = \mathfrak{c}'_*$ or equivalently $R_{\eta'_*}^{\eta_*}(\mathfrak{c}'_*) = \mathfrak{c}_*.$ Here $h(p, p')$ is the analogue of $h(i, i')$ (see 1.1) for (\underline{I}, \circ) instead of (I, \cdot) .

Let $\underline{\mathcal{B}}$ be the set of connected components of the graph $\tilde{\mathcal{X}}$. From the definitions we see that the map $s: \tilde{\mathcal{X}} \to \mathcal{B}^{\sigma}$ factors through a map $\bar{s}: \underline{\mathcal{B}} \to \mathcal{B}^{\sigma}$. We show that

(a) \bar{s} is a bijection.

The surjectivity of \bar{s} follows from the surjectivity of s. To prove that \bar{s} is injective we assume that $\eta_{*}^{\mathfrak{c}_*}$, $\eta_{*}'^{\mathfrak{c}'_*}$ are two elements of $\underline{\tilde{\mathcal{X}}}$ such that $s(\eta_{*}^{\mathfrak{c}_*})=s(\eta_{*}'^{\mathfrak{c}'_*})$; we must show that $\eta_{*}^{\mathfrak{c}_*}$, $\eta'_{*}^{\mathfrak{c}'_*}$ are in the same connected component of $\underline{\tilde{X}}$. By the connectedness of the graph $\underline{\mathcal{X}}$ (see 1.1(a)) we can find $\mathfrak{c}_*'' \in K^{\underline{N}}$ such that $\eta'_* \mathfrak{c}_*'$, $\eta^{c''_*}_*$ are in the same connected component of $\tilde{\mathcal{X}}$. We have $s(\eta'_*c'_*)=s(\eta^{c''_*}_*)$ hence $s(\eta^{c''}_{*}) = s(\eta^{c}_{*})$. Using the bijectivity of $\alpha_{\eta_{*}}$ we deduce that $c_{*} = c''_{*}$. Thus, $\eta'_{*}c'_{*}$, $\eta_{*}^{\mathfrak{c}_{*}}$ are in the same connected component of $\underline{\tilde{\mathcal{X}}}$ and our claim is verified.

Let $\eta \in \underline{I}$. We define a map $\underline{\lambda}_{\eta} : \underline{\mathcal{B}} \to K$ by $\xi \mapsto \mathfrak{c}_1$ where $\eta_{*}^{\mathfrak{c}_*}$ is any element of ξ such that $\eta_1 = \eta$. (This map is well defined by an argument similar to that in [L4, 42.1.14].) Similarly we define a map $\underline{\rho}_{\eta} : \underline{\mathcal{B}} \to K$ by $\xi \mapsto \mathfrak{c}_{\underline{N}}$ where $\eta_{*}^{\mathfrak{c}_{*}}$ is any element of ξ such that $\eta_N = \eta$.

We define a map $\lambda_{\eta}: \mathcal{B}^{\sigma} \to K$ by $\xi \mapsto c_1$ where $i_{*}^{c_{*}}$ is any element of ξ such that $i_1 \in \eta$. (This map is well defined.) Similarly we define a map $\rho_{\eta}: \mathcal{B}^{\sigma} \to K$ by $\xi \mapsto c_N$ where $i^{c_*}_*$ is any element of ξ such that $i_N \in \eta$.

From the definitions we have $\lambda_{\eta} \bar{s} = \underline{\lambda}_{\eta}, \ \rho_{\eta} \bar{s} = \underline{\rho}_{\eta},$

1.9. We apply the definitions in 1.8 to (I, \cdot) , σ as in 1.3 and to (\underline{I}, \circ) as in 1.4, 1.6. Let $\eta_{*}^{\mathfrak{c}_*}, \eta_{*}^{\prime}^{\mathfrak{c}'_*}$ be two joined vertices of $\underline{\tilde{\mathcal{X}}}$. We show:

(i) if η_*, η'_* coincide except at the places $k, k+1$ where $(\eta_k, \eta_{k+1}) = (\bar{i}, \bar{i}'),$ $(\eta'_k, \eta'_{k+1}) = (\bar{i}', \bar{i}), i - i' \notin \{0, 1, -1\}$ then $\mathfrak{c}_*, \mathfrak{c}'_*$ coincide except at the places $k, k + 1$ where $(c_k, c_{k+1}) = (x, y), (c'_k, c'_{k+1}) = (y, x);$

(ii) if η_*, η'_* coincide except at the places $k, k+1, k+2$ where $(\eta_k, \eta_{k+1}, \eta_{k+2}) =$ $(\bar{i},\bar{i}',\bar{i}), (\eta'_k, \eta'_{k+1}, \eta'_{k+2}) = (\bar{i}', \bar{i}, \bar{i}'), (i, i' \text{ in } [1, n-1], i-i' = \pm 1, \text{ then } \mathfrak{c}_*, \mathfrak{c}'_*$ coincide except at the places $k, k + 1, k + 2$ where $(\mathfrak{c}_k, \mathfrak{c}_{k+1}, \mathfrak{c}_{k+2}) = (x, y, z)$, $(c'_k, c'_{k+1}, c'_{k+2}) = (x', y', z')$ with $x' = yz/(x + z)$, $y' = x + z$, $z' = xy/(x + z)$ or equivalently $x = y'z'/(x'+z')$, $y = x' + z'$, $z = x'y'/(x'+z')$;

- (iii) if η_*, η'_* coincide except at the places $k, k + 1, k + 2, k + 3$ where
- $(\eta_k, \eta_{k+1}, \eta_{k+2}, \eta_{k+3}) = (\overline{n-1}, \overline{n}, \overline{n-1}, \overline{n}),$
- $(\eta'_{k},\eta'_{k+1},\eta'_{k+2},\eta'_{k+3})=(\bar n,\overline{n-1},\bar n,\overline{n-1})$

then c_*, c'_* coincide except at the places $k, k + 1, k + 2, k + 3$ where

$$
(\mathfrak{c}_k, \mathfrak{c}_{k+1}, \mathfrak{c}_{k+2}, \mathfrak{c}_{k+3}) = (d, c, b, a), (\mathfrak{c}'_k, \mathfrak{c}'_{k+1}, \mathfrak{c}'_{k+2}, \mathfrak{c}'_{k+3}) = (d', c', b', a')
$$

and

$$
d' = ab^2 c / \epsilon, c' = \epsilon / \alpha, b' = \alpha^2 / \epsilon, a' = bcd/\alpha
$$

(or equivalently

$$
d = a'b'^2 c' / \epsilon', c = \epsilon' / \alpha', b = \alpha'^2 / \epsilon', a = b' c' d' / \alpha')
$$

with the notation

$$
\alpha = ab + ad + cd, \epsilon = ab^2 + ad^2 + cd^2 + 2abd,
$$

$$
\alpha' = a'b' + a'd' + c'd', \epsilon' = a'b'^2 + a'd'^2 + c'd'^2 + 2a'b'd'.
$$

In case (i) and (ii) the result is obvious. In case (iii) we can assume that $n = 2$ and we consider the sequence of vertices of $\tilde{\mathcal{X}}$:

$$
2^{d}2'^{d}1^{c}2'^{b}2^{b}1^{a}
$$
\n
$$
2^{d}1^{\frac{bc}{b+d}}2'^{b+d}1^{\frac{cd}{b+d}}2^{b}1^{a}
$$
\n
$$
2^{d}1^{\frac{bc}{b+d}}2'^{b+d}2^{\frac{ab(b+d)}{\alpha}}1^{\frac{\alpha}{b+d}}2^{\frac{bcd}{\alpha}}
$$
\n
$$
2^{d}1^{\frac{bc}{b+d}}2^{\frac{ab(b+d)}{\alpha}}2'^{b+d}1^{\frac{\alpha}{b+d}}2^{\frac{bcd}{\alpha}}
$$
\n
$$
1^{\frac{ab^{2}c}{\epsilon}}2^{\frac{\epsilon}{\alpha}}1^{\frac{dbc\alpha}{(b+d)\epsilon}}2'^{b+d}1^{\frac{\alpha}{b+d}}2^{\frac{bcd}{\alpha}}
$$
\n
$$
1^{\frac{ab^{2}c}{\epsilon}}2^{\frac{\epsilon}{\alpha}}2'^{\frac{\epsilon}{\alpha}}1^{\frac{\alpha^{2}}{\epsilon}}2'^{\frac{bcd}{\alpha}}2^{\frac{bcd}{\alpha}}
$$

in which any two consecutive lines represent an edge in $\tilde{\mathcal{X}}$. This proves our claim.

Note that the expressions appearing in the coordinate transformation (iii) first appeared in the case $1.7(iii)$ in a different but equivalent form in [L3, 12.5] and were later rewritten in the present form in [BZ, 7.1]. (In the last displayed formula in [L3, 12.5], $a + d - f$ should be replaced by $c + d - f$.) In the cases 1.7(ii), 1.7(iii) the coordinate transformation $K^4 \to K^4$ appearing in (iii) can be viewed as a coordinate transformation $\mathbf{N}^4 \to \mathbf{N}^4$, $(d, c, b, a) \mapsto (d', c', b', a')$, where

$$
d' = a + 2b + c - \min(a + 2b, a + 2d, c + 2d),
$$

\n
$$
c' = \min(a + 2b, a + 2d, c + 2d) - \min(a + b, a + d, c + d),
$$

\n
$$
b' = 2\min(a + b, a + d, c + d) - \min(a + 2b, a + 2d, c + 2d),
$$

\n
$$
a' = b + c + d - \min(a + b, a + d, c + d),
$$

\nsince $a + b + d \ge \min(a + 2b, a + 2d).$

1.10. We apply the definitions in 1.8 to (I, \cdot) , σ as in 1.2. Then the associated (\underline{I}, \circ) is as in 1.4 (see 1.5). Let $\eta^{c_*}_*, \eta'^{\xi'_*}$ be two joined vertices of $\underline{\tilde{X}}$. We show that statements $1.9(i)$ -(iii) hold in the present case. In case (i) and (ii) the result is obvious. In case (iii) we can assume that $n = 2$ and we consider the sequence of vertices of $\tilde{\mathcal{X}}$:

> $1^a 4^a 2^b 3^{2b} 2^b 1^c 4^c 2^d 3^{2d} 2^d$ $1^a 2^b 4^a 3^{2b} 2^b 1^c 4^c 2^d 3^{2d} 2^d$ $1^a 2^b 4^a 3^{2b} 2^b 1^c 2^d 4^c 3^{2d} 2^d$ $1^a 2^b 4^a 3^{2b} 1^{\frac{cd}{b+d}} 2^{b+d} 1^{\frac{bc}{b+d}} 4^c 3^{2d} 2^d$ $1^a 2^b 4^a 1^{\frac{cd}{b+d}} 3^{2b} 2^{b+d} 1^{\frac{bc}{b+d}} 4^c 3^{2d} 2^d$ $1^a 2^b 4^a 1^{\frac{cd}{b+d}} 3^{2b} 2^{b+d} 4^c 1^{\frac{bc}{b+d}} 3^{2d} 2^d$ $1^a 2^b 4^a 1^{\frac{cd}{b+d}} 3^{2b} 4^c 2^{b+d} 1^{\frac{bc}{b+d}} 3^{2d} 2^d$ $1^a 2^b 4^a 1^{\frac{cd}{b+d}} 3^{2b} 4^c 2^{b+d} 3^{2d} 1^{\frac{bc}{b+d}} 2^d$ $1^a 2^b 1^{\frac{cd}{b+d}} 4^a 3^{2b} 4^c 2^{b+d} 3^{2d} 1^{\frac{bc}{b+d}} 2^d$ $2^{\frac{bcd}{\alpha}} 1^{\frac{\alpha}{b+d}} 2^{\frac{ab(b+d)}{\alpha}} 4^{a} 3^{2b} 4^{c} 2^{b+d} 3^{2d} 1^{\frac{bc}{b+d}} 2^{d}$ $2^{\frac{bcd}{\alpha}} 1^{\frac{\alpha}{b+d}} 2^{\frac{ab(b+d)}{\alpha}} 3^{\frac{2bc}{a+c}} 4^{a+c} 3^{\frac{2ab}{a+c}} T 2^{b+d} 3^{2d} 1^{\frac{bc}{b+d}} 2^d$ $2^{\frac{bcd}{\alpha}} 1^{\frac{\alpha}{b+d}} 2^{\frac{ab(b+d)}{\alpha}} 3^{\frac{2bc}{a+c}} 4^{a+c} 2^{\frac{d(b+d)(a+c)}{\alpha}} 3^{\frac{2\alpha}{a+c}} 2^{\frac{ab(b+d)}{\alpha}} 1^{\frac{bc}{b+d}} 2^d$ $2^{\frac{bcd}{\alpha}}1^{\frac{\alpha}{b+d}}2^{\frac{ab(b+d)}{\alpha}}3^{\frac{2bc}{a+c}}4^{a+c}2^{\frac{d(b+d)(a+c)}{\alpha}}3^{\frac{2\alpha}{a+c}}1^{\frac{bcd\alpha}{\epsilon}}2^{\frac{\epsilon}{\alpha}}1^{\frac{ab^2c}{\epsilon}}$ $2^{\frac{bcd}{\alpha}}1^{\frac{\alpha}{b+d}}2^{\frac{ab(b+d)}{\alpha}}3^{\frac{2bc}{a+c}}2^{\frac{d(b+d)(a+c)}{\alpha}}4^{a+c}3^{\frac{2\alpha}{a+c}}1^{\frac{bcd\alpha}{\epsilon}}2^{\frac{\epsilon}{\alpha}}1^{\frac{ab^2c}{a}}$ $2^{\frac{bcd}{\alpha}} 1^{\frac{\alpha}{b+d}} 3^{\frac{2bcd}{\alpha}} 2^{b+d} 3^{\frac{2ab^2c}{(a+c)\alpha}} 4^{a+c} 3^{\frac{2\alpha}{a+c}} 1^{\frac{bcd\alpha}{\epsilon}} 2^{\frac{\epsilon}{\alpha}} 1^{\frac{ab^2c}{\epsilon}}$ $2^{\frac{b c d}{\alpha}} 1^{\frac{\alpha}{b+d}} 3^{\frac{2 b c d}{\alpha}} 2^{b+d} 4^{\frac{\alpha^2}{\epsilon}} 3^{\frac{2 \epsilon}{\alpha}} 4^{\frac{a b^2 c}{\epsilon}} 1^{\frac{b c d \alpha}{\epsilon}} 2^{\frac{\epsilon}{\alpha}} 1^{\frac{a b^2 c}{\epsilon}}$ $2^{\frac{bcd}{\alpha}} 3^{\frac{2bcd}{\alpha}} 1^{\frac{\alpha}{b+d}} 2^{b+d} 4^{\frac{\alpha^2}{\epsilon}} 3^{\frac{2\epsilon}{\alpha}} 4^{\frac{ab^2c}{\epsilon}} 1^{\frac{bcd\alpha}{\epsilon}} 2^{\frac{\epsilon}{\alpha}} 1^{\frac{ab^2c}{\epsilon}}$ $2^{\frac{bcd}{\alpha}} 3^{\frac{2bcd}{\alpha}} 1^{\frac{\alpha}{b+d}} 2^{b+d} 4^{\frac{\alpha^2}{\epsilon}} 3^{\frac{2\epsilon}{\alpha}} 1^{\frac{bcd\alpha}{\epsilon}} 4^{\frac{ab^2c}{\epsilon}} 2^{\frac{\epsilon}{\alpha}} 1^{\frac{ab^2c}{\epsilon}}$ $2^{\frac{bcd}{\alpha}} 3^{\frac{2bcd}{\alpha}} 1^{\frac{\alpha}{b+d}} 2^{b+d} 4^{\frac{\alpha^2}{\epsilon}} 1^{\frac{bcd\alpha}{\epsilon}} 3^{\frac{2\epsilon}{\alpha}} 4^{\frac{ab^2c}{\epsilon}} 2^{\frac{\epsilon}{\alpha}} 1^{\frac{ab^2c}{\epsilon}}$ $2^{\frac{bcd}{\alpha}} 3^{\frac{2bcd}{\alpha}} 1^{\frac{\alpha}{b+d}} 2^{b+d} 4^{\frac{\alpha^2}{\epsilon}} 1^{\frac{bcd\alpha}{\epsilon}} 3^{\frac{2\epsilon}{\alpha}} 3^{\frac{4}{\alpha}} 2^{\frac{6}{\alpha}} 4^{\frac{ab^2c}{\epsilon}} 1^{\frac{ab^2c}{\epsilon}}$

$$
2^{\frac{bcd}{\alpha}} 3^{\frac{2bcd}{\alpha}} 1^{\frac{\alpha}{b+d}} 2^{b+d} 4^{\frac{\alpha^2}{\epsilon}} 1^{\frac{bcd\alpha}{\epsilon}} 3^{\frac{2\epsilon}{\alpha}} 3^{\frac{\epsilon}{\alpha}} 2^{\frac{\epsilon}{\alpha}} 1^{\frac{ab^2c}{\epsilon}} 4^{\frac{ab^2c}{\epsilon}} \n\n2^{\frac{bcd}{\alpha}} 3^{\frac{2bcd}{\alpha}} 1^{\frac{\alpha}{b+d}} 2^{b+d} 1^{\frac{bcd\alpha}{\epsilon}} 4^{\frac{\alpha^2}{\epsilon}} 3^{\frac{2\epsilon}{\alpha}} 2^{\frac{\epsilon}{\alpha}} 1^{\frac{ab^2c}{\epsilon}} 4^{\frac{ab^2c}{\epsilon}} \n\n2^{\frac{bcd}{\alpha}} 3^{\frac{2bcd}{\alpha}} 2^{\frac{bcd}{\alpha}} 1^{\frac{\alpha^2}{\epsilon}} 2^{\frac{\epsilon}{\alpha}} 4^{\frac{\alpha^2}{\epsilon}} 3^{\frac{2\epsilon}{\alpha}} 2^{\frac{\epsilon}{\alpha}} 1^{\frac{ab^2c}{\epsilon}} 4^{\frac{ab^2c}{\epsilon}} \n\n2^{\frac{bcd}{\alpha}} 3^{\frac{2bcd}{\alpha}} 2^{\frac{bcd}{\alpha}} 1^{\frac{\alpha^2}{\epsilon}} 4^{\frac{\alpha^2}{\epsilon}} 2^{\frac{\epsilon}{\alpha}} 3^{\frac{2\epsilon}{\alpha}} 2^{\frac{\epsilon}{\alpha}} 1^{\frac{ab^2c}{\epsilon}} 4^{\frac{ab^2c}{\epsilon}}
$$

in which any two consecutive lines represent an edge in $\tilde{\mathcal{X}}$. This proves our claim.

1.11. Define $\mathcal{B}, \mathcal{B}^{\sigma}$ as in 1.7, 1.8 in terms of $(I, \cdot), \sigma$ as in 1.2. The objects analogous to $(I, \cdot), \sigma, \mathcal{B}, \mathcal{B}^{\sigma}$ when $(I, \cdot), \sigma$ are taken as in 1.3 are denoted by $(I', \cdot), \sigma', \mathcal{B}', \mathcal{B}'^{\sigma'}$.

Let $\underline{\tilde{\mathcal{X}}}$ be the graph attached to $(I, \cdot), \sigma$ as in 1.8 and let $\underline{\tilde{\mathcal{X}}}'$ be the analogous graph attached to $(I', \cdot), \sigma'$. From the results in 1.9, 1.10 we see that the graphs $\tilde{\mathcal{X}}, \tilde{\mathcal{X}}'$ are canonically isomorphic. Hence the sets $\underline{\mathcal{B}}, \underline{\mathcal{B}}'$ of connected components of $\tilde{\mathcal{X}}, \tilde{\mathcal{X}}'$ are in canonical bijection. Combining with the canonical bijection $\underline{\mathcal{B}} \leftrightarrow$ \mathcal{B}^{σ} (see 1.8(a)) and the analogous bijection $\underline{\mathcal{B}}' \leftrightarrow \mathcal{B}'^{\sigma'}$ we obtain a canonical bijection

(a) $\mathcal{B}^{\sigma} \leftrightarrow \mathcal{B}'^{\sigma'}$.

1.12. In this subsection we take K, ι as in 1.7(iii). Let (I, \cdot) be a Cartan datum. Let f be the Q-algebra with 1 with generators θ_i ($i \in I$) and relations

$$
\sum_{p,p' \in \mathbf{N}; p+p'=1-2i \cdot j/(i \cdot i)} (-1)^{p'} (p!p'!)^{-1} \theta_i^p \theta_j \theta_i^{p'} = 0
$$

for $i \neq j$ in I. Let **B** be the canonical basis of the **Q**-vector space f obtained by specializing under $v = 1$ the canonical basis of the quantum version of f defined in [L1,L4]. For $i \in I$ and $b \in \mathbf{B}$ we define $l_i(b) \in \mathbf{N}$, by the requirement that $b \in \theta_i^{l_i(b)}$ $\theta_i^{l_i(b)}$ f, $b \notin \theta_i^{l_i(b)+1}$ $i_i^{l_i(b)+1}$ f; we define $r_i(b) \in \mathbf{N}$, by the requirement that $b \in \mathfrak{f}_i^{l_i(b)}$ $i^{(i(0)},$ $b \notin \mathfrak{f}\theta_i^{l_i(b)+1}$ $i^{(i(0)+1}_{i}$.

If (I, \cdot) is simply laced and β is as in 1.7 then we have a canonical bijection (a) $\beta : \mathbf{B} \xrightarrow{\sim} \mathcal{B}$

such that $\lambda_i \beta = \iota_i$, $\rho_i \beta = \iota r_i$ for all $i \in I$. (Here λ_i , $\rho_i : \mathcal{B} \to K$ are defined as λ_n , ρ_n in 1.8 in the case where $\sigma = 1$.) See [L1,L2].

Now let (I, \cdot) , σ be as in 1.5. Let (I, \circ) be as in 1.5. Let **B** be the analogue of **B** when (I, \cdot) is replaced by (\underline{I}, \circ) and let $\underline{l}_{\eta} : \underline{\mathbf{B}} \to \mathbf{N}$, $\underline{r}_{\eta} : \underline{\mathbf{B}} \to \mathbf{N}$ ($\eta \in \underline{I}$) be the

functions analogous to l_i, r_i defined in terms of (L, \circ) . The algebra automorphism $\theta_i \mapsto \theta_{\sigma(i)} (i \in I)$ of f restricts to a permutation of **B** denoted again by σ . Let \mathbf{B}^{σ} be the fixed point set of $\sigma : \mathbf{B} \to \mathbf{B}$. For $\eta \in \underline{I}$ we define $l_{\eta} : \mathbf{B}^{\sigma} \to \mathbf{N}$ by $l_{\eta}(b) = l_i(b)$ with $i \in \eta$; we define $r_{\eta}: \mathbf{B}^{\sigma} \to \mathbf{N}$ by $r_{\eta}(b) = r_i(b)$ with $i \in \eta$.

We have the following result:

(b) there is a canonical bijection $\gamma : \underline{\mathbf{B}} \stackrel{\sim}{\longrightarrow} \mathbf{B}^{\sigma}$ such that $l_{\eta}\gamma = l_{\eta}$, $r_{\eta}\gamma = l_{\eta}r_{\eta}$ for any $\eta \in I$.

When $\delta = 1$ (see 1.5) this is established in [L4, 14.4.9]. Assume now that $\delta = 2$. Then (I, \cdot) , σ are as in 1.2. We shall use the notation in 1.11. Let $\mathbf{B}', \sigma' : \mathbf{B}' \to \mathbf{B}'$ be the analogues of $\mathbf{B}, \sigma : \mathbf{B} \to \mathbf{B}$ when $(I, \cdot), \sigma$ are replaced by $(I', \cdot), \sigma'$. Since (\underline{I}, \circ) is the same when defined in terms of $(I, \cdot), \sigma$ or in terms of $(I', \cdot), \sigma'$ and since $\delta = 1$ for $(I', \cdot), \sigma'$ we see that we have a canonical bijection \overline{a} .

$$
(c) \underline{B} \leftrightarrow B'^{\sigma'}
$$

We now consider the following composition of bijections

 $\underline{\mathbf{B}} \leftrightarrow \mathbf{B}'^{\sigma'} \leftrightarrow \mathcal{B}'^{\sigma'} \leftrightarrow \mathcal{B}^\sigma \leftrightarrow \mathbf{B}^\sigma.$

(The first bijection is given by (c). The fourth bijection is obtained from (a) which is compatible with the actions of σ by taking fixed point sets of σ . The second bijection is an analogue of the fourth bijection. The third bijection is given by $1.11(a)$.) This bijection has the required properties. This establishes (b) in our case.

2. THE "FROBENIUS" ENDOMORPHISM Φ_e of **B**

2.1. We assume that we are in the setup of 1.8 and that K, ι are as in 1.7(iii). Following [L5, 9.11] we consider the monoid M^+ (with 1) defined by the generators ξ_i^n $(i \in I, n \in \mathbb{Z})$ and the relations

(i) $\xi_i^a \xi_i^b = \xi_i^{\min(a,b)}$ $i^{min(a, b)}$ for any $i \in I$ and a, b in **Z**;

(ii) $\xi_i^a \xi_{i'}^b = \xi_{i'}^b \xi_i^a$ for any $i, i' \in I$ such that $i \cdot i' = 0$ and any a, b in Z;

(iii) $\xi_i^a \xi_{i'}^b \xi_i^c = \xi_{i'}^{a'}$ $a'_{i'}\xi_i^{b'}$ $_{i}^{b^{\prime }}\xi_{i^{\prime }}^{c^{\prime }}$ $i_i^{c'}$ for any i, i' in I such that $i \cdot i' = -1$ and any integers a, b, c, a', b', c' such that $a' = b+c-\min(a, c), b' = \min(a, c), c' = a+b-\min(a, c)$, or equivalently $a = b' + c' - \min(a', c'), b = \min(a', c'), c = a' + b' - \min(a', c').$ (Here ξ_i^0 is not assumed to be 1.)

Remark. In the last line of $[L5, 9.9]$ one should replace "adding c to the first entry of \mathbf{c}^n by the text: "replacing the first entry c_1 of \mathbf{c} by min (c, c_1) ". In [L5, 9.10(a)], $n + n'$ should be replaced by $\min(n, n')$.

For any $i_* \in \mathcal{X}$ we define a map $\zeta_{i_*} : K^N \to M^+$ by $c_* \mapsto {\xi_{i_1}'}^{-1(c_1)}$ $\frac{\mu^{-1}(c_1)}{i_1} \xi_{i_2}^{\mu^{-1}(c_2)}$ $\frac{\iota^{1}}{\iota_2}^{(c_2)} \ldots \xi_{i_N}^{\iota^{-1}(c_N)}$ $\frac{\iota}{i_N}$ $\frac{(c_N)}{c_N}$.

From [L5, 9.10] we see that ζ_{i_*} is injective. Clearly its image is independent of the choice of i_* ; we denote it by M_0^+ . Note that $\xi_i^n M_0^+ \subset M_0^+$, $M_0^+ \xi_i^n \subset M_0^+$ for any $i \in I$, $n \in \mathbb{N}$. In particular, M_0^+ is a submonoid (without 1) of M^+ . We define $\zeta : \tilde{\mathcal{X}} \to M_0^+$ by $i_*^{c_*} \mapsto \zeta_{i_*}(c_*)$. This map is constant on any connected connected component of $\tilde{\mathcal{X}}$ hence it induces a map $\bar{\zeta}: \mathcal{B} \to M_0^+$ (necessarily a bijection).

Now $\xi_i^n \mapsto \xi_{\sigma(i)}^n$ (with $i \in I, n \in \mathbb{Z}$) defines a monoid automorphism $M^+ \to$ M^+ denoted again by σ . It restricts to a monoid automorphism $M_0^+ \rightarrow M_0^+$ denoted again by σ . This is compatible with the bijection $\sigma : \mathcal{B} \to \mathcal{B}$ via $\bar{\zeta}$. Note that the fixed points $M^{+\sigma}$, $M_0^{+\sigma}$ are submonoids of M^+, M_0^+ . Consider the composite bijection $\underline{\mathbf{B}} \leftrightarrow \mathbf{B}^{\sigma} \leftrightarrow \mathcal{B}^{\sigma} \leftrightarrow M_0^{+\sigma}$. Here the first bijection is as in $1.12(b)$, the second bijection is induced by the one in $1.12(a)$ and the third bijection is induced by $\bar{\zeta}$. Via this bijection the monoid structure on $M_0^{+\sigma}$ becomes a monoid structure on B.

2.2. We show that the crystal graph structure on **B** introduced in [Ka] is completely determined by the monoid structure of $M^{+\sigma}$. For simplicity we assume that $\sigma = 1$ so that $\underline{\mathbf{B}} = \mathbf{B}$. We identify $\mathbf{B} = M_0^+$ via $\overline{\zeta}$. As shown in [L2] giving the crystal graph structure on **B** is equivalent to giving for any $i \in I$, $n \in \mathbb{N}$ the subsets $l_i^{-1}(n)$ (see 1.12) of **B** and certain bijections $l_i^{-1}(0) \xrightarrow{\sim} l_i^{-1}(n)$. Now $l_i^{-1}(n)$ is exactly the set of $\xi \in M_0^+$ such that $\xi_i^a \xi = \xi$ for any $a \ge n$ and $\xi_i^a \xi \ne \xi$ for any $a \in [0, n-1]$. The inverse of the bijection $l_i^{-1}(0) \xrightarrow{\sim} l_i^{-1}(n)$ is given by $\xi \mapsto \xi_i^0 \xi.$

2.3. We fix an integer $e \geq 1$. There is a well defined endomorphism $\Phi_e : M^+ \to$ M^+ (as a monoid with 1) such that $\xi_i^n \mapsto \xi_i^{en}$ for any $i \in I, n \in \mathbb{Z}$. This restricts to a monoid endomorphism $M_0^+ \to M_0^+$. Moreover, it commutes with $\sigma : M^+ \to M^+$ hence it restricts to a monoid endomorphism $M_0^{+\sigma} \to M_0^{+\sigma}$. Via the bijection $\underline{\mathbf{B}} \leftrightarrow M_0^{+\sigma}$ in 2.1 this becomes a monoid endomorphism $\underline{\mathbf{B}} \to \underline{\mathbf{B}}$ denoted again by Φ_e . We call Φ_e the "Frobenius" endomorphism of the canonical basis B.

REFERENCES

- [BZ] A.Berenstein and A.Zelevinsky, Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math. 143 (2001), 77-128.
- [Ka] M.Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. **63** (1991), 465-516.
- [Li] P.Littelmann, Path and root operators in representation theory, Ann.Math. 142 (1995), 449-525.
- [L1] G.Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447-498.
- [L2] G.Lusztig, Canonical bases arising from quantized enveloping algebras, II, in "Common trends in mathematics and quantum field theories", Progr. of Theor. Phys. Suppl. 102 (1990), 175-201.
- [L3] G.Lusztig, *Introduction to quantized enveloping algebras*, New developments in Lie theory and their applications, ed. J.Tirao, Progr. in Math., vol. 105, Birkhäuser Boston, 1992, pp. 49-65.
- [L4] G.Lusztig, *Introduction to quantum groups*, Progr. in Math., vol. 110, Birkhäuser Boston, 1993.
- [L5] G.Lusztig, Total positivity in reductive groups, Lie theory and geometry, Progr.in Math., vol. 123, Birkhäuser Boston, 1994, pp. 531-568.

G. Lusztig Department of Mathematics, M. I. T., Cambridge, MA02139 E-mail: gyuri@math.mit.edu