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Introduction

In [L1] the author introduced the canonical basis for the plus part of a quan-
tized enveloping algebra of type A,D or E. (The same method applies for non-
simplylaced types, see [L3, 12.1].) Another approach to the canonical basis was
later found in [Ka]. In [L1] we have also found that the set parametrizing the
canonical basis has a natural piecewise linear structure that is, a collection of
bijections with NN such that any two of these bijections differ by composition
with a piecewise linear automorphism of NN (an automorphism which can be
expressed purely in terms of operations of the form a + b, a− b, min(a, b)). This
led to the first purely combinatorial formula (involving only counting) for the
dimension of a weight space of an irreducible finite dimensional representation
[L1] or the dimension of the space of coinvariants in a triple tensor product [L2,
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6.5(f)]. (Later, different formulas in the same spirit were obtained by Littelmann
[Li].) The construction of an analogous piecewise linear structure for the canon-
ical basis in the nonsimplylaced case (based on a reduction to the simplylaced
case) was only sketched in [L3] partly because it involved an assertion whose
proof only appeared later (in [L4, 14.4.9]): as Berenstein and Zelevinsky write in
[BZ, Proof of Theorem 5.2], ”Lusztig (implicitly) claims that the transition map
R1212

2121 for B2 is obtained from the transition map R213213
132132 for type A3...”. In this

paper we fill the gap in [L3] by making use of [L4, 14.4.9] which gives a relation
between the canonical basis for a nonsimplylaced type and the canonical basis
for a simplylaced type with a given (admissible) automorphism. At the same
time we slightly extend [L4, 14.4.9] by allowing type A2n with its non-admissible
involution.

As an application we show that the canonical basis has a natural monoid
structure and we define certain ”Frobenius” endomorphisms of this monoid.

1. Parametrization

1.1. In this paper a Cartan datum is understood to be a pair (I, ·) where I is
a finite set and (i · j) is a symmetric positive definite matrix of integers indexed
by I × I such that

i · i ∈ 2N>0 for any i ∈ I;
2 i·j

i·i ∈ −N for any i 6= j in I;
We say that (I, ·) as above is

-simply laced if i · j ∈ {0,−1} for any i 6= j in I and i · i = 2 for any i ∈ I;
-irreducible if I 6= ∅ and there is no partition I = I ′ t I ′′ with I ′ 6= ∅, I ′′ 6= ∅,

i′ · i′′ = 0 for all i′ ∈ I ′, i′′ ∈ I ′′.
Let (I, ·) be a Cartan datum. For i 6= j in I we have 2i·j

i·i
2j·i
j·j = 0, 1, 2 or 3;

accordingly, we set h(i, j) = 2, 3, 4 or 6. The Weyl group W of (I, ·) is the group
with generators si(i ∈ I) and relations s2

i = 1 for i ∈ I and sisjsi · · · = sisjsi . . .

(both products have h(i, j) factors) for i 6= j in I. Let l : W −→ N be the standard
legth function relative to the generators si. Let w0 be the unique element of W

such that l(w0) is maximal. Let N = l(w0) and let X be the set of sequences
i∗ = (i1, i2, . . . , iN ) in I such that si1si2 . . . siN

= w0 (in W ). We regard X as the
set of vertices of a graph in which i∗, i′∗ are joined if the sequences i∗, i′∗ coincide
except at the places k, k + 1, k + 2, . . . , k + r − 1 where
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(ik, ik+1, . . . , ik+r−1) = (p, p′, p, . . . ), (i′k, i′k+1, . . . , i
′
k+r−1) = (p′, p, p′, . . . ),

with p 6= p′ in I, h(p, p′) = r. By a theorem of Matsumoto and Tits,
(a) this graph is connected.

1.2. Let I = {1, 2, . . . , 2n}, n ≥ 1. For i, j ∈ I we set i · j = 2 if i = j, i · j = −1
if i − j = ±1 and i · j = 0 otherwise. Then (I, ·) is a simply laced irreducible
Cartan datum. Define a permutation σ : I −→ I by σ(i) = 2n + 1 − i for all i.
We have σ(i) · σ(j) = i · j for any i, j in I.

1.3. Let I = {1, 2, . . . , n − 1, n, n′}, n ≥ 1. For i, j ∈ [1, n] we set i · j = 2 if
i = j, i · j = −1 if i − j = ±1 and i · j = 0 otherwise; we also set n′ · n′ = 2,
(n−1) ·n′ = n′ · (n−1) = −1, i ·n′ = n′ · i = 0 if i < n−1 or if i = n. Then (I, ·)
is a simply laced irreducible Cartan datum. It is irreducible if n ≥ 2. Define a
permutation σ : I −→ I by σ(i) = i for i ∈ [1, n − 1], σ(n) = n′, σ(n′) = n. We
have σ(i) · σ(j) = i · j for any i, j in I.

1.4. Let I = {1̄, 2̄, . . . , n̄}, n ≥ 1. For i, j ∈ [1, n − 1] we set ī ◦ j̄ = 2 if
i = j, ī ◦ j̄ = −1 if i − j = ±1 and ī ◦ j̄ = 0 otherwise; we also set n̄ ◦ n̄ = 4,
n− 1 ◦ n̄ = n̄ ◦ n− 1 = −2, ī ◦ n̄ = n̄ ◦ ī = 0 if i < n − 1. Then (I, ◦) is an
irreducible Cartan datum.

1.5. Let (I, ·) be a simply laced Cartan datum and let σ : I −→ I be a permuta-
tion such that σ(i) · σ(j) = i · j for any i, j in I. Let I be the set of orbits of σ

on I. For η ∈ I we set δη = 1 if σ(i) · σ(j) = 0 for any i 6= j in η and δη = 2,
otherwise. We set δ = maxη∈I δη ∈ {1, 2}. We will assume that

(a) either δ = 1 or (I, ·) is irreducible.
For any η ∈ I we set η ◦ η = 2δ−1δη|η|. For any η 6= η′ in I we set

η ◦ η′ = −δ−1δηδη′ |{(i, j) ∈ η × η′; i · j 6= 0}|.
We show that (I, ◦) is a Cartan datum. Assume first that δ = 1. Let {xη; η ∈ I}
be a collection of real numbers, not all zero. Let m =

∑
η,η′∈I xηxη′η ◦ η′. it

is enough to show that m > 0. For i ∈ I let yi = xη where i ∈ η. From the
definitions we have m =

∑
i,i′∈I yiyi′i · i′ and this is > 0 since (i · i′) is positive

definite. Assume next that δ = 2. We can assume that (I, ·), σ are as in 1.2.
Denoting by ī the subset {i, 2n + 1− i} of I (i ∈ [1, n]) we see that (I, ◦) is the
same as that in 1.4 hence it is a Cartan datum.

1.6. Let (I, ·), σ be as in 1.3. We define (I, ◦) in terms of (I, ·), σ as in 1.5.
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Denoting by ī the subset {i} of I (i ∈ [1, n− 1]) and the subset {n, n′} if i = n,
we see that (I, ◦) is the same as that in 1.4.

1.7. Let (I, ·) be a simply laced Cartan datum. Let W, l, w0, N be as in 1.1. Let
K be either:

(i) a subgroup of the multiplicative group of a field which is closed under
addition in that field;

(ii) a set with a given bijection ι : Z ∼−→ K with the operations a + b, ab, a/b

(on K) obtained by transporting to K the operations min(a, b), a+ b, a− b on Z;

(iii) the subset ι(N) of the set in (ii); this is stable under the operations
a + b, ab, a/(a + b).
Note that operations on K in (i) and (ii) have similar properties; they are both ex-
amples of ”semifields”. (See http://en.wikipedia.org/wiki/semifield.) The anal-
ogy between K in (ii) and K in (i) has been pointed out in [L4, 42.2.7] in
connection with observing the analogy of the combinatorics of canonical bases
and the geometry involved in total positivity.

Let X̃ be the set of all objects ic1
1 ic2

2 . . . icN

N (also denoted by ic∗∗ ) where i∗ =
(i1, i2, . . . , iN ) ∈ X , c∗ = (c1, c2, . . . , cN ) ∈ KN . We regard X̃ as the set of
vertices of a graph in which two vertices ic∗∗ , i′∗

c′∗ are joined if either

the sequences i∗, i′∗ coincide except at two places k, k+1 where i′k = ik+1, i
′
k+1 =

ik and ik · ik+1 = 0; the sequences c∗, c′∗ coincide except at the places k, k + 1
where c′k = ck+1, c

′
k+1 = ck; or

the sequences i∗, i′∗ coincide except at three places k, k + 1, k + 2 where

(ik, ik+1, ik+2) = (p, p′, p), (i′k, i′k+1, i
′
k+2) = (p′, p, p′),

with p · p′ = −1; the sequences c∗, c′∗ coincide except at the places k, k + 1, k + 2
where

(ck, ck+1, ck+2) = (x, y, z), (c′k, c′k+1, c
′
k+2) = (x′, y′, z′)

with x′ = yz/(x+z), y′ = x+z, z′ = xy/(x+z) or equivalently x = y′z′/(x′+z′),
y = x′ + z′, z = x′y′/(x′ + z′).
We shall write R

i′∗
i∗(c∗) = c′∗ whenever ic∗∗ , i′∗

c′∗ are joined in the graph X̃ . Then

R
i′∗
i∗ : KN −→ KN can be viewed as a bijection defined whenever i∗, i′∗ are joined

in the graph X .

Let B be the set of connected components of the graph X̃ . For any i∗ ∈ X we
define αi∗ : KN −→ B by c∗ 7→ connected component of ic∗∗ . Note that:
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(a) αi∗ is a bijection.
If K is as in 1.7(i) this follows from the proof of [L4, 42.2.4]. If K is as in 1.7(ii)
then, as in [L4, 42.2.7], it can be viewed as a homomorphic image of a K as in
1.7(ii) so that (a) holds in this case. The case where K is as in 1.7(iii) follows
immediately from the case where K is as in 1.7(ii), or it can be obtained directly
from [L4, 42.1.9].

For any i∗, i′∗ in X we define a bijection R
i′∗
i∗ : KN ∼−→ KN as the composi-

tion R
it−1
∗

it∗
. . . R

i2∗
i1∗

R
i1∗
i0∗

where i0∗, i
1
∗, . . . , i

t
∗ is a sequence of vertices in X̃ such that

(i0∗, i
1
∗), (i

1
∗, i

2
∗), . . . , (i

t−1
∗ , it∗) are edges of the graph X and i0∗ = i∗, it∗ = i′∗ (such

a sequence exists by 1.1(a)). This agrees with the earlier definition in the case
where i∗, i′∗ are joined in X . Note that R

i′∗
i∗ is independent of the choice above;

it is equal to α−1
i′∗

αi∗ .

1.8. Let (I, ·), σ be as in 1.5. Define (I, ◦) as in 1.5. Define W, l, w0, N,X as in
1.1. Let W, l, w0, N,X be the analogous objects defined in terms of (I, ◦). The
generators of W are denoted by si(i ∈ I) as in 1.1; similarly let sη(η ∈ I) be
the generators of W . For any η ∈ I let wη ∈ W be the longest element in the
subgroup of W generated by {si; i ∈ η}; let Nη = l(wη). We can identify W

with the subgroup of W generated by {wη; η ∈ I} by sending sη to wη. Then
w0 = w0 and X becomes the set of sequences η∗ = (η1, η2, . . . , ηN ) in IN such that
wη1wη2 . . . wηN

= w0. We have W = {w ∈ W ;σ(w) = w} where σ : W −→ W is
the automorphism given by σ(si) = sσ(i) for all i. For any η ∈ I let X η be the
set of sequences (h1, h2, . . . , hNη ) in ηNη such that sh1sh2 . . . shNη

= wη.

Let X̃ be as in 1.7. Let X̃ be the set of all objects ηc1
1 ηc2

2 . . . η
cN

N (also denoted
by ηc∗∗ ) where η∗ = (η1, η2, . . . , ηN ) ∈ X , c∗ = (c1, c2, . . . , cN ) ∈ KN .

Let X̂ be the set of all pairs (ηc∗∗ , d∗) where ηc∗∗ ∈ X̃ and d∗ = (d1, d2, . . . , dN )
is such that dj ∈ X ηj for j ∈ [1, N ]. Let (ηc∗∗ , d∗) ∈ X̂ . For j ∈ [1, N ], k ∈ [1, Nj ]
(where Nj = Nηj

) let εj,k be the number of k′ ∈ [1, Nj ] such that hk′ = hk where
dj = (h1, h2, . . . , hNj

). We have εj,k ∈ {1, 2}. Let εj = maxk∈[1,Nj ] δj,k ∈ {1, 2}.
Let cj

∗ = (εjε
−1
j,1cj , εjε

−1
j,2cj , . . . , εjε

−1
j,Nj

cj) ∈ KNj . Let c∗ = c1
∗c

2
∗ . . . c

N
∗ ∈ KN be

the concatenation of c1
∗, c

2
∗, . . . , c

N
∗ . Let i∗ = d1d2 . . . dN be the concatenation of

d1, d2, . . . , dN . We have i∗ ∈ X and ic∗∗ ∈ X̃ .

We show that the connected component of ic∗∗ in X̃ depends only on ηc∗∗ , not
on d∗. Let d′∗ = (d′1, d

′
2, . . . , d

′
N ) be another sequence such that d′j ∈ X ηj for
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j ∈ [1, N ]. Let i′∗ be the concatenation of d′1, d
′
2, . . . , d

′
N . Define c′∗ in terms of

(ηc∗∗ , d′∗) in the same way as c∗ was defined in terms of (ηc∗∗ , d∗). We must show
that ic∗∗ , i′∗

c′∗ are in the same connected component of X̃ . We may assume that
I is a single σ-orbit η. Assume first that η = {i, i′} with i · i′ = −1. It is enough
to show that ici′2cic and i′ci2ci′c are joined in X̃ (where c ∈ K). This is clear
since c + c = 2c, c(2c)/(c + c) = c. Next assume that η is not of the form {i, i′}
with i · i′ = −1. Then η = {i1, i2, . . . , ik} where si1 , si2 , . . . , sik

commute with
each other. It is enough to show that the connected component of ic1i

c
2 . . . ick in X̃

does not depend on the order in which i1, i2, . . . , ik are written (where c ∈ K);
this is obvious.

We see that the map X̂ −→ B given by (ηc∗∗ , d∗) 7→ connected component of ic∗∗
factors through a map s : X̃ −→ B (B as in 1.7).

We define a permutation σ : X −→ X by

i∗ = (i1, i2, . . . , iN ) 7→ (σ(i1), σ(i2), . . . , σ(iN ))
and a permutation σ : X̃ −→ X̃ by ic∗∗ 7→ σ(i∗)c∗ . This last permutation respects
the graph structure of X̃ hence induces a permutation (denoted again by σ) of
B.

We show that the image of s : X̃ −→ B is contained in the set Bσ of fixed points
of σ : B −→ B. Let (ηc∗∗ , d∗) ∈ X̂ ; we associate to it ic∗∗ ∈ X̃ as above. For j ∈
[1, N ] we set d′j = (σ(h1), σ(h2), . . . , σ(hNj

)) (where dj = (h1, h2, . . . , hNj
), Nj =

Nηj
) and d′∗ = (d′1, d

′
2, . . . , d

′
N ). Let i′∗ be the concatenation of d′1, d

′
2, . . . , d

′
N . We

have i′∗ ∈ X . Now i′∗
c∗ is associated to (ηc∗∗ , d′∗) ∈ X̂ in the same way as i∗c∗ is

associated to (ηc∗∗ , d∗) ∈ X̂ ; hence ic∗∗ , i′∗
c∗ are in the same connected component

of X̃ by an earlier argument. This verifies our claim.

Now let ξ ∈ Bσ and let η∗ ∈ X . We show that ξ = s(ηc∗∗ ) for some c∗ ∈
KN . We can find d∗ = (d1, d2, . . . , dN ) such that dj ∈ X ηj for j ∈ [1, N ]. Let
i∗ = d1d2 . . . dN be the concatenation of d1, d2, . . . , dN . We have i∗ ∈ X and by
1.1(a) we can find c∗ ∈ KN such that ic∗∗ ∈ ξ. Let d′∗ be obtained from d∗ as
in the previous paragraph and let i′∗ be the concatenation of d′1, d

′
2, . . . , d

′
N . We

have i′∗ = σ(i∗) ∈ X . Since ξ is σ-stable we see that ic∗∗ , i′∗
c∗ are in the same

connected component of X̃ . Now c∗ ∈ KN can be viewed as the concatenation
of c1

∗, c
2
∗, . . . , c

N
∗ where cj

∗ = (cj
1, c

j
2, . . . , c

j
Nj

) ∈ KNj , Nj = Nηj
. For j ∈ [1, N ] we

write dj = (h1, h2, . . . , hNj ) ∈ η
Nj

j and we define c′∗
j = (c′1

j , c′2
j , . . . , c′Nj

j) ∈ KNj
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by

(i) c′k
j = cj

k′ where σ(hk) = hk′ if sh1 , sh2 , . . . , shNj
commute with each other

and

(ii) c′1
j = cj

2c
j
3/(cj

1 + cj
3), c

′
2
j = cj

1 + cj
3, c

′
3
j = cj

1c
j
2/(cj

1 + cj
3) if h1 · h2 = −1,

h1 = h3.
Let c′∗ ∈ KN be the concatenation of c′∗

1, c′∗
2, . . . , c′∗

N . From the definitions we
see that ic∗∗ , i′∗

c′∗ are in the same connected component of X̃ . Hence i′∗
c∗ , i′∗

c′∗ are
in the same connected component of X̃ . Using the bijectivity of αi′∗ : KN −→ B
(see 1.7(a)) we deduce that c∗ = c′∗. Hence in (i) we have cj

k = cj
k′ whenever

σ(hk) = hk′ , hence cj
k is a constant cj when k varies in [1, Nj ]. Moreover in (ii)

we have cj
1 = cj

2c
j
3/(cj

1 + cj
3), c

j
2 = cj

1 + cj
3, c

j
3 = cj

1c
j
2/(cj

1 + cj
3) hence cj

2 = 2cj , c
j
1 =

cj
3 = cj for some cj ∈ K. Let c∗ = (c1, c2, . . . , cN ) ∈ KN . From the definitions

we see that s(ηc∗∗ ) is the connected component of ic∗∗ . Our claim is verified.

Assume that η∗ ∈ X , c∗ ∈ KN , c′∗ ∈ KN are such that s(η∗, c∗) = s(η∗, c′∗).
We show that c∗ = c′∗. We can find d∗ = (d1, d2, . . . , dN ) such that dj ∈ X ηj for
j ∈ [1, N ]. We define ic∗∗ ∈ X̃ in terms of (ηc∗∗ , d∗) as above and we define similarly
i′∗

c′∗ ∈ X̃ in terms of (ηc′∗∗ , d∗). Note that i∗ = i′∗. By assumption, ic∗∗ , i
c′∗∗ are

in the same connected component of X̃ . From 1.7(a) we see that c∗ = c′∗. Now
c∗ ∈ KN is the concatenation of c1

∗, c
2
∗, . . . , c

N
∗ where cj

∗ = (cj
1, c

j
2, . . . , c

j
Nj

) ∈ KNj ,
Nj = Nηj . Similarly, c′∗ ∈ KN is the concatenation of c′∗

1, c′∗
2, . . . , c′∗

N where
c′∗

j = (c′1
j , c′2

j , . . . , c′Nj

j) ∈ KNj for j ∈ [1, N ]. We see that for any j and any
k ∈ [1, Nj ] we have cj

k = c′k
j . If εj = 1 it follows that cj = c′j . If εj = 2 it

follows that (cj , 2cj , cj) = (c′j , 2c′j , c
′
j) hence again cj = c′j . We see that c∗ = c′∗ as

required.

From the previous two paragraphs we see that for any η∗ ∈ X the map αη∗ :
KN −→ Bσ given by c∗ 7→ s(ηc∗∗ ) is a bijection.

For any η∗, η′∗ in X we define a bijection R
η′∗
η∗ : KN −→ KN by R

η′∗
η∗ = α−1

η′∗
αη∗ .

We regard X̃ as the set of vertices of a graph in which two vertices ηc∗∗ , η′∗
c′∗ are

joined if the sequences η∗, η′∗ coincide except at the places k, k + 1, k + 2, . . . , k +
r − 1 where

(ηk, ηk+1, . . . , ηk+r−1) = (p, p′, p, . . . ), (η′k, η′k+1, . . . , η
′
k+r−1) = (p′, p, p′, . . . ),

with p 6= p′ in I, h(p, p′) = r and R
η′∗
η∗(c∗) = c′∗ or equivalently Rη∗

η′∗
(c′∗) = c∗.

Here h(p, p′) is the analogue of h(i, i′) (see 1.1) for (I, ◦) instead of (I, ·).
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Let B be the set of connected components of the graph X̃ . From the definitions
we see that the map s : X̃ −→ Bσ factors through a map s̄ : B −→ Bσ. We show
that

(a) s̄ is a bijection.
The surjectivity of s̄ follows from the surjectivity of s. To prove that s̄ is injective
we assume that ηc∗∗ , η′∗

c′∗ are two elements of X̃ such that s(ηc∗∗ ) = s(η′∗
c′∗); we

must show that ηc∗∗ , η′∗
c′∗ are in the same connected component of X̃ . By the

connectedness of the graph X (see 1.1(a)) we can find c′′∗ ∈ KN such that η′∗
c′∗ ,

η
c′′∗∗ are in the same connected component of X̃ . We have s(η′∗

c′∗) = s(ηc′′∗∗ ) hence
s(ηc′′∗∗ ) = s(ηc∗∗ ). Using the bijectivity of αη∗ we deduce that c∗ = c′′∗ . Thus, η′∗

c′∗ ,
ηc∗∗ are in the same connected component of X̃ and our claim is verified.

Let η ∈ I. We define a map λη : B −→ K by ξ 7→ c1 where ηc∗∗ is any element
of ξ such that η1 = η. (This map is well defined by an argument similar to that
in [L4, 42.1.14].) Similarly we define a map ρ

η
: B −→ K by ξ 7→ cN where ηc∗∗ is

any element of ξ such that ηN = η.

We define a map λη : Bσ −→ K by ξ 7→ c1 where ic∗∗ is any element of ξ such
that i1 ∈ η. (This map is well defined.) Similarly we define a map ρη : Bσ −→ K

by ξ 7→ cN where ic∗∗ is any element of ξ such that iN ∈ η.

From the definitions we have λη s̄ = λη, ρη s̄ = ρ
η
,

1.9. We apply the definitions in 1.8 to (I, ·), σ as in 1.3 and to (I, ◦) as in 1.4,
1.6. Let ηc∗∗ , η′∗

c′∗ be two joined vertices of X̃ . We show:

(i) if η∗, η′∗ coincide except at the places k, k + 1 where (ηk, ηk+1) = (̄i, ī′),
(η′k, η′k+1) = (̄i′, ī), i − i′ /∈ {0, 1,−1} then c∗, c′∗ coincide except at the places
k, k + 1 where (ck, ck+1) = (x, y), (c′k, c′k+1) = (y, x);

(ii) if η∗, η′∗ coincide except at the places k, k+1, k+2 where (ηk, ηk+1, ηk+2) =
(̄i, ī′, ī), (η′k, η′k+1, η

′
k+2) = (̄i′, ī, ī′), (i, i′ in [1, n − 1], i − i′ = ±1, then c∗, c′∗

coincide except at the places k, k + 1, k + 2 where (ck, ck+1, ck+2) = (x, y, z),
(c′k, c′k+1, c

′
k+2) = (x′, y′, z′) with x′ = yz/(x + z), y′ = x + z, z′ = xy/(x + z) or

equivalently x = y′z′/(x′ + z′), y = x′ + z′, z = x′y′/(x′ + z′);

(iii) if η∗, η′∗ coincide except at the places k, k + 1, k + 2, k + 3 where

(ηk, ηk+1, ηk+2, ηk+3) = (n− 1, n̄, n− 1, n̄),

(η′k, η′k+1, η
′
k+2, η

′
k+3) = (n̄, n− 1, n̄, n− 1)

then c∗, c′∗ coincide except at the places k, k + 1, k + 2, k + 3 where
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(ck, ck+1, ck+2, ck+3) = (d, c, b, a), (c′k, c′k+1, c
′
k+2, c

′
k+3) = (d′, c′, b′, a′)

and

d′ = ab2c/ε, c′ = ε/α, b′ = α2/ε, a′ = bcd/α

(or equivalently

d = a′b′2c′/ε′, c = ε′/α′, b = α′2/ε′, a = b′c′d′/α′)
with the notation

α = ab + ad + cd, ε = ab2 + ad2 + cd2 + 2abd,

α′ = a′b′ + a′d′ + c′d′, ε′ = a′b′2 + a′d′2 + c′d′2 + 2a′b′d′.
In case (i) and (ii) the result is obvious. In case (iii) we can assume that n = 2
and we consider the sequence of vertices of X̃ :

2d2′d1c2′b2b1a

2d1
bc

b+d 2′b+d1
cd

b+d 2b1a

2d1
bc

b+d 2′b+d2
ab(b+d)

α 1
α

b+d 2
bcd
α

2d1
bc

b+d 2
ab(b+d)

α 2′b+d1
α

b+d 2
bcd
α

1
ab2c

ε 2
ε
α 1

dbcα
(b+d)ε 2′b+d1

α
b+d 2

bcd
α

1
ab2c

ε 2
ε
α 2′

ε
α 1

α2
ε 2′

bcd
α 2

bcd
α

in which any two consecutive lines represent an edge in X̃ . This proves our claim.

Note that the expressions appearing in the coordinate transformation (iii)
first appeared in the case 1.7(iii) in a different but equivalent form in [L3, 12.5]
and were later rewritten in the present form in [BZ, 7.1]. (In the last displayed
formula in [L3, 12.5], a + d − f should be replaced by c + d − f .) In the cases
1.7(ii), 1.7(iii) the coordinate transformation K4 −→ K4 appearing in (iii) can
be viewed as a coordinate transformation N4 −→ N4, (d, c, b, a) 7→ (d′, c′, b′, a′),
where

d′ = a + 2b + c−min(a + 2b, a + 2d, c + 2d),

c′ = min(a + 2b, a + 2d, c + 2d)−min(a + b, a + d, c + d),

b′ = 2 min(a + b, a + d, c + d)−min(a + 2b, a + 2d, c + 2d),

a′ = b + c + d−min(a + b, a + d, c + d),
since a + b + d ≥ min(a + 2b, a + 2d).
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1.10. We apply the definitions in 1.8 to (I, ·), σ as in 1.2. Then the associated
(I, ◦) is as in 1.4 (see 1.5). Let ηc∗∗ , η′∗

c′∗ be two joined vertices of X̃ . We show
that statements 1.9(i)-(iii) hold in the present case. In case (i) and (ii) the result
is obvious. In case (iii) we can assume that n = 2 and we consider the sequence
of vertices of X̃ :

1a4a2b32b2b1c4c2d32d2d

1a2b4a32b2b1c4c2d32d2d

1a2b4a32b2b1c2d4c32d2d

1a2b4a32b1
cd

b+d 2b+d1
bc

b+d 4c32d2d

1a2b4a1
cd

b+d 32b2b+d1
bc

b+d 4c32d2d

1a2b4a1
cd

b+d 32b2b+d4c1
bc

b+d 32d2d

1a2b4a1
cd

b+d 32b4c2b+d1
bc

b+d 32d2d

1a2b4a1
cd

b+d 32b4c2b+d32d1
bc

b+d 2d

1a2b1
cd

b+d 4a32b4c2b+d32d1
bc

b+d 2d

2
bcd
α 1

α
b+d 2

ab(b+d)
α 4a32b4c2b+d32d1

bc
b+d 2d

2
bcd
α 1

α
b+d 2

ab(b+d)
α 3

2bc
a+c 4a+c3

2ab
a+c T2b+d32d1

bc
b+d 2d

2
bcd
α 1

α
b+d 2

ab(b+d)
α 3

2bc
a+c 4a+c2

d(b+d)(a+c)
α 3

2α
a+c 2

ab(b+d)
α 1

bc
b+d 2d

2
bcd
α 1

α
b+d 2

ab(b+d)
α 3

2bc
a+c 4a+c2

d(b+d)(a+c)
α 3

2α
a+c 1

bcdα
ε 2

ε
α 1

ab2c
ε

2
bcd
α 1

α
b+d 2

ab(b+d)
α 3

2bc
a+c 2

d(b+d)(a+c)
α 4a+c3

2α
a+c 1

bcdα
ε 2

ε
α 1

ab2c
ε

2
bcd
α 1

α
b+d 3

2bcd
α 2b+d3

2ab2c
(a+c)α 4a+c3

2α
a+c 1

bcdα
ε 2

ε
α 1

ab2c
ε

2
bcd
α 1

α
b+d 3

2bcd
α 2b+d4

α2
ε 3

2ε
α 4

ab2c
ε 1

bcdα
ε 2

ε
α 1

ab2c
ε

2
bcd
α 3

2bcd
α 1

α
b+d 2b+d4

α2
ε 3

2ε
α 4

ab2c
ε 1

bcdα
ε 2

ε
α 1

ab2c
ε

2
bcd
α 3

2bcd
α 1

α
b+d 2b+d4

α2
ε 3

2ε
α 1

bcdα
ε 4

ab2c
ε 2

ε
α 1

ab2c
ε

2
bcd
α 3

2bcd
α 1

α
b+d 2b+d4

α2
ε 1

bcdα
ε 3

2ε
α 4

ab2c
ε 2

ε
α 1

ab2c
ε

2
bcd
α 3

2bcd
α 1

α
b+d 2b+d4

α2
ε 1

bcdα
ε 3

2ε
α 2

ε
α 4

ab2c
ε 1

ab2c
ε
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2
bcd
α 3

2bcd
α 1

α
b+d 2b+d4

α2
ε 1

bcdα
ε 3

2ε
α 2

ε
α 1

ab2c
ε 4

ab2c
ε

2
bcd
α 3

2bcd
α 1

α
b+d 2b+d1

bcdα
ε 4

α2
ε 3

2ε
α 2

ε
α 1

ab2c
ε 4

ab2c
ε

2
bcd
α 3

2bcd
α 2

bcd
α 1

α2
ε 2

ε
α 4

α2
ε 3

2ε
α 2

ε
α 1

ab2c
ε 4

ab2c
ε

2
bcd
α 3

2bcd
α 2

bcd
α 1

α2
ε 4

α2
ε 2

ε
α 3

2ε
α 2

ε
α 1

ab2c
ε 4

ab2c
ε

in which any two consecutive lines represent an edge in X̃ . This proves our claim.

1.11. Define B,Bσ as in 1.7, 1.8 in terms of (I, ·), σ as in 1.2. The objects
analogous to (I, ·), σ,B,Bσ when (I, ·), σ are taken as in 1.3 are denoted by
(I ′, ·), σ′,B′,B′σ′ .

Let X̃ be the graph attached to (I, ·), σ as in 1.8 and let X̃ ′ be the analogous
graph attached to (I ′, ·), σ′. From the results in 1.9, 1.10 we see that the graphs
X̃ , X̃ ′ are canonically isomorphic. Hence the sets B, B′ of connected components
of X̃ , X̃ ′ are in canonical bijection. Combining with the canonical bijection B ↔
Bσ (see 1.8(a)) and the analogous bijection B′ ↔ B′σ′ we obtain a canonical
bijection

(a) Bσ ↔ B′σ′ .
1.12. In this subsection we take K, ι as in 1.7(iii). Let (I, ·) be a Cartan datum.
Let f be the Q-algebra with 1 with generators θi(i ∈ I) and relations

∑

p,p′∈N;p+p′=1−2i·j/(i·i)
(−1)p′(p!p′!)−1θp

i θjθ
p′
i = 0

for i 6= j in I. Let B be the canonical basis of the Q-vector space f obtained by
specializing under v = 1 the canonical basis of the quantum version of f defined
in [L1,L4]. For i ∈ I and b ∈ B we define li(b) ∈ N, by the requirement that
b ∈ θ

li(b)
i f, b /∈ θ

li(b)+1
i f; we define ri(b) ∈ N, by the requirement that b ∈ fθ

li(b)
i ,

b /∈ fθ
li(b)+1
i .

If (I, ·) is simply laced and B is as in 1.7 then we have a canonical bijection
(a) β : B ∼−→ B

such that λiβ = ιli, ρiβ = ιri for all i ∈ I. (Here λi, ρi : B −→ K are defined as
λη, ρη in 1.8 in the case where σ = 1.) See [L1,L2].

Now let (I, ·), σ be as in 1.5. Let (I, ◦) be as in 1.5. Let B be the analogue of
B when (I, ·) is replaced by (I, ◦) and let lη : B −→ N, rη : B −→ N (η ∈ I) be the
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functions analogous to li, ri defined in terms of (I, ◦). The algebra automorphism
θi 7→ θσ(i)(i ∈ I) of f restricts to a permutation of B denoted again by σ. Let
Bσ be the fixed point set of σ : B −→ B. For η ∈ I we define lη : Bσ −→ N by
lη(b) = li(b) with i ∈ η; we define rη : Bσ −→ N by rη(b) = ri(b) with i ∈ η.

We have the following result:
(b) there is a canonical bijection γ : B ∼−→ Bσ such that lηγ = ιlη, rηγ = ιrη

for any η ∈ I.
When δ = 1 (see 1.5) this is established in [L4, 14.4.9]. Assume now that δ = 2.
Then (I, ·), σ are as in 1.2. We shall use the notation in 1.11. Let B′, σ′ : B′ −→ B′

be the analogues of B, σ : B −→ B when (I, ·), σ are replaced by (I ′, ·), σ′. Since
(I, ◦) is the same when defined in terms of (I, ·), σ or in terms of (I ′, ·), σ′ and
since δ = 1 for (I ′, ·), σ′ we see that we have a canonical bijection

(c) B ↔ B′σ′ .
We now consider the following composition of bijections

B ↔ B′σ′ ↔ B′σ′ ↔ Bσ ↔ Bσ.
(The first bijection is given by (c). The fourth bijection is obtained from (a)
which is compatible with the actions of σ by taking fixed point sets of σ. The
second bijection is an analogue of the fourth bijection. The third bijection is
given by 1.11(a).) This bijection has the required properties. This establishes
(b) in our case.

2. The ”Frobenius” endomorphism Φe of B

2.1. We assume that we are in the setup of 1.8 and that K, ι are as in 1.7(iii).
Following [L5, 9.11] we consider the monoid M+ (with 1) defined by the gener-
ators ξn

i (i ∈ I, n ∈ Z) and the relations
(i) ξa

i ξb
i = ξ

min(a,b)
i for any i ∈ I and a, b in Z;

(ii) ξa
i ξb

i′ = ξb
i′ξ

a
i for any i, i′ ∈ I such that i · i′ = 0 and any a, b in Z;

(iii) ξa
i ξb

i′ξ
c
i = ξa′

i′ ξ
b′
i ξc′

i′ for any i, i′ in I such that i · i′ = −1 and any integers
a, b, c, a′, b′, c′ such that a′ = b+c−min(a, c), b′ = min(a, c), c′ = a+b−min(a, c),
or equivalently a = b′ + c′ −min(a′, c′), b = min(a′, c′), c = a′ + b′ −min(a′, c′).
(Here ξ0

i is not assumed to be 1.)
Remark. In the last line of [L5, 9.9] one should replace ”adding c to the first

entry of c” by the text: ”replacing the first entry c1 of c by min(c, c1)”. In [L5,
9.10(a)], n + n′ should be replaced by min(n, n′).
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For any i∗ ∈ X we define a map ζi∗ : KN −→ M+ by

c∗ 7→ ξ
ι−1(c1)
i1

ξ
ι−1(c2)
i2

. . . ξ
ι−1(cN )
iN

.
From [L5, 9.10] we see that ζi∗ is injective. Clearly its image is independent of
the choice of i∗; we denote it by M+

0 . Note that ξn
i M+

0 ⊂ M+
0 , M+

0 ξn
i ⊂ M+

0

for any i ∈ I, n ∈ N. In particular, M+
0 is a submonoid (without 1) of M+. We

define ζ : X̃ −→ M+
0 by ic∗∗ 7→ ζi∗(c∗). This map is constant on any connected

connected component of X̃ hence it induces a map ζ̄ : B −→ M+
0 (necessarily a

bijection).

Now ξn
i 7→ ξn

σ(i) (with i ∈ I, n ∈ Z) defines a monoid automorphism M+ −→
M+ denoted again by σ. It restricts to a monoid automorphism M+

0 −→ M+
0

denoted again by σ. This is compatible with the bijection σ : B −→ B via ζ̄.
Note that the fixed points M+σ,M+σ

0 are submonoids of M+,M+
0 . Consider

the composite bijection B ↔ Bσ ↔ Bσ ↔ M+σ
0 . Here the first bijection is

as in 1.12(b), the second bijection is induced by the one in 1.12(a) and the
third bijection is induced by ζ̄. Via this bijection the monoid structure on M+σ

0

becomes a monoid structure on B.

2.2. We show that the crystal graph structure on B introduced in [Ka] is com-
pletely determined by the monoid structure of M+σ. For simplicity we assume
that σ = 1 so that B = B. We identify B = M+

0 via ζ̄. As shown in [L2] giving
the crystal graph structure on B is equivalent to giving for any i ∈ I, n ∈ N

the subsets l−1
i (n) (see 1.12) of B and certain bijections l−1

i (0) ∼−→ l−1
i (n). Now

l−1
i (n) is exactly the set of ξ ∈ M+

0 such that ξa
i ξ = ξ for any a ≥ n and ξa

i ξ 6= ξ

for any a ∈ [0, n − 1]. The inverse of the bijection l−1
i (0) ∼−→ l−1

i (n) is given by
ξ 7→ ξ0

i ξ.

2.3. We fix an integer e ≥ 1. There is a well defined endomorphism Φe : M+ −→
M+ (as a monoid with 1) such that ξn

i 7→ ξen
i for any i ∈ I, n ∈ Z. This

restricts to a monoid endomorphism M+
0 −→ M+

0 . Moreover, it commutes with
σ : M+ −→ M+ hence it restricts to a monoid endomorphism M+σ

0 −→ M+σ
0 . Via

the bijection B ↔ M+σ
0 in 2.1 this becomes a monoid endomorphism B −→ B

denoted again by Φe. We call Φe the ”Frobenius” endomorphism of the canonical
basis B.
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