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1 Introduction

By lattice, we mean a finite rank free abelian group with rational valued, positive
definite symmetric bilinear form. A root in an integral lattice is a norm 2 vector.
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An integral lattice is rootless if it has no roots. The notation EE8 means
√

2
times the famous E8 lattice.

In this article, we classify pairs of EE8-lattices which span an integral and
rootless lattice and whose associated involutions (isometries of order 2) generate
a dihedral group of order at most 12. Examples of such pairs are easy to find
within familiar lattices, such as the Barnes-Wall lattices of ranks 16 and 32 and
the Leech lattice, which has rank 24.

Our main theorem is as follows. These results were announced in [GL].

Main Theorem 1.1. Let M, N ∼= EE8 be sublattices in a Euclidean space such
that L = M + N is integral and rootless. Suppose that the involutions associated
to M and N (2.4) generate a dihedral group of order less than or equal to 12.
Then the possibilities for L are listed in Table 1 and all these possibilities exist.
The lattices in Table 1 are uniquely determined (up to isometry of pairs M, N) by
the notation in column 1 (see Table 3 for the definitions of the relevant terms and
notations). Except for DIH4(15), all of them embed as sublattices of the Leech
lattice.

Our methods are probably good enough to determine all the cases where
M + N is integral, but such a work would be quite long.

This work may be considered purely as a study of positive definite integral
lattices. Our real motivation, however, is the evolving theory of vertex operator
algebras (VOA) and their automorphism groups, as we shall now explain.

The primary connection between the Monster and vertex operator algebras
was established in [FLM]. Miyamoto showed [Mi1] that there is a bijection be-
tween the conjugacy class of 2A involutions in the Monster simple group and
conformal vectors of central charge 1

2 in the moonshine vertex operator algebra
V \. The bijection between the 2A-involutions and conformal vectors offers an
opportunity to study, in a VOA context, the McKay observations linking the ex-
tended E8-diagram and pairs of 2A-involutions [LYY]. This McKay theory was
originally described in purely finite group theory terms.

Conformal vectors of central charge 1
2 define automorphisms of order 1 or 2

on the VOA, called Miyamoto involutions when they have order 2. They were
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Table 1: NREE8SUMs: integral rootless lattices which are sums of EE8s

Name 〈tM , tN 〉 Isometry type of L (contains) D(L) In Leech?

DIH4(12) Dih4 ≥ DD⊥3
4 142642 Yes

DIH4(14) Dih4 ≥ AA⊥2
1 ⊥ DD⊥2

6 142842 Yes

DIH4(15) Dih4 ≥ AA1 ⊥ EE⊥2
7 12214 No

DIH4(16) Dih4
∼= EE8 ⊥ EE8 216 Yes

DIH6(14) Dih6 ≥ AA2 ⊥ A2 ⊗ E6 173362 Yes

DIH6(16) Dih6
∼= A2 ⊗ E8 1838 Yes

DIH8(15) Dih8 ≥ AA⊥7
1 ⊥ EE8 11045 Yes

DIH8(16, DD4) Dih8 ≥ DD⊥2
4 ⊥ EE8 182444 Yes

DIH8(16, 0) Dih8
∼= BW16 1828 Yes

DIH10(16) Dih10 ≥ A4 ⊗A4 11254 Yes

DIH12(16) Dih12 ≥ AA2 ⊥ AA2 ⊥ A2 ⊗ E6 11264 Yes

X⊥n denotes the orthogonal sum of n copies of the lattice X.

originally defined in [Mi]; see also [Mi1]. Such conformal vectors are not found
in most VOAs but are common in many VOAs of great interest, mainly lattice
type VOAs and twisted versions [DMZ, DLMN]. Unfortunately, there are few
general, explicit formulas for such conformal vectors in lattice type VOAs. We
know of two. The first such formula (see [DMZ]) is based on a norm 4 vector in a
lattice. The second such formula (see [DLMN], [GrO+]) is based on a sublattice
which is isometric to EE8. This latter formula indicates special interest in EE8

sublattices for the study of VOAs.

We call the dihedral group generated by a pair of Miyamoto involutions a
Miyamoto dihedral group. Our assumed upper bound of 12 on the order of a
Miyamoto dihedral group is motivated by the fact that in the Monster, a pair of
2A involutions generates a dihedral group of order at most 12 [GMS]. Recently,
Sakuma [Sa] announced that 12 is an upper bound for the order of a Miyamoto
dihedral group in an OZVOA (= CFT type with zero degree 1 part)[GNAVOA1]
with a positive definite invariant form. This broad class of VOAs contains all
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Table 2: Containments of NREE8SUM

Name Sublattices

DIH8(15) DIH4(12)

DIH8(16, DD4) DIH4(12)

DIH8(16, 0) DIH4(16)

DIH12(16) DIH4(12), DIH6(14)

lattice type VOAs V +
L such that the even lattice L is rootless, and the moonshine

VOA V \. If a VOA has nontrivial degree 1 part, the order of a Miyamoto dihedral
group may not be bounded in general (for instance, a Miyamoto involution can
invert a nontrivial torus under conjugation). See [GNAVOA1].

If L is rootless, it is conjectured [LSY] that the above two kinds of conformal
vectors will exhaust all the conformal vectors of central charge 1/2 in V +

L . This
conjecture was proved when L is a

√
2 times a root lattice or the Leech lattice

[LSY, LS] but it is still open if L is a general rootless lattice. The results of this
paper could help settle this conjecture, as well as provide techniques for more
work on the Glauberman-Norton theory [GlNo].

Next, we shall discuss the main steps for the classification. We shall go
through cases |tM tN | = 2, 3, 4, 5, 6. Our respective analyses are called DIH4-
theory, DIH6-theory, DIH8-theory, DIH10-theory, DIH12-theory.

In 〈tM , tN 〉, let g := tM tN . Then Z[〈g〉] acts on L and it acts on J :=
annL(FixL(g)), where FixL(g) denotes the set of all fixed points of g in L. The
action is that of as a ring of integers in a number field when |g| is prime.

The main idea is to determine possibilities for FixL(g), J , annM (N), annN (M)
and related sublattices. Exhaustive case by case analysis gives a list of candi-
dates. In all cases, the candidates are proved unique, given certain things we
deduce about their sublattices.

First, we observe that 〈tM , tN 〉 acts faithfully on L and leaves invariant
FixL(g) = M ∩ N . When |g| = 2, 3 or 5 is a prime, we determine all sub-
lattices of E8 which are direct summands and whose discriminant group is an
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elementary abelian p-group for p = 2, 3, 5 (cf. D.2, D.9 and D.18, respectively).
Exhaustive case by case analysis gives a list of candidates. It turns out M ∩N is
isometric to

√
2 times one of these lattices. In fact, M∩N ∼= 0, AA1, AA1 ⊥ AA1,

or DD4 if |g| = 2; M ∩N ∼= 0 or AA2 if |g| = 3; and M ∩N = 0 if |g| = 5 (see
Proposition 5.2, 6.12, and Lemma 7.6 for details).

Given M ∩N , we then analyse J = annL(M ∩M) and its sublattices.

When |g| = 2, 〈tM , tN 〉 is a four-group. Then we have M ∩ J = annM (N),
N ∩ J = annN (M) and M ∩N ⊥ annM (N) ⊥ annN (M) is an index 2 sublattice
of L. In this case, the isometry type of L is uniquely determined by M ∩N .

When |g| = 3, we consider the Z[〈g〉]-submodule K generated by M∩J . Then
K is a sublattice of J and K is isomorphic as a lattice to A2 ⊗ 1√

2
(M ∩ J) (cf.

(3.2)). The possibilities for M ∩ J in this case are EE6 or EE8. Again, the
isometry type of L is uniquely determined by M ∩N .

When |g| = 5, M ∩N = 0. We show that for any norm 4 vector α ∈ L, the
Z[〈g〉]-submodule generated by α is isomorphic as a lattice to AA4 (cf. Lemma
(7.12)). In fact, we show that L = M + N contains a sublattice U isometric to
the orthogonal sum of 4 copies of AA4 such that M ∩ U ∼= N ∩ U ∼= AA8

1 (cf.
Lemma 7.13, 7.15, and Corollary 7.16). The uniqueness of L is then shown by
explicit gluings.

When |g| = 4, 6, we let h := g2. Then (M, Mh) and (N, Nh) are EE8 pairs
whose associated dihedral group has order 4 or 6. We then use the results for
Dih4 and Dih6 to deduce the structures of L. It turns out that there is only one
possible case for |g| = 6 but 3 different cases for |g| = 4.

A proof that the candidates are really rootless is made easier by a magic tool.
Except for DIH4(15), all candidates in Theorem 1.1 are embedded in the Leech
lattice by direct constructions in Appendix F (and use of a uniqueness result).
Since the Leech lattice is rootless, so is our candidate L. The rootless property
of DIH4(15) is also proved in (5.5).

The organization of this article is as follows. First, we review some general
background material from the theories of groups and lattices. Tensor products
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of lattices are discussed, especially involving small rank root lattices. We give
uniqueness theorems, for getting structure as we analyze sublattices, but also
to determine precise membership on our final list of pairs (M, N). The cases
of dihedral groups of orders 4 and 8 are done together, as are orders 6 and 12.
Dihedral groups of order 10 are treated separately. The lattices M + N are
recognized as familiar ones in many cases, but not all. Appendices A through
E give independent results about lattices which we quote throughout the main
text. Our uniqueness results help prove that M + N is embedded in the Leech
lattice in all cases but one. Explicit realizations of cases within the Leech lattice
are presented in Appendix F. These may be useful for calculations.

The first author acknowledges financial support from the National Science
Foundation, National Cheng Kung University where the first author was a visiting
distinguished professor, and the University of Michigan. The second author ac-
knowledges financial support from the National Science Council of Taiwan (Grant
No. 95-2115-M-006-013-MY2).

2 Background and notations

We review some background materials and notations in this section. Notations
and definitions of relevant terms can be found in Table 3 and 4. A general
reference for groups and their actions on lattices is [GrGL].

Convention 2.1. Lattices in this article shall be rational and positive definite.
Groups and linear transformations will generally act on the right and n-tuples
will be row vectors.

Definition 2.2. Let X be an integral lattice. For any positive integer n, let
Xn = {x ∈ L| (x, x) = n} be the set of all norm n elements in X.

Definition 2.3. If L is a lattice, the summand of L determined by the subset S

of L is the intersection of L with the Q-span of S.

Definition 2.4. Let X be a subset of Euclidean space. Define tX to be the
orthogonal transformation which is −1 on X and is 1 on X⊥.
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Table 3: Notation and Terminology

Notation Explanation Examples in text

A1, · · · , E8 root lattice for root system ΦA1 , . . . ,ΦE8 Table 1, 2
AA1, · · · , EE8 lattice isometric to

√
2 times the lattice Table 1

A1, · · · , E8

annL(S) {v ∈ L| (v, s) = 0 for all s ∈ S} (2.4), (6.21)
BRW+(2d) the Bolt-Room-Wall group, a subgroup of

O(2d,Q)of shape 21+2d
+ Ω+(2d, 2)

BW2n the Barnes-Wall lattice of rank 2n Table 1, 6, (5.2.2)
DIHn(r) an NREE8SUM M , N such that the SSD Table 1, Sec. F.3

involutions tM , tN generate a dihedral group
of order n and M + N is of rank r

DIH8(16, X) an NREE8SUM DIH8(16) such that Table 1, Sec. F.3
X ∼= annM (N) ∼= annN (M)

DIHn-theory the theories for DIHn(r) for all r Sec. 5.2, 6.2
D(L) discriminant group of integral lattice L: L∗/L (A.3), (D.25)

HSn or D+
n the half spin lattice of rank n, i.e., (6.22)

the lattice generated by Dn and 1
2 (11 · · · 1)

HHS+
n or DD+

n

√
2 times the half spin lattice HS+

n (F.4)
IEE8 pair a pair of EE8 lattices whose sum is integral (2.9), Sec. F.3
IEE8SUM the sum of an IEE8 pair

L∗ the dual of the rational lattice L, i.e., those (2.4), (A.3)
elements u of Q⊗ L which satisfy (u, L) ≤ Z

L+(t), L−(t) the eigenlattices for the action of t

on the lattice L: Lε(t) := {x ∈ L|xt = εx} (6.22)
Λ the Leech lattice Sec. F.3

mn the homocyclic group Zn
m = Zm × · · · × Zm, (6.9), (D.21)

n times
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Table 4: Notation and Terminology (continued)

Notation Explanation Examples in text

NREE8 pair an IEE8 pair whose sum has no roots (2.9), Sec. F.3
NREE8SUM the sum of an NREE8 pair Table 1
|g|, |G| order of a group element, order of a group (D.7), Sec. F.3

O(X) or AutX the isometry group of the lattice X (5.3)
Op(G) the maximal normal p-subgroup of G (A.11), (A.13)
Op′(G) the maximal normal p′-subgroup of G, (A.14)
p-rank the rank of the maximal elementary (A.3)

abelian p-subgroup of an abelian group
ΦA1 , · · · ,ΦE8 root system of the indicated type Table 1, 2

root a vector of norm 2 Sec. 1, (3.5)
rectangular a lattice with an orthogonal basis (B.2)

lattice
square lattice a lattice isometric to some

√
mZn (B.2)

Tel(L, t) total eigenlattice for action of t (6.30)
on L; L+(t) ⊥ L−(t)

Tel(L,D) total eigenlattice for action of an elementary (A.2)
abelian 2-group D on L; Tel(L,D) :=

∑
Lλ,

where λ ∈ Hom(D, {±1}) and
Lλ = {α ∈ L|αg = λ(g)α for all γ ∈ D}

Weyl(E8), Weyl(F4) the Weyl group of type E8, F4, etc (D.2)
Xn the set of elements of norm n (7.10), (7.11)

in the lattice X

X⊥n the orthogonal sum of n copies Table 1, 5, 8
of the lattice X

ξ an isometry of the Leech lattice (F.5), Sec. F.3
(see Notation F.5)

Zn rank n lattice with an orthonormal basis (B.3)
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Definition 2.5. A sublattice M of an integral lattice L is RSSD (relatively
semiselfdual) if and only if 2L ≤ M + annL(M). This implies that tM maps L

to L and is equivalent to this property when M is a direct summand.

The property that 2M∗ ≤ M is called SSD (semiselfdual). It implies the
RSSD property, but the RSSD property is often more useful. For example, if M

is RSSD in L and M ≤ J ≤ L, then M is RSSD in J , whence the involution tM

leaves J invariant.

Example 2.6. An example of a SSD sublattice is
√

2U , where U is a unimodular
lattice. Another is the family of Barnes-Wall lattices.

Lemma 2.7. If the sublattice M is a direct summand of the integral lattice L

and (det(L), det(M)) = 1, then SSD and RSSD are equivalent properties for M .

Proof. It suffices to assume that M is RSSD in L and prove that it is SSD.

Let V be the ambient real vector space for L and define A := annV (M). Since
(det(L), det(M)) = 1, the natural image of L in D(M) is D(M), i.e., L + A =
M∗+A (A.13). We have 2(L+A) = 2(M∗+A), or 2L+A = 2M∗+A = M ⊥ A.
The left side is contained in M + A, by the RSSD property. So, 2M∗ ≤ M + A.
If we intersect both sides with annV (A), we get 2M∗ ≤ M . This is the SSD
property. ¤

Lemma 2.8. Suppose that L is an integral lattice and N ≤ M ≤ L and both
M and N are RSSD in L. Assume that M is a direct summand of L. Then
annM (N) is an RSSD sublattice of L.

Proof. This is easy to see on the level of involutions. Let t, u be the involu-
tions associated to M, N . They are in O(L) and they commute since u is the
identity on annL(M), where t acts as the scalar 1, and since u leaves invariant
M = annL(annL(M)), where t acts as the scalar −1. Therefore, s := tu is an
involution. Its negated sublattice L−(s) is RSSD (2.4), and this is annM (N). ¤

Definition 2.9. An IEE8 pair is a pair of sublattices M, N ∼= EE8 in a Euclidean
space such that M + N is an integral lattice. If M + N has no roots, then the
pair is called an NREE8 pair. An IEESUM is the sum of an IEE8 pair and an
NREE8SUM is the sum of an NREE8 pair.
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Lemma 2.10. We use Definition 2.4. Let M and N be RSSD in an integral
lattice L = M + N . A vector in L fixed by both tM and tN is 0.

Proof. We use L = M +N . If we tensor L with Q, we have complete reducibility
for the action of 〈tM , tN 〉. Let U be the fixed point space for 〈tM , tN 〉 on Q⊗ L.
The images of M and N in U are 0, whence U = 0. ¤

3 Tensor products

Definition 3.1. Let A and B be integral lattices with the inner products ( , )A

and ( , )B, respectively. The tensor product of the lattices A and B is defined to
be the integral lattice which is isomorphic to A⊗Z B as a Z-module and has the
inner product given by

(α⊗ β, α′ ⊗ β′) = (α, α′)A · (β, β′)B, for any α, α′ ∈ A, and β, β′ ∈ B.

We simply denote the tensor product of the lattices A and B by A⊗B.

Lemma 3.2. Let D := 〈t, g〉 be a dihedral group of order 6, generated by an
involution t and element g of order 3. Let R be a rational lattice on which D

acts such that g acts fixed point freely. Suppose that A is a sublattice of R which
satisfies at = −a for all a ∈ A. Then

(i) A ∩Ag = 0; so A + Ag = A⊕Ag as an abelian group.

(ii) A + Ag is isometric to A⊗B, where B has Gram matrix

(
1 −1

2

−1
2 1

)
.

(iii) Furthermore annA+Ag(A) = A(g − g2) ∼=
√

3A.

Proof. (i) Take a, a′ ∈ A and suppose a = a′g. Since at = −a, we have
−a = at = a′gt = a′tg2 = −a′g2. That means a = a′g2 and a = ag. Thus
a = 0 since g acts fixed point freely on R.

For any x, y ∈ R, we have 0 = (x, 0) = (x, y + yg + yg2) = (x, y) + (x, yg) +
(x, yg2). Now, take x, y ∈ A. We have (x, yg) = (xt, ygt) = (−x, ytg2) =
(−x,−yg2) = (x, yg2). We conclude that (x, yg) = (x, yg2) = −1

2(x, y).
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Let bars denote images under the quotient Z〈g〉 → Z〈g〉/(1 + g + g2).

We use the linear monomorphism A ⊗ gi → R where Z〈g〉/(1 + g + g2) has
the bilinear form which take value 1 on a pair gi, gi and value −1

2 on a pair gi, gj

where i, j ∈ {0, 1} and i 6= j. This proves (ii).

For (iii), note that ψ : x 7→ xg − xg2 for x ∈ A is a scaled isometry and Im ψ

is a direct summand of Ag⊕Ag2, where Im ψ denotes the image of ψ. Note also
that A⊕Ag = Ag ⊕Ag2 = Im ψ ⊕Ag. Thus we have

Im ψ ≤ annA+Ag(A) ≤ Im ψ ⊕Ag.

By Dedekind’s law, annA+Ag(A) = Im ψ + (annA+Ag(A) ∩ Ag). Since (x, yg) =
−1

2(x, y), annA+Ag(A)∩Ag = 0 and we have Im ψ = annA+Ag(A) as desired. ¤

Lemma 3.3. Suppose that A,B are lattices, where A ∼= A2. The minimal vectors
of A ⊗ B are just u ⊗ z, where u is a minimal vector of A and z is a minimal
vector of B.

Proof. Let u be a minimal vector of A. The minimal vectors of Zu⊗B have the
above shape. Let u′ span annA(u). Then (u′, u′) = 6 and |A : Zu+Zu′| = 2. The
minimal vectors of (Zu ⊥ Zu′)⊗B have the above shape. Now take a vector w in
A⊗B \ (Zu ⊥ Zu′)⊗B. It has the form pu⊗x + qu′⊗ y, where p, q ∈ 1

2 +Z and
p + q ∈ Z. The norm of this vector is therefore 2p2(x, x) + 6q2(y, y). A necessary
condition that w be a minimal vector in A ⊗ B is that each of x, y be minimal
in B and p, q ∈ {±1

2}. By changing the signs of x and y if necessary, we may
assume without loss of generality that p = q = 1/2.

Define v := 1
2u+ 1

2u′. Then u′, v forms a basis for A. We have w = v⊗x+ 1
2u′⊗

(y−x). Since w ∈ A⊗B, y−x ∈ 2B. Suppose y−x = 2b. If b = 0, we are done,
so assume that b 6= 0. In case x, y are minimal, (y − x, y − x) = 4(b, b) ≥ 4(x, x)
and thus −2(x, y) ≥ 2(x, x). This implies x = −y and then w = (v − u′) ⊗ x as
required. ¤

Notation 3.4. For a lattice L, let MinV ec(L) be the set of minimal vectors.

Lemma 3.5. We use the notations of (3.3). If B is a root lattice of an inde-
composable root system and rank(B) ≥ 3, the only sublattices of A⊗B which are
isometric to

√
2B are the u⊗B, for u a minimal vector of A.
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Proof. Let S be a sublattice of A ⊗ B so that S ∼=
√

2B. Then S is spanned
by MinV ec(S), which by (3.3) equals Mu ∪Mv ∪Mw, where u, v, w are pairwise
nonproportional minimal vectors of A which sum to 0 and where Mt := (t⊗B)∩
MinV ec(S), for t = u, v, w. Note that (u, v) = (v, w) = (w, u) = −1.

We suppose that Mu and Mv are nonempty and seek a contradiction. Take
b, b′ ∈ B so that u ⊗ b ∈ Mu, v ⊗ b′ ∈ Mv. Then (u ⊗ b, v ⊗ b′) = (u, v)(b, b′) =
−(b, b′). Since S is doubly even, all such (b, b′) are even.

We claim that all such (b, b′) are 0.

Assume that some such (b, b′) 6= 0. Then, since b, b′ are roots, (b, b′) is ±2 and
b = ±b′. Then u⊗ b, v ⊗ b ∈ S, whence w ⊗ b ∈ S. In other words, A⊗ b ≤ S.

Since rank(S) = rank(B) ≥ 3, S properly contains A⊗b. Since S is generated
by its minimal vectors and the root system for B is connected, S contains some
t ⊗ d where d ∈ MinV ec(B) and (d, b) 6= 0. It follows that (d, b) = ±1. Take
t′ ∈ MinV ec(A) so that (t, t′) = ±1. Then (t ⊗ d, t′ ⊗ b) = ±1, whereas S is
doubly even, a contradiction. The claim follows.

The claim implies that Mu and Mv are orthogonal. Similarly, Mu,Mv,Mw are
pairwise orthogonal, and at least two of these are nonempty. Since MinV ec(S) is
the disjoint union of Mu,Mv,Mw, we have a contradiction to indecomposability
of the root system for B. ¤

4 Uniqueness

Theorem 4.1. Suppose that L is a free abelian group and that L1 is a subgroup
of finite index. Suppose that f : L1×L1 → K is a K-valued bilinear form, where
K is an abelian group so that multiplication by |L : L1| is an invertible map on
K. Then f extends uniquely to a K-valued bilinear form L× L → K.

Proof. Our statements about bilinear forms are equivalent to statements about
linear maps on tensor products. We define A := L1 ⊗ L1, B := L ⊗ L and
C := B/A. Then C is finite and is annihilated by |L : L1|2. From 0 →
A → B → C → 0, we get the long exact sequence 0 → Hom(C, K) →
Hom(B,K) → Hom(A,K) → Ext1(C, K) → · · · . Each of the terms Hom(C, K)
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and Ext1(C, K) are 0 because they are annihilated by |C| and multiplication by
|C| on K is an automorphism. It follows that the restriction map from B to A

gives an isomorphism Hom(B,K) ∼= Hom(A,K). ¤

Remark 4.2. We shall apply (4.1) to L = M + N when we determine sufficient
information about a pairing M1 ×N1 → Q, where M1 is a finite index sublattice
of M and N1 is a finite index sublattice of N . The pairings M ×M → Q and
N × N → Q are given by the hypotheses M ∼= N ∼= EE8, so in the notation of
(4.1) we take L1 = M1 + N1.

Remark 4.3. We can determine all the lattices in the main theorem by explicit
gluing. However, it is difficult to prove the rootless property in some of those
cases. In Appendix F, we shall show that all the lattices in Table 1 can be
embedded into the Leech lattice except DIH4(15). The rootless property follows
since the Leech lattice has no roots. The proof that DIH4(15) is rootless will be
included at the end of Subsection 5.1.

5 DIH4 and DIH8 theories

5.1 DIH4: When is M + N rootless?

Notation 5.1. Let M, N be EE8 lattices such that the dihedral group D :=
〈tM , tN 〉 has order 4. Define F := M ∩N , P := annM (F ) and Q := annN (F ).

Remark 5.2. Since tM and tN commute, D fixes each of F , M , N , annM (F ),
annN (F ). Each of these may be interpreted as eigenlattices since tM and tN have
common negated space F , zero common fixed space, and tM , tN are respectively
−1, 1 on annM (F ) and tM , tN are respectively 1,−1 on annN (F ). Since L =
M + N , D has only 0 as the fixed point sublattice (cf. (2.10)). Therefore, the
elementary abelian group D has total eigenlattice F ⊥ annM (F ) ⊥ annN (F ).
Each of these summands is RSSD as a sublattice of L, by (2.8). It follows that
1√
2
(M ∩N) is an RSSD sublattice in 1√

2
M and in 1√

2
N . Since 1√

2
M ∼= 1√

2
N ∼=

E8, we have that 1√
2
(M ∩N) is an SSD sublattice in 1√

2
M and in 1√

2
N (cf.

(2.7)).
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Proposition 5.3. If M + N is rootless, F is isometric to one of 0, AA1, AA1 ⊥
AA1, DD4. Such sublattices in M are unique up to the action of O(M).

Proof. This can be decided by looking at cosets of P + Q + F in M + N . A
glue vector will have nontrivial projection to two or three of spanR(P ), spanR(Q),
spanR(F ).

Since F is a direct summand of M by (A.10) and 1√
2
F is an SSD by (5.2),

we have 1√
2
F ∼= 0, A1, A1 ⊥ A1, A1 ⊥ A1 ⊥ A1, A1 ⊥ A1 ⊥ A1 ⊥ A1, D4, D4 ⊥

A1, D6, E7 and E8 by (D.2). If 1√
2
F = E8, then tM = tN and D := 〈tM , tN 〉 is

only a cyclic group of order 2. Hence, we can eliminate 1√
2
F = E8.

Now we shall note that in each of these cases, F ⊥ P contains a sublattice
A ∼= AA8

1 such that F ∩ A ∼= AAk
1 and A ∩ P ∼= AA8−k

1 , where k = rank F . We
use an orthogonal basis of A to identify M/A with a code. Since M ∼= EE8, this
code is the Hamming [8, 4, 4] binary code H8. Let ϕ : M/A → H8 be such an
identification. Then ϕ((F ⊥ P )/A) is a linear subcode of H8.

Next, we shall show that
(

1√
2
F

)∗
contains a vector v of norm 3/2 if 1√

2
F ∼=

A1 ⊥ A1 ⊥ A1, A1 ⊥ A1 ⊥ A1 ⊥ A1, D4 ⊥ A1, D6 or E7.

Recall that if A1 = Zα, (α, α) = 2, then A∗1 = 1
2Zα and 1

2α ∈ A∗1 has norm 1
2 .

Since (A⊥k
1 )∗ = (A∗1)

⊥k, (A⊥k
1 )∗ contains a vector of norm 3/2 if k ≥ 3.

We use the standard model

Dn = {(x1, x2, . . . , xn) ∈ Zn|x1 + · · ·+ xn ≡ 0 mod 2}.
Then 1

2(1, . . . , 1) ∈ D∗
n and its norm is 1

4n. Therefore, there exists vectors of
norm 3/2 in (D4 ⊥ A1)∗ = D∗

4 ⊥ A∗1 and D∗
6. Finally, we recall that E∗

7/E7
∼= Z2

and the non-trivial coset is represented by a vector of norm 3/2.

Now suppose 1√
2
F ∼= A1 ⊥ A1 ⊥ A1, A1 ⊥ A1 ⊥ A1 ⊥ A1, D4 ⊥ A1, D6 or E7

and let γ ∈ 2F ∗ be a vector of norm 3. Since F ∩ A ∼= AAk
1, F ∩ A has a basis

{α1, . . . , αk} such that (αi, αj) = 4δi,j . Then

2F ∗ < 2(F ∩A)∗ = spanZ{
1
2

k∑

i=1

aiαi| ai ∈ Z}.

Thus, by replacing some basis vectors by their negatives, we have γ = 1
2(αi1 +

αi2 + αi3) for some 1 ≤ i1, i2, i3 ≤ k.
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Since the image of the natural map M → D(F ) is 2D(F ), there exists a vector
u ∈ M such that the projection of u to spanR(F ) is γ.

Now consider the image of u + A in H8 and study the projection of the
codeword ϕ(u + A) to the first k coordinates. Since γ = 1

2(αi1 + αi2 + αi3), the
projection of ϕ(u + A) to the first k coordinates has weight 3.

If k = rank F ≥ 4, then the projection of (1, · · · , 1) to the first k coordinates
has weight k ≥ 4. Thus, ϕ(u + A) 6= (1, . . . , 1) and hence ϕ(u + A) has weight 4
since ϕ(u + A) ∈ H8 .

If k = 3, then F ∼= AA3
1 and P ∼= AA1 ⊥ DD4. Let K ∼= DD4 be an

orthogonal direct summand of P and let Zα = annP (K) ∼= AA1. Note that
F ⊥ Zα < annM (K) ∼= DD4 and F = Zα1 ⊥ Zα2 ⊥ Zα3. Thus, 1

2(α1 + α2 +
α3 + α) = 1

2(γ + α) ∈ annM (K) < M and it has norm 4. Therefore, we may
assume ϕ(u + A) has weight 4 and u is a norm 4 vector.

Similarly, there exists a norm 4 vector w ∈ N such that the projection of w in
spanR(F ) is also γ. Then u−w ∈ L = M + N but (u,w) = (γ, γ) = 3 and hence
u−w ∈ L is a root, which contradicts the rootless property of L. Therefore, only
the remaining cases occur, i.e., F ∼= 0, AA1, AA1 ⊥ AA1, DD4. ¤

Table 5: DIH4: Rootless cases

M ∩N P ∼= Q dim(M + N) Isometry type of L

0 EE8 16 ∼= EE8 ⊥ EE8

DD4 DD4 12 ≥ DD4 ⊥ DD4 ⊥ DD4

AA1 EE7 15 ≥ AA1 ⊥ EE7 ⊥ EE7

AA1 ⊥ AA1 DD6 14 ≥ AA1 ⊥ AA1 ⊥ DD6 ⊥ DD6

Remark 5.4. Except for the case F = M∩N ∼= AA1, we shall show in Appendix
F that all cases in Proposition 5.3 occur inside the Leech lattice Λ . The rootless
property of L = M +N then follows from the rootless property of Λ. The rootless
property for the case F = M ∩N ∼= AA1 will be shown in the next proposition.

Proposition 5.5. [Rootless property for DIH4(15)] If F = M ∩N ∼= AA1, then
P ∼= Q ∼= EE7 and L = M + N is rootless.
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Proof. We shall use the standard model for the lattice E7, i.e.,

E7 =
{

(x1, . . . , x8) ∈ Z8

∣∣∣∣
all xi ∈ Z or all xi ∈ 1

2 + Z
and x1 + · · ·+ x8 = 0

}

The dual lattice is E∗
7 = E7∪ (γ +E7), where γ = 1

4(1, 1, 1, 1, 1, 1,−3,−3). Recall
that the minimal weight of E∗

7 is 3/2 [CS, p.125].

If F = M ∩N = AA1 = Zα, then it is clear that P ∼= Q ∼= EE7. In this case,
M = spanZ{F +P, 1

2α+ ξM} and N = spanZ{F +Q, 1
2α+ ξN} for some ξM ∈ P ∗

and ξN ∈ Q∗ with (ξM , ξM ) = (ξN , ξN ) = 3. Therefore,

L = M + N = spanZ{F + P + Q,
1
2
α + ξM ,

1
2
α + ξN}.

Take β ∈ L = M + N . If β ∈ F + P + Q, then (β, β) ≥ 4. Otherwise, β will
have nontrivial projection to two or three of spanR(P ), spanR(Q), spanR(F ). Now
note that the projection of L onto spanR(P ) is spanZ{P, ξM} ∼=

√
2E∗

7 and the
projection of L onto spanR(Q) is spanZ{Q, ξN} ∼=

√
2E∗

7 . Both of them have
minimal norm 3. On the other hand, the projection of L onto spanR(F ) is Z1

2α,
which has minimal norm 1. Therefore, (β, β) ≥ 1 + 3 = 4 and so L is rootless. ¤

5.2 DIH8

Notation 5.6. Let t := tM , u := tN , and g := tu, which has order 4. Define
z := g2, t′ := tz and u′ := uz. We define F := KerL(z−1) and J := KerL(z +1).

By Lemma A.6, L/(F ⊥ J) is an elementary abelian 2-group of rank at most
min{rank(F ), rank(J)}. We have two systems (M, t,Mg, t′) and (N, u,Ng, u′)
for which the DIH4 analysis applies.

Notation 5.7. If X is one of M, N , we denote by LX , JX , FX the respective
lattices L := X + Xg, J, F associated to the pair X, Xg, denoted “M” and “N”
in the DIH4 section.

5.2.1 DIH8: What is F?

We now determine F .
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Remark 5.8. It will turn out that the two systems (M, t,Mg, t′) and (N, u,Ng, u′)
have the same DIH4 types (cf. Table 5). Also, we shall prove that rank(FX)
determines FX , hence also determines JX , for X = M, N .

Lemma 5.9. Let f = g or g−1. Then (i) As endomorphisms of J , f2 = −1,
(f − 1)2 = −2f . For x, y ∈ J , (x(f − 1), y(f − 1)) = 2(x, y).

(ii) (M ∩ J, (M ∩ J)f) = 0 and (N ∩ J, (N ∩ J)f) = 0.

(iii) For x, y ∈ M or x, y ∈ N , (x, y(f − 1)) = −(x, y).

Proof. (i) As endomorphisms of J , (f − 1)2 = f2 − 2f + 1 = −2f .

(ii) We take x, y ∈ M ∩ J (the argument for x, y ∈ N ∩ J is similar).

We have (x, yf) = (xt, yft) = (−x, ytf−1) = (−x,−yfz) = (−x, yf) =
−(x, yf), whence (x, yf) = 0.

(iii) We have (x, y(f − 1)) = (x, yf)− (x, y) = −(x, y). ¤

Lemma 5.10. (i) In Q⊗ End(J), (g−1 − 1)−1t(g−1 − 1) = u.

(ii) (M ∩ J)(g−1 − 1) ≤ N ∩ J and (N ∩ J)2(g−1 − 1)−1 ≤ M ∩ J .

(iii) rank(M ∩ J) = rank(N ∩ J).

(iv) rank(FM ) = rank(FN ).

Proof. We use the property that g−1 acts as −g on Q⊗J . We also abuse notation
by identifying elements of Q[D] with their images in End(Q⊗ J). For example,
(g−1 − 1) is not an invertible element of Q[D], though its image in End(Q ⊗ J)
is invertible.

For (i), observe that (g−1 − 1)2 = −2g−1, so that g−1 − 1 maps J to J and
has zero kernel. Secondly, 2(g−1 − 1)−1 maps J to J and has zero kernel.

The equation (g−1 − 1)−1t(g−1 − 1) = u in Q ⊗ End(J) is equivalent to
t(g−1 − 1) = (g−1 − 1)u which is the same as (g − 1)t = (g−1 − 1)u or tut− t =
−gu− u = −tuu− u = −t− u, which is true since tut = −u.

The statement (ii) follows since in a linear representation of a group, a group
element which conjugates one element to a second one maps the eigenspaces of
the two elements correspondingly. Here, this means g−1 − 1 conjugates t to u,
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so that g−1 − 1 maps Q ⊗ (M ∩ J) to Q ⊗ (N ∩ J). Since g−1 − 1 maps J into
J (though not onto J), g−1 − 1 maps the direct summand M ∩ J into the direct
summand N ∩ J .

For (iii), observe that we have monomorphisms M ∩ J → N ∩ J → M ∩ J

and N ∩ J → M ∩ J → N ∩ J by use of g−1 − 1 and 2(g−1 − 1)−1. Therefore,
(iv) follows from (iii). ¤

Lemma 5.11. Suppose that det(J ∩ M)det(J ∩ N) is the square of an integer
(equivalently, that det(FM )det(FN ) is the square of an integer). Then rank(J ∩
M) = rank(J ∩N) is even.

Proof. Note that rank(M ∩ J) = rank(N ∩ J) by (5.10). Let d := det(J ∩M)
and e := det(J∩N) and let r be the common rank of M ∩J and N ∩J . First note
that (M ∩J)(g−1−1) has determinant 2rd and second note that (M ∩J)(g−1−1)
has finite index, say k, in N ∩ J . It follows that 2rd = k2e. By hypothesis, de is
a perfect square. Consequently, r is even. ¤

Corollary 5.12. rank(FM ) = rank(FN ) is even.

Proof. We have rank(F ) + rank(M ∩ J) = rank(M) = 8 and similarly for N .
Since rank FM = rank FN , we have FM

∼= FN by (5.3) and hence detFMdetFN =
(detFM )2 is a square. Now use (5.11). ¤

Proposition 5.13. If L = M + N is rootless, then FM
∼= FN

∼= 0, AA1 ⊥ AA1

or DD4. Moreover, M ∩ J ∼= N ∩ J .

Proof. Since by (5.12), rank(FM ) = rank(FN ) is even, Proposition 5.3 implies
that FM

∼= FN
∼= 0, AA1 ⊥ AA1 or DD4. It is well-known that there is one

orbit of O(E8) on the family of sublattices which have a given one of the latter
isometry types. It follows that M ∩ J = annM (FM ) ∼= annN (FN ) ∼= N ∩ J . ¤

5.2.2 DIH8: Given that F = 0, what is J?

By Proposition 5.13, when L is rootless, FM
∼= FN

∼= 0, AA1 ⊥ AA1 or DD4. We
now consider each case for FM and FN and determine the possible pairs M, N .
The conclusions are listed in Table 6.
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Table 6: DIH8 which contains a rootless DIH4 lattice

FM
∼= FN FM ∩ FN rank(M + N) M + N Isometry type

integral? roots ? if rootless

0 0 16 rootless ∼= BW16

AA⊥2
1 0 16 non-integral

AA⊥2
1 AA1 15 non-integral

AA⊥2
1 AA⊥2

1 14 non-integral

AA⊥2
1 2A1 15 has roots

DD4 0 16 rootless ≥ DD⊥2
4 ⊥ EE8

DD4 AA1 15 rootless ≥ AA⊥7
1 ⊥ EE8

DD4 2A1 15 non-integral

DD4 AA⊥2
1 14 has roots

DD4 AA1 ⊥ 2A1 14 non-integral

DD4 AA⊥3
1 13 has roots

DD4 AA3 13 non-integral

DD4 DD4 12 has roots

Proposition 5.14. If FM = FN = 0, then L = M + N is isometric to the
Barnes-Wall lattice BW16.

Proof. The sublattice M ′ := MtN is the 1-eigenspace for tM and so M +
M ′ = M ⊥ M ′. Consider how N embeds in (M + M ′)∗ = 1

2(M + M ′). Let
x ∈ N \ (M + M ′) and let y ∈ 1

2M, y′ ∈ 1
2M ′ so that x = y + y′. We may replace

y, y′ by members of y+M and y′+M ′, respectively, which have least norm. Both
y, y′ are nonzero. Their norms are therefore one of 1, 2, by a property of the E8-
lattice. Since (x, x) ≥ 4, y and y′ each has norm 2. It follows that the image of N

in D(M) is totally singular in the sense that all norms of representing vectors in
M∗ are integers. A similar thing is true for the image of N in D(M ′). It follows
that these images are elementary abelian groups which have ranks at most 4. On
the other hand, diagonal elements of the orthogonal direct sum M ⊥ M ′ have
norms at least 8, which means that N ∩ (M + M ′) contains no vectors in N of
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norm 4. Therefore, N/(N ∩ (M + M ′)) is elementary abelian of rank at least 4.
These two inequalities imply that the rank is 4. The action of tN on this quotient
is trivial. We may therefore use the uniqueness theorem of [GrBWY] to prove
that M + N is isometric to the Barnes-Wall lattice BW16. ¤

5.2.3 DIH8: Given that F ∼= AA1 ⊥ AA1, what is J?

Proposition 5.15. If FM
∼= FN

∼= AA1 ⊥ AA1, M + N is non-integral or has a
root.

Proof. If FM
∼= FN

∼= AA1 ⊥ AA1, then M ∩ J ∼= N ∩ J ∼= DD6. We shall first
determine the structure of M ∩ J + N ∩ J .

Let h = g−1. Then, by Lemma 5.10, we have (M ∩ J)(h− 1) ≤ N ∩ J . Since
(M ∩ J, (M ∩ J)h) = 0, (M ∩ J)(h − 1) ∼= 2D6 and det((M ∩ J)(h − 1)) = 214.
Therefore, |N ∩ J : (M ∩ J)(h− 1)| = (2rank N∩J)1/2 = 23.

Let K = (M ∩J)(h− 1). Then, by (D.4), there exists a subset {η1, . . . , η6} ⊂
N ∩ J with (ηi, ηj) = 4δi,j such that

K = spanZ {(ηi ± ηj) | i, j = 1, 2, . . . , 6}

and

N ∩ J = spanZ

{
η1, η2, η4, η6,

1
2
(−η1 + η2 − η3 + η4),

1
2
(−η3 + η4 − η5 + η6)

}
.

By computing the Gram matrix, it is easy to show that {η1+η2,−η1+η2,−η2+
η3,−η3 + η4,−η4 + η5,−η5 + η6} forms a basis of K = (M ∩ J)(h − 1) ∼= 2D6.
Now let

α1 = (η1 + η2)(h− 1)−1, α2 = (−η1 + η2)(h− 1)−1, α3 = (−η2 + η3)(h− 1)−1,

α4 = (−η3 + η4)(h− 1)−1, α5 = (−η4 + η5)(h− 1)−1, α6 = (−η5 + η6)(h− 1)−1.

Then {α1, α2, α3, α4, α5, α6} is a basis of M∩J . Moreover, (α1, α2) = 0, (α1, α3) =
−2, (αi, αi+1) = −2 for i = 2, . . . , 5.
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By the definition, we have η2 = −1
2(α1 + α2)(h − 1), (−η1 + η2 − η3 + η4) =

(α2 + α4)(h− 1) and (−η3 + η4 − η5 + η6) = (α4 + α6)(h− 1). Hence,

N ∩ J = spanZ

{
K,

1
2
(α1 + α2)(h− 1),

1
2
(α2 + α4)(h− 1),

1
2
(α4 + α6)(h− 1)

}
.

Since M ∼= EE8, det(M) = 28 and |M/(FM + M ∩ J)| = 22. Note that M ,
FM and M ∩ J are all doubly even. Recall that D∗

6/D6
∼= Z2 × Z2. Since M ∩ J

is a direct summand of M , the natural map 1√
2
M → D( 1√

2
(M ∩ J)) is onto.

Similarly, the natural map 1√
2
M → D( 1√

2
(FM )) is also onto.

Define H := FM ∩ FN . Let HX := annFX
(H), for X = M, N . Since H

is the negated sublattice of the involution tN on FM , H is isometric to either
0, AA1, AA1 ⊥ AA1 or 2A1 since FM and FN are rectangular.

Let {α1
M , α2

M} and {α1
N , α2

N} be bases of FM and FN such that (αi
M , αj

M ) =
4δi,j and (αi

N , αj
N ) = 4δi,j . Since |M : FM + M ∩ J | = 22 and the natural map

1√
2
M → D( 1√

2
FM ) is onto, there exist β1 ∈ (M ∩ J)∗, β2 ∈ (M ∩ J)∗ so that

ξM =
1
2
α1

M + β1 and ζM =
1
2
α2

M + β2

are glue vectors and the cosets 1√
2

(
β1 + (M ∩ J)

)
, 1√

2

(
β2 + (M ∩ J)

)
generate

the abelian group
(

1√
2
(M ∩ J)

)∗
/ 1√

2
(M ∩ J) ∼= Z2 ⊕ Z2. Since M is spanned

by norm 4 vectors, we may also assume that ξM and ζM both have norm 4 and
thus β1 and β2 have norm 3.

Recall that a standard basis for the root lattice D6 is given by {(1, 1, 0, 0, 0, 0),
(−1, 1, 0, 0, 0, 0), (0,−1, 1, 0, 0, 0), (0, 0,−1, 1, 0, 0), (0, 0, 0,−1, 1, 0), (0, 0, 0, 0,−1, 1)}
and the elements of norm 3/2 in (D6)∗ have the form 1

2(±1, . . . ,±1) with evenly
many − signs or 1

2(±1, . . . ,±1) with oddly many − signs (cf. [CS, Chapter 5]).
They are contained in two distinct cosets of (D6)∗/D6. Note that (D6)∗/D6 have
3 nontrivial cosets and their elements have norm 3/2, 3/2, and 1 modulo 2Z,
respectively.

Now define φ : D6 → M ∩ J by

(1, 1, 0, 0, 0, 0) 7→ α1, (−1, 1, 0, 0, 0, 0) 7→ α2, (0,−1, 1, 0, 0, 0) 7→ α3

(0, 0,−1, 1, 0, 0) 7→ α4, (0, 0, 0,−1, 1, 0) 7→ α5, (0, 0, 0, 0,−1, 1) 7→ α6.
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A comparison of Gram matrices shows that φ is
√

2 times an isometry. Since
1
2(−1, 1,−1, 1,−1, 1) and 1

2(1, 1,−1, 1,−1, 1) are the representatives of the two
cosets of (D6)∗/D6 represented by norm 3/2 vectors, by (A.5),

φ

(
1
2
(−1, 1,−1, 1,−1, 1)

)
=

1
2
(α2 + α4 + α6)

and

φ

(
1
2
(1, 1,−1, 1,−1, 1)

)
=

1
2
(α1 + α4 + α6)

are the representatives of the two cosets of 2(M ∩ J)∗/(M ∩ J) represented by
norm 3 vectors. Therefore, without loss, we may assume

{β1, β2} = {1
2
(α2 + α4 + α6),

1
2
(α1 + α4 + α6)}.

Similarly, there exist γ1, γ2 ∈ (N ∩ J)∗ with (γ1, γ1) = (γ2, γ2) = 3 such that

ξN =
1
2
α1

N + γ1, and ζN =
1
2
α2

N + γ2

are glue vectors and N = spanZ{FN +N∩J, ξN , ζN}. Moreover, 1√
2

(
γ1 + N ∩ J

)
,

1√
2

(
γ2 + N ∩ J

)
generate the group

(
1√
2
(N ∩ J)

)∗
/ 1√

2
(N ∩ J).

We shall prove that (β, γ) ≡ 1
2(mod Z), resulting in a contradiction.

Define ϕ : D6 → N ∩ J by

(1, 1, 0, 0, 0, 0) 7→ η1, (−1, 1, 0, 0, 0, 0) 7→ η2,

(0,−1, 1, 0, 0, 0) 7→ 1
2
(η1 + η2 + η3 + η4), (0, 0,−1, 1, 0, 0) 7→ η4,

(0, 0, 0,−1, 1, 0) 7→ 1
2
(−η3 + η4 − η5 + η6), (0, 0, 0, 0,−1, 1) 7→ η6.

By comparing the Gram matrices, it is easy to show that ϕ is a
√

2 times an
isometry. Thus, we may choose γ1, γ2 such that

{γ1, γ2} =
{

ϕ

(
1
2
(−1, 1,−1, 1,−1, 1)

)
, ϕ

(
1
2
(1, 1,−1, 1,−1, 1)

)}

=
{

1
2
(η2 + η4 + η6),

1
2
(η1 + η4 + η6)

}
.
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By the definition of α1, . . . , α6, we have

η1 =
1
2
(α1 − α2)(h− 1), η2 =

1
2
(α1 + α2)(h− 1),

η4 = [
1
2
(α1 + α2) + (α3 + α4)](h− 1),

η6 = [
1
2
(α1 + α2) + (α3 + α4 + α5 + α6)](h− 1).

Thus,

(α2 + α4 + α6, η2 + η4 + η6) = −6 and (α2 + α4 + α6, η1 + η4 + η6) = −2.

Therefore, (β1, γ1) ≡ 1/2 mod Z.

Subcase 1. H ∼= 0, AA1 or AA1 ⊥ AA1. In this case, we may choose the bases
{α1

M , α2
M} and {α1

N , α2
N} of FM and FN such that (αi

M , αj
N ) ∈ {0, 4}, for all i, j.

Hence,

(ξM , ξN ) = (
1
2
αM ,

1
2
αN ) + (β1, γ1) ≡ 1/2 mod Z

and L = M + N is non-integral.

Subcase 2. H ∼= 2A1. Then HM
∼= HN

∼= 2A1, also. By replacing αi
M by

−αi
M and αi

N by −αi
N for i = 1, 2 if necessary, α1

M + α2
M = α1

N + α2
N ∈ H. Write

ρ := α1
M + α2

M = α1
N + α2

N . Then we calculate the difference of the glue vectors

ηM − ζM =
1
2
(α1

M − α2
M ) +

1
2
(α2 + α4 + α6)− 1

2
(α1 + α4 + α6)

≡ 1
2
ρ +

1
2
(−α1 + α2) mod (FM + M ∩ J).

Similarly,

ηN − ζN =
1
2
(α1

N − α2
N ) +

1
2
(η2 + η4 + α6)− 1

2
(η1 + η4 + η6)

≡ 1
2
ρ− 1

2
(−η1 + η2) mod (FN + N ∩ J).

Let νM = 1
2ρ + 1

2(−α1 + α2) and νN = 1
2ρ − 1

2(−η1 + η2). Then νM and νN

are both norm 4 vectors in L. Recall that (−η1 + η2) = α2(h − 1). Since
(αi, α

j
M ) = (αi, α

j
N ) = 0 for all i, j, we have (ρ, αi) = 0 for all i.

(νM , νN ) =(
1
2
ρ +

1
2
(−α1 + α2),

1
2
ρ− 1

2
(−η1 + η2))

=
1
4
[
(ρ, ρ)− (−α1 + α2, α2(h− 1))

]
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Recall that (αi
M , αj

M ) = 4δi,j and (αi, αj) = 4δi,j for i, j = 1, 2. Moreover,
(x, yh) = 0 for all x, y ∈ M ∩ J by (ii) of (5.9). Thus, (ρ, ρ) = (α1

M + α2
M , α1

M +
α2

M ) = 4 + 4 = 8 and (−α1 + α2, α2(h− 1)) = (−α1 + α2,−α2) = −4.

Therefore, (νM , νN ) = 1
4(8− (−4)) = 3 and hence νM − νN is a root in L. ¤

5.2.4 DIH8: Given that FM
∼= FN

∼= DD4, what is J?

Next we shall consider the case FM
∼= FN

∼= DD4. In this case, M ∩J ∼= N ∩J ∼=
DD4.

Notation 5.16. Let {α1, α2, α3, α4} ⊂ M ∩ J such that (αi, αj) = 4δi,j , i, j =
1, 2, 3, 4. Then M ∩J = spanZ{α1, α2, α3,

1
2(α1 +α2 +α3 +α4)}. In this case, the

norm 8 elements of M ∩ J are given by ±αi ± αj for i 6= j.

Lemma 5.17. Let h = g−1. By rearranging the subscripts if necessary, we have

N ∩ J = spanZ{(M ∩ J)(h− 1),
1
2
(α1 + α2)(h− 1),

1
2
(α1 + α3)(h− 1)}.

Proof. Let K := (M∩J)(h−1). Then by (ii) of Lemma 5.10, we have K ≤ N∩J .
Since (M ∩ J, (M ∩ J)h) = 0 by (5.9), K = (M ∩ J)(h− 1) ∼= 2D4. Therefore, by
(D.5), we have K ≤ N ∩ J ≤ 1

2K.

Note that, by determinants, |N ∩ J : K| =
√

24 = 22. Therefore, there exists
two glue vectors β1, β2 ∈ (N ∩ J) \ K such that N ∩ J = spanZ{(M ∩ J)(h −
1), β1, β2}.

Since K has minimal norm 8 and N ∩ J is generated by norm 4 elements, we
may choose β1, β2 such that both are of norm 4. On the other hand, elements
of norm 4 in N ∩ J are given by 1

2γ(h− 1), where γ ∈ M ∩ J with norm 8, i.e.,
γ = ±αi ± αj for some i 6= j. Since α1(h − 1), α2(h − 1), α3(h − 1), α4(h − 1) ∈
(M ∩ J)(h− 1) ≤ N ∩ J , we may assume

β1 =
1
2
(αi + αj)(h− 1) and β2 =

1
2
(αk + α`)(h− 1)

for some i, j, k, ` ∈ {1, 2, 3, 4}. Note that |{i, j}∩{k, `}| = 1 because β1 +β2 /∈ K.
Therefore, by rearranging the indices if necessary, we may assume β1 = 1

2(α1 +
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α2)(h− 1), β2 = 1
2(α1 + α3)(h− 1) and

N ∩ J = spanZ{(M ∩ J)(h− 1),
1
2
(α1 + α2)(h− 1),

1
2
(α1 + α3)(h− 1)}.

as desired. ¤

Proposition 5.18. If FM
∼= FN

∼= DD4, then M ∩ J + N ∩ J ∼= EE8.

Proof. First we shall note that (M∩J)+(M∩J)(h−1) = (M∩J) ⊥ (M∩J)h ∼=
DD4 ⊥ DD4. Moreover, we have |N ∩ J + M ∩ J : (M ∩ J) + (M ∩ J)(h− 1)| =
|N ∩ J : (M ∩ J)(h − 1)| =

√
(28 · 4)/(24 · 4) = 4, by determinants. Therefore,

det(M ∩ J + N ∩ J) = (24 · 4)2/42 = 28.

Now by (5.17), we have

N ∩ J = spanZ{(M ∩ J)(h− 1),
1
2
(α1 + α2)(h− 1),

1
2
(α1 + α3)(h− 1)}.

Next we shall show that (M ∩ J,N ∩ J) ⊂ 2Z. Since (M ∩ J, (M ∩ J)h)) = 0 and
M ∩ J is doubly even, it is clear that (M ∩ J, (M ∩ J)(h− 1)) ⊂ 2Z. Moreover,
for any i, j ∈ {1, 2, 3, 4}, i 6= j,

(
αk,

1
2
(αi + αj)(h− 1)

)
=





0 if k /∈ {i, j},
−2 if k ∈ {i, j},

and (
1
2
(α1 + α2 + α3 + α4),

1
2
(αi + αj)(h− 1)

)
= −2.

Since M ∩ J is spanned by α1, α2, α3 and 1
2(α1 + α2 + α3 + α4) and N ∩ J =

spanZ{(M∩J)(h−1), 1
2(α1+α2)(h−1), 1

2(α1+α3)(h−1)}, we have (M∩J,N∩J) ⊂
2Z as required. Therefore, 1√

2
(M ∩ J + N ∩ J) is an integral lattice and has

determinant 1 and thus M ∩J +N ∩J ∼= EE8, by the classification of unimodular
even lattices of rank 8. ¤

Lemma 5.19. Let α1, α2, α3, α4 ∈ M ∩ J be as in Notation 5.16. Then

(M ∩ J)∗ =
1
4
spanZ {α1 − α2, α1 + α2, α1 + α3, α1 + α4} .

and

(N ∩ J)∗ =
1
4
spanZ

{
α1(h− 1), α2(h− 1), α3(h− 1),

1
2
(α1 + α2 + α3 + α4)(h− 1)

}
.
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Proof. Since (Zαi)∗ = 1
4Zαi and M∩J = spanZ{α1, α2, α3,

1
2(α1+α2+α3+α4)},

(M ∩ J)∗

=
{

β =
1
4
(a1α1 + a2α2 + a3α3 + a4α4)

∣∣∣∣ ai ∈ Q, (β, γ) ∈ Z for all γ ∈ M ∩ J

}

=

{
1
4
(a1α1 + a2α2 + a3α3 + a4α4)

∣∣∣∣∣ ai ∈ Z and
4∑

i=1

ai ∈ 2Z, i = 1, 2, 3, 4

}

=
1
4
spanZ {α1 − α2, α1 + α2, α1 + α3, α3 + α4} .

Now by (5.17), we have

N ∩ J = spanZ

{
(M ∩ J)(h− 1),

1
2
(α1 + α2)(h− 1),

1
2
(α1 + α3)(h− 1)

}
.

Let β1 = 1
2(α1+α2)(h−1), β2 = 1

2(α1−α2)(h−1), β3 = 1
2(α3+α4)(h−1), and

β4 = 1
2(α3−α4)(h−1). Then {β1, β2, β3, β4} forms an orthogonal subset of N ∩J

with (βi, βj) = 4δi,j . Note that 1
2(β1 +β2 +β3 +β4) = 1

2(α1 +α3)(h−1) ∈ N ∩J .
Thus, N ∩ J = spanZ{β1, β2, β3,

1
2(β1 + β2 + β3 + β4)} since both of them are

isomorphic to DD4. Hence we have

(N ∩ J)∗ =
1
4
spanZ {β1 − β2, β1 + β2, β1 + β3, β3 + β4}

=
1
4
spanZ

{
α1(h− 1), α2(h− 1), α3(h− 1),

1
2
(α1 + α2 + α3 + α4)(h− 1)

}
.

as desired. ¤

Lemma 5.20. We shall use the same notation as in (5.16). Then the cosets of
2(M ∩ J)∗/(M ∩ J) are represented by

0,
1
2
(α1 + α2),

1
2
(α1 + α3),

1
2
(α2 + α3),

and the cosets of 2(N ∩ J)∗/(N ∩ J) are represented by

0,
1
2
α1(h− 1),

1
4
(α1 + α2 + α3 + α4)(h− 1),

1
4
(α1 + α2 + α3 − α4)(h− 1).

Moreover, (2(M ∩ J)∗, 2(N ∩ J)∗) ⊂ Z.
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Proof. Since X := M ∩ J ∼= DD4, it is clear that 2X∗/X is a four-group. The
three nonzero vectors in the list

0,
1
2
(α1 + α2),

1
2
(α1 + α3),

1
2
(α2 + α3),

have norms two, so all are in 2X∗ \ X. Since the difference of any two has
norm 2, no two are congruent modulo X. A similar argument proves the second
statement.

For the third statement, we calculate the following inner products.

For any i, j, k ∈ {1, 2, 3, 4} with i 6= j,

(αi ± αj , αk(h− 1)) =





0 if k /∈ {i, j},
±4 if k ∈ {i, j},

and
(αi ± αj ,

1
2
(α1 + α2 + α3 + α4)(h− 1)) = 0 or − 4.

Since (M ∩ J)∗ = 1
4spanZ {α1 − α2, α1 + α2, α1 + α3, α1 + α4} and (N ∩ J)∗ =

1
4spanZ

{
α1(h− 1), α2(h− 1), α3(h− 1), 1

2(α1 + α2 + α3 + α4)(h− 1)
}

by (5.19),
we have ((M ∩ J)∗, (N ∩ J)∗) ⊂ 1

4Z and hence (2(M ∩ J)∗, 2(N ∩ J)∗) ⊂ Z as
desired. ¤

Remark 5.21. Note that the lattice D4 is BW22 , so the involutions in its isome-
try group BRW+(22) ∼= Weyl(F4) may be deduced from the theory in [GrIBW1],
especially Lemma 9.14 (with d = 2). The results are in Table (7).

Notation 5.22. Define H := FM ∩ FN and let HX := annFX
(H) for X =

M, N . Since H is the negated sublattice of the involution tN on FM , we have the
possibilities listed in Table 7. We label the case for 1√

2
H by the corresponding

involution 2A, · · · , 2G. (i.e., the involution whose negated space is 1√
2
H)

We shall prove the main result of this section, Theorem 5.26 in several steps.

Lemma 5.23. Suppose FM
∼= FN

∼= DD4. If 1√
2
H ∼= AA1, A1 ⊥ AA1 or A3

(i.e., the cases for 2B, 2D and 2F ), then the lattice L is non-integral.

Proof. We shall divide the proof into 3 cases. Recall notations (5.22).
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Table 7: The seven conjugacy classes of involutions in BRW+(22) ∼=
Weyl(F4)

Involution Multiplicity of −1 Isometry type of
negated sublattice

2A 1 A1

2B 1 AA1

2C 2 A1 ⊥ A1

2D 2 A1 ⊥ AA1

2E 3 A1 ⊥ A1 ⊥ A1

2F 3 A3

2G 4 D4

Case 2B. In this case, 1√
2
H ∼= AA1 and 1√

2
HM

∼= 1√
2
HN

∼= A3. Then
FM ≥ H ⊥ HM and M ≥ H ⊥ HM ⊥ M ∩ J .

Let α ∈ H with (α, α) = 8. Then H = Zα and H∗ = 1
8Zα.

By (A.5), we have ( 1√
2
FM )∗/ 1√

2
FM

∼= 2(FM )∗/FM . Thus, by (D.6), the
natural map 2(FM )∗ → 2(H∗) = 1

4Zα is onto. Therefore, there exists δM ∈ H∗
M

with (δM , δM ) = 3/2 such that 1
4α + δM ∈ 2(FM )∗. Note that the natural map

1√
2
M → D( 1√

2
FM ) is also onto since 1√

2
M is unimodular and FM is a direct

summand of M . Therefore, there exists γM ∈ 2(M ∩J)∗ with (γM , γM ) = 2 such
that

ξM =
1
4
α + δM + γM

is a glue vector for H ⊥ HM ⊥ M ∩ J in M . Similarly, there exists δN ∈ H∗
N

with (δN , δN ) = 3/2 and γN ∈ 2(N ∩ J)∗ with (γN , γN ) = 2 such that

ξN =
1
4
α + δN + γN

is a glue vector for H ⊥ NN ⊥ N ∩ J in N .

Since (γM , γN ) ∈ Z by (5.20) and HM ⊥ HN ,

(ξM , ξN ) =
1
16

(α, α) + (δM , δN ) + (γM , γN ) ≡ 1
2

mod Z,
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which is not an integer.

Case 2D. In this case, 1√
2
H ∼= A1 ⊥ AA1 and 1√

2
HM

∼= 1√
2
HN

∼= A1 ⊥
AA1, also. Take α, β ∈ H such that (α, α) = 8, (β, β) = 4 and (α, β) = 0.
Similarly, there exist αM , βM ∈ HM and αN , βN ∈ HN such that (αM , αM ) = 8,
(βM , βM ) = 4 and (αM , βM ) = 0 and (αN , αN ) = 8, (βN , βN ) = 4 and (αN , βN ) =
0.

Note that Zβ ⊥ ZβM ⊥ ZαM ≤ annFM
(α) ∼= AA3. Set A := annFM

(α) ∼=
AA3. Then |A : Zβ ⊥ ZβM ⊥ ZαM | =

√
(4× 4× 8)/(23 × 4) = 2. Therefore,

there exists a µ ∈ (Zβ ⊥ ZβM ⊥ ZαM )∗ = 1
4Zβ ⊥ 1

4ZβM ⊥ 1
8ZαM such that

A = spanZ{β, βM , αM , µ} and 2µ ∈ Zβ ⊥ ZβM ⊥ ZαM .

Since A is generated by norm 4 vectors, we may choose µ so that µ has
norm 4. The only possibility is µ = 1

2(±β ± βM ± αM ). Therefore, A =
spanZ{β, βM , αM , 1

2(β+βM+αM )} and 2A∗/A ∼= Z4 is generated by 1
2β+1

4αM+A.
Note also that 1

2β + 1
4αM has norm 3/2.

Now recall that Zα ∼= 2A1 and A ∼= AA3. Thus, by (D.6), the natural map
2(FM )∗ → 2(H∗) = 1

4Zα is onto. Thus, there exists a δ ∈ 2A∗ with (δ, δ) =
3/2 such that 1

4α + δ ∈ 2(FM )∗. By the previous paragraph, we may assume
δ = 1

2β + 1
4αM . Since the natural map 1√

2
M → D( 1√

2
FM ) is onto, there exists

γM ∈ 2(M ∩ J)∗ such that

ξM =
1
4
α +

1
2
β +

1
4
αM + γM

is a glue vector for H ⊥ HM ⊥ M∩J in M . Similarly, there exists γN ∈ 2(N∩J)∗

such that
ξN =

1
4
α +

1
2
β +

1
4
αN + γN

is a glue vector for H ⊥ HN ⊥ N ∩ J in N . Then

(ξM , ξN ) =
1
16

(α, α) +
1
4
(β, β) +

1
16

(αM , αN ) + (γM , γN ) ≡ 1/2 mod Z,

since (αM , αN ) = 0 and (γM , γN ) ∈ Z by (5.20). Therefore, L is not integral.

Case 2F. In this case, 1√
2
H ∼= A3 and 1√

2
HM

∼= 1√
2
HN

∼= AA1. Then FM ≥
H ⊥ HM and FN ≥ H ⊥ HN . Let δ ∈ H∗, αM ∈ HM and αN ∈ HN such that
(δ, δ) = 3/2, (αM , αM ) = 8 and (αN , αN ) = 8.
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Recall in Case 2B that 1√
2
H ∼= AA1 and 1√

2
HM

∼= 1√
2
HN

∼= A3. Now by
exchanging the role of H with HM (or HN ) and using the same argument as in
Case 2B, we may show that there exist γM ∈ 2(M ∩ J)∗ and γN ∈ 2(N ∩ J)∗

such that ξM = δ + 1
4αM + γM is a glue vector for H ⊥ HM ⊥ M ∩ J in M and

ξN = δ + 1
4αN + γN is a glue vector for H ⊥ HN ⊥ (N ∩ J) in N . However,

(ξM , ξN ) = (δ, δ) + (γM , γN ) ≡ 1/2 mod Z,

since (γM , γN ) ∈ Z by (5.20). Again, L is not integral. ¤

Lemma 5.24. Let γM be any norm 2 vector in 2(M ∩ J)∗. Then for each non-
zero coset γN + (N ∩ J) in 2(N ∩ J)∗/(N ∩ J), there exists a norm 2 vector
γ ∈ γN + (N ∩ J) such that (γM , γ) = −1.

Proof. Recall from (5.19) that

2(M ∩ J)∗ =
1
2
spanZ {α1 − α2, α1 + α2, α1 + α3, α3 + α4} .

Thus, all norm 2 vectors in 2(M ∩J)∗ have the form 1
2(±αi±αj) for some i 6= j.

Without loss, we may assume γM = 1
2(αi + αj) by replacing αi, αj by −αi, −αj

if necessary.

Now by (5.20), the non-zero cosets of 2(N ∩ J)∗/(N ∩ J) are represented by
1
2α1(h−1), 1

4(α1+α2+α3+α4)(h−1) and 1
4(α1+α2+α3−α4)(h−1). Moreover,

by (5.17),

N ∩ J =
1
2
spanZ{ (αi ± αj)(h− 1) | 1 ≤ i < j ≤ 4}.

If γN + (N ∩ J) = 1
2α1(h− 1) + (N ∩ J), we take

γ =
1
2
αi(h− 1) =

1
2
α1(h− 1) +

1
2
(−α1 + αi)(h− 1) ∈ 1

2
α1(h− 1) + (N ∩ J).

Recall from (5.16) that {α1, α2, α3, α4} ∈ M ∩ J and (αi, αj) = 4δi,j for
i, j = 1, . . . , 4. Moreover, (x, yh) = 0 for all x, y ∈ M ∩ J by (5.9).

Thus, (γ, γ) = (1
2αi(h − 1), 1

2αi(h − 1)) = 1
4 [(αih, αih) + (αi, αi)] = 2 and

(γ1
M , γ) = (1

2(αi + αj), 1
2αi(h− 1)) = −1

4(αi + αj , αi) = −1.
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If γN + (N ∩ J) = 1
4(α1 + α2 + α3 + α4)(h − 1) + (N ∩ J), we simply take

γ = 1
4(α1 + α2 + α3 + α4)(h− 1). Then (γ, γ) = 2 and

(γM , γ) = (
1
2
(αi + αj),

1
4
(α1 + α2 + α3 + α4)(h− 1))

=− 1
8
(αi + αj , α1 + α2 + α3 + α4)

=− 1
8
(4 + 4) = −1.

Finally we consider the case γN +N∩J = 1
4(α1+α2+α3−α4)(h−1)+(N∩J).

Let {k, `} = {1, 2, 3, 4} − {i, j} and take

γ =
1
4
(αi + αj + αk − α`)(h− 1) =

1
4
(α1 + α2 + α3 − α4)(h− 1) +

1
2
(α4 − α`)

∈ 1
4
(α1 + α2 + α3 − α4)(h− 1) + N ∩ J.

Then (γ, γ) = 2 and

(γM , γ) = (
1
2
(αi + αj),

1
4
(αi + αj + αk − α`)(h− 1))

=− 1
8
(αi + αj , αi + αj + αk − α`)

=− 1
8
(4 + 4) = −1

as desired. ¤

Lemma 5.25. If 1√
2
H ∼= A1 ⊥ A1, A1 ⊥ A1 ⊥ A1 or D4 (i.e., the cases for 2C,

2E and 2G), then the lattice L has roots.

Proof. We continue to use the notations (5.22). First, we shall note that the nat-
ural maps 1√

2
M → D( 1√

2
FM ), 1√

2
M → D( 1√

2
(M ∩ J)) and 1√

2
N → D( 1√

2
FN ),

and 1√
2
N → D( 1√

2
(N ∩ J)) are all onto.

Case 2C. In this case, 1√
2
H ∼= A1 ⊥ A1 and 1√

2
HM

∼= 1√
2
HN

∼= A1 ⊥
A1. Let µ1, µ2 be a basis of H such that (µi, µj) = 4δi,j . Let µ1

M , µ2
M and

µ1
N , µ2

N be bases of HM and HN which consist of norm 4 vectors. Then, FM =
spanZ{µ1, µ2, µ1

M , 1
2(µ1 + µ2 + µ1

M + µ2
M )} and FN = spanZ{µ1, µ2, µ1

N , 1
2(µ1 +

µ2 +µ1
N +µ2

N )}. Therefore, by the same arguments as in Lemma 5.20, the cosets
representatives of (2F ∗

M )/FM are given by

0,
1
2
(µ1 + µ2),

1
2
(µ1 + µ1

M ),
1
2
(µ2 + µ1

M ),
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and the cosets representatives of (2F ∗
N )/FN are given by

0,
1
2
(µ1 + µ2),

1
2
(µ1 + µ1

N ),
1
2
(µ2 + µ1

N ).

Therefore, there exist γ1
M , γ2

M ∈ (M ∩ J)∗ so that

ξM =
1
2
(µ1 + µ2) + γ1

M and ζM =
1
2
(µ1 + µ1

M ) + γ2
M ,

are glue vectors for FM +(J∩M) in M and such that γ1
M +(M∩J), γ2

M +(M∩J)
generate 2(M ∩ J)∗/(M ∩ J).

Similarly, there exist γ1
N , γ2

N ∈ (N ∩ J)∗ so that

ξN = −1
2
(µ1 + µ2) + γ1

N and ζN = −1
2
(µ1 + µ1

N ) + γ2
N ,

are glue vectors for FN + N ∩ J in N , and such that γ1
N + (N ∩ J), γ2

N + (N ∩ J)
generate 2(N ∩ J)∗/(N ∩ J).

By Lemma (5.24), we may assume (γ1
N , γ1

M ) = −1. Then

(ξM , ξN ) = (
1
2
(µ1 + µ2) + γ1

M ,−1
2
(µ1 + µ2) + γ1

N )

= −1
4
((µ1, µ1) + (µ2, µ2)) + (γ1

M , γ1
N )

= −1
4
(4 + 4)− 1 = −3

and hence ξM + ξN is a root.

Case 2E. In this case, 1√
2
H ∼= A1 ⊥ A1 ⊥ A1 and 1√

2
HM

∼= 1√
2
HN

∼= A1.

Let µ1, µ2, µ3 ∈ H be such that (µi, µj) = 4δi,j . Let µM ∈ HM and µN ∈ HN

be norm 4 vectors. Then HM = ZµM and HN = ZµN . Moreover,

FM = spanZ{µ1, µ2, µ3,
1
2
(µ1 + µ2 + µ3 + µM )} ∼= DD4

and
FN = spanZ{µ1, µ2, µ3,

1
2
(µ1 + µ2 + µ3 + µN )} ∼= DD4.

Then, by (5.20), 1
2(µ1 +µ2) is in both 2(FM )∗ and 2(FN )∗. Therefore, there exist

γM ∈ 2(M ∩ J)∗ and γN ∈ 2(N ∩ J)∗ such that

ξM =
1
2
(µ1 + µ2) + γM ∈ M and ξN = −1

2
(µ1 + µ2) + γN ∈ N
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are norm 4 glue vectors for FM ⊥ M ∩J in M and FN ⊥ N ∩J in N , respectively.
By Lemma (5.24), we may assume (γM , γN ) = −1. Then,

(ξM , ξN ) =(
1
2
(µ1 + µ2) + γM ,−1

2
(µ1 + µ2) + γN )

=− 1
4
(µ1 + µ2, µ1 + µ2) + (γM , γN ) = −2− 1 = −3

and ξM + ξN is a root.

Case 2G. In this case, 1√
2
H ∼= D4 and 1√

2
HM = 1√

2
HN = 0. Recall that

2(DD4)∗/DD4
∼= (D4)∗/D4 by (A.5) and all non-trivial cosets of (D4)∗/D4 can

be represented by norm 1 vectors [CS, p. 117]. Therefore, the non-trivial cosets
of 2(DD4)∗/DD4 can be represented by norm 2 vectors. Thus we can find vectors
γ ∈ 2H∗ with (γ, γ) = 2 and γM ∈ 2(M ∩ J)∗, γN ∈ 2(N ∩ J)∗ such that

ξM = γ + γM ∈ M and ξN = −γ + γN ∈ N

are norm 4 glue vectors for FM ⊥ M ∩J in M and FN ⊥ N ∩J in N , respectively.
Again, we may assume (γM , γN ) = −1 by (5.24) and thus (ξM , ξN ) = −3 and
there are roots. ¤

Theorem 5.26. Suppose FM
∼= FN

∼= DD4. If L = M + N is integral and
rootless, then H = FM ∩ FN = 0 or ∼= AA1.

The proof of Theorem 5.26 now follows from Lemmas 5.23 and 5.25.

6 DIH6 and DIH12 theories

We shall study the cases when D = 〈tM , tN 〉 ∼= Dih6 or Dih12. The following is
our main theorem in this section. We refer to the notation table (Table 3) for
the definition of DIH6(14), DIH6(16) and DIH12(16).

Theorem 6.1. Let L be a rootless integral lattice which is a sum of sublattices
M and N isometric to EE8. If the associated dihedral group has order 6 or 12,
the possibilities for L + M + N, M, N are listed in Table (8).
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Table 8: DIH6 and DIH12: Rootless cases

Name F ∼= L contains . . . with index . . . D(L)

DIH6(14) AA2 ≥ A2 ⊗ E6 ⊥ AA2 32 193362

DIH6(16) 0 A2 ⊗ E8 1 38

DIH12(16) AA2 ⊥ AA2 ≥ A2 ⊗ E6 ⊥ AA⊥2
2 32 11264

6.1 DIH6

Notation 6.2. Define t := tM , h := tM tN . We suppose h has order 3. Then,
N = Mg, where g = h2. The third lattice in the orbit of D := 〈g, t〉 is Mg2, but
we shall not refer to it explicitly henceforth. Define F := M ∩N , J := annL(F ).
Note that F is the common negated lattice for tM and tN in L, so is the fixed
point sublattice for g and is a direct summand of L (cf. (A.10)).

Lemma 6.3. Let X = M or N . Two of the sublattices {(J ∩ X)gi| i ∈ Z} are
equal or meet trivially.

Proof. We may assume X = M . Suppose that 0 6= U = (J ∩M)gi ∩ (J ∩M)gj

for i, j not congruent modulo 3. Then U is negated by two distinct involutions
tg

i
and tg

j
, hence is centralized by g, a contradiction. ¤

Lemma 6.4. If F = 0, J ∼= A2 ⊗ E8.

Proof. Use (3.2). ¤

Hypothesis 6.5. We assume F 6= 0 and define the integer s by 3s := |L/(J+F )|.

Lemma 6.6. L/(J ⊥ F ) is an elementary abelian group, of order 3s where
s ≤ 1

2rank(J).

Proof. Note that g acts trivially on both F and L/J since L/J embeds in F ∗.
Observe that g− 1 induces an embedding L/F → J . Furthermore, g− 1 induces
an embedding L/(J + F ) → J/J(g − 1), which is an elementary abelian 3-group
whose rank is at most 1

2rank(J) since (g − 1)2 induces the map −3g on J . ¤
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Lemma 6.7. s ≤ rank(F ) and s ∈ {1, 2, 3}.

Proof. If s were 0, L = J + F and M would be orthogonally decomposable, a
contradiction. Therefore, s ≥ 1. The two natural maps L → D(F ) and L → D(J)
have common kernel J ⊥ F . Their images are therefore elementary abelian
group of rank s at most rank(F ) and at most rank(J). In (6.6), we observed
the stronger statement that s ≤ 1

2rank(J). Since rank(J) ≥ 1, 8 = rank(J) +
rank(F ) > rank(J) ≥ 2s implies that s ≤ 3. ¤

Lemma 6.8. M/((M ∩ J) + F ) ∼= L/(J ⊥ F ) is an elementary abelian 3-group
of order 3s.

Proof. The quotient L/(J +F ) is elementary abelian by (6.6). Since L = M +N

and N = Mg, M covers L/L(g − 1). Since L(g − 1) ≤ J , M + J = L Therefore,
L/(J ⊥ F ) ∼= (M + J)/(J + F ) = (M + (J + F ))/(J + F ) ∼= M/(M ∩ (J + F )).
The last denominator is (M ∩ J) + F since F ≤ M . ¤

Lemma 6.9. D(F ) ∼= 3s × 2rank(F ).

Proof. Since 1√
2
M ∼= E8 and the natural map of 1√

2
M to D( 1√

2
F ) is onto and

has kernel 1√
2
(M ∩ J ⊥ F ), D( 1√

2
F ) ∼= 3s is elementary abelian. ¤

Notation 6.10. Let X = M ∩J , Y = N ∩J and K = X +Y . Note that Y = Xg

and thus by Lemma 3.2, we have K ∼= A2 ⊗
(

1√
2
X

)
.

Let {α, α′} be a set of fundamental roots for A2 and denote α′′ = −(α + α′).
Let g′ be the isometry of A2 which is induced by the map α → α′ → α′′ → α.

By identifying K with A2 ⊗
(

1√
2
X

)
, we may assume X = M ∩ J = Zα ⊗(

1√
2
X

)
. Recall that (x, x′g) = −1

2(x, x′) for any x, x′ ∈ K (cf. (3.2)). Therefore,

for any β ∈ 1√
2
X, we may identify (α ⊗ β)g with α′ ⊗ β = αg′ ⊗ β and identify

Y = Xg with αg′ ⊗
(

1√
2
X

)
.

Lemma 6.11. We have J = L(g − 1) + K, where K = J ∩ M + J ∩ N as in
(6.10). The map g− 1 takes L onto J and induces an isomorphism of L/(J +F )
and J/K, as abelian groups. In particular, both quotients have order 3s.
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Proof. Part 1: The map g−1 induces a monomorphism. Clearly, L(g−1) ≤ J

and g acts trivially on L/L(g − 1). Obviously, F (g − 1) = 0. We also have
L ≥ J + F ≥ K + F . Since M ∩ J ≤ K, t acts trivially on J/K. Therefore, so
does g, whence J(g − 1) ≤ K. Since g acts trivially on L/J , L(g − 1)2 ≤ K.

Furthermore, (g − 1)2 annihilates L/(F + K), which is a quotient of L/F ,
where the action of g has minimal polynomial x2 + x + 1. Therefore L/(F + K)
is annihilated by 3g, so is an elementary abelian 3-group. We have 3L ≤ F + K.

Let P := {x ∈ L|x(g − 1) ∈ K}. Then P is a sublattice and F + J ≤ P ≤ L.
By coprimeness, there are sublattices P+, P− so that P+ ∩ P− = F + K and
P+ + P− = P and t acts on P ε/(F + K) as the scalar ε = ±1. We shall prove
now that P− = F + K and P+ = F + J . We already know that P− ≥ F + K

and P+ ≥ F + J .

Let v ∈ P− and suppose that v(g − 1) ∈ K. Then v(g2 − g) ∈ K and this
element is fixed by t. Therefore, v(g2 − g) ∈ annK(M ∩ J). By (3.2), there is
u ∈ M ∩ J so that u(g2 − g) = v(g2 − g). Then u − v ∈ L is fixed by g and so
u− v ∈ F . Since u ∈ K, v ∈ F + K. We have proved that P− = F + K.

Now let v ∈ P+. Assume that v 6∈ F + J . Since D acts on L/J such that g

acts trivially, coprimeness of |L/J | and |D/〈g〉| implies that L has a quotient of
order 3 on which t and u act trivially. Since L = M +N , this is not possible. We
conclude that F + J = P+.

We conclude that P = P− + P+ = F + J and so g− 1 gives an embedding of
L/(J + F ) into J/K.

Part 2: The map g−1 induces an epimorphism. We know that L/(F +J) ∼=
3s and this quotient injects into J/K. We now prove that J/K has order bounded
by 3s.

Consider the possibility that t negates a nontrivial element x+K of J/K. By
(A.7), we may assume that xt = −x. But then x ∈ M ∩ J ≤ K, a contradiction.
Therefore, t acts trivially on the quotient J/K. It follows that the quotient J/K

is covered by J+(t). Therefore J/K embeds in the discriminant group of K+(t),
which by (3.2) is isometric to

√
3(M ∩ J). Since J/K is an elementary abelian

3-group and D(M ∩ J) ∼= 3s×2rank(M∩J), the embedding takes J/K to the Sylow
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3-group of D(M ∩ J), which is isomorphic to 3s (see (6.9) and use (A.13), applied
to 1√

2
M and the sublattices 1√

2
F and 1√

2
(M ∩ J). ¤

Proposition 6.12. If L is rootless and F 6= 0, then s = 1 and F ∼= AA2. Also,
L/(J ⊥ F ) ∼= 3.

Proof. We have s ≤ 3, so by Proposition D.9, F ∼= AA2, EE6 or AA2 ⊥ AA2

and s = 1, 1 or 2, respectively. Note X = M ∩ J is the sublattice of M which
is orthogonal to F . Since M ∼= EE8, X ∼= EE6, AA2 and AA2 ⊥ AA2 if F ∼=
AA2, EE6 and AA2 ⊥ AA2, respectively.

We shall show that L has roots if F ∼= EE6 or AA2 ⊥ AA2. The conclusion
in the surviving case follows from (6.9).

Case 1: F = EE6 and s = 1. In this case, X ∼= Y ∼= AA2. Hence K ∼= A2⊗A2.
As in Notation 6.10, we shall identify X with Zα ⊗ A2 and Y with Zαg′ ⊗ A2.
Then F ⊥ X ∼= EE6 ⊥ Z(α⊗A2).

In this case, |M/(F + X)| = 3 and there exist γ ∈ (EE6)∗ and γ′ ∈ (A2)∗

with (γ, γ) = 8/3 and (γ′, γ′) = 2/3 such that M = spanZ{F + X, γ + α ⊗ γ′}.
Then N = Mg = spanZ{F + Y, γ + αg′ ⊗ γ′} and we have

L = M + N ∼= spanZ{EE6 ⊥ (A2 ⊗A2), γ + (α⊗ γ′), γ + (αg′ ⊗ γ′)}

Let β := (γ + (α ⊗ γ′)) − (γ + (αg′ ⊗ γ′)) = (α − αg′) ⊗ γ′. Then (β, β) =
(α− αg′, α− αg′) · (γ′, γ′) = 6 · 2/3 = 4.

Let α1 be a root of A2 such that (α1, γ
′) = −1. Then α ⊗ α1 ∈ A2 ⊗ A2,

where α is in the first tensor factor and α1 is in the second tensor factor. Then
(β, α ⊗ α1) = (α − αg′, α) · (γ′, α1) = (2 + 1) · (−1) = −3 and the norm of
β + (α⊗ α1) is given by

(β+(α⊗α1), β+(α⊗α1)) = (β, β)+(α⊗α1, α⊗α1)+2(β, α⊗α1) = 4+4−6 = 2.

Thus, a1 = β + (α ⊗ α1) is a root in J . So, L has roots. In fact, we can say
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more. If we take a2 = βg + αg′ ⊗ α1, then a2 is also a root and

(a1, a2) = (β + α⊗ α1, βg + αg′ ⊗ α1)

= (β, βg) + (β, αg′ ⊗ α1) + (α⊗ α1, βg) + (α⊗ α1, αg′ ⊗ α1)

= −1
2
(4− 3− 3 + 4) = −1.

Thus, a1, a2 spans a sublattice A isometric to A2.

Case 2: F = AA2 ⊥ AA2 and s = 2. In this case, X ∼= Y ∼= AA2 ⊥ AA2.
Hence, K ∼= A2 ⊗ (A2 ⊥ A2). Again, we shall identify X with Zα ⊗ (A2 ⊥ A2)
and F + X ∼= AA2 ⊥ AA2 ⊥ Zα ⊗ (A2 ⊥ A2) ∼= AA2 ⊥ AA2 ⊥ AA2 ⊥ AA2.
For convenience, we shall use a 4-tuple (ξ1, ξ2, ξ3, ξ4) to denote an element in
(F + K)∗ ∼= (AA2)∗ ⊥ (AA2)∗ ⊥ (A2⊗A2)∗ ⊥ (A2⊗A2)∗, where ξ1, ξ2 ∈ (AA2)∗

and ξ3, ξ4 ∈ (A2 ⊗A2)∗.

Recall that |M/(F+X)| = 32 and the cosets of M/(F+X) can be parametrized
by the tetracode (cf. [CS, p. 200]) whose generating matrix is given by

(
1 1 1 0
1−1 0 1

)
.

Hence, there exists a element γ ∈ (AA2)∗ with (γ, γ) = 4/3 and γ′ ∈ (A2)∗

with (γ′, γ′) = 2/3 such that

M = spanZ

{
AA2 ⊥ AA2 ⊥ Zα⊗ (A2 ⊥ A2),
(γ, γ, α⊗ γ′, 0), (γ,−γ, 0, α⊗ γ′)

}
.

Therefore, we also have

N = Mg = spanZ

{
AA2 ⊥ AA2 ⊥ Zαg′ ⊗ (A2 ⊥ A2),

(γ, γ, αg′ ⊗ γ′, 0), (γ,−γ, 0, αg′ ⊗ γ′)

}

and

L = M + N =

spanZ

{
AA2 ⊥ AA2 ⊥ A2 ⊗ (A2 ⊥ A2), (γ, γ, α⊗ γ′, 0),

(γ,−γ, 0, α⊗ γ′), (γ, γ, αg′ ⊗ γ′, 0), (γ,−γ, 0, αg′ ⊗ γ′)

}
.

Let β1 = (γ, γ, α ⊗ γ′, 0) − (γ, γ, αg′ ⊗ γ′, 0) and β2 = (γ,−γ, 0, α ⊗ γ′) −
(γ,−γ, 0, αg′ ⊗ γ′). Then β1, β2 ∈ L(g − 1) ≤ J and both have norm 4.
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Let α1 and α2 be roots in A2 such that (α1, γ
′) = (α2, γ

′) = −1 and (α1, α2) =
1. Denote

a1
1 = β1 + (0, 0, α⊗ α1, 0), a1

2 = β1g
′ + (0, 0, αg′ ⊗ α1, 0),

a2
1 = β1 + (0, 0, α⊗ α2, 0), a2

2 = β1g
′ + (0, 0, αg′ ⊗ α2, 0),

a3
1 = β2 + (0, 0, 0, α⊗ α1), a3

2 = β2g
′ + (0, 0, 0, αg′ ⊗ α1),

a4
1 = β2 + (0, 0, 0, α⊗ α2), a4

2 = β2g
′ + (0, 0, 0, αg′ ⊗ α2).

Then similar to Case 1, we have the inner products

(ai
1, a

i
1) = (ai

2, a
i
2) = 2, and (ai

1, a
i
2) = −1,

for any i = 1, 2, 3, 4. Thus, each pair {ai
1, a

i
2}, for i = 1, 2, 3, 4, spans a sublattice

isometric to A2. Moreover, (ai
k, a

j
`) = 0 for any i 6= j and k, ` ∈ {1, 2}. Therefore,

J ≥ A2 ⊥ A2 ⊥ A2 ⊥ A2. Moreover, |spanZ{ai
1, a

i
2| i = 1, 2, 3, 4}/K| = 32 and

hence J ∼= A2 ⊥ A2 ⊥ A2 ⊥ A2. Again, L has roots. ¤

Corollary 6.13. |J : M ∩ J + N ∩ J | = 3 and M ∩ J = annM (F ) ∼= EE6.

Proof. (6.11) and (6.12). ¤

Corollary 6.14. (i) M ∩ J + N ∩ J is isometric to A2 ⊗ E6.
(ii) L = M + N is unique up to isometry.

Proof. For (i), use (3.2) and for (ii), use (4.1). ¤

Lemma 6.15. If v = v1 + v2 with v1 ∈ J∗ and v2 ∈ F ∗, then v2 has norm 4
3 and

v1 has norm in 8
3 + 2Z.

Proof. Since 3v2 ∈ F , we may assume that 3v2 has norm 12 by (D.7) so that v2

has norm 4
3 . It follows that v1 has norm in 8

3 + 2Z. ¤

6.1.1 DIH6: Explicit gluing

In this subsection, we shall describe the explicit gluing from F + M ∩ J + N ∩ J

to L. As in Notation 6.10, X = M ∩ J , Y = N ∩ J and K = X + Y . Since
F ∼= AA2, we have X ∼= Y ∼= EE6 and K ∼= A2 ⊗ E6. We also identify X with
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Zα⊗
(

1√
2
X

)
and Y with Zαg′⊗

(
1√
2
X

)
, where α is a root of A2 and g′ is a fixed

point free isometry of A2 such that αg′ ⊗ β = (α ⊗ β)g as described in (6.10).
Then F ⊥ X ∼= AA2 ⊥ Zα⊗ E6

∼= AA2 ⊥ EE6.

Recall that (AA2)∗/AA2
∼= Z2

2 × Z3. Therefore, 2(AA2)∗/AA2 is the unique
subgroup of order 3 in (AA2)∗/AA2. Similarly, 2(Zα ⊗ E6)∗/(Zα ⊗ E6) is the
unique subgroup of order 3 in (Zα⊗ E6)∗/(Zα⊗ E6) ∼= Z6

2 × Z3.

Notation 6.16. Since F ⊥ X ≤ M and |M : F ⊥ X| = 3, there exists an
element µ ∈ F ∗ ⊥ X∗ such that 3µ ∈ F + X and M = spanZ{F + X, µ}.
Let γ ∈ (AA2)∗ be a representative of the generator of the order 3 subgroup in
2(AA2)∗/AA2 and γ′ a representative of the generator of the order 3 subgroup
in (E6)∗/E6. Without loss, we may choose γ and γ′ so that (γ, γ) = 4/3 and
(γ′, γ′) = 4/3. Since the image of µ in M/(F ⊥ X) is of order 3, it is easy to see
that

µ ≡ ±(γ + α⊗ γ′) or µ ≡ ±(γ − α⊗ γ′) modulo F ⊥ X.

By replacing µ by −µ and γ′ by −γ′ if necessary, we may assume µ = γ + α⊗ γ′.
Then ν := µg = γ + αg′ ⊗ γ′ and N = spanZ{F + Y, ν}.

Proposition 6.17. With the notation as in (6.16), L = M +N ∼= spanZ{AA2 ⊥
A2 ⊗ E6, γ + α⊗ γ′, γ + αg′ ⊗ γ′}.

Remark 6.18. Let β = (α − αg′) ⊗ γ′ = (γ + α ⊗ γ′) − (γ + αg′ ⊗ γ′). Then
β ∈ L(g − 1) = J = annL(F ) but β = (α − αg′) ⊗ γ′ /∈ K ∼= A2 ⊗ E6. Hence
J = spanZ{β, K} as |J : K| = 3. Note also that (β, β) = 6 · 4/3 = 8.

Lemma 6.19. J+(t) = annJ(M ∩ J) ∼=
√

6E∗
6 .

Proof. By Remark (6.18), we have J = spanZ{β, K}, where β = (α− αg′)⊗ γ′

and K = M ∩ J + N ∩ J ∼= A2 ⊗ E6. Recall that M ∩ J is identified with
Zα⊗E6 and N ∩J is identified with Zαg′⊗E6. Thus, by (3.2), annK(M ∩J) =
Z(αg′−αg′2)⊗E6

∼=
√

6E6. Since (α, αg′−αg′2) = 0, βg = (αg′−αg′2)⊗γ′ also
annihilates M ∩J . Therefore, J+(t) = annJ(M ∩J) ≥ spanZ{annK(M ∩J), βg}.
Since γ′ + E6 is a generator of E∗

6/E6, we have spanZ{E6, γ
′} = E∗

6 and hence

spanZ{annK(M ∩ J), βg} = Z(αg′ − αg′2)⊗ spanZ{E6, γ
′} ∼=

√
6E∗

6 .
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Note that (αg′−αg′2) has norm 6. Now by the index formula, we have det(J+(t)) =
26 × 35 = det(

√
6E∗

6) and thus, we have J+(t) = annJ(M ∩ J) ∼=
√

6E∗
6 . ¤

Corollary 6.20. J is isometric to the Coxeter-Todd lattice. Each of these is not
properly contained in an integral, rootless lattice.

Proof. This is an extension of the result (D.16). Embed J in J ′, a lattice
satisfying (D.15) and embed the Coxeter-Todd lattice P in a lattice Q satisfying
(D.15). Then both J ′ and Q satisfy the hypotheses of (D.15), so are isometric.
Since det(J) = det(P ) = 36, J ∼= P . The second statement now follows from
(D.16).¤

6.2 DIH12

Notation 6.21. Let M, N be lattices isometric to EE8 such that their respective
associated involutions tM , tN generate D ∼= Dih12. Let h := tM tN and g := h2.
Let z := h3, the central involution of D. We shall make use of the DIH6 results
by working with the pair of distinct subgroups DM := DtM := 〈tM , tgM 〉 and
DN := DtN := 〈tN , tgN 〉. Note that each of these groups is normal in D since
each has index 2. Define M̃ := Mg, Ñ := Ng. If X is one of M, N , we denote by
LX , JX , FX the lattices L := X + X̃, J, F associated to the pair X, X̃, denoted
“M” and “N” in the DIH6 section. We define KX := (X ∩ J) + (X ∩ J)g, a
DX -submodule of JX . Finally, we define F := FD to be {x ∈ L|xg = g} and
J := JD := annL(F ). We assume L is rootless.

Lemma 6.22. An element of order 3 in D has commutator space of dimension
12.

Proof. The analysis of DIH6 shows just two possibilities in case of no roots (cf.
Lemma (6.4) and Proposition (6.12)). We suppose that g − 1 has rank 16, then
derive a contradiction.

From (6.4), M+Mg ∼= A2⊗E8. From (3.5), there are only three involutions in
O(A2⊗E8) which have negated space isometric to EE8. Therefore, L > M +Mg.
Since D(M + Mg) ∼= 38, L/(M + Mg) is an elementary abelian 3-group of rank
at most 4, which is totally singular in the natural 1

3Z/Z-valued bilinear form.
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Note also that L is invariant under the isometry of order 3 on A2 ⊗ E8 coming
from the natural action of O(A2)× {1} on the tensor product. We now obtain a
contradiction from (A.18) since L is rootless. ¤

Corollary 6.23. JM
∼= JN has rank 12 and FM

∼= FN
∼= AA2.

Proof. Use (6.12) and (6.22). ¤

Corollary 6.24. The lattice J has rank 12 and contains each of JM and JN

with finite index. The lattice F = FD has rank 2, 3 or 4 and F/(FM + FN ) is an
elementary abelian 2-group.

Proof. Use (6.23) and (A.2), which implies that F/(FM + FN ) is elementary
abelian. ¤

Notation 6.25. Set t := tM and u := tN .

Lemma 6.26. The involutions tg and u commute, and in fact tgu = z.

Proof. This is a calculation in the dihedral group of order 12. See (6.21), (6.25).
We have h = tu and h3 = z, so tg = th

2
= utut · t · tutu = utututu = uh3 = uz. ¤

We now study how tN acts on the lattice J .

Lemma 6.27. For X = M or N , JX and KX are D-submodules.

Proof. Clearly, tg fixes LM = M + Mg, FM , JM and KM = (M ∩ JM ) + (M ∩
JM )g, the DM -submodule of J generated by the negated spaces of all involutions
of DM . Since tN = u = tgz, it suffices to show that the central involution z fixes
all these sublattices, but that is trivial. ¤

Lemma 6.28. The action of t on J/JM is trivial.

Proof. Use (A.7) and the fact that M ∩ J ≤ JM . ¤

6.2.1 DIH12: Study of JM and JN

We work out some general points about FM , FN , JM , JN ,KM and KN . We con-
tinue to use the hypothesis that L has no roots.
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Lemma 6.29. As in (6.25), t = tM , u = tN .

(i) J(g − 1) ≤ JM ∩ JN and J/(JM ∩ JN ) is an elementary abelian 3-group
of rank at most 1

2rank(J) = 6. Also, J/(JM ∩ JN ) is a trivial D-module.

(ii) J = JM + JN = L(g − 1).

Proof. (i) Observe that g acts on J/JM and that t acts trivially on this quotient
(6.28). Since g is inverted by t, g acts trivially on J/JM . A similar argument
with u proves g acts trivially on J/JN . Therefore, J(g − 1) ≤ JM ∩ JN . Since
(g − 1)2 acts on J as −3g, (i) follows.

(ii) We observe that LX(g − 1) ≤ JX , for X = M, N . Since L = M + N ,
L(g − 1) ≤ JM + JN . The right side is contained in J = annL(F ). Suppose that
L(g − 1) � J . Then J/L(g − 1) is a nonzero 3-group which is a trivial module
for D. It follows that L/(F + L(g − 1)) is an elementary abelian 3-group which
has a quotient of order 3 and is a trivial D-module. This is impossible since
L = M + N . So, J = JM + JN = L(g − 1). ¤

Lemma 6.30. F = FM + FN .

Proof. Since F is the sublattice of fixed points for g. Then F is a direct summand
of L and is D-invariant. Also, D acts on F as a four-group and Tel(F, D) has
finite index in F . If E is any D-invariant 1-space in F , t or u negates E (because
L = M + N). Therefore, FM + FN has finite index in F and is in fact 2-
coelementary abelian (A.2).

Consider the possibility that FM +FN � F , i.e., that FM +FN is not a direct
summand. Since FM and FN are direct summands, there are α ∈ FM , β ∈ FN so
that 1

2(α+β) ∈ L but 1
2α and 1

2β are not in L. Since by (6.23) FM
∼= FN

∼= AA2,
we may assume that α, β each have norm 4. Then by Cauchy-Schwartz, 1

2(α+β)
has norm at most 4 and, if equal to 4, α and β are equal. But then, 1

2(α + β) =
α ∈ L, a contradiction. ¤

6.2.2 DIH12: the structure of F

Lemma 6.31. Suppose that FM 6= FN . Then FM ∩FN is 0 or has rank 1 and is
spanned by a vector of norm 4 or norm 12.
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Proof. Since FM and FN are summands, FM 6= FN implies rank(FM +FN ) ≥ 3,
so FM + FN has rank 3 or 4. Assume that FM ∩ FN has neither rank 0 or rank
2. Since O(FM ) ∼= Sym3 × 2 and FM ∩ FN is an eigenlattice in FM for the
involution tN , it must be spanned by a norm 4 vector or is the annihilator of a
norm 4 vector. ¤

Lemma 6.32. Suppose that the distinct vectors u, v have norm 4 and u, v are in
L \ (J + F ). We suppose that u ∈ LM \ (J + F ) and v ∈ LN \ (J + F ). Write
u = u1 + u2 and v = v1 + v2, where u1, v1 ∈ spanR(J) and u2, v2 ∈ spanR(F ).
We suppose that each of u1, u2, v1, v2 are nonzero. Then

(i) u1 and v1 have norm 8
3 ;

(ii) u2 and v2 have norm 4
3 .

Proof. Since 4 = (u, u) = (u1, u1) + (u2, u2), (i) follows from (ii). To prove
(ii), use the fact that L/(J ⊥ F ) is a 3-group, a rescaled version of (D.7) and
(u2, u2) < (u, u). ¤

Lemma 6.33. (i) Suppose that FM ∩ FN = Zu, where u 6= 0. Let v span
annFM

(u) and let w span annFN
(u). Then F = span{u, v, w, 1

2(u + v), 1
2(u +

w), 1
2(v + w)} and (u, u) = 4, (v, v) = 12 = (w, w).

(ii) If the rank of O3(D(F )) is at least 2, then

(a) F = FM ⊥ FN (rank 4); or

(b) F has rank 3 and the number of nontrivial cosets of O3(D(F )) ∼= 3 × 3
which have representing elements whose norms lie in 4

3 + 2Z, respectively 8
3 + 2Z

are 4 and 4, respectively.

Proof. (i) By (6.31), u has norm 4 or 12. The listed generators span F =
FM + FN since FM = span{u, v, 1

2(u + v)} and FN = span{u,w, 1
2(u + w)}. If

(u, u) = 12, then v and w have norm 4 and 1
2(v + w) is a root in F , whereas L is

rootless. So, (u, u) = 4 and (v, v) = 12 = (w, w).

Now we prove (ii). Since we have already discussed the case of rank(F ) equal
to 2 and 4, we assume rank(F ) = 3, for which we may use the earlier results.
In the above notation, we may assume that F = span{u, v, w, 1

2(u + v), 1
2(u +
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w), 1
2(v + w)} and (u, u) = 4 and (v, v) = 12 = (w, w). Then O3(D(F )) ∼= 32

and the pair of elements 1
3v, 1

3w map modulo F to generators of O3(D(F )). Since
their norms are 4

3 , 4
3 and they are orthogonal, the rest of (ii) follows. ¤

6.2.3 DIH12: A comparison of eigenlattices

Notation 6.34. Let ν be the usual additive 3-adic valuation on Q, with ν(3k) =
k. Set P := Mg ∩ J , K := P + Pg = Z[〈g〉]P , R := annK(P ). Note that P is
the (−1)-eigenlattice of tg in both J and K while R is the (+1)-eigenlattice of tg

in K.

We study the actions of u on J , JM , P, K and R.

Lemma 6.35. J = JM = JN and D(J) ∼= 36.

Proof. Since J contains JM with finite index, we may use (6.20). ¤

Notation 6.36. Define integers r := rank(P+(u)), s := rank(P−(u)). We have
r = rank(R−(u)), s = rank(R+(u)) and r + s = 6.

Corollary 6.37. (r, s) ∈ {(2, 4), (4, 2), (6, 0)}.

Proof. Since P− + R− has finite index 3p in J−(u) = N ∩ J ∼= EE6 and
det(P−+R−) = 2m31+r, for some m ≥ 6, the determinant index formula implies
that r is even. Similarly, we get s is even. If r = 0, then s = 6 and J∩Mg = J∩N ,
and so z := tgu is the identity on J . Since tg 6= u, we have a contradiction to
the DIH4 theory since the common negated space for tg and u is at least 6-
dimensional. So, r 6= 0. ¤

6.3 s = 0

Lemma 6.38. If s = 0, then the pair Mg, N is in case DIH4(15) or DIH4(16).

Proof. In this case, Mg ∩ N is RSSD in FN so is isometric to AA2 or AA1 or√
6A1. Then DIH4 theory implies that Mg ∩N is isometric to AA1 or 0. ¤

Lemma 6.39. s 6= 0.
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Proof. Suppose that s = 0. Then u acts as 1 on Mg ∩ J . The sublattice
(Mg ∩ J) ⊥ (N ∩ J) has determinant 21232 is contained in Tel(J, u), which
has determinant 212det(J) = 21236. Since Mg ∩ J = J−(tg), it follows from
determinant considerations that N ∩ J is contained with index 32 in J+(tg).
Since s = 0, J+(tg) ≤ J−(u) = N ∩ J and we have a contradiction. ¤

6.4 s ∈ {2, 4}

Lemma 6.40. If s > 0 and det(P−(u)) is not a power of 2, then s = 2 and
P−(u) ∼= 2A2 and the pair Mg, N is in case DIH4(12).

Proof. Since P−(u) is RSSD in P and det(P−(u)) is not a power of 2, (D.24)
implies that P−(u) ∼= AA5 or 2A2 or (2A2)(AA1)m. Since s = rank(P−(u)) is 2
or 4, we have P−(u) ∼= 2A2 or (2A2)(AA1)2. By DIH4 theory, Mg ∩N ∼= DD4.
Since P−(u) is contained in Mg ∩N , P−(u) ∼= 2A2. ¤

Lemma 6.41. (i) If s > 0 and det(P−(u)) is a power of 2, then s = 2 and
P−(u) ∼= AA1 ⊥ AA1 or s = 4 and P−(u) ∼= DD4.

(ii) If P−(u) ∼= DD4, the pair Mg, N is in case DIH4(12).

(iii) If P−(u) ∼= AA1 ⊥ AA1, the pair Mg, N is in case DIH4(14). In
particular, FM ∩ FN = 0 and so F = FM ⊥ FN .

Proof. (i) Use (D.24) and evenness of s.

(ii) This follows from DIH4 theory since Mg∩N contains a copy of DD4 and
Mg 6= N .

(iii) Since dim(P−(u)) = 2, it suffices by DIH4 theory to prove that dim(Mg∩
N) 6= 4. Assume by way of contradiction that dim(Mg∩N) = 4. Then Mg∩N ∼=
DD4 and rank(Mg ∩ N ∩ F ) = 2. This means that F = FM = FN

∼= AA2.
Therefore, Mg ∩N ∼= DD4 contains the sublattice P−(u) ⊥ F ∼= AA1 ⊥ AA1 ⊥
AA2, which is impossible. ¤

Lemma 6.42. Suppose that P−(u) is isometric to 2A2. Then rank(L) = 14 and
L has roots.
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Proof. We have det(P−(u) ⊥ R−(u)) = 223 · 2634 = 2835. Since N ∩ J covers
J/KM , the determinant formula implies that |J : KM | = 32 and so det(J) = 34.
Now use (6.20). ¤

Lemma 6.43. P−(u) is not isometric to AA1 ⊥ AA1.

Proof. Suppose P−(u) ∼= AA1 ⊥ AA1. Then, P+(u) ∼=
√

2Q, where Q is the
rank 4 lattice which is described in (D.27). Also, R+ ∼=

√
6A2

1 and R− ∼=
√

6Q.
Then P−(u) ⊥ R−(u) embeds in EE6. Since sublattices of E6 which are isometric
to A2

1 are in a single orbit under O(E6), it follows that
√

3Q embeds in Q.
However, this is in contradiction with (D.32). ¤

To summarizes our conclusion, we have the proposition.

Proposition 6.44. P−(u) = Mg∩N ∼= DD4 and the pair is in case DIH4(12).

6.5 Uniqueness of the case DIH12(16)

As in other sections, we aim to use (4.1) for the case (6.41)(ii).

The input M, N determines the dihedral group 〈t, u〉 and therefore Mg and
Mg + N . By DIH4 theory, the isometry type of Mg + N is determined up to
isometry. Since Mg + N has finite index in M + N , M + N is determined by
(4.1). Thus, Theorem (6.1) is proved.

7 DIH10 theory

Notation 7.1. Define t := tM , h := tM tN . We suppose h has order 5. Let
g := h3. Then g also has order 5 and D :=< tM , tM >=< t, g >. In addition, we
have N = Mg. Define F := M ∩N , J := annL(F ). Note that F is the common
negated lattice for tM and tN in L, so is the fixed point sublattice for g and is a
direct summand of L (A.10).

Definition 7.2. Define the integer s by 5s := |L/(J + F )|.

Lemma 7.3. Equivalent are (i) L = J + F ; (ii) s = 0; (iii) F = 0; (iv) J = L.
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Proof. Trivially, L = J + F and s = 0 are equivalent. These conditions follow
if F = 0 or if J = 0 (but the latter does not happen since g has order 5). If
L = J + F holds, then M = (J ∩M) ⊥ F which implies that F = 0 and J = L

since M ∼= EE8 is orthogonally decomposable. ¤

Lemma 7.4. (i) g acts trivially on both F and L/J .

(ii) g − 1 induces an embedding L/F → J .

(iii) g − 1 induces an embedding L/(J + F ) → J/J(g − 1), whose rank is at
most 1

4rank(J) since (g − 1)4 induces the map 5w on J , where w = −g2 + g − 1
induces an invertible linear map on J .

(iv) s ≤ 1
4rank(J), so that s = 0 and F = 0 or s ∈ {1, 2, 3, 4} and F 6= 0.

(v) The inclusion M ≤ L induces an isomorphism M/((M ∩ J) + F ) ∼=
L/(J + F ) ∼= 5s, an elementary abelian group.

Proof. (i) and (ii) are trivial.

(iii) This is equivalent to some known behavior in the ring of integers Z[e2πi/5],
but we give a self-contained proof here. We calculate (g− 1)4 = g4− 4g3 + 6g2−
4g + 1 = (g4 + g3 + g2 + g + 1) + 5w, which in End(J) is congruent to 5w.
Note that the images of g + 1 and g3 + 1 are non zero-divisors (e.g., because
(g + 1)(g4 − g3 + g2 − g + 1) = g5 + 1 = 2, and 2 is a non zero-divisor) and are
associates in End(J) so that their ratio w is a unit. For background, we mention
[GHig].

(iv) The Jordan canonical form for the action of g−1 on J/5J is a direct sum
of degree 4 indecomposable blocks, by (iii), since (g−1)4 has determinant 5rank(J).
Since the action of g on L/J is trivial, s ≤ 1

4rank(J). Since rank(J) ≤ 16, s ≤ 4.
For the case s = 0, see (7.3).

(v) Since N = Mg, N and M are congruent modulo J . Therefore L =
M + N = M + J and so 5s ∼= L/(J + F ) = (M + J)/(J + F ) = (M + (J +
F ))/(J + F ) ∼= M/(M ∩ (J + F )) (by a basic isomorphism theorem) and this
equals M/((M ∩ J) + F ) (by the Dedekind law).

Since L(g − 1) ≤ J , (g − 1) annihilates L/(J + F ). Since (g − 1)4 takes
(L/(J + F )) to 5(L/(J + F )), it follows that 5L ≤ J + F . That is, L/(J + F ) is
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an elementary abelian 5-group. ¤

Lemma 7.5. s = 0, 1, 2 or 3 and F = M ∩ N ∼= 0, AA4,
√

2M(4, 25) or√
2A4(1).

Proof. We have that 1√
2
M ∼= E8. The natural map of 1√

2
M to D( 1√

2
F ) is

onto and has kernel 1√
2
((M ∩ J) ⊥ F )). Therefore, D( 1√

2
F ) ∼= 5s is elementary

abelian. Now apply (D.18) to get the possibilities for 1√
2
F and hence for F . Note

that M = N is impossible here, since tM 6= tN . ¤

7.1 DIH10: Which ones are rootless?

From Lemma 7.5, s = 0, 1, 2 or 3. We shall eliminate the case s = 1, s = 2 and
s = 3, proving that s = 0 and F = 0.

Lemma 7.6. If L = M + N is integral and rootless, then F = M ∩N = 0.

Proof. By Lemma 7.5, we know that M ∩N ∼= 0, AA4

√
2M(4, 25) or

√
2A4(1)

since M 6= N . We shall eliminate the cases M ∩ N ∼= AA4,
√

2M(4, 25) and√
2A4(1).

Case: F = M ∩N ∼= AA4. In this case, M ∩ J ∼= N ∩ J ∼= AA4. Therefore,
there exist α ∈ F ∗ and β ∈ (M ∩ J)∗ such that M = spanZ{F + (M ∩ J), α + β}.
Without loss, we may assume (α, α) = 12/5 and (β, β) = 8/5. Let γ = βg. Then,
(α + β)g = α + γ ∈ N and we have N = spanZ{F + (N ∩ J), α + γ}. Since L is
integral and rootless and since α + β ∈ L has norm 4, by (D.20),

0 ≥ (α + β, (α + β)g) = (α + β, α + γ) = (α, α) + (β, γ) =
12
5

+ (β, γ).

Thus, we have (β, γ) ≤ −12
5 . However, by the Schwartz inequality,

|(β, γ)| ≤
√

(β, β)(γ, γ) =
8
5
,

which is a contradiction.

Case: F = M ∩ N ∼=
√

2M(4, 25). In this case, M ∩ J ∼= N ∩ J ∼=√
2M(4, 25), also. Let

√
2u,

√
2v,

√
2w,

√
2x be a set of orthogonal elements in
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F ∼=
√

2M(4, 25) such that their norms are 4, 8, 20, 40, respectively (cf. (B.7)).
Let

√
2u′,

√
2v′,

√
2w′,

√
2x′ be a sequence of pairwise orthogonal elements in

M ∩ J such that their norms are 4, 8, 20, 40, respectively. By the construc-
tion in (B.8) and the uniqueness assertion, we may assume that the element
γ =

√
2

5 (w + x + x′) is in M . Since γ has norm 4, by (D.20),

0 ≥ (γ, γg) =
2
25

(w + x + x′, w + x + x′g) =
60
25

+
2
25

(x′, x′g).

Thus, we have (x′, x′g) ≤ −30. By the Schwartz inequality,

|(x′, x′g)| ≤
√

(x′, x′)(x′g, x′g) = 20,

which is again a contradiction.

Case: F = M ∩ N ∼=
√

2A4(1). Since F is a direct summand of M and N ,
we have M ∩ J ∼= N ∩ J ∼=

√
2A4(1) by (D.22). Recall that (A4(1))∗ ∼= 1√

5
A4.

By the construction in (D.23), there exists α ∈ 2F ∗ with (α, α) = 2× 8/5 =
16/5 and αM ∈ 2(M∩J)∗ with (αM , αM ) = 2×2/5 = 4/5 such that y = α+αM ∈
M .

Since (y, y) = 4, by (D.20),

0 ≥ (y, yg) = (α + αM , α + αMg) = (α, α) + (αM , αMg)

and we have (αM , αMg) ≤ −(α, α) = −16/5. However, by the Schwartz inequal-
ity,

|(αM , αMg)| ≤
√

(αM , αM )(αMg, αMg) = 4/5,

which is a contradiction. ¤

7.2 DIH10: An orthogonal direct sum

For background, we refer to (B.3), (B.10), (D.19) – (D.21). Our goal here is to
build up an orthogonal direct sum of four copies of AA4 inside L. We do so
one summand at a time. This direct sum shall determine L (see the following
subsection).

Notation 7.7. Define Z(i) := {x ∈ M |(x, x) = 4, (x, xg) = i}. Note that
(x, xg) = −3,−2,−1, 0, or 1 by Lemma D.20.
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Lemma 7.8. For u, v ∈ M , (u, vg) = (u, vg−1) = (ug, v).

Proof. Since t preserves the form, (u, vg) = (ut, vgt) = (−u, vtg−1) = (−u,−vg−1)
= (u, vg−1). This equals (ug, v) since g preserves the form. ¤

Lemma 7.9. If u, v, w is any set of norm 4 vectors so that u + v + w = 0, then
one or three of u, v, w lies in Z(−2) ∪ Z(0). In particular, Z(−2) ∪ Z(0) 6= ∅.

Proof. Suppose that we have norm 4 vectors u, v, w so that u+v +w = 0. Then
0 = (u + v + w, ug + vg + wg) = (u, ug) + (v, vg) + (w, wg) + (u, vg) + (ug, v) +
(u,wg)+(ug, w)+(v, wg)+(vg, w) ≡ (u, ug)+(v, vg)+(w, wg)(mod 2), by (7.8),
whence evenly many of (u, ug), (v, vg), (w, wg) are odd. ¤

Now we look at D-submodules of L and decompositions.

Definition 7.10. Let M4 = {α ∈ M | (α, α) = 4}. Define a partition of M4

into sets M1
4 := {α ∈ M4|αZ[D] ∼= A4(1)} and M2

4 := {α ∈ M4|αZ[D] ∼= AA4}
(cf. (D.20)). For α, β ∈ M2

4 , say that α and β are equivalent if and only if
αZ[D] = βZ[D]. Define the partition N4 = N1

4 ∪N2
4 and equivalence relation on

N2
4 similarly.

Remark 7.11. The linear maps gi + g−i take M into M since they commute
with t. Also, g2 + g3 and g + g4 are linear isomorphisms of M onto M since their
product is −1. Note that they may not preserve inner products.

Lemma 7.12. M4 = M2
4 and M1

4 = ∅.

Proof. Supposing the lemma to be false, we take α ∈ M1
4 . Then the norm of

α(g2 + g3) is 4 + 2(αg2, αg3) + 4 = 8 − 2 = 6 (cf. (D.20)), which is impossible
since M ∼= EE8 is doubly even. ¤

Lemma 7.13. Let α ∈ M4. Then M ∩ αZ[D] ∼= AA2
1.

Proof. Let α ∈ M4. Then by (7.12), αZ[D] ∼= AA4. In this case, we have either
(1) (α, αg) = −2 and (α, αg2) = 0 or (2) (α, αg) = 0 and (α, αg2) = −2.

In case (1), we have α(g2+g3) ∈ M4 and α and α(g2+g3) generate a sublattice
of type AA2

1 in M ∩ αZ[D]. Similarly, αg, α(g2 + g3)g generate a sublattice of
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type AA2
1 in N ∩ αZ[D]. Since M ∩ N = 0, we have rank(M ∩ αZ[D]) =

rank(N ∩ αZ[D]) = 2. Moreover, {α, α(g2 + g3), αg, α(g3 + g4)} forms a Z-basis
of an AA4-sublattice of αZ[D] ∼= AA4. Thus, {α, α(g2 + g3), αg, α(g3 + g4)} is
also a basis of αZ[D] and spanZ{α, α(g2 + g3)} is summand of αZ[D]. Hence,
M ∩ αZ[D] = spanZ{α, α(g2 + g3)} ∼= AA2

1 as desired.

In case (2), we have α(g + g4) ∈ M4 and thus M ∩ αZ[D] = spanZ{α, α(g +
g4)} ∼= AA2

1 by an argument as in case (1). ¤

Lemma 7.14. Suppose that α ∈ M2
4 , β ∈ N2

4 and αZ[D] = βZ[D]. Let the equiv-
alence class of α be {±α,±α′} and let the equivalence class of β be {±β,±β′}.
After interchanging β and one of ±β′ if necessary, the Gram matrix of α, α′, β, β′

is

2




2 0 0 1
0 2 1−1
0 1 2 0
1−1 0 2




=




4 0 0 2
0 4 2−2
0 2 4 0
2−2 0 4




.

Proof. We think of A4 as the 5-tuples in Z5 with zero coordinate sum. Index
coordinates with integers mod 5: 0, 1, 2, 3, 4. Consider g as addition by 1 mod
5 and t as negating indices modulo 5. We may take α :=

√
2(0, 1, 0, 0,−1), α′ :=√

2(0, 0, 1,−1, 0). We define β := αg, β′ := α′g. The computation of the Gram
matrix is straightforward. ¤

Lemma 7.15. Let m ≥ 1. Suppose that U is a rank 4m Z[D]-invariant sublattice
of L which is generated as a Z[D]-module by S, a sublattice of U ∩M which is
isometric to AA2m

1 . Then annM (U) contains a sublattice of type AA8−2m
1 .

Proof. We may assume that m ≤ 3. Since t inverts g and g is fixed point free
on L, U−(t) = U ∩ M has rank 2m. Let S be a sublattice of U ∩ M of type
AA2m

1 . Then S has finite index in U ∩M . Let W := annL(U), a direct summand
of L of rank 16 − 4m. The action of g on W is fixed point free and t inverts g

under conjugation, so W ∩ M = annM (U) is a direct summand of M of rank
8 − 2m. It is contained in hence is equal to the annihilator in M of S, by rank
considerations, so is isometric to DD6, DD4, AA4

1 or AA2
1. Each of these lattices

contains a sublattice of type AA8−2m
1 . ¤
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Corollary 7.16. L contains an orthogonal direct sum of four D-invariant lat-
tices, each isometric to AA4.

Proof. We prove by induction that for k = 0, 1, 2, 3, 4, L contains an orthogonal
direct sum of k D-invariant lattices, each isometric to AA4. This is trivial for
k = 0. If 0 ≤ k ≤ 3, let U be such an orthogonal direct sum of k copies of AA4.
Then M ∩ U ∼= AA2k

1 and thus annM (U) contains a norm 4 vector, say α. By
(7.12), αZ[D] ∼= AA4. So, U ⊥ αZ[D] is an orthogonal direct sum of (k + 1)
D-invariant lattices, each isometric to AA4. ¤

Corollary 7.17. L = M + N is unique up to isometry.

Proof. Uniqueness follows from the isometry type of U (finite index in L) and
(4.1). We take the finite index sublattices M1 := M ∩ U and N1 := N ∩ U and
use (7.14). An alternate proof is given by the gluing in (7.18) ¤

7.3 DIH10: From AA4
4 to L

We discuss the gluing from a sublattice U = U1 ⊥ U2 ⊥ U3 ⊥ U4, as in (7.16) to
L. We assume that each Ui is invariant under D.

By construction, M/(M∩U) ∼= 24, M∩U ∼= AA8
1. A similar statement is true

with N in place of M . Since L = M +N , it follows that L/U is a 2-group. Since g

acts fixed point freely on L/U , L/U is elementary abelian of order 24 or 28. Also,
L/U is the direct sum of CL/U (t) and CL/U (u), and each of the latter groups is
elementary abelian of order |L : U | 12 . So |L : U | 12 = |M : M ∩ U |2 = (24)2 = 28.
Therefore, det(L) = 54 and the Smith invariant sequence of L is 11254.

Proposition 7.18. The gluing from U to L may be identified with the direct
sums of these two gluings from U ∩ M to M and U ∩ N to N . Each gluing is
based on the extended Hamming code with parameters [8,4,4] with respect to the
orthogonal frame.

7.4 DIH10: Explicit gluing and tensor products

In this section, we shall give the glue vectors from U = U1 ⊥ U2 ⊥ U3 ⊥ U4

to L explicitly in Proposition 7.23 (cf. Proposition 7.18). We also show that L
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contains a sublattice isomorphic to a tensor product A4 ⊗A4.

Notation 7.19. Recall that M ∩ Ui
∼= AA1 ⊥ AA1 for i = 1, 2, 3, 4. Let αi ∈

M4 ∩Ui, i = 1, 2, 3, 4, such that (αi, αig) = −2. Note that such αi exists because
if (αi, αig) 6= −2, then (αi, αig) = 0 and (αi, αig

2) = −2. In this case, α̃i =
αi(g + g4) ∈ M4 ∩ Ui and (α̃i, α̃ig) = −2 (7.11).

Set α′i := αi(g2 + g3) for i = 1, 2, 3, 4. Then α′i ∈ M4 ∩ Ui and M ∩ Ui =
spanZ{αi, α

′
i} (7.11).

Lemma 7.20. Use the same notation as in (7.19). Then for all i = 1, 2, 3, 4, we
have (αi, αig) = −2, (αi, αig

2) = 0, (αi, α
′
i) = 0, (α′i, α

′
ig) = 0 and (αi, α

′
ig) =

−2.

Proof. By definition, (αi, αig) = −2 and (αi, αig
2) = 0. Thus, we have (α′i, αi) =

(αi(g2 + g3), αi) = 0. Also,

(α′i, α
′
ig) = (αi(g2 + g3), αi(g2 + g3)g)

= (αig
2, αig

3) + (αig
2, αig

4) + (αig
3, αig

3) + (αig
3, αig

4)

= −2 + 0 + 4− 2 = 0

and

(αi, α
′
ig) = (αi, αi(g2 + g3)g) = (αi, αig

3) + (αi, αig
4) = 0− 2 = −2.

¤

Remark 7.21. Since M and U are doubly even and since 1√
2
(U ∩M) ∼= (A1)8

and (A1)∗ = 1
2A1, for any β ∈ M \ (U ∩M),

β =
4∑

i=1

(
bi

2
αi +

b′i
2

α′i) where bi, b
′
i ∈ Z with some bi, b

′
i odd.

Lemma 7.22. Let β ∈ M \ (U ∩M) with (β, β) = 4. Then, one of the following
three cases holds.

(i) |bi| = 1 and b′i = 0 for all i = 1, 2, 3, 4;

(ii) |b′i| = 1 and bi = 0 for all i = 1, 2, 3, 4;
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(iii) There exists a 3-set {i, j, k} ⊂ {1, 2, 3, 4} such that b2
i = b2

j = 1 and b′2i =
b′2k = 1.

Proof. Let β =
∑4

i=1(
bi
2 αi + b′i

2 α′i) ∈ M \ (U ∩ M) with (β, β) = 4. Then we
have

∑4
i=1(b

2
i + b′2i ) = 4. Since no |bi| or |b′i| is greater than 1 (or else no bi or b′i

is odd), bi, b
′
i ∈ {−1, 0, 1}. Moreover, (β, βg) = 0 or −2 since β ∈ M4. By (7.20),

(β, βg) =

(
4∑

i=1

(
bi

2
αi +

b′i
2

α′i),
4∑

i=1

(
bi

2
αig +

b′i
2

α′ig)

)

=
1
4

4∑

i=1

(
b2
i (−2) + 2bib

′
i(−2)

)
= −1

2

4∑

i=1

(
b2
i + 2bib

′
i

)
.

If (β, βg) = −2, then

4∑

i=1

(
b2
i + 2bib

′
i

)
= 4 =

4∑

i=1

(b2
i + b′2i ).

and hence we have (*)
∑4

i=1 b′i(b
′
i − 2bi) = 0.

Set ki := b′i(b
′
i − 2bi). The values of ki, for all bi, b

′
i ∈ {−1, 0, 1}, are listed in

Table 9.

Table 9: Values of ki

b′i 0 −1 −1 −1 1 1 1

bi −1, 0, 1 −1 0 1 −1 0 1

ki = b′i(b
′
i − 2bi) 0 −1 1 3 3 1 −1

Note that ki = 0,±1 or 3 for all i = 1, 2, 3, 4. Therefore, up to the order
of the indices, the values for (k1, k2, k3, k4) are (3,−1,−1,−1), (1,−1, 1,−1),
(1,−1, 0, 0) or (0, 0, 0, 0).

However, for (k1, k2, k3, k4) = (3,−1,−1,−1) or (1,−1, 1,−1), b′2i = b2
i = 1

for all i = 1, 2, 3, 4 and then
∑4

i=1(b
2
i + b′2i ) = 8 > 4. Therefore, (k1, k2, k3, k4) =

(1,−1, 0, 0) or (0, 0, 0, 0).
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If (k1, k2, k3, k4) = (1,−1, 0, 0), then we have, up to order, (b′1)
2 = 1 (whence

k1 = 1), b1 = 0, b′2 = b2 = ±1 (whence k2 = −1) and b′3 = b′4 = 0. Since∑4
i=1(b

2
i + b′2i ) = 4, b2

3 + b2
4 = 1 and hence we have (iii).

If ki = b′i(b
′
i − 2bi) = 0 for all i = 1, 2, 3, 4, then b′i = 0 for all i and we have

(i). Note that if b′i 6= 0, b′i − 2bi 6= 0.

Now assume (β, βg) = 0. Then
∑4

i=1

(
b2
i + 2bib

′
i

)
= 0. Note that this equation

is the same as the above equation (*) in the case for (β, βg) = −2 if we replace
bi by b′i and b′i by −bi for i = 1, 2, 3, 4. Thus, by the same argument as in
the case for (β, βg) = −2, we have either b2

i + 2bib
′
i = 0 for all i = 1, 2, 3, 4 or

b2
1 + 2b1b

′
1 = 1, b2

2 + 2b2b
′
2 = −1, and b3 = b4 = 0. In the first case, we have bi = 0

and b′2i = 1 for all i = 1, 2, 3, 4, that means (ii) holds. For the later cases, we have
b1 = 1, b′1 = 0, b2 = 1, b′2 = −1, b3 = b4 = 0, and b′23 + b′24 = 1 and thus (iii) holds.
¤

Proposition 7.23. By rearranging the indices if necessary, we have

M = spanZ

{
M ∩ U, 1

2(α1 + α2 + α3 + α4), 1
2(α′1 + α′2 + α′3 + α′4),

1
2(α1 + α2 + α′2 + α′4),

1
2(α1 + α3 + α′2 + α′3)

}

and

N = Mg = spanZ

{
N ∩ U, 1

2(β1 + β2 + β3 + β4), 1
2(β′1 + β′2 + β′3 + β′4),

1
2(β1 + β2 + β′2 + β′4),

1
2(β1 + β3 + β′2 + β′3)

}
,

where βi = αig and β′i = α′ig for all i = 1, 2, 3, 4.

Proof. By (7.22), the norm 4 vectors in M \ (U ∩M) are of the form

1
2
(±α1 ± α2 ± α3 ± α4),

1
2
(±α′1 ± α′2 ± α′3 ± α′4), or

1
2
(±αi ± αj ± α′j ± α′k),

where i, j, k are distinct elements in {1, 2, 3, 4}.
Since M ∼= EE8 and U ∩ M ∼= (AA1)8, the cosets of M/(U ∩ M) can be

identified with the codewords of the Hamming [8,4,4] code H8.

Let ϕ : M/(U∩M) → H8 be an isomorphism of binary codes. For any β ∈ M ,
we denote the coset β + U ∈ M/(U ∩M) by β̄. We shall also arrange the index
set such that the first 4 coordinates correspond to the coefficient of 1

2α1,
1
2α2,

1
2α3
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and 1
2α4 and the last 4 coordinates correspond to the coefficient of 1

2α′1,
1
2α′2,

1
2α′3

and 1
2α′4.

Since (1, . . . , 1) ∈ H8, we have

1
2
(α1 + α2 + α3 + α4 + α′1 + α′2 + α′3 + α′4) ∈ M.

We shall also show that 1
2(α1 + α2 + α3 + α4) ∈ M and hence 1

2(α′1 + α′2 +
α′3 + α′4) ∈ M .

Since M/(M ∩ U) ∼= H8, there exist β1, β2, β3, β4 ∈ M \ (U ∩M) such that
ϕ(β̄1), ϕ(β̄2), ϕ(β̄3), ϕ(β̄4) generates the Hamming code H8. By (7.22), their pro-
jections to the last 4 coordinates are all even and thus spans an even subcode of
Z4

2, which has dimension ≤ 3. Therefore, there exists a1, a2, a3, a4 ∈ {0, 1}, not
all zero such that ϕ(a1β̄1 +a2β̄2 +a3β̄3 +a4β̄4) projects to zero and so must equal
(11110000). Therefore, 1

2(α1 + α2 + α3 + α4) ∈ M .

Since |M/(U ∩M)| = 24, there exists β′ = 1
2(αi + αj + α′j + α′k) and β′′ =

1
2(αm + αn + α′n + α′`) such that

M = spanZ

{
M ∩ U,

1
2
(α1 + α2 + α3 + α4),

1
2
(α′1 + α′2 + α′3 + α′4), β

′, β′′
}

.

Note that

β′ + β′′ =
1
2
((αi + αj + αm + αn) + (α′j + α′k + α′n + α′`)).

Let A := ({i, j}∪{m,n})− ({i, j}∩{m,n}) and A′ := ({j, k}∪{n, `})− ({j, k}∩
{n, `}). We shall show that |{i, j}∩{m,n}| = |{j, k}∩{n, `}| = 1 and |A∩A′| = 1.

Since ϕ(β̄′ + β̄′′) ∈ H8 but ϕ(β̄′ + β̄′′) /∈ spanZ2
{(11110000), (00001111)}, by

(7.22), we have

β′ + β′′ ∈ 1
2
(αp + αq + α′p + α′r) + M ∩ U,

for some p, q ∈ {i, j, m, n}, p, r ∈ {j, k, n, `} such that p, q, r are distinct.

That means 1
2(αi+αj+αm+αn) ∈ 1

2(αp+αq)+M∩U and 1
2(α′j+α′k+α′n+α′`) ∈

1
2(α′p+α′r)+M∩U . It implies that A = ({i, j}∪{m,n})−({i, j}∩{m,n}) = {p, q}
and A′ = ({j, k} ∪ {n, `}) − ({j, k} ∩ {n, `}) = {p, r}. Hence, |{i, j} ∩ {m,n}| =
|{j, k} ∩ {n, `}| = 1 and |A ∩A′| = 1.
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By rearranging the indices if necessary, we may assume β′ = 1
2(α1 +α2 +α′2 +

α′4), β′′ = 1
2(α1 + α3 + α′2 + α′3) and hence

M = spanZ

{
M ∩ U, 1

2(α1 + α2 + α3 + α4), 1
2(α′1 + α′2 + α′3 + α′4),

1
2(α1 + α2 + α′2 + α′4),

1
2(α1 + α3 + α′2 + α′3)

}

Now let βi = αig and β′i = α′ig for all i = 1, 2, 3, 4. Then

N = Mg = spanZ

{
N ∩ U, 1

2(β1 + β2 + β3 + β4), 1
2(β′1 + β′2 + β′3 + β′4),

1
2(β1 + β2 + β′2 + β′4),

1
2(β1 + β3 + β′2 + β′3)

}
,

as desired. ¤

Next we shall show that L contains a sublattice isomorphic to a tensor product
A4 ⊗A4.

Notation 7.24. Take

γ0 :=
1
2
(−α1 + α2 + α′2 − α′4),

γ1 := α1,

γ2 := − 1
2
(α1 + α2 + α3 + α4),

γ3 := α3,

γ4 := − 1
2
(α3 − α4 + α′2 − α′4)

in M (cf. (7.23)) and set R := spanZ{γ1, γ2, γ3, γ4}. Then R ∼= AA4. Note that
γ0 = −(γ1 + γ2 + γ3 + γ4).

Lemma 7.25. For any i = 0, 1, 2, 3, 4 and j = 1, 2, 3, 4, we have

(i) (γi, γig) = (γi, γig
4) = −2 and (γi, γig

2) = (γi, γig
3) = 0;

(ii) (γj−1, γjg) = (γj−1, γjg
4) = 1 and

(γj−1, γjg
2) = (γj−1, γjg

3) = 0;

(iii) (γi, γjg
k) = 0 for any k if |i− j| > 1

(iv) γiZ[D] ∼= AA4.
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Proof. Straightforward. ¤

Proposition 7.26. Let T = RZ[D]. Then T ∼= A4 ⊗A4.

Proof. By (iv) of (7.25), γiZ[D] = spanZ{γig
j | j = 0, 1, 2, 3, 4} ∼= AA4.

Let {e1, e2, e3, e4} be a fundamental basis of A4 and denote e0 = −(e1 + e2 +
e3 + e4). Now define a linear map ϕ : T → A4 ⊗ A4 by ϕ(γig

j) = ei ⊗ ej , for
i, j = 1, 2, 3, 4. By the inner product formulas in (7.25),

(γig
j , γkg

`) = (γi, γkg
`−j) =





4 if i = k, j = `,

−2 if i = k, |j − `| = 1,

1 if |i− k| = 1, |j − `| = 1,

0 if |i− k| > 1, |j − `| > 1.

Hence, (γig
j , γkg

`) = (ei ⊗ ej , ek ⊗ e`) for all i, j, k, ` and ϕ is an isometry. ¤

A General results about lattices

Lemma A.1. Let p be a prime number, f(x) := 1 + x + x2 + · · ·+ xp−1. Let L

be a Z[x]-module. For v ∈ L, pv ∈ L(x− 1) + Lf(x).

Proof. We may write f(x) =
∑p−1

i=0 xi =
∑p−1

i=0 ((x− 1) + 1)i = (x− 1)h(x) + p,
for some h(x) ∈ Z[x]. Then if v ∈ L, pv = v(f(x)− (x− 1)h(x)). ¤

Lemma A.2. Suppose that the four group D acts on the abelian group A. If the
fixed point subgroup of D on A is 0, then A/Tel(A,D) is an elementary abelian
2-group.

Proof. Let a ∈ A and let r ∈ D. We claim that a(r + 1) is an eigenvector
for D. It is clearly an eigenvector for r. Take s ∈ D so that D = 〈r, s〉. Then
a(r + 1)s = a(r + 1)(s + 1)− a(r + 1) = −a(r + 1) since a(r + 1)(s + 1) is a fixed
point. So, a(r + 1) is an eigenvector for D.

To prove the lemma, we just calculate that a(1 + r) + a(1 + s) + a(1 + rs) =
2a + a(1 + sr + s + rs) = 2a since a(1 + sr + s + rs) is a fixed point. ¤
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Lemma A.3. Suppose that X is a lattice of rank n and Y is a sublattice of rank
m. Let p be a prime number. Suppose that the p-rank of D(X) is r. Then,
(Y ∩ pX∗)/(Y ∩ pX) has p-rank at least r + m− n. In particular, the p-rank of
D(Y ) is at least r + m− n; and if r + m > n, then p divides det(Y ).

Proof. We may assume that Y is a direct summand of X. The quadratic space
X/pX has dimension n over Fp and its radical pX∗/pX has dimension r. The
image of Y in X/pX is Y + pX/pX, and it has dimension m since Y is a direct
summand of X. Let q be the quotient map X/pX to (X/pX)/(pX∗/pX) ∼=
X/pX∗ ∼= pr. Then dim(q(Y + pX/pX)) ≤ n − r, so that dim(Ker(q) ∩ (Y +
pX/pX)) ≥ m− (n− r) = r + m− n.

We note that Ker(q) = pX∗/pX, so the above proves r +m−n ≤ rank((Y ∩
pX∗)+pX/pX) = rank(Y ∩pX∗)/(Y ∩pX∗∩pX)) = rank((Y ∩pX∗)/(Y ∩pX)) =
rank((Y ∩ pX∗)/pY ). Note that (Y ∩ pX∗)/pY ∼= (1

pY ∩X∗)/Y ≤ Y ∗/Y , which
implies the inequality of the lemma. ¤

Lemma A.4. Suppose that Y is an integral lattice such that there exists an
integer r > 0 so that D(Y ) contains a direct product of rank(Y ) cyclic groups of
order r. Then 1√

r
Y is an integral lattice.

Proof. Let Y < X < Y ∗ be a sublattice such that X/Y ∼= (Zr)rank Y . Then
x ∈ X if and only if rx ∈ Y . Let y, y′ ∈ Y . Then ( 1√

r
y, 1√

r
y′) = (1

ry, y′) ∈
(X, Y ) ≤ (Y ∗, Y ) = Z. ¤

Lemma A.5. Suppose that X is an integral lattice and that there is an integer
s ≥ 1 so that 1√

s
X is an integral lattice. Then the subgroup sD(X) is isomorphic

to D( 1√
s
X) and D(X)/sD(X) is isomorphic to srank(X).

Proof. Study the diagram below, in which the horizontal arrows are multiplica-
tion by 1√

s
. The hypothesis implies that the finite abelian group D(X) is a direct

sum of cyclic groups, each of which has order divisible by s.

X∗ −→ 1√
s
X∗

| |
sX∗−→√

sX∗

| |
X −→ 1√

s
X

.
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We take a vector a ∈ R⊗X and note that a ∈ ( 1√
s
X)∗ if and only if (a, 1√

s
X) ≤

Z if and only if ( 1√
s
a,X) ≤ Z if and only if 1√

s
a ∈ X∗ if and only if a ∈ √sX∗.

This proves the first statement. The second statement follows because D(X) is
a direct sum of rank(X) cyclic groups, each of which has order divisible by s. ¤

Lemma A.6. Let y be an order 2 isometry of a lattice X. Then X/Tel(X, y) is
an elementary abelian 2-group. Suppose that X/Tel(X, y) ∼= 2c. Then we have
det(X+(y))det(X−(y)) = 22cdet(X) and for ε = ±, the image of X in D(Xε(y))
is 2c. In particular, for ε = ±, det(Xε(y)) divides 2cdet(X) and is divisible by
2c. Finally, c ≤ rank(Xε(y)), for ε = ±, so that c ≤ 1

2rank(X).

Proof. See [GrE8]. ¤

Lemma A.7. Suppose that t is an involution acting on the abelian group X.
Suppose that Y is a t-invariant subgroup of odd index so that t acts on X/Y as
a scalar c ∈ {±1}. Then for every coset x + Y of Y in X, there exists u ∈ x + X

so that ut = cu.

Proof. First, assume that c = 1. Define n := 1
2(|X/Y | + 1), then take u :=

nx(t + 1). This is fixed by t and u ≡ 2nx ≡ x(modY ).

If c = −1, apply the previous argument to the involution −t. ¤

Lemma A.8. If X and Y are abelian groups with |X : Y | odd, an involution r

acts on X, and Y is r-invariant, then X/Tel(X, r) ∼= Y/Tel(Y, r).

Proof. Since X/Y has odd order, it is the direct sum of its two eigenspaces for
the action of r. Use (A.7) to show that Y + Tel(X, r) = X and Y ∩ Tel(X, r) =
Tel(Y, r). ¤

Lemma A.9. Suppose that X is an integral lattice which has rank m ≥ 1 and
there exists a lattice W so that X ≤ W ≤ X∗ and W/X ∼= 2r, for some integer
r ≥ 1. Suppose further that every nontrivial coset of X in W contains a vector
with noninteger norm. Then r = 1.

Proof. Note that if u + X is a nontrivial coset of X in W , then (u, u) ∈ 1
2 + Z.

Let φ : X → Y be an isometry of lattices, extended linearly to a map between
duals. Let Z be the lattice between X ⊥ Y and W ⊥ φ(W ) which is diagonal
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with respect to φ, i.e., is generated by X ⊥ Y and all vectors of the form (x, xφ),
for x ∈ W .

Then Z is an integral lattice. In any integral lattice, the even sublattice has
index 1 or 2. Therefore, r = 1 since the nontrivial cosets of X ⊥ Y in Z are odd.
¤

Lemma A.10. Suppose that the integral lattice L has no vectors of norm 2 and
that L = M + N , where M ∼= N ∼= EE8. The sublattices M, N, F = M ∩N are
direct summands of L = M + N .

Proof. Note that L is the sum of even lattices, so is even. Therefore, it has no
vectors of norm 1 or 2. Since M defines the summand S of vectors negated by
tM , we get S = M because M ≤ S ≤ 1

2M and the minimum norm of L is 4.
A similar statement holds for N . The sublattice F is therefore the sublattice of
vectors fixed by both tM and tN , so it is clearly a direct summand of L. ¤

Lemma A.11. D ∼= Dih6, 〈g〉 = O3(D) and t is an involution in D. Suppose
that D acts on the abelian group A, 3A = 0 and A(g − 1)2 = 0. Let ε = ±1. If
v ∈ A and vt = εv, then v(g − 1)t = −εv(g − 1).

Proof. Calculate v(g − 1)t = vt(g−1 − 1) = εv(g−1 − 1). Since (g − 1)2 = 0 as
an automorphism of A, g acts as 1 on the image of g − 1, which is the image of
(g−1 − 1). Therefore, εv(g−1 − 1) = εv(g−1 − 1)g = εv(1− g) = −εv(g − 1). ¤

Lemma A.12. Suppose that X is an integral lattice and Y has finite index, m,
in X. Then D(X) is a subquotient of D(Y ) and |D(X)|m2 = |D(Y )|. The groups
have isomorphic Sylow p-subgroups if p is a prime which does not divide m.

Proof. Straightforward. ¤

Lemma A.13. Suppose that X is a lattice, that Y is a direct summand and
Z := annX(Y ). Let n := |X : Y ⊥ Z|.

(i) The image of X in D(Y ) has index dividing (det(Y ), det(X)). In particu-
lar, if (det(Y ), det(X)) = 1, X maps onto D(Y )

(ii) Let A := annX∗(Y ). Then X∗/(Y ⊥ A) ∼= D(Y ).
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(iii) There are epimorphisms of groups ϕ1 : D(X) → X∗/(X + A) and ϕ2 :
D(Y ) → X∗/(X + A).

(iv) We have isomorphisms Ker(ϕ1) ∼= (X+A)/X and Ker(ϕ2) ∼= ψ(X)/Y ∼=
X/(Y ⊥ Z). The latter is a group of order n.

In particular, Im(ϕ1) ∼= Im(ϕ2) has order 1
ndet(Y ).

(v) If p is a prime which does not divide n, then Op(D(Y )) injects into
Op(D(X)). This injection is an isomorphism onto if (p, det(Z)) = 1.

Proof. (i) This is clear since the natural map ψ : X∗ → Y ∗ is onto and X has
index det(X) in X∗.

(ii) The natural map X∗ → Y ∗ followed by the quotient map ζ : Y ∗ → Y ∗/Y

has kernel Y ⊥ A.

(iii) Since D(X) = X∗/X, we have the first epimorphism. Since X + A ≥
Y + A, existence of the second epimorphism follows from (ii).

(iv) First, Ker(ζψ) = Y ⊥ A follows from (ii) and the definitions of ψ and ζ.
So, Ker(ϕ1) ∼= (X+A)/(Y +A). Note that (X+A)/(Y +A) = (X+(Y +A))/(Y +
A) ∼= X/((Y + A) ∩X) = X/(Y + Z)). The latter quotient has order n. For the
order statement, we use the formula |Im(ψ)||Ker(ψ)| = |D(Y )|. For the second
isomorphism, use Y ∗ ∼= X∗/A and D(Y ) = Y ∗/Y ∼= (X∗/A)/((Y + A)/A) and
note that in here the image of X is ((X +A)/A)/((Y +A)/A) ∼= (X +A)/(Y +A).

(v) Let P be a Sylow p-subgroup of D(Y ). Then P∩Ker(ψ) = 0 since (p, n) =
1. Therefore P injects into Im(ψ). The epimorphism ϕ has kernel A/Z = D(Z).
So, P is isomorphic to a Sylow p-subgroup of D(X) if (p, det(Z)) = 1. ¤

Lemma A.14. Suppose that X is an integral lattice and E is an elementary
abelian 2-group acting in X. If H is an orthogonal direct summand of Tel(X, E)
and H is a direct summand of X, then the odd order Sylow groups of D(H) embed
in D(X). In other notation, O2′(D(H)) embeds in O2′(D(X))

Proof. Apply (A.13) to Y = H, n a divisor of |X : Tel(X, E)|, which is a power
of 2. ¤

Lemma A.15. Suppose that X is a lattice and Y is a direct summand and
Z := annX(Y ). Let n := |X : Y ⊥ Z|.
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Suppose that v ∈ X∗ and that v has order m modulo X. If (m, det(Z)) = 1,
there exists w ∈ Z so that v−w ∈ Y ∗ ∩X∗. Therefore, the coset v + X contains
a representative in Y ∗. Furthermore, any element of Y ∗ ∩ (v + X) has order m

modulo Y .

Proof. The image of v in D(Z) is zero, so the restriction of the function v to
Z is the same as taking a dot product with an element of Z. In other words,
the projection of v to Z∗ is already in Z. Thus, there exists w ∈ Z so that
v − w ∈ annX∗(Z) = Y ∗.

Define u := v−w. Then mu = mv−mw ∈ X. Since v−w ∈ Y ∗, mu ∈ X∩Y ∗,
which is Y since Y is a direct summand of X.

Now consider an arbitrary u ∈ (v + X)∩ Y ∗. We claim that its order modulo
Y is m. There is x ∈ X so that u = x + v. Suppose k > 0. Then ku = kx + kv

is in X if and only if kv ∈ X, i.e. if and only if m divides k. ¤

Lemma A.16. Let D be a dihedral group of order 2n, n > 2 odd, and Y a
finitely generated free abelian group which is a Z[D]-module, so that an element
1 6= g ∈ D of odd order acts with zero fixed point subgroup on Y . Let r be an
involution of D outside Z(D). Then Y/Tel(Y, r) is elementary abelian of order
2

1
2
rank(Y ). Consequently, det(Tel(Y, r)) = 2rank(Y )det(Y ).

Proof. The first statement follows since the odd order g is inverted by r and acts
without fixed points on Y . The second statement follows from the index formula
for determinants. ¤

Lemma A.17. Suppose that X ∼= E8 and that Y is a sublattice such that X/Y ∼=
34 and Y ∼=

√
3E8. Then there exists an element g of order 3 in O(X) so that

X(g − 1) = Y . In particular, Y defines a partition on the set of 240 roots in X

where two roots are equivalent if and only if their difference lies in Y .

Proof. Note that Y has 80 nontrivial cosets in X and the set Φ of roots has
cardinality 240. Let x, y ∈ Φ such that x−y ∈ Y and x, y are linearly independent.
Then 6 ≤ (x− y, x− y) = 4− 2(x, y), whence |(x, y)| ≤ 2. Therefore (x, y) = −1
or −2. Since x, y are linearly independent roots, we have (x, y) = −1. Let z be a
third root which is congruent to x and y modulo Y . Then (x, z) = −1 = (y, z) by
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the preceding discussion. Therefore the projection of z to the span of x, y must
be −x− y, which is a root. Therefore, x + y + z = 0.

It follows that a nontrivial coset of Y in X contains at most three roots. By
counting, a nontrivial coset of Y in X contains exactly three roots.

Let P := span{x, y} ∼= A2, Q := annX(P ). We claim that Y ≤ P ⊥ Q,
which has index 3 in X. Suppose the claim is not true. Then the structure of
P ∗ means that there exists r ∈ Y so that (r, x − y) is not divisible by 3. Since
x− y ∈ Y , we have a contradiction to Y ∼=

√
3E8. The claim implies that gP , an

automorphism of order 3 on P , extended to X by trivial action on Q, leaves Y

invariant (since it leaves invariant any sublattice between P ⊥ Q and P ∗ ⊥ Q∗).
Moreover, X(gP − 1) = Z(x− y).

Now take a root x′ which is in Q. Let y′, z′ be the other members of its
equivalence class of x′. We claim that these are also in Q. We know that x′−y′ ∈
Y ≤ P ⊥ Q, so P ′ := span{x′, y′, z′} ≤ P ⊥ Q. Now, we claim that the
projection of P ′ to P is 0. Suppose otherwise. Then the projection of some root
u ∈ P ′ to P is nonzero. Therefore the projection is a root, i.e. u ∈ P . But
then u is in the equivalence class of x or −x and so P ′ = P , a contradiction to
(x′, P ) = 0.

We now have that the class of x′ spans a copy of A2 in Q. We may continue
this procedure to get a sublattice U = U1 ⊥ U2 ⊥ U3 ⊥ U4 of X such that
Ui
∼= A2 for of X with the property that if gi is an automorphism of order 3 on

Ui extended to X by trivial action on annX(Ui), then each U(gi − 1) ≤ Y and,
by determinants, g := g1g2g3g4 satisfies U(g − 1) = Y . ¤

Proposition A.18. Suppose that T ∼= A2 ⊗ E8.

(i) Then D(T ) ∼= 38 and the natural 1
3Z/Z-valued quadratic form has maximal

Witt index; in fact, there is a natural identification of quadratic spaces D(T ) with
E8/3E8, up to scaling.

(ii) Define Ok := {X|T ≤ X ≤ T ∗, X is an integral lattice, dim(X/T ) = k}
(dimension here means over F3).

(a) Ok is nonempty if and only if 0 ≤ k ≤ 4;

(b) Ok consists of even lattices for each k, 0 ≤ k ≤ 4;
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(c) On T ∗/T , the action of g, the isometry of order 3 on T corresponding
to an order 3 symmetry of the A2 tensor factor, is trivial. Therefore any lattice
between T and T ∗ is g-invariant.

(iii) the lattices in Ok embed in E8 ⊥ E8. For a fixed k, the embeddings are
unique up to the action of O(E8 ⊥ E8).

(iv) the lattices in Ok are rootless if and only if k = 0.

Proof. (i) This follows since the quotient T ∗/T is covered by 1
3P , where P ∼=√

6E8 is annT (E), where E is one of the three EE8-sublattices of T .

(ii) Observe that X ∈ Ok if and only if X/T is a totally singular subspace of
D(T ). This implies (a). An integral lattice is even if it contains an even sublattice
of odd index. This implies (b). For (c), note that T ∗/T is covered by 1

3P and
P (g− 1) ≤ T (g− 1)2 = 3T . Hence g acts trivially on D(T ) = T ∗/T . This means
any lattice Y such that T ≤ Y ≤ T ∗ is g-invariant.

(iii) and (iv) First, we take X ∈ O4 and prove X ∼= E8 ⊥ E8. Such an X is
even, unimodular and has rank 16, so is isometric to HS16 or E8 ⊥ E8. Since
X has a fixed point free automorphism of order 3, X ∼= E8 ⊥ E8. Such an
automorphism fixes both direct summands. Call these summands X1 and X2.
Define Yi := Xi(g − 1), for i = 1, 2. Thus, Yi

∼=
√

3E8.

The action of g on Xi
∼= E8 is unique up to conjugacy, namely as a diagonally

embedded cyclic group of order 3 in a natural O(A2)4 subgroup of O(Xi) ∼=
Weyl(E8) (this follows from the corresponding conjugacy result for O+(8, 2) ∼=
Weyl(E8)/Z(Weyl(E8)).

We consider how T embeds in X. Since |X : T | = 34, |Xi : T ∩Xi| divides 34.
Since T ∩Xi ≥ Xi(g − 1) and T has no roots, (A.17) implies that T ∩Xi = Yi,
for i = 1, 2.

If U ∈ Ok, T ≤ U ≤ X, then rootlessness of U implies that U ∩Xi = Yi for
i = 1, 2. Therefore, U = T , i.e. k = 0. ¤

Lemma A.19. Let q be an odd prime power and let (V, Q) be a finite dimensional
quadratic space over Fq. Let c be a generator of F×q .

If dim(V ) is odd, there exists g ∈ GL(V ) so that gQ = c2Q.
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If dim(V ) is even, there exists g ∈ GL(V ) so that gQ = cQ.

Proof. The scalar transformation c takes Q to c2Q. This proves the result in
case dim(Q) is odd. Now suppose that dim(V ) is even.

Suppose that V has maximal Witt index. Let V = U ⊕ U ′, where U,U ′ are
each totally singular. We take g to be c on U and 1 on U ′.

Suppose that V has nonmaximal Witt index. The previous paragraph allows
us to reduce the proof to the case dim(V ) = 2 with V anisotropic. (One could
also observe that if we write V as the orthogonal direct sum of nonsingular 2-
spaces, the result follows from the case dim(V ) = 2.) Then V may be identified
with Fq2 and Q with a scalar multiple of the norm map. We then take g to be
multiplication by a scalar b ∈ Fq2 such that bq+1 = c. ¤

B Characterizations of lattices of small rank

Some results in this section are in the literature. We collect them here for con-
venience.

Lemma B.1. Let J be a rank 2 integral lattice. If det(J) ∈ {1, 2, 3, 4, 5, 6}, then
J contains a vector of norm 1 or 2. If det(J) ∈ {1, 2}, J is rectangular. If J is
even and det(J) ≤ 6, J ∼= A1 ⊥ A1 or A2.

Proof. The first two statements follows from values of the Hermite function
(see Appendix E). Suppose that J is even. Then J has a root, say u. Then
annJ(u) has determinant 1

2det(J) or 2 det(J). If annJ(u) = 1
2det(J), then J is

an orthogonal direct sum Zu ⊥ Zv, for some vector v ∈ J . For det(J) to be at
most 6 and J to be even, (v, v) = 2 and J is the lattice A1 ⊥ A1. Now assume
that annJ(u) has determinant 2 det(J), an integer at most 12. Let v be a basis
for annJ(u). Then 1

2(u + v) ∈ J and so 1
4(2 + (v, v)) ∈ 2Z since J is assumed

to be even. Therefore, 2 + (v, v) ∈ 8Z. Since (v, v) ≤ 12, (v, v) = 6. Therefore,
1
2(u + v) is a root and we get J ∼= A2. ¤

Lemma B.2. Let J be a rank 3 integral lattice. If det(J) ∈ {1, 2, 3}, then J is
rectangular or J is isometric to Z ⊥ A2. If det(J) = 4, J is rectangular or is
isometric to A3.
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Proof. If J contains a unit vector, J is orthogonally decomposable and we are
done by (B.1). Now use the Hermite function (see Section E and Table 12):
H(3, 2) = 1.67989473 . . . , H(3, 3) = 1.92299942 . . . and H(3, 4) = 2.11653473 . . . .
We therefore get an orthogonal decomposition unless possibly det(J) = 4 and J

contains no unit vector. Assume that this is so.

If D(J) is cyclic, the lattice K = J + 2J∗ which is strictly between J and J∗

is integral and unimodular, so is isomorphic to Z3. So, J has index 2 in Z3, and
the result is easy to check. If D(J) ∼= 2 × 2, we are done by a similar argument
provided a nontrivial coset of J in J∗ contains a vector of integral norm. If this
fails to happen, we quote (A.9) to get a contradiction. ¤

Lemma B.3. Suppose that X is an integral lattice which has rank 4 and deter-
minant 4. Then X embeds with index 2 in Z4. If X is odd, X is isometric to
one of 2Z ⊥ Z3, A1 ⊥ A1 ⊥ Z2, A3 ⊥ Z. If X is even, X ∼= D4.

Proof. Clearly, if X embeds with index 2 in Z4, X may be thought of as the
annihilator mod 2 of a vector w ∈ Z of the form (1, . . . , 1, 0, . . . , 0). The isometry
types for X correspond to the cases where the weight of w is 1, 2, 3 and 4. It
therefore suffices to demonstrate such an embedding.

First, assume that D(X) is cyclic. Then X + 2X∗ is an integral lattice (since
(2x, 2y) = (4x, y), for x, y ∈ X∗) and is unimodular, since it contains X with
index 2. Then the classification of unimodular integral lattices of small rank
implies X + 2X∗ ∼= Z4, and the conclusion is clear.

Now, assume that D(X) is elementary abelian. By (A.9), there is a nontrivial
coset u + X of X in X∗ for which (u, u) is an integer. Therefore, the lattice
X ′ := X + Zu is integral and unimodular. By the classification of unimodular
integral lattices, X ′ ∼= Z4. ¤

Theorem B.4. Let L be a unimodular integral lattice of rank at most 8. Then
L ∼= Zn or L ∼= E8.

Proof. This is a well-known classification. The article [GrE8] has an elementary
proof and discusses the history. ¤

The next result is well known. The proof may be new.
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Proposition B.5. Let X be an integral lattice of determinant 3 and rank at most
6. Then X is rectangular; or X ∼= A2 ⊥ Zm, for some m ≤ 4; or X ∼= E6.

Proof. Let u ∈ X∗ \ X. Since 3u ∈ X, (u, u) ∈ 1
3Z. Since det(X∗) = 1

3 ,
(u, u) ∈ 1

3 + Z or 2
3 + Z.

Suppose (u, u) ∈ 1
3 + Z. Let T ∼= A2. Then we quote (D.7) to see that there

is a unimodular lattice, U , which contains X ⊥ T with index 3.

Suppose U is even. By the classification (B.4), U ∼= E8. A well-known
property of E8 is that all A2-sublattices are in one orbit under the Weyl group.
Therefore, X ∼= E6.

If U is not even, U ∼= Zn, for some n ≤ 8. Any root in Zn has the form
(±1,±1, 0, 0, . . . , 0, 0). It follows that every A2 sublattice of Zn is in one orbit
under the isometry group 2 o Symn. Therefore X = annU (T ) is rectangular.

Suppose (u, u) ∈ 2
3 + Z. Then we consider a unimodular lattice W which

contains X ⊥ Zv with index 3, where (v, v) = 3. By the classification, W ∼= Z7.
Any norm 3 vector in Zn has the form (±1,±1,±1, 0, 0, . . . , 0) (up to coordinate
permutation). Therefore, annW (v) must be isometric to Z4 ⊥ A2. ¤

Lemma B.6. If M is an even integral lattice of determinant 5 and rank 4, then
M ∼= A4.

Proof. Let u ∈ M∗ so that u+M generates D(M). Then (u, u) = k
5 , where k is

an integer. Since 5u ∈ M , k is an even integer. Since H(4, 1
5) = 1.029593054 . . . ,

a minimum norm vector in M∗ does not lie in M , since M is an even lattice. We
may assume that u achieves this minimum norm. Thus, k ∈ {2, 4}.

Suppose that k = 4. Then we may form M ⊥ Z5v, where (v, v) = 1
5 . Define

w := u + v. Thus, P := M +Zw is a unimodular integral lattice. By the classifi-
cation, P ∼= Z5, so we identify P with Z5. Then M = annP (y) for some norm 5
vector y. The only possibilities for such y ∈ P are (2, 1, 0, 0, 0), (1, 1, 1, 1, 1), up
to monomial transformations. Since M is even, the latter possibility must hold
and we get M ∼= A4.

Suppose that k = 2. We let Q be the rank 2 lattice with Gram matrix

(
3 2
2 3

)
.

So, det(Q) = 5 and there is a generator v ∈ Q∗ for Q∗ modulo Q which has norm
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3
5 . We then form M ⊥ Q and define w := u + w. Then P := M + Q + Zw is an
integral lattice of rank 6 and determinant 1. By the classification, P ∼= Z6. In P ,
M is the annihilator of a pair of norm 3 vector, say y and z. Each corresponds
in Z6 to some vector of shape (1, 1, 1, 0, 0, 0), up to monomial transformation.
Since M is even, the 6-tuples representing y and z must have supports which
are disjoint 3-sets. However, since (y, z) = 2, by the Gram matrix, we have a
contradiction. ¤

Notation B.7. We denote by M(4, 25) an even integral lattice of rank 4 and
determinant 25. We shall show that it is unique in (B.8).

Lemma B.8. (i) There exists a unique, up to isometry, rank 4 even integral
lattice whose discriminant group has order 25.

(ii) It is isometric to a gluing of the orthogonal direct sum A2 ⊥
√

5A2 by a
glue vector of the shape u + v, where u is in the dual of the first summand and
(u, u) = 2

3 , and where v is in the dual of the second summand and has norm 10
3 .

(iii) The set of roots forms a system of type A2; in particular, the lattice does
not contain a pair of orthogonal roots.

(iv) The isometry group is isomorphic to Sym3 × Sym3 × 2, where the first
factor acts as the Weyl group on the first summand in (iii) and trivially on the
second, the second factor acts as the Weyl group on the second summand of (iii)
and trivially on the first, and where the third direct factor acts as −1 on the
lattice.

(v) The isometry group acts transitively on (a) the six roots; (b) the 18 norm
4 vectors; (c) ordered pairs of norm 2 and norm 4 vectors which are orthogonal;
(d) length 4 sequences of orthogonal vectors whose norms are 2, 4, 10, 20.

(vi) An orthogonal direct sum of two such embeds as a sublattice of index 52

in E8.

Proof. The construction of (ii) shows that such a lattice exists and it is easy to
deduce (iii), (iv), and (v).

We now prove (i). Suppose that L is such a lattice. We observe that if the
discriminant group were cyclic of order 25, the unique lattice strictly between L
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and its dual would be even and unimodular. Since L has rank 4, this is impossible.
Therefore, the discriminant group has shape 52.

Since H(4, 25) = 3.44265186 . . . , L contains a root, say u. Define N :=
annL(u). Since H(3, 50) = 4.91204199 . . . , N contains a norm 2 or 4 element,
say v.

Define R := Zu ⊥ Zv and P := annL(R), a sublattice of rank 2 and de-
terminant 2(v, v) · 25. Also, the Sylow 5-group of D(P ) has exponent 5. Then
P ∼=

√
5J , where J is an even, integral lattice of rank 2 and det(J) = 2(v, v).

Since det(J) is even and the rank of the natural bilinear form on J/2J is even,
it follows that J =

√
2K, for an integral, positive definite lattice K. We have

det(K) = 1
2(v, v) ∈ {1, 2} and so K is rectangular. Also, P ∼=

√
10K. So, P has

rectangular basis w, x whose norm sequence is 10, 5(v, v)

Suppose that (v, v) = 2. Also, L/(R ⊥ P ) ∼= 2 × 2. A nontrivial coset of
R ⊥ P contains an element of the form 1

2y + 1
2z, where y ∈ span{u, v} and

z ∈ span{w, x}. We may furthermore arrange for y = au + bv, z = cw + dx,
where a, b, c, d ∈ {0, 1}. For the norm of 1

2y + 1
2z to be an even integer, we

need a = b = c = d = 0 or a = b = c = d = 1. This is incompatible with
L/(R ⊥ P ) ∼= 2× 2. Therefore, (v, v) = 4.

We have L/(R ⊥ P ) ∼= 52. Therefore, 1
5w and 1

5x are in L∗ but are not in
L. Form the orthogonal sum L ⊥ Zy, where (y, y) = 5. Define ν := 1

5x + 1
5y.

Then (ν, ν) = 1. Also, Q := L + Zν has rank 5, is integral and contains L ⊥ Zy

with index 5, so has determinant 5. Since ν is a unit vector, S := annQ(ν) has
rank 4 and determinant 5, so S ∼= A4. Therefore, Q = Zν ⊥ S and L = annQ(y)
for some y ∈ Q of norm 5, where y = e + f , e ∈ Zν, f ∈ S. Since S has no
vectors of odd norm, e 6= 0 has odd norm. Since (y, y) = 5 and since (e, e) is a
perfect square, (e, e) = 1 and (f, f) = 4. Since O(A4) acts transitively on norm
4 vectors of A4, f is uniquely determined up to the action of O(S). Therefore,
the isometry type of L is uniquely determined.

It remains to prove (vi). For one proof, use (B.9). Here is a second proof. We
may form an orthogonal direct sum of two such lattices and extend upwards by
certain glue vectors.

Let M1 and M2 be two mutually orthogonal copies of L. Let u, v, w, x be the
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orthogonal elements of M1 of norm 2, 4, 10, 20 as defined in the proof of (i). Let
u′, v′, w′, x′ be the corresponding elements in M2. Set

γ =
1
5
(w + x + x′) and γ′ =

1
5
(x + w′ + x′).

Their norm are both 2. By computing the Gram matrix, it is easy to show that
E = spanZ{M1,M2, γ, γ′} is integral and has determinant 1. Thus, E is even and
so E ∼= E8. ¤

Lemma B.9. Let p be a prime which is 1(mod 4). Suppose that M, M ′ are
lattices such that D(M) and D(M ′) are elementary abelian p-groups which are
isometric as quadratic spaces over Fp. Let ψ be such an isometry and let c ∈ Fp be
a square root of −1. Then the overlattice N of M ⊥ M ′ spanned by the “diagonal
cosets” {α + cαψ|α ∈ D(M)} is unimodular. Also, N is even if M and M ′ are
even.

Proof. The hypotheses imply that N contains M + M ′ with index |det(M)|, so
is unimodular. It is integral since the space of diagonal cosets so indicated forms
a maximal totally singular subspace of the quadratic space D(M) ⊥ D(M ′). The
last sentence follows since |N : M ⊥ M ′| is odd. ¤

Lemma B.10. An even rank 4 lattice with discriminant group which is elemen-
tary abelian of order 125 is isometric to

√
5A∗4.

Proof. Suppose that L is such a lattice. Then det(
√

5L∗) = 5. We may apply
the result (B.6) to get

√
5L∗ ∼= A4. ¤

Lemma B.11. An even integral lattice of rank 4 and determinant 9 is isometric
to A2

2.

Proof. Let M be such a lattice. Since H(4, 9) = 2.66666666 . . . and H(3, 18) =
3.494321858 . . . , M contains an orthogonal pair of roots, u, v. Define P := Zu ⊥
Zv. The natural map M → D(P ) is onto since (detM, detP ) = 1. Therefore,
Q := annM (P ) has determinant 36 and the image of M in D(Q) is 2× 2. There-
fore, Q has a rectangular basis w, x, each of norm 6 or with respective norms 2,
18.
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We prove that 2, 18 does not occur. Suppose that it does. Then there is a
sublattice N isometric to A3

1. Since there are no even integer norm vectors in
N∗ \N , N is a direct summand of M . By coprimeness, the natural map of M to
D(N) ∼= 23 is onto. Then the natural map of M to D(Zx) has image isomorphic
to 23. Since D(Zx) is cyclic, we have a contradiction.

Since M/(P ⊥ Q) ∼= 2 × 2 and M is even, it is easy to see that M is one of
M1 := span{P, Q, 1

2(u + w), 1
2(v + x)} or M2 := span{P, Q, 1

2(u + x), 1
2(v + w)}.

These two overlattices are isometric by the isometry defined by u 7→ u, v 7→
v, w 7→ x, x 7→ w. It is easy to see directly that they are isometric to A2

2. For
example, M1 = span{u, x, 1

2(u + x)} ⊥ span{v, w, 1
2(v + w)}. ¤

C Nonexistence of particular lattices

Lemma C.1. Let X ∼= Z2. There is no sublattice of X whose discriminant group
is 3× 3.

Proof. Let Y be such a sublattice. Its index is 3. Let e, f be an orthonormal
basis of X. Then Y contains W := span{3e, 3f} with index 3. Let v ∈ Y \W ,
so that Y = W + Zv. If v is e or f , clearly D(Y ) is cyclic of order 9. We may
therefore assume that v = e + f or e − f . Then Y is spanned by 3e and e ± f ,
and so its Smith invariant sequence 1, 9. This final contradiction completes the
proof. ¤

Lemma C.2. There does not exist an even rank 4 lattice of determinant 3.

Proof. Let L be such a lattice and let u ∈ L∗ so that u generates L∗ modulo
L. Then (u, u) = k

3 for some integer k > 0. Since L is even, k is even. Since
H(4, 1

3) = 1.169843567 · · · < 4/3, we may assume that k = 2.

We now form L ⊥ Z(3v), where (v, v) = 1
3 . Define w := u + v. The lattice

P := L + Zw is unimodular, so is isometric to Z5. Since det(M) = 3, M =
annP (y) for some vector y of norm 3. This forces M to be isometric to A2 ⊥ Z2,
a contradiction to evenness. ¤

Corollary C.3. There does not exist an even rank 4 lattice whose discriminant
group is elementary abelian of order 33.
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Proof. If M is such a lattice, then 3M∗ has rank 4 and determinant 3. Now use
(C.2). ¤

D Properties of particular lattices

We discuss the properties of some particular lattices. The results are arranged
according to the form of their discriminant groups.

D.1 Discriminant groups which are 2-groups

Lemma D.1. Suppose that M 6= 0 is an SSD sublattice of E8 and that rank(M) ≤
4. Then M contains a root, r, and annM (r) is an SSD sublattice of E8 of rank
(rank(M)− 1). Also M ∼= A

rank(M)
1 or D4.

Proof. Let L := E8. Let d := det(M), a power of 2, and k := rank(M). Note
that D(M) is elementary abelian of rank at most k. If d = 2k, then 1√

2
M is

unimodular, hence is isometric to Zk, and the conclusion holds. So, we assume
that d < 2k. For n ≤ 4 and d|8, it is straightforward to check that the Hermite
function H satisfies H(n, d) < 4. Therefore, M contains a root, say r.

Suppose that M is a direct summand of L. By (2.8), N := annM (r) is RSSD
in L, hence is SSD in L by (2.7) and we apply induction to conclude that N is
an orthogonal sum of A1s. So M contains M ′, an orthogonal sum of A1s, with
index 1 or 2. Furthermore, det(M ′) = 2k. If the index were 1, we would be done,
so we assume the index is 2. Since d > 1, d = 2, 4 or 8. By the index formula
for determinants, 22 is a divisor of d. Therefore, d = 4 or 8. However, if d = 8,
then det(M ′) = 32, which is impossible since rank(M ′) ≤ 4. Therefore, d = 4
and rank(M ′) = 4. It is trivial to deduce that M ∼= D4.

We now suppose that M is not a direct summand of L. Let S be the direct
summand of L determined by M . Then S is SSD and the above analysis says
S is isometric to some Am

1 or D4. The only SSD sublattices of Am
1 are the

orthogonal direct summands. The only SSD sublattices of D4 which are proper
have determinant 24 and so equal twice their duals and therefore are isometric
to A4

1. ¤
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Lemma D.2. Suppose that M is an SSD sublattice of E8. Then M is one of the
sublattices in Table 10 and Table 11.

Table 10: SSD sublattices of E8 which span direct summands

Rank Type

0 0

1 A1

2 A1 ⊥ A1

3 A1 ⊥ A1 ⊥ A1

4 A1 ⊥ A1 ⊥ A1 ⊥ A1, D4

5 D4 ⊥ A1

6 D6

7 E7

8 E8

Table 11: SSD sublattices of E8 which do not span direct summands

Rank Type contained in the summand

4 A1 ⊥ A1 ⊥ A1 ⊥ A1 D4

5 A⊥5
1 D4 ⊥ A1

6 A⊥6
1 , D4 ⊥ A1 ⊥ A1 D6

7 A⊥7
1 , D4 ⊥ A1 ⊥ A1 ⊥ A1, D6 ⊥ A1 E7

8 A⊥8
1 , D4 ⊥ A⊥4

1 , D4 ⊥ D4, E8

D6 ⊥ A1 ⊥ A1, E7 ⊥ A1

Proof. We may assume that 1 ≤ rank(M) ≤ 7. First we show that M contains
a root.

If rank(M) ≤ 4, this follows from (D.1). If rank(M) ≥ 4, then N :=
annL(M) has rank at most 4, so is isometric to one of Ak

1 or D4.

Suppose that rank(N) = 4. If N ∼= A4
1 and so annL(N) ∼= A4

1, which contains
M and whose only SSD sublattices are orthogonal direct summands, so M =
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annL(N) and the result follows in this case. If N ∼= D4, then M ∼= D4 or A4
1 by

an argument in the proof of (D.1).

We may therefore assume that rank(N) ≤ 3, whence N ∼= A
rank(N)
1 and

rank(M) ≥ 5. Furthermore, we may assume that rank(M) > rank(D(M)), or
else we deduce that M ∼= A

rank(M)
1 . It follows that det(M) is a proper divisor of

128.

Note that D(M) has rank which is congruent to rank(M) mod 2 (this follows
from the index determinant formula plus the fact that D(M) is an elementary
abelian 2-group). Therefore, since rank(M) ≤ 7, det(M) is a proper divisor of
64, i.e. is a divisor of 32.

For any d ≥ 2, H(n, d) is an increasing function of n for n ∈ [5,∞). For fixed
n, H(n, d) is increasing as a function of d. Since H(7, 32) = 3.888997243 . . . , we
conclude that M contains a root, say r.

Since L/(M ⊥ N) is an elementary abelian 2-group by (A.6), M ⊥ N ≥ 2L.
Also, r+2L contains a frame, F , a subset of 16 roots which span an A8

1-sublattice
of L. Since roots are orthogonally indecomposable in L, F = (F ∩M)∪ (F ∩N).
It follows that M contains a sublattice M ′ spanned by F ∩M , M ′ ∼= A

rank(M)
1 ,

and so M is generated by M ′ and glue vectors of the form 1
2(a+ b+ c+d), where

a, b, c, d are linearly independent elements of F ∩M . It is now straightforward to
obtain the list in the conclusion by considering the cases of rank 5, 6 and 7 and
subspaces of the binary length 8 Hamming code. ¤

Lemma D.3. Let X ∼= D6 and let S = {Y ⊂ X| Y ∼= DD6}. Then O(X) acts
transitively on S.

Proof. Let X ∼= D6 and R = 2X∗. Since D∗
6/D6

∼= Z2 × Z2, we have X ≥ R ≥
2X and R/2X ∼= D∗

6/D6
∼= Z2 × Z2. Thus, the index of R in X is 26/22 = 24.

Let ¯ : X → X/2X be the natural projection. Then for any Y ∈ S, Ȳ is a
totally isotropic subspace of X̄. Note that R/2X is the radical of X̄ and thus
X/R ∼= 24 is nonsingular. Therefore, dim(Y + R)/R ≤ 2 and Y/(Y ∩ R) ∼=
(Y + R)/R also has dimension ≤ 2.

First we shall show that Y ≥ 2X and dim(Y +R)/R = 2. Consider the tower

Y ≥ Y ∩R ≥ Y ∩ 2X.
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Since Y ∩ R + 2X is doubly even but R is not, R 6= Y ∩ R + 2X and (Y ∩ R +
2X)/2X � R/2X. Thus (Y ∩R + 2X)/2X ∼= Y ∩R/Y ∩ 2X has dimension ≤ 1
and hence

|Y : Y ∩ 2X| = |Y : Y ∩R| · |Y ∩R : Y ∩ 2X| ≤ 23.

However, det(Y ) = 28 and det(2X) = 2124 = 214. Therefore, |Y : Y ∩ 2X| ≥ 23

and hence |Y : Y ∩ 2X| = 23. This implies Y ∩ 2X = 2X, i.e., Y ≥ 2X. It also
implies that |Y + R : R| = |Y : Y ∩ R| = 22 and hence (Y + R)/R is a maximal
isotropic subspace of X/R ∼= Z4

2.

Let 2X ≤ M ≤ X be such that M/2X is maximal totally isotropic subspace.
Then M ≥ R and 1√

2
M is an integral lattice. Set Meven = {α ∈ M | 1

2(α, α) ∈
2Z}. Then Meven is a sublattice of M of index 1 or 2. If Y is contained in such
M , then Y = Meven. That means Y is uniquely determined by M .

Finally, we shall note that the Weyl group acts on X/R as the symmetric
group Sym6. Moreover, Sym6 acts faithfully on X/R ∼= Z4

2 and fixes the form
( , ), so it acts as Sp(4, 2). Thus it acts transitively on maximal totally isotropic
subspace and we have the desired conclusion. ¤

Lemma D.4. Let X ∼= D6 and let Y ∼= DD6 be a sublattice of X. Then there
exists a subset {η1, . . . , η6} ⊂ X with (ηi, ηj) = 2δi,j such that

Y = spanZ{ηi ± ηj | i, j = 1, . . . , 6}

and

X = spanZ

{
η1, η2, η4, η6,

1
2
(−η1 + η2 − η3 + η4),

1
2
(−η3 + η4 − η5 + η6)

}
.

Proof. We shall use the standard model for D6, i.e.,

D6 = {(x1, x2, . . . , x6) ∈ Z6|x1 + · · ·+ x6 ≡ 0 mod 2}.

Let β1 = (1, 1, 0, 0, 0, 0), β2 = (−1, 1, 0, 0, 0, 0), β3 = (0, 0, 1, 1, 0, 0), β4 = (0, 0,−1, 1, 0, 0),
β5 = (0, 0, 0, 0, 1, 1), and β6 = (0, 0, 0, 0,−1, 1). Then, (βi, βj) = 2δi,j and

W = spanZ{βi ± βj | i, j = 1, 2, 3, 4, 5, 6} ∼= DD6.
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Note also that {(1, 1, 0, 0, 0, 0), (−1, 1, 0, 0, 0, 0), (0, 0,−1, 1, 0, 0), (0, 0, 0, 0,−1, 1),
(−1, 0,−1, 0, 0, 0), (0, 0,−1, 0,−1, 0)} forms a basis for X (since their Gram ma-
trix has determinant 4). By expressing them in β1, . . . , β6, we have

X = spanZ

{
β1, β2, β4, β6,

1
2
(−β1 + β2 − β3 + β4),

1
2
(−β3 + β4 − β5 + β6)

}
.

Let Y ∼= DD6 be a sublattice of X. Then by Lemma D.3, there exists
g ∈ O(X) such that Y = Wg. Now set ηi = βig and we have the desired result.
¤

Lemma D.5. Let X ∼= D4 and let Y ∼= DD4 be a sublattice of X. Then Y = 2X∗

and hence X ≤ 1
2Y .

Proof. The radical of the form on X/2X is 2X∗/2X. If W is any A2-sublattice of
X, its image in X/2X complements 2X∗/2X. Therefore, every element of X\2X∗

has norm 2(mod 4). It follows that Y ≤ 2X∗. By determinants, Y = 2X∗. ¤

Lemma D.6. Let X ∼= D4 and let H ∼= AA1 be a sublattice of X. Then the
image of the natural map X∗ to H∗ is H∗ = 1

4H.

Proof. A generator of H has norm 4, so H is a direct summand of L. In general,
if W is a lattice and Y is a direct summand of W , the natural map W ∗ → Y ∗ is
onto. The lemma follows. ¤

D.2 Discriminant groups which are 3-groups

Lemma D.7. Let L be the A2-lattice, with basis of roots r, s. Let g ∈ O(L)
and |g| = 3. (i) Then L∗ ∼= 1√

3
L and every nontrivial coset of L in L∗ has

minimum norm 2
3 . All norms in such a coset lie in 2

3 + 2Z. (ii) If x is any root,
annL(x) = Z(xg − xg2) and xg − xg2 has norm 6.

Proof. (i) The transformation g : r 7→ s, s 7→ −r − s is an isometry of order 3
and h := g − g−1 satisfies h2 = −3 and (xh, yh) = 3(x, y) for all x, y ∈ Q ⊗ L.
Furthermore, g acts indecomposably on L/3L ∼= 32. We have 1

3L = Lh−2 ≥
Lh−1 ≥ L, with each containment having index 3 (since h2 = −3). Since L∗ lies
strictly between L and 1

3L and is g-invariant, L∗ = Lh−1.
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Since L∗ ∼= 1√
3
L, the minimum norm in L∗ is 2

3 by (D.7). The final statement
follows since the six roots ±r,±s,±(r + s) fall in two orbits under the action of
〈g〉, the differences rgi − sgi lie in 3L∗ and r and −r are not congruent modulo
3L∗.

(ii) The element xg−xg2 has norm 6 and is clearly in annL(x). The sublattice
Zx ⊥ Z(xg−xg2) has norm 2 ·6 = 12, so has index 3 in L, which has determinant
3. Since L is indecomposable, annL(x) is not properly larger than Z(xg − xg2).
¤

Lemma D.8. Let X ∼= A2 and let Y ≤ X, |X : Y | = 3. Then either Y = 3X∗

and its Smith invariant sequence 3, 9; or Y has Gram matrix

(
2 −3
−3 18

)
, which

has Smith invariant sequence 1, 27. In particular, such Y has D(Y ) of rank 2 if
and only if Y = 3X∗.

Proof. Let r, s, t be roots in X such that r + s + t = 0. Any two of them form
a basis for X. The sublattices span{r, 3s}, span{s, 3t}, span{t, 3r} of index 3 are
distinct (since their sets of roots partition the six roots of X) and the index 3
sublattice 3X∗ contains no roots. Since there are just four sublattices of index 3
in X, we have listed all four. It is straightforward to check the assertions about
the Gram matrices. Note that 3X∗ ∼=

√
3X. ¤

Proposition D.9. Suppose that M is a sublattice of L ∼= E8, that M is a direct
summand of L, that M has discriminant group which is elementary abelian of
order 3s, for some s. Then M is 0, L, or is a natural A2, A2 ⊥ A2, or E6

sublattice. The respective values of s are 0, 0, 1, 2 and 1. In case M is not
a direct summand, the list of possibilities expands to include A2 ⊥ A2 ⊥ A2,
A2 ⊥ A2 ⊥ A2 ⊥ A2 and A2 ⊥ E6 sublattices.

Proof. One of M and annL(M) has rank at most 4 and the images of L in
their discriminant group are isomorphic. Therefore, s ≤ 4. If s were equal to
4, then both M and annL(M) would have rank 4, and each would be isometric
to
√

3 times some rank 4 integral unimodular lattice. By (B.4), each would be
isomorphic to

√
3Z4, which would contradict their evenness. Therefore, s ≤ 3.

The second statement is easy to derive from the first, which we now prove.
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We may replace M by its annihilator in L if necessary to assume that r :=
rank(M) ≤ 4. Since M is even and det(M) is a power of 3, r is even. We may
assume that r ≥ 2 and that s ≥ 1. If r = 2, M ∼= A2 (B.1). We therefore may
and do assume that r = 4.

For s ∈ {1, 3}, we quote (C.2) and (C.3) to see that there is no such M . If
s = 2 we quote (B.11) to identify M . ¤

Lemma D.10. We have (E∗
6 , E∗

6) = 1
3Z and the norms of vectors in E∗

6 \E6 are
in 4

3 + Z.

Proof. This follows from the fact that E6 has a sublattice of index 3 which
is isometric to A3

2 and the facts that (A∗2, A
∗
2) = 2

3Z and that a glue vector for
A3

2 in E6 has nontrivial projection to the spaces spanned by each of the three
summands. ¤

Hypothesis D.11. L is a rank 12 even integral lattice, D(L) ∼= 3k, for some
integer k, L is rootless and L∗ contains no vector of norm 2

3 .

Lemma D.12. The quadratic space D(L) in (D.11) has nonmaximal Witt index
if k is even.

Proof. If the Witt index were maximal for k is even, there would exist a lattice
M which satisfies 3L ≤ 3M ≤ L and 3M/3L is a totally singular space of
dimension k

2 . Such an M is even and unimodular. A well-known theorem says
that rank(M) ∈ 8Z, a contradiction. ¤

Proposition D.13. Let L,L′ be two lattices which satisfy hypothesis (D.11) for
k even, and which have the same determinant. There exists an embedding of
L ⊥ L′ into the Leech lattice.

Proof. We form L ⊥ L′. The quadratic spaces D(L), D(L)′ have nonmaximal
Witt index.

Let g be a linear isomorphism from D(L) to D(L′) which takes the quadratic
form on D(L) to the negative of the quadratic form on D(L′) (A.19).

Now, form the overlattice J by gluing from D(L) to D(L′) with g. Clearly, J

has rank 24, is even and unimodular. The famous characterization of the Leech
lattices reduces the proof to showing that J is rootless.
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Suppose that J has a root, s. Write s = r + r′ as a sum of its projections
to the rational spaces spanned by L,L′ respectively. The norm of any element
x ∈ L∗ has the form a/3, where a is an even integer at least 4. The norm of any
element x ∈ L′∗ has the form b/3, where b is an even integer at least 4. Therefore,
we may assume that r, r′ have respective norms at least 4

3 . Then (s, s) ≥ 8
3 > 2,

a contradiction. ¤

Lemma D.14. Let L be an even integral rootless lattice of rank 12 with D(L) ∼=
3k, for an integer k, and an automorphism g of order 3 without eigenvalue 1 such
that L∗(g − 1) ≤ L. Then L satisfies hypothesis (D.11).

Proof. We need to show that if v ∈ L∗, then (v, v) ≥ 4
3 . This follows since

v(g − 1) ∈ L, (v(g − 1), v(g − 1)) = 3(v, v) and L is rootless. ¤

Corollary D.15. If L, L′ satisfy hypotheses of (D.14) and each of L, L′ is
not properly contained in a rank 12 integral rootless lattice (such an overlattice
satisfies (D.14)), then L ∼= L′ and k = 6.

Proof. Let Λ be the Leech lattice. We use results from [Gr12] which analyze
the elements of order 3 in Λ.

Take two copies L1, L2 of L. We have by (D.13), an embedding of L1 ⊥ L2

in Λ. Identify L1 ⊥ L2 with a sublattice of Λ.

Since L1, L2 are not properly contained in another lattice which satisfies
(D.14) and since Λ is rootless, L1 and L2 are direct summands of Λ. Since they
are direct summands, L2 = annΛ(L1), L1 = annΛ(L2) and the natural maps
of Λ to D(L1) and D(L2) are onto. The gluing construction shows that the
automorphism g of order 3 in L as in (D.14) extends to an automorphism of Λ
by given action on L2 and trivial action on L1. Denote the extension by g.

We now do the same for L′, g′ in place of L, g.

From Theorem 10.35 of [Gr12], g and g′ are conjugate in O(Λ) and det(L) =
det(L′) = 36. A conjugating element takes the fixed point sublattice L1 of g to
the fixed point sublattice L′1 of g′. Therefore, L and L′ are isometric. ¤

Corollary D.16. The Coxeter-Todd lattice is not properly contained in an inte-
gral, rootless lattice.
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Proof. Embed the Coxeter-Todd lattice P in a lattice Q satisfying the hypothesis
of (D.15). Since det(P ) = 36 = det(Q), P = Q. ¤

Lemma D.17. Let X ∼= E8, P ≤ X, P ∼= E6 and Q := annX(P ).

(i) There exists a sublattice R ∼= A2 so that R ∩ (P ∪Q) contains no roots.

(ii) If r ∈ R is a root, then the orthogonal projection of r to P has norm 4
3

and the projection to Q has norm 2
3 .

Proof. (i) We may pass to a sublattice Q1 ⊥ Q2 ⊥ Q3 ⊥ Q of type A4
2, where

P ≥ Q1 ⊥ Q2 ⊥ Q3. Then X is described by a standard gluing with a tetracode,
the subspace of F4

3 spanned by (0, 1, 1, 1), (1, 0, 1, 2), and elements vi of the dual
of Qi (Q4 := Q) where vi has norm 2

3 . Then for example take R to be the span
of v2 + v3 + v4, v1 + v3 −w, where w ∈ v4 + Q has norm 2

3 but (w, v4) = −1
3 . See

(D.7).

(ii) This follows since the norms in any nontrivial coset of Q in Q∗ is 2
3 + 2Z.

¤

D.3 Discriminant groups which are 5-groups

Proposition D.18. Suppose that M is a sublattice of L ∼= E8, that M is a direct
summand, that M has discriminant group which is elementary abelian of order
5s, for some s ≤ 4. Then M is 0, a natural A4 sublattice, the rank 4 lattice
M(4, 25) (cf. (B.7)), the rank 4 lattice

√
5A∗4 ∼= A4(1) (cf. (D.19)) or L. The

respective values of s are 0, 1, 2, 3 and 0.

Proof. We may replace M by its annihilator in L if necessary to assume that
r := rank(M) ≤ 4. Since M is even and det(M) is a power of 5, r is even. We
may assume that r ≥ 2 and that s ≥ 1. If r = 2, det(M) ≡ 3(mod 4) (consider

the form of a Gram matrix

(
a b

b d

)
, which has even entries on the diagonal and

odd determinant, whence b is odd). This is not possible since det(M) is a power
of 5.

We therefore may and do assume that r = 4.
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Suppose that s = 4, i.e., that D(M) ∼= 54. Then M ∼=
√

5J , where J is an
integral lattice of determinant 1. Then J ∼= Zrank(M), which is not an even lattice.
This is a contradiction since M is even. We conclude s = rank(D(M)) ≤ 3. If
s = 0, M is a rank 4 unimodular integral lattice, hence is odd by (B.4), a
contradiction. Therefore, 1 ≤ s ≤ 3. The results (B.6), (B.8) and (B.10) identify
M . ¤

Notation D.19. The lattice A4(1) is defined by the Gram matrix



4 −1−1−1
−1 4 −1−1
−1−1 4 −1
−1−1−1 4




.

It is spanned by vectors v1, · · · , v5 which satisfy v1 + v2 + v3 + v4 + v5 = 0 and
(vi, vj) = −1 + 5δij . Its isometry group contains Sym5 × 〈−1〉.

Lemma D.20. Suppose that u is a norm 4 vector in an integral lattice U where
g acts as isometries so that 1 + g + g2 + g3 + g4 acts as 0.Then one of three
possibilities occurs.

(i) The unordered pair of scalars (u, ug) = (u, g4u) and (u, ug2) = (u, ug3)
equals the unordered set {0,−2}; or

(ii) The unordered pair of scalars (u, ug) = (u, g4u) and (u, ug2) = (u, ug3)
equals the unordered set {−3, 1}; or

(iii) (u, ug) = (u, ug2) = (u, ug3) = (u, g4u) = −1.

The isometry types of the lattice span{u, ug, ug2, ug3, ug4} in these respective
cases are AA4, A4, A4(1).

Proof. Straightforward. ¤

Lemma D.21. Let X ∼= A4(1) (D.19). Then

(i) X is rootless and contains exactly 10 elements of norm 4;

(ii) Suppose u ∈ X has norm 4. Then annX(u) ∼=
√

5A3.

(iii) O(X) ∼= 2 × Sym5; furthermore, if X4 is the set of norm 4 vectors and
O is an orbit of a subgroup of order 5 in O(X) on X4, then the subgroup of
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O(X) which preserves O is a subgroup isomorphic to Sym5, and is the subgroup
generated by all reflections.

(iv) Suppose that Y ∼= A4 and that g ∈ O(Y ) has order 5, then Y (g−1) ∼= X.
Also, O(Y ) ∩ O(Y (g − 1)) = NO(Y )(〈g〉) ∼= 2 × 5:4, where the right direct factor
is a Frobenius group of order 20.

(v) D(X) is elementary abelian.

Proof. (i) If the set of roots R in X were nonempty, then R would have an
isometry of order 5. Since the rank of R is at most 4, R would be an A4-system
and so the sublattice of X which R generates would be A4, which has determinant
5. Since det(X) = 53, this is a contradiction.

By construction, X has an cyclic group Z of order 10 in O(X) which has an
orbit of 10 norm 4 vectors, which are denoted ±vi in (D.19). Suppose that w

is a norm 4 vector outside the previous orbit. Let g ∈ Z have order 5. Then
w + wg + wg2 + wg3 + wg4 = 0. Therefore 0 = (v, w + wg + wg2 + wg3 + wg4),
which means that there exists an index i so that (v, wgi) is even. Since wgi and
v are linearly independent, (v, wgi) is not ±4 and the sublattice X ′ which wgi

and v span has rank 2. Since (v, wgi) ∈ {−2, 0, 2}, X ′ ∼= AA1 ⊥ AA1 or AA2.
This contradicts (A.3) (in that notation, n = 4, m = 2, p = 5, r = 3).

(ii) Let K := annX(u). Since (u, u) = 4 is relatively prime to det(X),
the natural map X → D(Zu) is onto. Therefore Zu ⊥ K has index 4 in X.
Hence det(Zu ⊥ K) = 42 · 53 and detK = 4 · 53. Since D(X) ≤ D(Zu ⊥ K) =
D(Zu)×D(K) and the Smith invariant sequence of X is 1,5,5,5, D(K) contains
an elementary group 53. Moreover, the image of X in D(K) isomorphic to the
image of X in D(Zu), which is isomorphic to Z4. Therefore, D(K) = Z4 × Z3

5

by determinants. Hence, the Smith invariant sequence for K is 5, 5, 20 and so
K ∼=

√
5W , for an integral lattice W such that D(W ) = 4. Since X is even, W

is even. We identify W with A3 by (B.2).

(iii) We use the notation in the proof of (i). By (D.20), for any two distinct
vectors of the form vgi, the inner product is −1, so the symmetric group on the
set of all vgi acts as isometries on the Z-free module spanned by them, and on
the quotient of this module by the Z-span of v + vg + vg2 + vg3 + vg4, which is
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isometric to X.

Pairs of elements of norm 4 fall into classes according to their inner products:
±4,±1. An orbit of an element of order 5 on X4 gives pairs only with inner
products 4,−1 (since the sum of these five values is 0). There are two such
orbits and an inner product between norm 4 vectors from different orbits is one
of −4, 1. The map −1 interchanges these two orbits. Therefore, the stabilizer of
O has index 2 in O(X). It contains the map which interchanges distinct vgi and
vgj and fixes other vgk in the orbit. Such a map is a reflection on the ambient
vector space. Since Sym5 has just two classes of involutions, it is clear that every
reflection in O(X) = 〈−1〉 × StabO(X)(O) is contained in StabO(X)(O).

(iv) We have Y (g − 1) = spanZ{vgi − vgj |i, j ∈ Z}. By checking a Gram
matrix, one sees that it is isometric to X. We consider O(Y ) ∩ O(Y (g − 1)),
which clearly contains NO(Y )(〈g〉). We show that this containment is equality.
We take for Y the standard model, the set of coordinate sum 0 vectors in Z5. Take
v ∈ Y (g − 1), a norm 4 vector. It has shape (1, 1,−1,−1, 0) (up to reindexing).
The coordinate permutation t which transposes the last two coordinates is not in
O(Y (g−1)) (since v(t−1) has norm 2). Therefore O(Y ) does not stabilize Y (g−1).
Since NO(Y )(〈g〉) is a maximal subgroup of O(Y ), it equals O(Y ) ∩O(Y (g − 1)).

(v) Since A4(1) ∼=
√

5A∗4 by (B.10), (A4(1))∗ ∼= 1√
5
A4. Thus, 5A4(1)∗ < A4(1)

and D(A4(1)) is elementary abelian. ¤

Lemma D.22. Let X ∼= A4(1) be a sublattice of E8. If X is a direct summand,
then annE8(X) ∼= A4(1).

Proof. . Let Y ∼= E8 and let X ∼= A4(1) be a sublattice of Y . Since X is a
direct summand, the natural map Y → D(X) is onto. Similarly, the natural map
from Y → D(annY (X)) is also onto and these two images are isomorphic. Thus,
D(annY (X)) ∼= D(X) ∼= 53. Hence, annY (X) is isomorphic to A4(1) by (B.10).¤

Remark D.23. Note that A4(1) can be embedded into E8 as a direct summand.
Recall that

A4(1) ∼=
√

5A∗4

= spanZ{
1√
5
(1, 1, 1, 1,−4),

1√
5
(1, 1, 1,−4, 1),

1√
5
(1, 1,−4, 1, 1),

1√
5
(1,−4, 1, 1, 1)}.
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Then,

(A4(1))∗ ∼= 1√
5
A4 =

{
1√
5
(x1, . . . , x5)

∣∣∣∣∣
5∑

i=1

xi = 0 and xi ∈ Z, i = 1, . . . , 5

}
.

Let

Y = spanZ





A4(1) ⊥ A4(1), 1√
5
(1,−1, 0, 0, 0 | 2,−2, 0, 0, 0)

1√
5
(0, 1,−1, 0, 0 | 0, 2,−2, 0, 0), 1√

5
(0, 0, 1,−1, 0 | 0, 0, 2,−2, 0, )



 .

Then Y is a rank 8 even lattice and |Y : A4(1) ⊥ A4(1)| = 53. Thus det(Y ) = 1
and Y ∼= E8. Clearly, A4(1) is a direct summand by the construction.

D.4 Discriminant groups of unrestricted types

We have O(E6) ∼= Weyl(E6)×〈−1〉. Thus, outer involutions are negatives of inner
involutions. The next result does not treat inner and outer cases differently.

Lemma D.24. Let t ∈ O(E6) be an involution. The negated sublattice for t

is either SSD (so occurs in the list for E8 (D.2)) or is RSSD but not SSD and
is isometric to one of AA2, AA2 ⊥ A1, AA2 ⊥ A1 ⊥ A1, AA2 ⊥ A1 ⊥ A1 ⊥
A1, A5, A5 ⊥ A1, E6. Moreover, the isometry types of the RSSD sublattices de-
termine them uniquely up to the action of O(E6).

Proof. Let S be the negated sublattice and assume that it is not SSD. Then
the image of E6 in D(S) has index 3 and is an elementary abelian 2-group, so
that det(S) = 2a3, where a ≤ rank(S). Note that rank(S) ≥ 2. Now, let
T := annE6(S), a sublattice of rank at most 4. Since det(S ⊥ T ) = 22a3,
det(T ) = 2a and the image of E6 in D(T ) is all of D(T ). Therefore, T is SSD
and we may find the isometry type of T among the SSD sublattices of E8. As we
search through SSD sublattices of rank at most 4 (all have the form Am

1 or D4),
it is routine to determine the annihilators of their embeddings in E6. ¤

Lemma D.25. Suppose that R ⊥ Q is an orthogonal direct sum with Q ∼= AA2

and R ∼= D4. Let φ : D(R) → D(Q) be any monomorphism (recall that D(R) ∼=
2 × 2 and D(Q) ∼= 2 × 2 × 3). Then the lattice X which is between R ⊥ Q
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and R∗ ⊥ Q∗ and which is the diagonal with respect to φ is isometric to E6.
Furthermore, if X is a lattice isometric to E6 which contains R ⊥ Q, then X is
realized this way.

Proof. Such X have determinant 3. The cosets of order 2 for D4 in its dual
have odd integer norms (the minimum is 1). The cosets of order 2 for AA2 in its
dual have odd integer norms (the minimum is 1). It follows that such X above
are even lattices. By a well-known characterization, X ∼= E6 (cf. (B.5)).

Conversely, suppose that X is a lattice containing R ⊥ Q, X ∼= E6. Since
det(X) is odd, the image of the natural map X → D(R) is onto. Therefore,
|X : R ⊥ Q| = 4. The image of X in D(Q) is isomorphic to the image of X in
D(R). The last statement follows. ¤

Corollary D.26. (i) Let Y be a sublattice of X ∼= E6 so that Y ∼= D4. Then
annX(Y ) ∼= AA2.

(ii) Let U be a sublattice of X ∼= E6 so that U ∼= AA2 and X/(U ⊥ annX(U))
is an elementary abelian 2-group. Then X/(U ⊥ annX(U)) ∼= 22 and annX(U) ∼=
D4.

Proof. (i) Let Z := annX(Y ). Since (det(X), det(Y )) = 1, the natural map of
X to D(Y ) ∼= 2×2 is onto, so the natural map of X to D(Z) ∼= 2×2×3 has image
2×2. Since rank(Z) = 2, this means 1√

2
Z is an integral lattice of determinant 3.

It is not rectangular, or else there exists a root of X whose annihilator contains
Y , whereas a root of E6 has annihilator which is an A5-sublattice, which does not
contain a D4-sublattice (since an A5 lattice does not contain an A4

1-sublattice).
Therefore, by (B.1), 1√

2
Z ∼= A2.

(ii) Use (B.3). ¤

Notation D.27. We define two rank 4 lattices X, Q. First, X ∼= A2
1A2, D(X) ∼=

22×3. Let X have the decomposition into indecomposable summands X = X1 ⊥
X2 ⊥ X3, where X1

∼= X2
∼= A1 and X3

∼= A2. Let α1 ∈ X1, α2 ∈ X2, α3, α4 ∈ X3

be roots with (α3, α4) = −1.

We define Q ∼= annE6(P ), where P is a sublattice of E6 isometric to A2
1.

Then D(Q) ∼= 22 × 3 and rank(Q) = 4. Then Q is not a root lattice (because in
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E6, the annihilator of an A1-sublattice is an A5-sublattice; in an A5-lattice, the
annihilator of an A1-sublattice is not a root lattice).

We use the standard model for E6, the annihilator in the standard model of
E8 of J := span{(1,−1, 0, 0, 0, 0, 0, 0), (0, 1,−1, 0, 0, 0, 0, 0)}. So, E6 is the set of
E8 vectors with equal first three coordinates.

We may take P to be the span of (0, 0, 0, 1, 1, 0, 0, 0) and (0, 0, 0, 1,−1, 0, 0, 0).
Therefore, Q = span{u,Q1, w}, where u = (2, 2, 2, 0, 0, 0, 0, 0), Q1 is the D3-
sublattice supported on the last three coordinates, and w := (1, 1, 1, 0, 0, 1, 1, 1).

Lemma D.28. The action of O(Q1) ∼= 2 × Sym3 extends to an action on Q.
This action is faithful on Q/3Q∗.

Proof. The action of O(Q1) ∼= 2 × Sym3 extends to an action on Q by letting
reflections in roots of Q1 act trivially on u and by making the central involution
of O(Q1) act as −1 on Q. The induced action on Q/3Q∗ is faithful since Q1 maps
onto Q/3Q∗ (because (3, det(Q1)) = 1) and the action on Q1/3Q1 is faithful. In
more detail, the action of O2(O(Q1)) ∼= 23 is by diagonal matrices and any normal
subgroup of O(Q1) meets O2(O(Q1)) nontrivially. ¤

Lemma D.29. We use notation (D.27). Then X contains a sublattice Y ∼=
√

3Q

and X > Y > 3X.

Proof. We define β1 := α1 + α2 + α3, β2 := −2α3 − α4, β3 := α3 + 2α4. Then
Y1 := span{β1, β2, β3} ∼=

√
3D3. The vector β4 := 3α1 − 3α2 is orthogonal to Y1

and has norm 36. Finally, define γ := 1
2β4 + 1

2(β1 + 2β2 + 3β3) = 2α1−α2 + 2α4.
Then Y := span{Y1, β4, γ} is the unique lattice containing Y1 ⊥ Zβ4 with index 2
whose intersection with 1

2Y1 is Y1 and whose intersection with 1
2Zβ4 is Zβ4. There

is an analogous characterization for Q and
√

3Q. We conclude that Y ∼=
√

3Q.

Moreover, by direct calculation, it is easy to show that

3α1 = γ + β1 − β3, 3α2 = γ + β1 − β3 − β4,

3α3 = β1 + 2β3 + β4 − 2γ, 3α4 = 2γ − (β1 + β2 + β3 + β4).

Hence, Y also contains 3X. ¤
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Lemma D.30. Let M be the set of rank n integral lattices. For q ∈ Z, let
M(q) be the set of X ∈ M such that X ≤ qX∗. Suppose that q is a prime,
X, Y ∈ M(q), Y ≥ X and q divides |Y : X|. Then qn+2 divides det(X). In
particular, if qn+2 does not divide det(X), then X is not properly contained in a
member of M(q).

Proof. Use the index formula for determinants of lattices. ¤

Proposition D.31. For an integral lattice K, define K̃ := K + 2K∗. Let

A := {(R, S)|R ≤ S ≤ R4, R ∼=
√

3Q,S ∼= X}

B := {(T,U)|T ≤ U ≤ R4, T ∼=
√

3X, U ∼= Q}
A′ := {(R, S)|R ≤ S ≤ R4, R ≤ 3R∗, det(R) = 2235, S ∼= X}
B′ := {(T, U)|T ≤ U ≤ R4, T ≤ 3T ∗, det(T ) = 2235, U ∼= Q}.

Then (i) A = A′ 6= ∅ and B = B′ 6= ∅;
(ii) the map (T,U) 7→ (

√
3U, 1√

3
T ) gives a bijection from B onto A; further-

more if (T, U) ∈ B, then T ≥ 3Ũ and if (R, S) ∈ A, then R ≥ 3S̃;

(iii) O(R4) has one orbit on A and on B.

Proof. Clearly, A ⊆ A′ and B ⊆ B′. From (D.29), A 6= ∅ and B 6= ∅. Moreover,
the formula in (ii) gives a bijection between A and B.

Now, let (E, F ) be in A′ ∪ B′.
We claim that 3F̃ = F ∩ 3F ∗. We prove this with the theory of modules over

a PID. Since D(F ) ∼= 22 × 3, there exists a basis a, b, c, d of F ∗ so that a, b, 2c, 6d

is a basis of F . Then a, b, 2c, 2d is a basis of F̃ . Since 3F ∗ has basis 3a, 3b, 3c, 3d,
F ∩ 3F ∗ has basis 3a, 3b, 6c, 6d. The claim follows.

Note that F/3F̃ is an elementary abelian 3-group of rank 3 and the claim
implies that it is a nonsingular quadratic space. Therefore, its totally singular
subspaces have dimension at most 1.

We now study E′ := E + 3F̃ , which maps onto a totally singular subspace
of F/3F̃ . Since totally singular subspaces have dimension at most 1, |F : E′| is
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divisible by 32 and so its determinant is |F : E′|2det(F ) = |F : E′|2223. However,
E′ contains E, which has determinant 2235. We conclude that E = E′ has index
9 in F . Therefore, E = E′ ≥ 3F̃ . The remaining parts of (ii) follow.

Let (T, U) ∈ B. The action of O(U) ∼= Sym4 × 2 on U/3Ũ is that of a
monomial group with respect to a basis of equal norm nonsingular vectors (D.28).
It follows that the action is transitive on maximal totally singular subspaces, of
which T/3Ũ is one. This proves transitivity for B. Therefore B = B′ and, using
the O(U)-equivariant bijection (ii), A = A′. ¤

Corollary D.32.
√

3Q does not embed in Q and
√

3X does not embed in X.

Proof. Use (D.31), (D.29) and the fact that X is not isometric to Q (X is a root
lattice and Q is not). ¤

Lemma D.33. Suppose that S ⊥ T is an orthogonal direct sum with S ∼= A2, T ∼=
E6. The set of E8 lattices which contain S ⊥ T is in bijection with {X|S ⊥ T ≤
X ≤ S∗ ⊥ T ∗, |X : S ⊥ T | = 3, S∗ ∩X = S, T ∗ ∩X = T}.

Proof. This is clear since any E8 lattice containing S ⊥ T lies in S∗ ⊥ T ∗ and
since the nontrivial cosets of S in S∗ have norms in 2

3 + 2Z and the nontrivial
cosets of T in T ∗ have norms in 4

3 + 2Z. ¤

Lemma D.34. (i) Up to the action of the root reflection group of D4, there is a
unique embedding of AA2 sublattices.

(ii) We have transitivity of O(D4) on the set of A2 sublattices and on the set of
AA2-sublattices. In D4, the annihilator of an AA2 sublattice is an A2 sublattice,
and the annihilator of an A2 sublattice is an AA2-sublattice.

Proof. (i) Let X ∼= D4 and Y ∼= AA2. Since every element of Y has norm
divisible by 4, Y ≤ 2X∗. Now let s := f − 1, where f ∈ O2(Weyl(X)), f2 = −1.
Then s−1 takes 2X∗ to X and takes Y to an A2 sublattice of X. Now use
the well-known results that A2 sublattices form one orbit under Weyl(X) and
O(A2) ∼= Dih12 is induced on an A2 sublattice of D4 by its stabilizer in Weyl(D4).

(ii) We may take Y := span{(−2, 0, 0, 0), (1, 1, 1, 1)} ∼= AA2. Its annihilator
is Z := span{(0, 1,−1, 0), (0, 0, 1,−1)} ∼= A2. Trivially, annX = (Z) = Y . ¤
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Lemma D.35. Let X ∼= E6 and Y, Z sublattices such that Z ∼= D4 and Y :=
annX(Z) ∼= AA2. Define W := 2Y ∗ (alternatively, W may be characterized by
the property that Y ≤ W ≤ Y ∗, W/Y ∼= 3). Then W ≤ X∗.

Proof. By coprimeness, the natural map X → Z∗ is onto, and the image of X

in D(Z) has order 4. Therefore, the image of the natural map X → D(Y ) has
order 4 and so the image of the natural map X → Y ∗ is 1

2Y . The dual of 1
2Y is

2Y ∗, which contains Y with index 3 and satisfies (X, 2Y ∗) ≤ Z. ¤

E Values of the Hermite function

Notation E.1. Let n and d be positive integers. Define the Hermite function

H(n, d) :=
(

4
3

)n−1
2

d(1/n).

Theorem E.2 (Hermite: cf. proof in [Kn], p. 83; or [GrGL]). If a positive
definite rank n lattice has determinant d, it contains a nonzero vector of norm
≤ H(n, d).

F Embeddings of NREE8 pairs in the Leech lattice

If M, N is an NREE8 pair, then except for the case DIH4(15), L = M + N

can be embedded in the Leech lattice Λ. In this section, we shall describe such
embeddings explicitly.

In the exceptional case DIH4(15), M ∩N ∼= AA1 and |tM tN | = 2. See (5.5).

F.1 The Leech lattice and its isometry group

We shall recall some notations and review certain basic properties of the Leech
lattice Λ and its isometry group O(Λ), which is also known as Co0, a perfect
group of order 222 · 39 · 54 · 72 · 11 · 13 · 23.
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Table 12: Values of the Hermite function H(n, d); see [Kn], p.83.

n d H(n, d)

2 2 1.632993162

2 3 2.000000000

2 4 2.309401077

2 5 2.581988897

2 6 2.828427125

2 7 3.055050464

2 8 3.265986324

2 9 3.464101616

2 12 4.000000000

2 20 5.163977796

2 24 5.656854249

5 6 2.543945033

n d H(n, d)

3 2 1.679894733

3 3 1.922999426

3 4 2.116534735

3 5 2.279967929

3 6 2.422827457

3 8 2.666666666

3 10 2.872579586

3 12 3.052571313

3 16 3.359789466

3 24 3.845998854

3 50 4.912041997

6 3 2.465284531

n d H(n, d)

4 2 1.830904128

4 3 2.026228495

4 4 2.177324216

4 5 2.302240057

4 6 2.409605343

4 7 2.504278443

4 8 2.589289450

4 9 2.666666668

4 12 2.865519818

4 25 3.442651865

4 125 5.147965271

7 32 3.888997243

Let Ω = {1, 2, 3, . . . , 24} be a set of 24 element and let G be the extended Golay
code of length 24 indexed by Ω. A subset S ⊂ Ω is called a G-set if S = suppα for
some codeword α ∈ G. We shall identify a G-set with the corresponding codeword
in G. A G-set O is called an octad if |O| = 8 and is called a dodecad if |O| = 12.
A sextet is a partition of Ω into six 4-element sets of which the union of any two
forms a octad. Each 4-element set in a sextet is called a tetrad.

For explicit calculations, we shall use the notion of hexacode balance to denote
the codewords of the Golay code and the vectors in the Leech lattice. First we
arrange the set Ω into a 4× 6 array such that the six columns forms a sextet.

For each codeword in G, 0 and 1 are marked by a blanked and non-blanked
space, respectively, at the corresponding positions in the array.

The following is a standard construction of the Leech lattice.

Definition F.1 (Standard Leech lattice [CS, Gr12]). Let ei := 1√
8
(0, . . . , 4, . . . , 0)
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for i ∈ Ω. Then (ei, ej) = 2δi,j . Denote eX :=
∑

i∈X ei for X ∈ G. The standard

Leech lattice Λ is a lattice of rank 24 generated by the vectors:

1
2
eX , where X is a generator of the Golay code G;

1
4
eΩ − e1 ;

ei ± ej , i, j ∈ Ω.

Remark F.2. By arranging the set Ω into a 4 × 6 array, every vector in the
Leech lattice Λ can be written as the form

X =
1√
8

[X1X2X3X4X5X6] , juxtaposition of column vectors.

For example,

1√
8

2 2 0 0 0 0
2 2 0 0 0 0
2 2 0 0 0 0
2 2 0 0 0 0

denotes the vector
1
2

eA, where A is the codeword

∗ ∗
∗ ∗
∗ ∗
∗ ∗

.

Definition F.3. A set of vectors {±β1, . . . ,±β24} ⊂ Λ is called a frame of Λ
if (βi, βj) = 8δi,j for all i, j ∈ {1, . . . , 24}. For example, {±2e1, . . . ,±2e24} is a
frame and we call it the standard frame.

Next, we shall recall some basic facts about the involutions in O(Λ).

Let F = {±β1, . . . ,±β24} be a frame. For any subset S ⊂ Ω, we can define
an isometry εFS : R24 → R24 by εFS (βi) = −βi if i ∈ S and εFS (βi) = βi if i /∈ S.
The involutions in O(Λ) can be characterized as follows:

Theorem F.4 ([CS, Gr12]). There are exactly 4 conjugacy classes of involutions
in O(Λ). They correspond to the involutions εFS , where F is a frame and S ∈ G
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is an octad, the complement of an octad, a dodecad, or the set Ω. Moreover, the
eigen-sublattice {v ∈ Λ | εFS (v) = −v} is isomorphic to EE8, BW16, DD+

12 and
Λ, respectively, where BW 16 is the Barnes-Wall lattice of rank 16.

F.2 Standard EE8s in the Leech lattice

We shall describe some standard EE8s in the Leech lattice in this subsection.

F.2.1 EE8 corresponding to octads in different frames

Let F = {±β1, . . . ,±β24} ⊂ Λ be a frame and denote αi := βi/2. For any octad
O, denote

EF (O) = span

{
αi ± αj , i, j ∈ O,

1
2

∑

i∈O
αi

}
.

Then EF (O) is a sublattice of Λ isomorphic to EE8. If {±2e1, . . . ,±2e24} is the
standard frame, we shall simply denote EF (O) by E(O).

Next we shall consider another frame. Let

A =
1
2




−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1




.

Notation F.5. Define a linear map ξ : Λ → Λ by Xξ = AXD, where

X =
1√
8

[X1X2X3X4X5X6]

is a vector in the Leech lattice Λ and D is the diagonal matrix



−1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




.

Recall that ξ defines an isometry of Λ (cf. [CS, p. 288] and [Gr12, p. 97]).
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Let F := {±2e1, . . . ,±2e24} be the standard frame. Then Fξ = {±2e1, . . . ,±2e24}ξ
is also a frame. In this case, E(O)ξ = EFξ

(O) is also isomorphic to EE8 for any
octad O. Note that if F is a frame and g ∈ O(Λ), then Fg is also a frame.

F.2.2 EE8 associated to an even permutation in an octad stabilizer

The subgroup of SymΩ which fixes G setwise is the Mathieu group M24, which
is a simple group of order 210 · 33 · 5 · 7 · 11 · 23. Recall that M24 is transitive on
octads. The stabilizer of an octad is the group 24:Alt8 ∼= AGL(4, 2) and it acts as
the alternating group Alt8 on the octad. If we fix a particular point outside the
octad, then every even permutation on the octad can be extended to a unique
element of M24 which fixes the point.

Let σ = (ij)(k`) ∈ Sym(O) be a product of 2 disjoint transpositions on the
standard octad O. Then σ determines a sextet which contains {i, j, k, `} as a
tetrad and σ extends uniquely to an element σ̃ which fixes a particular point
outside the octad. Note that σ̃ fixes 2 tetrads pointwise and fixes the other 4
tetrads setwise. Moreover, σ̃ has a rank 8 (−1)-eigenlattice which we call E, and
that E is isometric to EE8.

Take σ̃ to be the involution (UP6) listed in [Gr12, pp. 49–52].

(UP 6)

Then σ̃ stabilizes the octad
∗ ∗
∗ ∗
∗ ∗
∗ ∗

and determines as above the sublattice

E = spanZ

{
±αi ± αj ,

1
2

8∑

i=1

εiαi

}
,

where i, j = 1, . . . , 8, εi = ±1 such that
∏8

i=1 εi = 1 and
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α1 =
1√
8

2−2 0 0 0 0
0 0 0 0 0 0
0 2 0 0 0 0
0−2 0 0 0 0

, α2 =
1√
8

−2 2 0 0 0 0
0 0 0 0 0 0
0 2 0 0 0 0
0 −2 0 0 0 0

,

α3 =
1√
8

0 0 0 2 0 0
0 0−2 0 0 0
0 0 0 0 0−2
0 0 0 0 2 0

, α4 =
1√
8

0 0 0−2 0 0
0 0 2 0 0 0
0 0 0 0 0−2
0 0 0 0 2 0

,

α5 =
1√
8

0 0 0 0 −2 0
0 0 0 0 0 2
0 0 2 0 0 0
0 0 0−2 0 0

, α6 =
1√
8

0 0 0 0 2 0
0 0 0 0 0 2
0 0−2 0 0 0
0 0 0 −2 0 0

,

α7 =
1√
8

0 0 0 0 0 2
0 0 0 0−2 0
0 0 0 2 0 0
0 0−2 0 0 0

, α8 =
1√
8

0 0 0 0 0 −2
0 0 0 0−2 0
0 0 0 2 0 0
0 0 2 0 0 0

.

Then E is a sublattice in Λ which is isomorphic to EE8. By our construction, it
is also clear that σ̃ acts as −1 on E and 1 on annΛ(E).

Recall that σ̃ is acting on Λ from the right according to our convention.

F.3 EE8 pairs in the Leech lattice

In this subsection, we shall describe certain NREE8 pairs M, N explicitly inside
the Leech lattice. By using the uniqueness theorem (cf. Theorem 4.1), we know
that our examples are actually isomorphic to the lattices in Table 1. It turns out
that except for DIH4(15), all lattices in Table 1 can be embedded into the Leech
lattice.

We shall note that the lattice L = M + N is uniquely determined (up to
isometry) by the rank of L and the order of the dihedral group D := 〈tM , tN 〉
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except for DIH8(16, 0) and DIH8(16, DD4). Extra information about annM (N)
is needed to distinguish them.

Let M and N be EE8 sublattices of the Leech lattice Λ. Let t := tM and
u := tN be the involutions of Λ such that t and u act on M and N as −1 and
act as 1 on M⊥ and N⊥, respectively. Since M and N are SSD, u and t are
isometries of Λ. Moreover, they are conjugate to each other in the Conway group
Co0

∼= 2.Co1. Set g := tu and D := 〈t, u〉, the dihedral group generated by t and
u. Then g is also an element of Co0. The Isometry type of L = M + N is, in
fact, determined by the conjugacy class of g = tu in Co0. The correspondence is
given in Table 13.

Table 13: NREE8SUMs in Λ and Conjugacy classes of g = tM tN

Name Trace of g on Λ Conjugacy classes of
g in 2.Co1

DIH4(12) 8 +2A
DIH4(16) -8 -2A
DIH4(14) 0 2C
DIH6(14) 6 +3B
DIH6(16) 0 +3D

DIH8(16, 0) 8 +4A
DIH8(15) 4 +4C

DIH8(16, DD4) 0 4D
DIH10(16) 4 +5B
DIH12(16) 2 +6E

Here 2A, 2C, . . . are the notation in the Altas [ATLAS]. They denote the conju-
gacy classes of Co1 while +2A, -2A, etc denote the lift of the elements in Co1 to
Co0 = 2.Co1.

Notation F.6. In this subsection, O, O′, O′′, etc denote some arbitrary octads
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while O1, O2, O3, and O4 denote the fixed octads given as follows.

O1 =

∗ ∗
∗ ∗
∗ ∗
∗ ∗

, O2 =

∗ ∗ ∗ ∗ ∗
∗
∗
∗

,

O3 =

∗ ∗
∗ ∗
∗ ∗
∗ ∗

, O4 =

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

.

Remark F.7. All the Gram matrices in this subsection are computed by mul-
tiplying the matrix A by its transpose At, where A is the matrix whose rows
form an ordered basis given in each case. The Smith invariants sequences are
computed using the command ismith in Maple 8.

F.3.1 |g| = 2.

In this case, M ∩N ∼= 0, AA1, AA1 ⊥ AA1 or DD4.

Case: DIH4(15): This case does not embed into Λ.

If M∩N ∼= AA1, then L = M+N ∼= DIH4(15) contains a sublattice isometric
to AA1 ⊥ EE7 ⊥ EE7, which cannot be embedded in the Leech lattice Λ because
the (−1)-eigenlattice of the involution g = tM tN has rank 14 but there is no such
involution in O(Λ) (cf. Theorem F.4).

Notation F.8. Let O = {i1, . . . , i8} and O′ = {j1, . . . , j8} be 2 distinct octads
and denote M := E(O) and N := E(O′). Since the Golay code G is a type II

code (doubly even) and the minimal norm of G is 8, |O ∩ O′| is either 0, 2, or 4.

DIH4(16)

When |O ∩ O′| = 0, clearly M ∩N = 0 and M + N ∼= EE8 ⊥ EE8.

DIH4(14)
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Suppose O ∩ O′ = {i1, i2} = {j1, j2}. Then |O ∩ O′| = 2 and F = M ∩N =
spanZ{ei1 + ei2 , ei1 − ei2} ∼= AA1 ⊥ AA1. In this case, annM (F ) ∼= annN (F ) ∼=
DD6 and L contains a sublattice of type AA1 ⊥ AA1 ⊥ DD6 ⊥ DD6 which has
index 24 in L. Note that L is of rank 14. By computing the Gram matrices, it is
easy to check that

{1
2
(ei1 + · · ·+ ei8)} ∪ {−eik + eik−1

| 7 ≥ k ≥ 3} ∪ {−ei2 + ei1 ,−ei1 − ei2}

is a basis of M and

{−ei2 + ei1 ,−ei1 − ei2} ∪ {ejk−1
− ejk

| 3 ≤ k ≤ 7} ∪ {1
2
(ej1 + · · ·+ ej8)}

is a basis of N . Thus,

{1
2
(ei1 + · · ·+ ei8)} ∪ {−eik + eik−1

| 8 ≥ k ≥ 3} ∪ {−ei2 + ei1 ,−ei1 − ei2}

∪ {ejk−1
− ejk

| 3 ≤ k ≤ 8} ∪ {1
2
(ej1 + · · ·+ ej8)}

is a basis of L and the Gram matrix of L is given by




4 0 0 0 0 0 0 −2 1 0 0 0 0 1
0 4 −2 0 0 0 0 0 0 0 0 0 0 0
0 −2 4 −2 0 0 0 0 0 0 0 0 0 0
0 0 −2 4 −2 0 0 0 0 0 0 0 0 0
0 0 0 −2 4 −2 0 0 0 0 0 0 0 0
0 0 0 0 −2 4 −2−2 2 0 0 0 0 1
0 0 0 0 0 −2 4 0 −2 0 0 0 0 0
−2 0 0 0 0 −2 0 4 −2 0 0 0 0 −2
1 0 0 0 0 2 −2−2 4 −2 0 0 0 0
0 0 0 0 0 0 0 0 −2 4 −2 0 0 0
0 0 0 0 0 0 0 0 0 −2 4 −2 0 0
0 0 0 0 0 0 0 0 0 0 −2 4 −2 0
0 0 0 0 0 0 0 0 0 0 0 −2 4 0
1 0 0 0 0 1 0 −2 0 0 0 0 0 4




.

The Smith invariant sequence is 11112222222244.

DIH4(12)
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Suppose O ∩ O′ = {i1, i2, i3, i4} = {j1, j2, j3, j4} (cf. Notation F.8). Then
|O ∩ O′| = 4 and F = M ∩N = spanZ{eik ± eil | 1 ≤ k < l ≤ 4} ∼= DD4. Thus,
annM (F ) ∼= annN (F ) ∼= DD4. In this case, L is of rank 12 and it contains a
sublattice of type DD4 ⊥ DD4 ⊥ DD4 which has index 24 in L. Note that
{ei1 + ei2 , ei1 − ei2 , ei2 − ei3 , ei3 − ei4} is a basis of F = M ∩N . A check of Gram
matrices also shows that

{ei1+ei2 , ei1−ei2 , ei2−ei3 , ei3−ei4}∪{ei4−ei5 , ei5−ei6 , ei6−ei7 ,
−1
2

(ei1+· · ·+ei8)}

is a basis of M and

{ei1+ei2 , ei1−ei2 , ei2−ei3 , ei3−ei4}∪{ej4−ej5 , ej5−ej6 , ej6−ej7 ,
−1
2

(ej1+· · ·+ej8)}

is a basis of N . Therefore, L = M + N has a basis

{ei1 + ei2 , ei1 − ei2 , ei2 − ei3 , ei3 − ei4}

∪{ei4 − ei5 , ei5 − ei6 , ei6 − ei7 ,
−1
2

(ei1 + · · ·+ ei8)}

∪{ej4 − ej5 , ej5 − ej6 , ej6 − ej7 ,
−1
2

(ej1 + · · ·+ ej8)}

and the Gram matrix of L is given by




4 0 2 0 0 0 0 −2 0 0 0 −2
0 4 −2 0 0 0 0 0 0 0 0 0
2 −2 4 −2 0 0 0 0 0 0 0 0
0 0 −2 4 −2 0 0 0 −2 0 0 0
0 0 0 −2 4 −2 0 0 2 0 0 −1
0 0 0 0 −2 4 −2 0 0 0 0 0
0 0 0 0 0 −2 4 0 0 0 0 0
−2 0 0 0 0 0 0 4 −1 0 0 2
0 0 0 −2 2 0 0 −1 4 −2 0 0
0 0 0 0 0 0 0 0 −2 4 −2 0
0 0 0 0 0 0 0 0 0 −2 4 0
−2 0 0 0 −1 0 0 2 0 0 0 4




whose Smith invariant sequence is 111122222244.
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F.3.2 |g| = 3.

In this case, M ∩N = 0 or AA2.

DIH6(16)

Notation F.9. Let M := E(O1) ∼= EE8, where O1 is the octad described in
Notation (F.6). We choose a basis {β1, . . . , β8} of M , where

β1 =
1√
8

4−4 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, β2 =
1√
8

0 4 0 0 0 0
−4 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

,

β3 =
1√
8

0 0 0 0 0 0
4−4 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, β4 =
1√
8

0 0 0 0 0 0
0 4 0 0 0 0

−4 0 0 0 0 0
0 0 0 0 0 0

,

β5 =
1√
8

0 0 0 0 0 0
0 0 0 0 0 0
4−4 0 0 0 0
0 0 0 0 0 0

, β6 =
1√
8

0 0 0 0 0 0
0 0 0 0 0 0
0 4 0 0 0 0

−4 0 0 0 0 0

,

β7 =
1√
8

−4−4 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, β8 =
1√
8

2 2 0 0 0 0
2 2 0 0 0 0
2 2 0 0 0 0
2 2 0 0 0 0

.
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Let N be the lattice generated by the vectors

α1 =
1√
8

2−2 2−2 2 0
0 0 0 0 0 2
0 0 0 0 0 2
0 0 0 0 0 2

, α2 =
1√
8

0 2 0 2 0 2
−2 0−2 0 0−2

0 0 0 0 2−2
0 0 0 0 0 0

,

α3 =
1√
8

0 0 0 0 0−2
2−2 2−2 2 0
0 0 0 0−2 0
0 0 0 0 2 0

, α4 =
1√
8

0 0 0 0 0 2
0 2 0 2−2 2

−2 0−2 0 0 0
0 0 0 0 0−2

,

α5 =
1√
8

0 0 0 0 0−2
0 0 0 0 2 0
2−2 2−2 2 0
0 0 0 0−2 0

, α6 =
1√
8

0 0 0 0 0 2
0 0 0 0 0−2
0 2 0 2−2 2

−2 0−2 0 0 0

,

α7 =
1√
8

−2−2−2−2 0−2
0 0 0 0−2 0
0 0 0 0−2 0
0 0 0 0−2 0

, α8 =
1√
8

1 1 1 1−3 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

.

By checking the inner products, it is easy to shows that N ∼= EE8. Note that
α1, . . . , α7 are supported on octads and thus N ≤ Λ by (F.1).

In this case, M ∩ N = 0. Then {β1, β2, . . . , β8, α1, . . . , α8} is a basis of L =
M + N and the Gram matrix of L = M + N is given by
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4−2 0 0 0 0 0 0 2−1 0 0 0 0 0 0
−2 4−2 0 0 0−2 0−1 2−1 0 0 0−1 0

0−2 4−2 0 0 0 0 0−1 2−1 0 0 0 0
0 0−2 4−2 0 0 0 0 0−1 2−1 0 0 0
0 0 0−2 4−2 0 0 0 0 0−1 2−1 0 0
0 0 0 0−2 4 0 0 0 0 0 0−1 2 0 0
0−2 0 0 0 0 4−2 0−1 0 0 0 0 2−1
0 0 0 0 0 0−2 4 0 0 0 0 0 0−1 2

2−1 0 0 0 0 0 0 4−2 0 0 0 0 0 0
−1 2−1 0 0 0−1 0−2 4−2 0 0 0−2 0

0−1 2−1 0 0 0 0 0−2 4−2 0 0 0 0
0 0−1 2−1 0 0 0 0 0−2 4−2 0 0 0
0 0 0−1 2−1 0 0 0 0 0−2 4−2 0 0
0 0 0 0−1 2 0 0 0 0 0 0−2 4 0 0
0−1 0 0 0 0 2−1 0−2 0 0 0 0 4−2
0 0 0 0 0 0−1 2 0 0 0 0 0 0−2 4




By looking at the Gram matrix, it is clear that L = M + N ∼= A2 ⊗E8. The
Smith invariant sequence is 1111111133333333.

DIH6(14)

Let M := E(O2) and N := Mξ, where O2 is the octad described in Notation
(F.6) and ξ is the isometry defined in Notation (F.5).

Notation F.10. Set

γ1 =
1√
8

0 0 0 0 0 0
0 0 0 0 0 0

−4 0 0 0 0 0
4 0 0 0 0 0

, γ2 =
1√
8

0 0 0 0 0 0
−4 0 0 0 0 0

4 0 0 0 0 0
0 0 0 0 0 0

,

γ3 =
1√
8

0−4 0 0 0 0
4 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, γ4 =
1√
8

0 4−4 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,
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γ5 =
1√
8

0 0 4−4 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, γ6 =
1√
8

0 0 0 4−4 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

γ7 =
1√
8

0 0 0 0 0 0
0 0 0 0 0 0

−4 0 0 0 0 0
−4 0 0 0 0 0

, γ8 =
1√
8

0 2 2 2 2 2
2 0 0 0 0 0
2 0 0 0 0 0
2 0 0 0 0 0

.

Then {γ1, . . . , γ8} is a basis of M and {γ1ξ, . . . , γ8ξ} is a basis of N .

By the definition of ξ, it is easy to show that γ1ξ = −γ1, γ2ξ = −γ2. Moreover,
for any α ∈ M = E(O2), αξ is supported on O2 if and only if α ∈ spanZ{γ1, γ2}.
Hence, F = M ∩N = spanZ{γ1, γ2} ∼= AA2. Then annM (F ) ∼= annN (F ) ∼= EE6

and L = M + N is of rank 14.

Note that {γ1, γ2, γ3, . . . , γ8} is a basis of M and {γ1, γ2, γ3ξ, . . . , γ8ξ} is a
basis of N . Therefore,

{γ1, γ2} ∪ {γ3, . . . , γ8} ∪ {γ3ξ, . . . , γ8ξ}

is a basis of L and the Gram matrix of L is given by



4 −2 0 0 0 0 0 0 0 0 0 0 0 0
−2 4 −2 0 0 0 −2 0 −2 0 0 0 2 0
0 −2 4 −2 0 0 0 0 0 1 0 0 −2 0
0 0 −2 4 −2 0 0 0 1 −2 1 0 0 0
0 0 0 −2 4 −2 0 0 0 1 −2 1 0 0
0 0 0 0 −2 4 0 0 0 0 1 −2 0 0
0 −2 0 0 0 0 4 −2 2 0 0 0 0 1
0 0 0 0 0 0 −2 4 0 0 0 0 −1−2
0 −2 0 1 0 0 2 0 4 −2 0 0 0 0
0 0 1 −2 1 0 0 0 −2 4 −2 0 0 0
0 0 0 1 −2 1 0 0 0 −2 4 −2 0 0
0 0 0 0 1 −2 0 0 0 0 −2 4 0 0
0 2 −2 0 0 0 0 −1 0 0 0 0 4 2
0 0 0 0 0 0 1 −2 0 0 0 0 2 4
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whose Smith invariant sequence is 1111 11111 33366.

Recall that annM (F ) + annN (F ) ∼= A2 ⊗ E6 (cf. (3.2)) and thus L contains
a sublattice isometric to AA2 ⊥ (A2 ⊗ E6).

F.3.3 |g| = 4.

In this case, M ∩N = 0 or AA1. There are 2 subcases for M ∩N = 0.

DIH8(16,0)

Let M := E(O1), where O1 is the octad as described in Notation (F.6).

Take {β1, . . . , β8} as defined in Notation (F.9). Then it is a basis of M =
E(O1). Let N be the EE8 sublattice generated by

α1 =
1√
8

0 0 0 0 0 0
−2−2−2−2 0 0

0 0 0 0 0 0
−2−2−2−2 0 0

α2 =
1√
8

0 0 0 0 0 0
4 0 4 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

α3 =
1√
8

−4 0−4 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

α4 =
1√
8

2 0 2 0 0 0
−2 0−2 0 0 0

2 0 2 0 0 0
2 0 2 0 0 0

α5 =
1√
8

0 0 0 0 0 0
0 0 0 0 0 0

−4 0−4 0 0 0
0 0 0 0 0 0

α6 =
1√
8

0 2 0 2 0 0
0 2 0 2 0 0
2 0 2 0 0 0

−2 0−2 0 0 0

α7 =
1√
8

0−4 0−4 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

α8 =
1√
8

0 2 0 2 0 0
0−2 0−2 0 0
0 2 0 2 0 0
0 2 0 2 0 0

In this case, M ∩N = 0 and annN (M) = annM (N) = 0. Moreover, the set
{β1, . . . , β8, α1, . . . α8} forms a basis of L = M + N and the Gram matrix of L is
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4 0 −2 0 0 0 0 −2 1 −2 2 0 0 0 0 0
0 4 −2 0 0 0 0 0 1 −2−2 2 0 0 0 0
−2−2 4 −2 0 0 0 0 −1 2 0 −2 2 −1 0 0
0 0 −2 4 −2 0 0 0 1 0 0 0 −2 2 0 0
0 0 0 −2 4 −2 0 0 −1 0 0 1 0 −2 2 −1
0 0 0 0 −2 4 −2 0 1 0 0 0 0 0 −2 2
0 0 0 0 0 −2 4 0 −1 0 0 0 0 1 0 −2
−2 0 0 0 0 0 0 4 −2 1 −1 1 −1 1 −1 1
1 1 −1 1 −1 1 −1−2 4 −2 0 0 0 0 0 0
−2−2 2 0 0 0 0 1 −2 4 0 −2 0 0 0 0
2 −2 0 0 0 0 0 −1 0 0 4 −2 0 0 0 0
0 2 −2 0 1 0 0 1 0 −2−2 4 −2 0 0 0
0 0 2 −2 0 0 0 −1 0 0 0 −2 4 −2 0 0
0 0 −1 2 −2 0 1 1 0 0 0 0 −2 4 −2 0
0 0 0 0 2 −2 0 −1 0 0 0 0 0 −2 4 −2
0 0 0 0 −1 2 −2 1 0 0 0 0 0 0 −2 4




.

The Smith invariant sequence is 1111111122222222.

It is clear that L ≤ annΛ(E(O3)) (see (F.6) for the definition of O3). On
the other hand, det(L) = 28 = det(annΛ(E(O3))). Hence, L = annΛ(E(O3)) is
isomorphic to BW16 (cf. Section (5.2.2)).

DIH8(16,DD4)

Define M := E(O2)ξ and N := E(O4), where O2 and O4 are defined as in
Notation (F.6). We shall use the set {γ1ξ, . . . , γ8ξ} defined in Notation (F.10) as
a basis of M and the set {α1, . . . , α8} as a basis of N , where

α1 =
1√
8

0 0 4 0 0 0
0 0−4 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, α2 =
1√
8

0 0 0−4 0 0
0 0 4 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,
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α3 =
1√
8

0 0 0 4 0 0
0 0 0−4 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, α4 =
1√
8

0 0 0 0−4 0
0 0 0 4 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

α5 =
1√
8

0 0 0 0 4 0
0 0 0 0−4 0
0 0 0 0 0 0
0 0 0 0 0 0

, α6 =
1√
8

0 0 0 0 0−4
0 0 0 0 4 0
0 0 0 0 0 0
0 0 0 0 0 0

,

α7 =
1√
8

0 0 4 0 0 0
0 0 4 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, α8 =
1√
8

0 0−2−2−2−2
0 0−2−2−2−2
0 0 0 0 0 0
0 0 0 0 0 0

.

Recall that

O2 =

∗ ∗ ∗ ∗ ∗
∗
∗
∗

and O4 =

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

and

1
2




−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1







±2
0
0
0




= ±




−1
1
1
1




.

Therefore, no vector in M = E(O2)ξ can be supported on O4 and hence M∩N =
0. Moreover, we have

annM (N) = {γξ ∈ M | (γξ, αi) = 0, for all i = 1, . . . , 8}
= {γξ ∈ M | supp γ ∩ O4 = ∅}
= spanZ{γ1ξ, γ2ξ, γ3ξ, γ7ξ} ∼= DD4.
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Set

δ1 =

0 0−1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0

, δ2 =

0 0 0−1 0 0
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 1 0 0

,

δ3 =

0 0 0 0−1 0
0 0 0 0 1 0
0 0 0 0 1 0
0 0 0 0 1 0

, δ4 =

0 0 0 0 0−1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

.

Then

annN (M) ={α ∈ E(O4)|(α, γiξ) = 0 for all i = 1, . . . , 8}
={α ∈ E(O4)|(α, δi) = 0 for all i = 1, 2, 3, 4}

=
1√
8
spanZ





0 0 4 0 0 0
0 0 4 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

0 0 0 4 0 0
0 0 0 4 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

0 0 0 0 4 0
0 0 0 0 4 0
0 0 0 0 0 0
0 0 0 0 0 0

,

0 0−2−2−2−2
0 0−2−2−2−2
0 0 0 0 0 0
0 0 0 0 0 0





∼=DD4

In this case, L = M + N is of rank 16 and {α1, . . . , α8, γ1ξ, . . . , γ8ξ} is a basis of
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L. The Gram matrix of L is given by



4 −2 0 0 0 0 0 0 0 0 0 2 −2 0 0 −1
−2 4 −2 0 0 0 2 0 0 0 0 −1 0 1 0 0
0 −2 4 −2 0 0 0 0 0 0 0 0 2 −2 0 1
0 0 −2 4 −2 0 0 0 0 0 0 0 −1 0 1 −1
0 0 0 −2 4 −2 0 0 0 0 0 0 0 2 −2 1
0 0 0 0 −2 4 0 0 0 0 0 0 0 −1 0 −1
0 2 0 0 0 0 4 −2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −2 4 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 4 −2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −2 4 −2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −2 4 −2 0 0 0 0
2 −1 0 0 0 0 0 0 0 0 −2 4 −2 0 0 0
−2 0 2 −1 0 0 0 0 0 0 0 −2 4 −2 0 2
0 1 −2 0 2 −1 0 0 0 0 0 0 −2 4 −2 0
0 0 0 1 −2 0 0 0 0 0 0 0 0 −2 4 0
−1 0 1 −1 1 −1 0 0 0 0 0 0 2 0 0 4




whose Smith invariant sequence is 1111111122224444.

A check of the Gram matrices also shows that

annM (annM (N)) = spanZ{γ5ξ, γ6ξ, γ′7ξ, γ′8ξ} ∼= DD4

and
annN (annN (M)) = spanZ{α1, α3, α5, α′8} ∼= DD4,

where

γ′7 =
1√
8

0 0 0 0 4−4
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, γ′8 =
1√
8

0 0 0 0 4 4
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

α′8 =
1√
8

0 0−2−2−2−2
0 0 2 2 2 2
0 0 0 0 0 0
0 0 0 0 0 0

.
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Let K = annM (annM (N)) + annN (annN (M)). Then K is generated by

γ5ξ, γ6ξ, γ′7ξ, γ′8ξ, α1, α3, α5, α′8,

The determinant of K is 28 and thus it is also isometric to EE8.

DIH8(15)

When M ∩N ∼= AA1, this is the only possible case.

Let σ1 and σ2 be the involutions given as follows.

σ1 = ,

(UP 12)

σ2 =

(UP 11)

Then,

( UP 12×UP 11 )

σ1σ2 = is of order 4.

Let M and N be the EE8 lattices corresponding to σ1 and σ2, respectively.
Then,

M ∩N = spanZ





1√
8

0 0 0 0 0 0
0 0 0 0 0 0
0 0−2 2−2 2
0 0 2−2−2 2





∼= AA1.

Let

α1 =
1√
8

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0−4
0 0 0 0 4 0

, α2 =
1√
8

0 0 0 0 0 0
0 0 0 0 0 0
0 0−2 2−2 2
0 0 2−2−2 2

,
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α3 =
1√
8

0 0 0 0 0 0
0 0 0 0 0 0
0 0 4 0 0 0
0 0−4 0 0 0

, α4 =
1√
8

0 0 0 0−2 2
0 0 0 0 2−2
0 0−2−2 0 0
0 0 2 2 0 0

,

α5 =
1√
8

0 0 0 0 4−4
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, α6 =
1√
8

0 0 0 0−2 2
0 0 0 0−2 2

−2 2 0 0 0 0
2−2 0 0 0 0

,

α7 =
1√
8

0 0 0 0 0 0
0 0 0 0 0 0
4 0 0 0 0 0

−4 0 0 0 0 0

, α8 =
1√
8

0 0 0 0 0 0
0 0 0 0−2 2
0−2−2 0 2 0
0 2 2 0 0−2

,

α′1 =
1√
8

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0−4 4 0 0

,

α′3 =
1√
8

0 0 0 0 0 0
0 0 0 0 0 0
0 0 4 0 0−4
0 0 0 0 0 0

, α′4 =
1√
8

0 0 0 0 0 0
0 0−2 2 2−2
0 0−2−2 2 2
0 0 0 0 0 0

,

α′5 =
1√
8

0 0 0 0 0 0
0 0 4 0−4 0
0 0 0 0 0 0
0 0 0 0 0 0

, α′6 =
1√
8

2 0 0 0 0 0
0−2−2−2 2 2
0 2 0 0 0 0
0−2 0 0 0 0

,

α′7 =
1√
8

0 0 0 0 0 0
0 4 0 0 0 0
0−4 0 0 0 0
0 0 0 0 0 0

, α′8 =
1√
8

−2 0 0 0 0 0
0 0 0−2 0 2
0 0−2 0 0 2
0 2 0 0 2−2

.

Note that M ∩ N = spanZ{α2}. A check of Gram matrices also shows that
{α1, α2, α3, . . . , α8} is a basis of M and {α′1, α2, α

′
3, . . . , α

′
8} is a basis of N . Thus,
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{α1, α2, α3, . . . , α8} ∪ {α′1, α′3, . . . , α′8} is a basis of L = M + N and the Gram
matrix of L is given by




4 −2 0 0 0 0 0 0 0 2 −1 0 0 0 0
−2 4 −2 0 0 0 0 0 −2−2 0 0 0 0 0
0 −2 4 −2 0 0 0 −2 2 2 −1 0 0 0 −1
0 0 −2 4 −2 0 0 0 0 −1 2 −1 0 0 0
0 0 0 −2 4 −2 0 0 0 0 0 0 0 0 0
0 0 0 0 −2 4 −2 0 0 0 −1 1 1 −1 0
0 0 0 0 0 −2 4 0 0 0 0 0 0 0 0
0 0 −2 0 0 0 0 4 −1−1 0 1 −1 1 2
0 −2 2 0 0 0 0 −1 4 0 0 0 0 0 0
2 −2 2 −1 0 0 0 −1 0 4 −2 0 0 0 −2
−1 0 −1 2 0 −1 0 0 0 −2 4 −2 0 0 0
0 0 0 −1 0 1 0 1 0 0 −2 4 −2 0 0
0 0 0 0 0 1 0 −1 0 0 0 −2 4 −2 0
0 0 0 0 0 −1 0 1 0 0 0 0 −2 4 0
0 0 −1 0 0 0 0 2 0 −2 0 0 0 0 4




The Smith invariant sequence for L is 111111111144444.

F.3.4 |g| = 5.

In this case, M ∩N = 0 and annM (N) = annN (M) = 0.

DIH10(16) Let σ1 and σ2 be the involutions given as follows:

σ1 = ,

(UP 6)

σ2 =

(UP 11)
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Then,

( UP 6×UP 11 )

σ1σ2 = is of order 5.

Let M and N be the EE8 lattices corresponding to σ1 and σ2, respectively.
Then, M ∩N = 0 and annM (N) = annN (M) = 0. The lattice L = M + N is of
rank 16. By Gram matrices, it is easy to check

α1 =
1√
8

4−4 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, α2 =
1√
8

−2 2 0−2 0 0
0 0 2 0 0 0
0 2 0 0 0−2
0−2 0 0 2 0

,

α3 =
1√
8

0 0 0 4 0 0
0 0−4 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, α4 =
1√
8

0 0 0−2−2 0
0 0 2 0 0−2
0 0 2 0 0 2
0 0 0 2−2 0

,

α5 =
1√
8

0 0 0 0 4 0
0 0 0 0 0 0
0 0−4 0 0 0
0 0 0 0 0 0

, α6 =
1√
8

0 0 0 0−2−2
0 0 0 0−2 2
0 0 2 2 0 0
0 0 2−2 0 0

,

α7 =
1√
8

0 0 0 0 0 0
0 0 0 0 4 0
0 0 0−4 0 0
0 0 0 0 0 0

, α8 =
1√
8

0 0 0 0−2 2
0 0 0 0 0 0
0−2 2 0 0−2
0 2−2 0 2 0

,

form a basis of M and

α′1 =
1√
8

4 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0−4 0 0 0 0

, α′2 =
1√
8

−2 0 0 0 0 0
0 2−2−2 2 2
0−2 0 0 0 0
0 2 0 0 0 0

,
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α′3 =
1√
8

0 0 0 0 0 0
0 0 4 0−4 0
0 0 0 0 0 0
0 0 0 0 0 0

, α′4 =
1√
8

0 0 0 0 0 0
0 0−2 2 2−2
0 0−2−2 2 2
0 0 0 0 0 0

,

α′5 =
1√
8

0 0 0 0 0 0
0 0 0 0 0 0
0 0 4 0 0−4
0 0 0 0 0 0

, α′6 =
1√
8

0 0 0 0 0 0
0 0 0 0 0 0
0 0−2 2−2 2
0 0−2 2−2 2

,

α′7 =
1√
8

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 4−4

, α′8 =
1√
8

0 0 0 0 0 0
0−2 0−2 0 2
0 2−2 0 0 2
0 0 2−2 0 0

form a basis of N . In addition, {α1, . . . , α8, α
′
1, . . . , α

′
8} is a basis of L = M + N .

The Gram matrix of L is then given by




4 −2 0 0 0 0 0 0 2 −1 0 0 0 0 0 0
−2 4 −2 0 0 0 0 0 0 −1 1 −1 1 −1 1 0
0 −2 4 −2 0 0 0 0 0 1 −2 1 0 0 0 0
0 0 −2 4 −2 0 0 0 0 −1 1 0 0 1 −1−1
0 0 0 −2 4 −2 0 −2 0 0 0 1 −2 1 0 1
0 0 0 0 −2 4 −2 0 0 0 1 −2 1 −1 0 1
0 0 0 0 0 −2 4 0 0 1 −2 2 0 −1 0 0
0 0 0 0 −2 0 0 4 −1 1 0 −1 2 −1 1 −2
2 0 0 0 0 0 0 −1 4 −2 0 0 0 0 0 0
−1−1 1 −1 0 0 1 1 −2 4 −2 0 0 0 0 0
0 1 −2 1 0 1 −2 0 0 −2 4 −2 0 0 0 0
0 −1 1 0 1 −2 2 −1 0 0 −2 4 −2 0 0 0
0 1 0 0 −2 1 0 2 0 0 0 −2 4 −2 0 −2
0 −1 0 1 1 −1−1−1 0 0 0 0 −2 4 −2 0
0 1 0 −1 0 0 0 1 0 0 0 0 0 −2 4 0
0 0 0 −1 1 1 0 −2 0 0 0 0 −2 0 0 4




The Smith invariant sequence is 1111111111115555.
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F.3.5 |g| = 6.

In this case, M ∩N = 0, and annN (M) ∼= annM (N) ∼= AA2.

DIH12(16)

Let σ1 and σ2 be the involutions given as follows:

σ1 = ,

(UP 11×UP 6)

σ2 = ,

(UP 10)
Then,

(UP 11×UP 6×UP 10)

σ1σ2 = is of order 6.

Let M and N be the EE8 lattices corresponding to σ1 and σ2, respectively.
Then, M ∩N = 0. Moreover, we have

annM (N) =
1√
8
spanZ





0 0 0 0 0 0
0 0 0 0 0 0
4 0 0 0 0 0

−4 0 0 0 0 0

,

0 0 0 0 2−2
0 0 0 0 0 0

−2 0 2 0 2 0
2 0−2 0 0−2





∼= AA2

and

annN (M) =
1√
8
spanZ





0 0 0 0 0 0
0 0 0 0 0 0
0 4 0 0 0 0
0−4 0 0 0 0

,

0 0 0 0 0 0
0 0 0 0 2−2
0−2 0−2 0 2
0−2 0 2−2 0





∼= AA2.
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In this case, L = M + N is of rank 16. By Gram matrices, it is easy to check

α1 =
1√
8

4−4 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, α2 =
1√
8

−2 2 0−2 0 0
0 0 2 0 0 0
2 0 0 0−2 0

−2 0 0 0 0 2

,

α3 =
1√
8

0 0 0 4 0 0
0 0−4 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, α4 =
1√
8

0 0 0−2 2 0
0 0 2 0 0 2
0 0 0−2 2 0
0 0−2 0 0−2

,

α5 =
1√
8

0 0 0 0−4 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 4 0 0 0

, α6 =
1√
8

0 0 0 0 2 2
0 0 0 0 2−2
0 0−2 2 0 0
0 0−2−2 0 0

,

α7 =
1√
8

0 0 0 0 0 0
0 0 0 0−4 0
0 0 0 0 0 0
0 0 0 4 0 0

, α8 =
1√
8

0 0 0 0 2−2
0 0 0 0 0 0

−2 0 2 0−2 0
2 0−2 0 0 2

,

form a basis of M and

α′1 =
1√
8

4 0 0 0 0 0
0−4 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, α′2 =
1√
8

−2 0 0 0 0 0
0 2−2 2−2 2
0 2 0 0 0 0
0−2 0 0 0 0

,

α′3 =
1√
8

0 0 0 0 0 0
0 0 4−4 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, α′4 =
1√
8

0 0 0 0 0 0
0 0−2 2 2−2
0 0−2−2 2 2
0 0 0 0 0 0

,

α′5 =
1√
8

0 0 0 0 0 0
0 0 0 0 0 0
0 0 4 0−4 0
0 0 0 0 0 0

, α′6 =
1√
8

0 0 0 0 0 0
0 0 0 0 0 0
0 0−2 2 2−2
0 0−2−2 2 2

,
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α′7 =
1√
8

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 4−4 0

, α′8 =
1√
8

0 0 0 0 0 0
0 0 0 0−2 2
0−2−2 0 2 0
0 2 2 0 0−2

.

form a basis for N . Note that {α1, . . . , α8, α
′
1, · · · , α′8} is a basis of L and the

Gram matrix of L is given by




4 −2 0 0 0 0 0 0 2 −1 0 0 0 0 0 0
−2 4 −2 0 0 0 0 0 −1 0 1 −1 1 0 0 −1
0 −2 4 −2 0 0 0 0 0 1 −2 1 0 0 0 0
0 0 −2 4 −2 0 0 0 0 0 1 0 −1 0 0 1
0 0 0 −2 4 −2 0 −2 0 0 0 0 0 −1 0 1
0 0 0 0 −2 4 −2 0 0 −1 0 1 −1 2 −1−1
0 0 0 0 0 −2 4 0 0 1 0 −1 0 −1 2 1
0 0 0 0 −2 0 0 4 0 0 0 −1 2 0 0 −2

2 −1 0 0 0 0 0 0 4 −2 0 0 0 0 0 0
−1 0 1 0 0 −1 1 0 −2 4 −2 0 0 0 0 0
0 1 −2 1 0 0 0 0 0 −2 4 −2 0 0 0 0
0 −1 1 0 0 1 −1−1 0 0 −2 4 −2 0 0 0
0 1 0 −1 0 −1 0 2 0 0 0 −2 4 −2 0 −2
0 0 0 0 −1 2 −1 0 0 0 0 0 −2 4 −2 0
0 0 0 0 0 −1 2 0 0 0 0 0 0 −2 4 0
0 −1 0 1 1 −1 1 −2 0 0 0 0 −2 0 0 4




The Smith invariant sequence is 1111111111116666.

Now let g = (σ1σ2)2. Then

g =
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Note that Mg is also isometric to EE8 and it has a basis

α1g =
1√
8

−4 0 0 0 0 0
0 4 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, α2g =
1√
8

2 0 0 0−2 2
0−2−2 2 0 0
2 0 0 0 0 0

−2 0 0 0 0 0

,

α3g =
1√
8

0 0 0 0 0 0
0 0 4−4 0 0
0 0 0 0 0 0
0 0 0 0 0 0

, α4g =
1√
8

0 0 0 0 2−2
0 0−2 2 0 2
0 0 2 2 2 0
0 0 0 0−2−2

,

α5g =
1√
8

0 0 0 0 0 0
0 0 0 0 0 0
0 0−4 0 0 0
0 0 0 0 0 4

, α6g =
1√
8

0 0 0 0 0 0
0 0 0 0 0 0
0 0 2−2−2−2
0 0 2 2 2−2

,

α7g =
1√
8

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0−4
0 0 0 4 0 0

, α8g =
1√
8

0 0 0 0−2 2
0 0 0 0 0 0

−2 0 2 0 2 0
2 0−2 0 0−2

.

Hence we have

Mg ∩N =
1√
8
spanZ





4 0 0 0 0 0
0−4 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

0 0 0 0 0 0
0 0 4−4 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

0 0 0 0 0 0
0 0 0 0 0 0
0 0 2−2−2 2
0 0 2−2 2−2

,

−2 0 0 0 0 0
0 2−2 2 0 0
0 0−2 0 2 0
0 0−2 0 0 2





∼= DD4
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Note that

tMg = g−1tMg =

and it commutes with tN . In this case, tMg and tN generates a dihedral group of
order 4 and Mg + N is isometric to the lattice DIH4(12).

References

[ATLAS] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker and R.A. Wilson,
ATLAS of finite groups. Clarendon Press, Oxford, 1985.

[CS] J.H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd
Edition, Springer, New York, 1999.

[DLMN] C. Dong, H. Li, G. Mason and S. P.Norton, Associative subalgebras of
Griess algebra and related topics, Proc. of the Conference on the Monster and
Lie algebra at the Ohio State University, May 1996, ed. by J. Ferrar and K.
Harada, Walter de Gruyter, Berlin - New York, 1998.

[DMZ] C. Dong, G. Mason and Y. Zhu, Discrete series of the Virasoro algebra
and the moonshine module, Pro. Symp. Pure. Math., American Math. Soc. 56
II (1994), 295–316.

[FLM] I. B. Frenkel, J. Lepowsky, and A. Meurman, Vertex Operator Algebras
and the Monster, Pure and Applied Math., Vol. 134, Academic Press, 1988.

[GHig] G. Higman, The units of group rings, Proc. London Math. Soc. 46 (1940),
231-248.

[GlNo] G. Glauberman and S. P.Norton, On McKay’s connection between the
affine E8 diagram and the Monster, Proceedings on Moonshine and related
topics (Montreal, QC, 1999), 37–42, CRM Proc. Lecture Notes, 30, Amer.
Math. Soc., Providence, RI, 2001



742 Robert L. Griess Jr.and Ching Hung Lam

[GNAVOA1] R. L. Griess, Jr., GNAVOA. I, Studies in groups, nonassociative al-
gebras and vertex operator algebras, Vertex Operator Algebras in Mathemat-
ics and Physics (Toronto, ON, 2000), 71–88, Fields Inst. Commun., 39, Amer.
Math. Soc., Providence, RI, 2003.

[GL] R. L. Griess, Jr. and C. H. Lam, Rootless pairs of EE8-lattices, Electronic
Research Announcements in Mathematical Sciences, 15(2008), 52-61. (This is
an announcement for results in the present manuscript.)

[GMS] R. L. Griess, Jr., U. Meierfrankenfeld and Y. Segev, A uniqueness proof
for the Monster, Ann. of Math.(2) 130 (1989), no. 3, 567–602.

[GrO+] R. L. Griess, Jr., A vertex operator algebra related to E8 with automor-
phism group O+(10, 2). The Monster and Lie algebras (Columbus, OH, 1996),
43–58, Ohio State Univ. Math. Res. Inst. Publ., 7, de Gruyter, Berlin, 1998.

[GrE8] R. L. Griess, Jr., Positive definite lattices of rank at most 8, Journal of
Number Theory, 103 (2003), 77-84.

[GrBWY] R. L. Griess, Jr., Pieces of 2d: existence and uniqueness for Barnes-
Wall and Ypsilanti lattices, Adv. Math. 196 (2005), no. 1, 147–192.

[GrIBW1] R. L. Griess, Jr., Involutions on the Barnes-Wall lattices and their fixed
point sublattices. I, Pure Appl. Math. Q. 1 (2005), no. 4, 989–1022.

[Gr12] R. L. Griess, Jr., Twelve Sporadic Groups, Springer Verlag, 1998.

[GrGL] R. L. Griess, Jr., ”An introduction to groups and lattices: finite groups
and positive definite rational lattices”; to be published simultaneously by
Higher Education Press (in China) and by the International Press for the rest
of the world.

[Kn] M. Kneser and R. Scharlau, Quadratische Formen, Springer, Berlin (2001).

[LS] C.H. Lam and H. Shimakura, Ising vectors in the vertex operator algebra
V +

Λ associated with the Leech lattice Λ, Int. Math. Res. Not. (2007), Vol. 2007:
article ID rnm132, 21 pages.



EE8-Lattices and Dihedral Groups 743

[LSY] C.H. Lam, S. Sakuma and H. Yamauchi, Ising vectors and automorphism
groups of commutant subalgebras related to root systems, Math. Z. 255 (2007)
597–626.

[LYY] C.H. Lam, H. Yamada and H. Yamauchi, Vertex operator algebras, ex-
tended E8-diagram, and McKay’s observation on the Monster simple group,
Trans. Amer. Math. Soc 359 (2007), 4107–4123.

[Mi] M. Miyamoto, Griess algebras and conformal vectors in vertex operator
algebras, J. Algebra 179 (1996), 523–548.

[Mi1] M. Miyamoto, A new construction of the moonshine vertex operator alge-
bra over the real number field, Ann. of Math 159 (2004), 535–596.

[Sa] S. Sakuma, 6-transposition property of τ -involutions of vertex operator al-
gebras, Int. Math. Res. Not. (2007), Vol. 2007 : article ID rnm030, 19 pages,
doi:10.1093/imrn/rnm030.

[Wit] E. Witt, Theorie der quadratischen Formen in beliebigen Körpern, Journal
fűr die reine und angewandte Mathematik, 176 (1937), pp. 31–44.

Robert L. Griess Jr.
Department of Mathematics
University of Michigan, Ann Arbor, MI 48109
USA
Email: rlg@umich.edu

Ching Hung Lam
Institute of Mathematics
Academia Sinica, Taipei 10617
Taiwan
Email: chlam@math.sinica.edu.tw


