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1 Introduction

By lattice, we mean a finite rank free abelian group with rational valued, positive

definite symmetric bilinear form. A root in an integral lattice is a norm 2 vector.
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An integral lattice is rootless if it has no roots. The notation EFg means v/2

times the famous Eg lattice.

In this article, we classify pairs of E FEg-lattices which span an integral and
rootless lattice and whose associated involutions (isometries of order 2) generate
a dihedral group of order at most 12. Examples of such pairs are easy to find
within familiar lattices, such as the Barnes-Wall lattices of ranks 16 and 32 and
the Leech lattice, which has rank 24.

Our main theorem is as follows. These results were announced in [GL].

Main Theorem 1.1. Let M, N = EFEg be sublattices in a Fuclidean space such
that L = M + N is integral and rootless. Suppose that the involutions associated
to M and N (2.4) generate a dihedral group of order less than or equal to 12.
Then the possibilities for L are listed in Table 1 and all these possibilities exist.
The lattices in Table 1 are uniquely determined (up to isometry of pairs M, N ) by
the notation in column 1 (see Table 3 for the definitions of the relevant terms and
notations). FExcept for DIH4(15), all of them embed as sublattices of the Leech

lattice.

Our methods are probably good enough to determine all the cases where

M + N is integral, but such a work would be quite long.

This work may be considered purely as a study of positive definite integral
lattices. Our real motivation, however, is the evolving theory of vertex operator

algebras (VOA) and their automorphism groups, as we shall now explain.

The primary connection between the Monster and vertex operator algebras
was established in [FLM]. Miyamoto showed [Mil] that there is a bijection be-
tween the conjugacy class of 24 involutions in the Monster simple group and
conformal vectors of central charge % in the moonshine vertex operator algebra
V!, The bijection between the 2A-involutions and conformal vectors offers an
opportunity to study, in a VOA context, the McKay observations linking the ex-
tended Fg-diagram and pairs of 2A-involutions [LYY]. This McKay theory was

originally described in purely finite group theory terms.

Conformal vectors of central charge % define automorphisms of order 1 or 2

on the VOA, called Miyamoto involutions when they have order 2. They were
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Table 1: NREE8SUMs: integral rootless lattices which are sums of FFEgs

’ Name ‘ (ta,tn) ‘ Isometry type of L (contains) ‘ D(L) ‘ In Leech?
DIH4(12) Dihy | > DD;? 142642 Yes
DIH,(14) Dihy | > AA{? L DDg? 142842 Yes
DIH4(15) Dihy | > AA; | EE+? 12214 No
DIHy(16) Dihy | 2 EFEs | EFEg 216 Yes
DIHg(14) Dihg | > AAy | Ay ® Eg 173362 Yes
DIHg(16) Dihg | & Ay ® Ej 1838 Yes
DIHg(15) Dihg | > AA{T | EEg 11045 Yes

DIHg(16,DDy) | Dihs | > DD3? | EFEjg 182444 Yes
DIHg(16,0) Dihg | = BWiy; 1828 Yes
DIHy(16) Dihyg | > A4 @ Ay 11254 Yes
DIH;5(16) Dihya | > AAy 1 AAs 1 Ay ® Eg 11264 Yes

X" denotes the orthogonal sum of n copies of the lattice X.

originally defined in [Mi]; see also [Mil]. Such conformal vectors are not found
in most VOAs but are common in many VOAs of great interest, mainly lattice
type VOAs and twisted versions [DMZ, DLMN]. Unfortunately, there are few
general, explicit formulas for such conformal vectors in lattice type VOAs. We
know of two. The first such formula (see [DMZ]) is based on a norm 4 vector in a
lattice. The second such formula (see [DLMN], [GrO+]) is based on a sublattice
which is isometric to EFg. This latter formula indicates special interest in FEjg
sublattices for the study of VOAs.

We call the dihedral group generated by a pair of Miyamoto involutions a
Miyamoto dihedral group. Our assumed upper bound of 12 on the order of a
Miyamoto dihedral group is motivated by the fact that in the Monster, a pair of
2A involutions generates a dihedral group of order at most 12 [GMS]. Recently,
Sakuma [Sa] announced that 12 is an upper bound for the order of a Miyamoto
dihedral group in an OZVOA (= CFT type with zero degree 1 part)[GNAVOAL]

with a positive definite invariant form. This broad class of VOAs contains all
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Table 2: Containments of NREESSUM

Name Sublattices
DIHg(15) DIH,(12)
DIHg(16,DDy) DIH(12)
DIHg(16,0) DIH,(16)
DIH5(16) DIH,(12), DIHg(14)

lattice type VOAs VL+ such that the even lattice L is rootless, and the moonshine
VOA V. If a VOA has nontrivial degree 1 part, the order of a Miyamoto dihedral
group may not be bounded in general (for instance, a Miyamoto involution can

invert a nontrivial torus under conjugation). See [GNAVOA1].

If L is rootless, it is conjectured [LSY] that the above two kinds of conformal
vectors will exhaust all the conformal vectors of central charge 1/2 in V;'. This
conjecture was proved when L is a V/2 times a root lattice or the Leech lattice
[LSY, LS| but it is still open if L is a general rootless lattice. The results of this
paper could help settle this conjecture, as well as provide techniques for more

work on the Glauberman-Norton theory [GINo].

Next, we shall discuss the main steps for the classification. We shall go
through cases |tytn| = 2,3,4,5,6. Our respective analyses are called DIH,-
theory, DI Hg-theory, DI Hg-theory, DIHg-theory, DIHio-theory.

In (tpr,tn), let g := tyty. Then Z[(g)] acts on L and it acts on J :=
anny,(Fizr(g)), where Fixy(g) denotes the set of all fixed points of g in L. The

action is that of as a ring of integers in a number field when |g| is prime.

The main idea is to determine possibilities for Fixr,(g), J, annpy (N), anny (M)
and related sublattices. Exhaustive case by case analysis gives a list of candi-
dates. In all cases, the candidates are proved unique, given certain things we

deduce about their sublattices.

First, we observe that (tps,ty) acts faithfully on L and leaves invariant
Fizr(9) = M N N. When |g| = 2,3 or 5 is a prime, we determine all sub-

lattices of Fg which are direct summands and whose discriminant group is an
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elementary abelian p-group for p = 2,3,5 (cf. D.2, D.9 and D.18, respectively).
Exhaustive case by case analysis gives a list of candidates. It turns out M NN is
isometric to v/2 times one of these lattices. In fact, MNN 220, AA;, AA; L AA;,
or DDy if |g| =2; MNN = 0or AAy if |g| =3; and M NN =0 if |g| =5 (see
Proposition 5.2, 6.12, and Lemma 7.6 for details).

Given M N N, we then analyse J = anny(M N M) and its sublattices.

When |g| = 2, (tpr,tn) is a four-group. Then we have M N J = anny(N),
NNJ=anny(M)and MNN L annp(N) L anny(M) is an index 2 sublattice
of L. In this case, the isometry type of L is uniquely determined by M N N.

When |g| = 3, we consider the Z[(g)]-submodule K generated by M NJ. Then
K is a sublattice of J and K is isomorphic as a lattice to Ay ® %(M NJ) (cf.
(3.2)). The possibilities for M N J in this case are EEg or EFEg. Again, the

isometry type of L is uniquely determined by M N V.

When |g| =5, M NN = 0. We show that for any norm 4 vector o € L, the
Z|{g)]-submodule generated by « is isomorphic as a lattice to AA, (cf. Lemma
(7.12)). In fact, we show that L = M + N contains a sublattice U isometric to
the orthogonal sum of 4 copies of AAy such that M NU = NNU = AAY (cf.
Lemma 7.13, 7.15, and Corollary 7.16). The uniqueness of L is then shown by

explicit gluings.

When |g| = 4,6, we let h := g?. Then (M, Mh) and (N, Nh) are EEg pairs
whose associated dihedral group has order 4 or 6. We then use the results for
Dihy and Dihg to deduce the structures of L. It turns out that there is only one
possible case for |g| = 6 but 3 different cases for |g| = 4.

A proof that the candidates are really rootless is made easier by a magic tool.
Except for DIH4(15), all candidates in Theorem 1.1 are embedded in the Leech
lattice by direct constructions in Appendix F (and use of a uniqueness result).
Since the Leech lattice is rootless, so is our candidate L. The rootless property
of DIH4(15) is also proved in (5.5).

The organization of this article is as follows. First, we review some general

background material from the theories of groups and lattices. Tensor products

627
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of lattices are discussed, especially involving small rank root lattices. We give
uniqueness theorems, for getting structure as we analyze sublattices, but also
to determine precise membership on our final list of pairs (M, N). The cases
of dihedral groups of orders 4 and 8 are done together, as are orders 6 and 12.
Dihedral groups of order 10 are treated separately. The lattices M + N are
recognized as familiar ones in many cases, but not all. Appendices A through
E give independent results about lattices which we quote throughout the main
text. Our uniqueness results help prove that M + N is embedded in the Leech
lattice in all cases but one. Explicit realizations of cases within the Leech lattice

are presented in Appendix F. These may be useful for calculations.

The first author acknowledges financial support from the National Science
Foundation, National Cheng Kung University where the first author was a visiting
distinguished professor, and the University of Michigan. The second author ac-
knowledges financial support from the National Science Council of Taiwan (Grant
No. 95-2115-M-006-013-MY2).

2 Background and notations

We review some background materials and notations in this section. Notations
and definitions of relevant terms can be found in Table 3 and 4. A general

reference for groups and their actions on lattices is [GrGL].

Convention 2.1. Lattices in this article shall be rational and positive definite.
Groups and linear transformations will generally act on the right and n-tuples

will be row vectors.

Definition 2.2. Let X be an integral lattice. For any positive integer n, let

X, ={z € L|(z,x) = n} be the set of all norm n elements in X.

Definition 2.3. If L is a lattice, the summand of L determined by the subset S
of L is the intersection of L with the Q-span of S.

Definition 2.4. Let X be a subset of Euclidean space. Define tx to be the

orthogonal transformation which is —1 on X and is 1 on X .
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Table 3: Notation and Terminology

629

Notation Explanation Examples in text
Ay, Eg root lattice for root system ®4,,...,Pg, Table 1, 2
AA,,--- ,EFEg lattice isometric to v/2 times the lattice Table 1
Ay, Ey
annp,(S) {velLl(s)=0forallseS} (2.4), (6.21)
BRW*(29) the Bolt-Room-Wall group, a subgroup of
0(2%,Q)of shape 27270+ (2d, 2)
BWan the Barnes-Wall lattice of rank 2" Table 1, 6, (5.2.2)
DIH,(r) an NREESSUM M, N such that the SSD Table 1, Sec. F.3
involutions t;,ty generate a dihedral group
of order n and M + N is of rank r
DIHg(16,X) an NREESSUM DI Hg(16) such that Table 1, Sec. F.3
X 2 annpy (N) 2 anny (M)
DIH,-theory the theories for DIH,, (r) for all r Sec. 5.2, 6.2
D(L) discriminant group of integral lattice L: L*/L (A.3), (D.25)
HS,, or D the half spin lattice of rank n, i.e., (6.22)
the lattice generated by D,, and 1(11---1)
HHS; or DD;} /2 times the half spin lattice HS;" (F.4)
IEES pair a pair of EFy lattices whose sum is integral (2.9), Sec. F.3
IEE8SUM the sum of an IEES pair
L* the dual of the rational lattice L, i.e., those (2.4), (A.3)
elements u of Q ® L which satisfy (u,L) < Z
LT(t), L™ (t) the eigenlattices for the action of ¢
on the lattice L: L°(t) := {x € L|xt = ez} (6.22)
A the Leech lattice Sec. F.3
m" the homocyclic group Z}}, = Zy, X -+ X Ly, (6.9), (D.21)

n times
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Table 4: Notation and Terminology (continued)

Notation ‘ Explanation ‘ Examples in text
NREES pair an IEES pair whose sum has no roots (2.9), Sec. F.3
NREESSUM the sum of an NREES pair Table 1

lgl, |G| order of a group element, order of a group (D.7), Sec. F.3
O(X) or Aut X the isometry group of the lattice X (5.3)
0,(G) the maximal normal p-subgroup of G (A.11), (A.13)
Oy (G) the maximal normal p’-subgroup of G, (A.14)
p-rank the rank of the maximal elementary (A.3)
abelian p-subgroup of an abelian group
Dy, , P, root system of the indicated type Table 1, 2
root a vector of norm 2 Sec. 1, (3.5)

rectangular a lattice with an orthogonal basis (B.2)

lattice

square lattice a lattice isometric to some /m Z" (B.2)

Tel(L,t) total eigenlattice for action of ¢ (6.30)
on L; LT(t) L L™(¢t)
Tel(L,D) total eigenlattice for action of an elementary (A.2)
abelian 2-group D on L; Tel(L, D) := > L*,
where A € Hom(D, {£1}) and
L* ={a € L|ag = A(g)a for all vy € D}
Weyl(Eg), Weyl(Fy) the Weyl group of type Ejg, Fy, etc (D.2)
Xn the set of elements of norm n (7.10), (7.11)
in the lattice X
Xtn the orthogonal sum of n copies Table 1, 5, 8
of the lattice X
13 an isometry of the Leech lattice (F.5), Sec. F.3
(see Notation F.5)
z rank n lattice with an orthonormal basis (B.3)
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Definition 2.5. A sublattice M of an integral lattice L is RSSD (relatively
semiselfdual) if and only if 2L < M + annp(M). This implies that ¢y maps L

to L and is equivalent to this property when M is a direct summand.

The property that 2M* < M is called SSD (semiselfdual). It implies the
RSSD property, but the RSSD property is often more useful. For example, if M
is RSSD in L and M < J < L, then M is RSSD in J, whence the involution ¢

leaves J invariant.

Example 2.6. An example of a SSD sublattice is v/2U, where U is a unimodular
lattice. Another is the family of Barnes-Wall lattices.

Lemma 2.7. If the sublattice M is a direct summand of the integral lattice L
and (det(L),det(M)) = 1, then SSD and RSSD are equivalent properties for M.

Proof. It suffices to assume that M is RSSD in L and prove that it is SSD.

Let V' be the ambient real vector space for L and define A := anny (M ). Since
(det(L),det(M)) = 1, the natural image of L in D(M) is D(M), i.e., L+ A =
M*+A (A13). We have 2(L+A) =2(M*+A),or 2L+ A=2M*+A=M 1L A.
The left side is contained in M + A, by the RSSD property. So, 2M* < M + A.
If we intersect both sides with anny(A), we get 2M* < M. This is the SSD
property. [

Lemma 2.8. Suppose that L is an integral lattice and N < M < L and both
M and N are RSSD in L. Assume that M is a direct summand of L. Then
annpr(N) is an RSSD sublattice of L.

Proof. This is easy to see on the level of involutions. Let ¢,u be the involu-
tions associated to M, N. They are in O(L) and they commute since u is the
identity on annrp (M), where t acts as the scalar 1, and since u leaves invariant
M = annp(anng(M)), where t acts as the scalar —1. Therefore, s := tu is an
involution. Its negated sublattice L™ (s) is RSSD (2.4), and this is anny/(N). O

Definition 2.9. An IFFES pairis a pair of sublattices M, N = EFg in a Euclidean
space such that M + N is an integral lattice. If M + N has no roots, then the
pair is called an NREFES pair. An IEESUM is the sum of an IEE8 pair and an
NREESSUM is the sum of an NREES pair.
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Lemma 2.10. We use Definition 2.4. Let M and N be RSSD in an integral
lattice L = M + N. A wvector in L fixed by both tyr and tn is 0.

Proof. Weuse L = M+ N. If we tensor L with Q, we have complete reducibility
for the action of (tar,tn). Let U be the fixed point space for (tpr,tn) on Q® L.
The images of M and N in U are 0, whence U = 0. O

3 Tensor products

Definition 3.1. Let A and B be integral lattices with the inner products (, )a
and (, )p, respectively. The tensor product of the lattices A and B is defined to
be the integral lattice which is isomorphic to A ®z B as a Z-module and has the

inner product given by
(a®p,0' @) = (a,a")a-(8,8)p, foranya,a’ € A, and 3,5 € B.
We simply denote the tensor product of the lattices A and B by A ® B.

Lemma 3.2. Let D := (t,g) be a dihedral group of order 6, generated by an
involution t and element g of order 3. Let R be a rational lattice on which D
acts such that g acts fized point freely. Suppose that A is a sublattice of R which
satisfies at = —a for all a € A. Then

(i) ANAg=0; so A+ Ag=A® Ag as an abelian group.

1 -1
(ii) A+ Ag is isometric to A® B, where B has Gram matriz < 12) .

N[ =

(iii) Furthermore annayag(A) = A(g — g°) = V3A.

Proof. (i) Take a,a’ € A and suppose a = da'g. Since at = —a, we have
—a = at = d'gt = d'tg> = —d’g?>. That means a = a’¢g> and a = ag. Thus
a = 0 since g acts fixed point freely on R.

For any z,y € R, we have 0 = (2,0) = (z,y + yg + y9°) = (z,y) + (z,yg) +
(r,y9%). Now, take 2,y € A. We have (z,yg) = (at,ygt) = (—z,ytg?) =
(—x, —yg?) = (x,yg?). We conclude that (z,yg) = (z,yg?) = —%(:L‘,y).
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Let bars denote images under the quotient Z(g) — Z(g)/(1 + g + ¢?).

We use the linear monomorphism A ® g¢ — R where Z(g)/(1 + g + ¢?) has

the bilinear form which take value 1 on a pair ¢%, ¢* and value —% on a pair ¢, g/
where 7,7 € {0,1} and i # j. This proves (ii).

For (iii), note that 1 : &+ xg — xg® for x € A is a scaled isometry and I'm 1)
is a direct summand of Ag@® Ag?, where Im 1 denotes the image of 1. Note also
that A @ Ag = Ag ® Ag? = Im+ ® Ag. Thus we have

Imy < annagag(A) < Imp @ Ag.

By Dedekind’s law, annaqag(A) = Im1p + (annayag(A) N Ag). Since (x,yg) =
—3(2,y), annasag(A) N Ag =0 and we have Im 1) = annayag(A) as desired. O

Lemma 3.3. Suppose that A, B are lattices, where A = As. The minimal vectors
of A® B are just u ® z, where u is a minimal vector of A and z is a minimal
vector of B.

Proof. Let u be a minimal vector of A. The minimal vectors of Zu ® B have the
above shape. Let v’ span ann4(u). Then (v/,u') = 6 and |A : Zu+Zu'| = 2. The
minimal vectors of (Zu L Zu') ® B have the above shape. Now take a vector w in
A® B\ (Zu 1 Zu') ® B. 1t has the form pu® x + qu’ ® y, where p,q € 3 +Z and
p+q € Z. The norm of this vector is therefore 2p?(x, z) + 6¢%(y, y). A necessary
condition that w be a minimal vector in A ® B is that each of z,y be minimal
in B and p,q € {i%} By changing the signs of z and y if necessary, we may
assume without loss of generality that p = ¢ =1/2.

Define v := %u—k%u’. Then o/, v forms a basis for A. We have w = v®x+%u’®

(y—=x). Sincew € A® B, y—x € 2B. Suppose y —x = 2b. If b = 0, we are done,
so assume that b # 0. In case z,y are minimal, (y — z,y — ) = 4(b,b) > 4(z, )
and thus —2(x,y) > 2(z,x). This implies z = —y and then w = (v —v/) @ = as
required. [

Notation 3.4. For a lattice L, let MinVec(L) be the set of minimal vectors.

Lemma 3.5. We use the notations of (3.3). If B is a root lattice of an inde-
composable root system and rank(B) > 3, the only sublattices of A® B which are

isometric to /2B are the u ® B, for u a minimal vector of A.
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Proof. Let S be a sublattice of A ® B so that S = /2B. Then S is spanned
by MinVec(S), which by (3.3) equals M, U M, U M,,, where u, v, w are pairwise
nonproportional minimal vectors of A which sum to 0 and where M; := (t® B)N
MinVec(S), for t = u,v,w. Note that (u,v) = (v,w) = (w,u) = —1.

We suppose that M, and M, are nonempty and seek a contradiction. Take
b,/ € B so that u®b € My, v @b € M,. Then (u® b,v @) = (u,v)(b,b) =
—(b,t'). Since S is doubly even, all such (b,b") are even.

We claim that all such (b, ') are 0.

Assume that some such (b,b') # 0. Then, since b, are roots, (b,b") is +2 and
b=4b. Then u®b,v @b € S, whence w ® b € S. In other words, A®b < S.

Since rank(S) = rank(B) > 3, S properly contains A®b. Since S is generated
by its minimal vectors and the root system for B is connected, S contains some
t ® d where d € MinVec(B) and (d,b) # 0. It follows that (d,b) = +1. Take
t' € MinVec(A) so that (¢,t') = £1. Then (t ® d,t’ ® b) = +1, whereas S is

doubly even, a contradiction. The claim follows.

The claim implies that M, and M, are orthogonal. Similarly, M,,, M., M, are
pairwise orthogonal, and at least two of these are nonempty. Since MinVec(S) is
the disjoint union of M,,, M,, M,,, we have a contradiction to indecomposability

of the root system for B. [J

4 Uniqueness

Theorem 4.1. Suppose that L is a free abelian group and that Ly is a subgroup
of finite index. Suppose that f : L1 x L1 — K is a K-valued bilinear form, where
K is an abelian group so that multiplication by |L : Ly| is an invertible map on

K. Then f extends uniquely to a K-valued bilinear form L x L — K.

Proof. Our statements about bilinear forms are equivalent to statements about
linear maps on tensor products. We define A := L1 ® L1,B := L ® L and
C := B/A. Then C is finite and is annihilated by |L : Li|>. From 0 —
A —- B — C — 0, we get the long exact sequence 0 — Hom(C,K) —
Hom(B,K) — Hom(A,K) — Ext!(C,K) — ---. Each of the terms Hom/(C, K)
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and Ext!(C, K) are 0 because they are annihilated by |C| and multiplication by
|C| on K is an automorphism. It follows that the restriction map from B to A
gives an isomorphism Hom(B, K) = Hom(A, K). O

Remark 4.2. We shall apply (4.1) to L = M + N when we determine sufficient
information about a pairing M7 x N1 — Q, where M is a finite index sublattice
of M and N is a finite index sublattice of N. The pairings M x M — Q and
N x N — Q are given by the hypotheses M = N = EFEjg, so in the notation of
(4.1) we take L1 = Mj + Nj.

Remark 4.3. We can determine all the lattices in the main theorem by explicit
gluing. However, it is difficult to prove the rootless property in some of those
cases. In Appendix F, we shall show that all the lattices in Table 1 can be
embedded into the Leech lattice except DI H4(15). The rootless property follows
since the Leech lattice has no roots. The proof that DIH4(15) is rootless will be
included at the end of Subsection 5.1.

5 DIH; and DIHg theories

5.1 DIH,;: When is M + N rootless?

Notation 5.1. Let M, N be EFEjg lattices such that the dihedral group D :=
(tar,ty) has order 4. Define F := M NN, P :=anny(F) and Q := anny(F).

Remark 5.2. Since tj; and ¢ty commute, D fixes each of F';, M, N, anny(F),
anny(F'). Each of these may be interpreted as eigenlattices since ¢y and ¢ have
common negated space F', zero common fixed space, and t,7,ty are respectively
—1,1 on anny(F) and typr,ty are respectively 1,—1 on anny(F). Since L =
M + N, D has only 0 as the fixed point sublattice (cf. (2.10)). Therefore, the
elementary abelian group D has total eigenlattice F' L anny/(F) L anny(F).
Each of these summands is RSSD as a sublattice of L, by (2.8). It follows that
L (M N N) is an RSSD sublattice in <=M and in 2= N. Since =M =~ LN =~

V2 V2 V2 V2 2

Eg, we have that % (M NN) is an SSD sublattice in %M and in %N (cf.
(2.7)).
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Proposition 5.3. If M + N is rootless, F' is isometric to one of 0, AA;, AA; L
AAy1,DDy. Such sublattices in M are unique up to the action of O(M).

Proof. This can be decided by looking at cosets of P+ Q + F in M + N. A
glue vector will have nontrivial projection to two or three of spang (P), spang (Q),

spang (F').

Since F' is a direct summand of M by (A.10) and %F is an SSD by (5.2),

we have %F = 0,A1,A1 L A1,A1 L A1 L Al,A1 1 Al 1 Al 1 Al,D4,D4 1

Al,DG,E7 and Eg by <D2) If %F = Eg, then t]\/[ = tN and D := <tM,tN> is

only a cyclic group of order 2. Hence, we can eliminate %F = Eg.

Now we shall note that in each of these cases, F' L P contains a sublattice
A= AAS such that FN A=~ AAY and AN P = AA?‘k, where k = rank F. We
use an orthogonal basis of A to identify M /A with a code. Since M = EFEg, this
code is the Hamming [8,4, 4] binary code Hg. Let ¢ : M/A — Hg be such an

identification. Then ¢((F L P)/A) is a linear subcode of Hs.

*
Next, we shall show that (%F) contains a vector v of norm 3/2 if %F

Al J_Al J_Al,Al J_Al J_Al J_Al,D4_LA1,D6 or E7.

Recall that if A; = Za, (o, a) = 2, then A} = $Zo and 2o € A} has norm
Since (A*)* = (A%)**, (A{*)* contains a vector of norm 3/2 if k > 3.

D=

We use the standard model
Dy, ={(z1,22,...,20) €Z"[21+ -+ 2, =0 mod 2}.

Then 3(1,...,1) € D} and its norm is in. Therefore, there exists vectors of
norm 3/2 in (D4 L Ay)* = D} 1 A} and D§. Finally, we recall that E%/E; = Zs
and the non-trivial coset is represented by a vector of norm 3/2.

Now suppose %F ~ A LA LALA LA LA 1 A,Dy L Ay, Dgor E;
and let v € 2F* be a vector of norm 3. Since F N A = AA¥ F N A has a basis
{a1,..., 04} such that (o4, ;) = 46; 5. Then

k
* * 1
2F* <2(FNA)" = spanZ{§ ;aiail a; € Z}.
1=
Thus, by replacing some basis vectors by their negatives, we have v = %(ail +

o, + ;) for some 1 < iy,i9,i3 < k.
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Since the image of the natural map M — D(F) is 2D(F’), there exists a vector
u € M such that the projection of u to spang(F) is 7.

Now consider the image of u + A in Hg and study the projection of the
codeword ¢(u + A) to the first k coordinates. Since v = 1(a;, + o, + iy, the
projection of ¢(u + A) to the first k& coordinates has weight 3.

If k = rank F' > 4, then the projection of (1,---,1) to the first k coordinates
has weight k > 4. Thus, p(u+ A) # (1,...,1) and hence p(u + A) has weight 4
since p(u+ A) € Hg .

If K = 3, then FF = AA‘? and P = AA, L DD,s. Let K = DD, be an
orthogonal direct summand of P and let Za = annp(K) =2 AA;. Note that
F 1 Zo < anny(K) 2 DDy and F = Zoy L Zas L Zas. Thus, $(a1 + oo +
az +a) = 3(v+ @) € annpy(K) < M and it has norm 4. Therefore, we may

assume @(u + A) has weight 4 and u is a norm 4 vector.

Similarly, there exists a norm 4 vector w € N such that the projection of w in
spang (F) is also . Then u —w € L = M + N but (u,w) = (y,7) = 3 and hence
u—w € L is a root, which contradicts the rootless property of L. Therefore, only
the remaining cases occur, i.e., FF =20, AA;, AA; 1 AA;,DDy. [J

Table 5: DIH,: Rootless cases

MNN ‘ P=qQ ‘ dim(M + N) ‘ Isometry type of L
0 EEg 16 =2 FEFg 1 EFg
DD, DD, 12 >DDy 1 DDy 1 DDy
AA, EE, 15 >AA, L EE; | EE;
AA, L AA, | DDg 14 > AA; L AA, L DDg L DD

Remark 5.4. Except for the case FF = M NN = AA;, we shall show in Appendix
F that all cases in Proposition 5.3 occur inside the Leech lattice A . The rootless
property of L = M + N then follows from the rootless property of A. The rootless
property for the case F' = M NN = AA; will be shown in the next proposition.

Proposition 5.5. [Rootless property for DIH4(15)] If F = M NN = AA;, then
P2Q=FEFE; and L = M + N is rootless.
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Proof. We shall use the standard model for the lattice E7, i.e.,

allaciGZorallmG%%—Z}

Er = 78
7 {(xl’ 78) € and z1 +---+25=0

The dual lattice is E¥ = E;U(y+ E7), where v = %(1, 1,1,1,1,1,—-3,-3). Recall
that the minimal weight of E% is 3/2 [CS, p.125].

If F=MnNN = AA; = Za, then it is clear that P = () = EFE7. In this case,
M = spany{F + P, %a—i—fM} and N = spany{F + Q, %a—%&v} for some &y € P*
and &y € QF with (&ar,80) = (En,&N) = 3. Therefore,

1 1
L:M+N:spanZ{F+P+Q,§a—i—§M,§a—|—§N}.

Take € L= M+ N. If € F+ P+ Q, then (5,3) > 4. Otherwise, § will
have nontrivial projection to two or three of spang (P), spang(Q), spang (F'). Now
note that the projection of L onto spang(P) is spang{P, &y} = V2E% and the
projection of L onto spang(Q) is spanz{Q,¢én} = +2E#. Both of them have
minimal norm 3. On the other hand, the projection of L onto spang(F') is Z%a,
which has minimal norm 1. Therefore, (5,3) > 1+ 3 =4 and so L is rootless. [J

5.2 DIHg

Notation 5.6. Let t := tj;,u := ty, and g := tu, which has order 4. Define
z:= g%t :=tz and v := uz. We define F := Kerp(z—1) and J := Kerp(z+1).

By Lemma A.6, L/(F L J) is an elementary abelian 2-group of rank at most
min{rank(F),rank(J)}. We have two systems (M,t, Mg,t') and (N,u, Ng,u')
for which the DI H,4 analysis applies.

Notation 5.7. If X is one of M, N, we denote by Lx,Jx, Fx the respective
lattices L := X + Xg, J, ' associated to the pair X, X g, denoted “M” and “N”
in the DI H, section.

5.2.1 DIHg: What is F?

We now determine F'.
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Remark 5.8. It will turn out that the two systems (M, t, M g,t') and (N, u, Ng, u')
have the same DIH, types (cf. Table 5). Also, we shall prove that rank(Fx)

determines Fx, hence also determines Jx, for X = M, N.
Lemma 5.9. Let f = g or g~'. Then (i) As endomorphisms of J, f* = —1,
(f =1)?==2f. Forz,y e J, (x(f —1),y(f - 1)) = 2(z,y).

(ii) (M N J,(MAJ)f) =0 and (N N J,(NOJ)f) =0.

(iii) For x,y € M orz,y € N, (z,y(f —1)) = —(x,y).

Proof. (i) As endomorphisms of J, (f —1)? = f2 —2f +1 = —2f.
(ii) We take z,y € M N J (the argument for z,y € N N J is similar).

We have (xvyf) = (.’L’t,yft) = (_x7ytf71) = (—I',—ny) = (_xayf) =
—(z,yf), whence (z,yf) = 0.

(i) We have (z,y(f — 1)) = (z,yf) — (z,9) = —(z,y).
Lemma 5.10. (i) In Q® End(J), (g7 —1)" (g7t - 1) = u.
(i) (MNJ)(gt=1)<NNJand (NNJ)2(g ' —1)"L<MnJ.
(iii) rank(M N J) = rank(N N J).
(iv) rank(Fy) = rank(Fy).

L acts as —g on Q®.J. We also abuse notation

Proof. We use the property that g~
by identifying elements of Q[D] with their images in End(Q ® J). For example,
(97! — 1) is not an invertible element of Q[D], though its image in End(Q ® J)

is invertible.

For (i), observe that (¢! —1)2 = —2¢~!, so that g~! — 1 maps J to J and

has zero kernel. Secondly, 2(g~* — 1)~! maps J to J and has zero kernel.

The equation (¢! — 1)7't(¢g7! — 1) = u in Q ® End(J) is equivalent to
t(g7! —1) = (¢! — 1)u which is the same as (g — 1)t = (¢! — Du or tut — t =

—gu —u = —tuu — u = —t — u, which is true since tut = —u.

The statement (ii) follows since in a linear representation of a group, a group

element which conjugates one element to a second one maps the eigenspaces of

1

the two elements correspondingly. Here, this means g — 1 conjugates ¢ to w,
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so that g7 — 1 maps Q® (M N J) to Q® (N N J). Since g~* — 1 maps J into
J (though not onto J), g~ — 1 maps the direct summand M N J into the direct
summand N N J.

For (iii), observe that we have monomorphisms M NJ — NNJ — MnNJ
and NNJ — MnNJ— NNJ by useof g7! —1 and 2(¢~! — 1)~!. Therefore,

(iv) follows from (iii). O

Lemma 5.11. Suppose that det(J N M)det(J N N) is the square of an integer
(equivalently, that det(Fyr)det(Fn) is the square of an integer). Then rank(J N
M) =rank(J N N) is even.

Proof. Note that rank(M N J) = rank(N NJ) by (5.10). Let d := det(J N M)
and e := det(JNN) and let r be the common rank of M NJ and NN.J. First note
that (M NJ)(g~!—1) has determinant 2"d and second note that (M NJ)(g~1—1)
has finite index, say k, in N N J. It follows that 2"d = k?e. By hypothesis, de is

a perfect square. Consequently, r is even. [J

Corollary 5.12. rank(Fyr) = rank(Fy) is even.

Proof. We have rank(F) + rank(M N J) = rank(M) = 8 and similarly for N.
Since rank Fy; = rank Fy, we have Fyy = Fy by (5.3) and hence det FyydetFy =
(detFyr)? is a square. Now use (5.11). O

Proposition 5.13. If L = M + N is rootless, then Fiy = Fy = 0,AA; 1L AA;
or DDy. Moreover, MNJ = NNJ.

Proof. Since by (5.12), rank(Fy;) = rank(Fy) is even, Proposition 5.3 implies
that Fy &2 Fy =2 0,AA; L AA; or DD,4. It is well-known that there is one
orbit of O(E3) on the family of sublattices which have a given one of the latter
isometry types. It follows that M NJ = annp(Fyy) = anny(Fy) 2 NN J. O

5.2.2 DIHg: Given that F =0, what is J?

By Proposition 5.13, when L is rootless, Fjy = Fy =2 0,AA; 1 AA; or DDy. We
now consider each case for Fj; and Fy and determine the possible pairs M, N.

The conclusions are listed in Table 6.
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Table 6: DIHg which contains a rootless DIH, lattice

Fy2Fy | FyNFy | rank(M + N) M+ N Isometry type
integral? roots 7 if rootless
0 0 16 rootless =~ BWig
AAL? 0 16 non-integral
AAT? AAq 15 non-integral
AAL? AA;? 14 non-integral
AAL? 244 15 has roots
DD, 0 16 rootless > DD3? | EEjg
DDy AA 15 rootless > AA{-7 1 EFEg
DDy 241 15 non-integral
DDy AAL? 14 has roots
DDy AA L 24, 14 non-integral
DDy, AAP? 13 has roots
DD, AAs 13 non-integral
DDy DD, 12 has roots

Proposition 5.14. If Fjy = Fy = 0, then L = M + N is isometric to the
Barnes-Wall lattice BW1g.

Proof. The sublattice M’ := Mty is the 1-eigenspace for tp; and so M +
M' = M 1 M'. Consider how N embeds in (M + M')* = 5(M + M'). Let
z€N\(M+M)andlety € 1M,y € LM’ so that = y + 3. We may replace
v,y by members of y+ M and 1y’ + M’, respectively, which have least norm. Both
y,3y’ are nonzero. Their norms are therefore one of 1, 2, by a property of the Eg-
lattice. Since (x,x) > 4, y and y’ each has norm 2. It follows that the image of N
in D(M) is totally singular in the sense that all norms of representing vectors in
M* are integers. A similar thing is true for the image of N in D(M’). It follows
that these images are elementary abelian groups which have ranks at most 4. On
the other hand, diagonal elements of the orthogonal direct sum M L M’ have

norms at least 8, which means that N N (M + M’) contains no vectors in N of
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norm 4. Therefore, N/(N N (M + M')) is elementary abelian of rank at least 4.
These two inequalities imply that the rank is 4. The action of ¢ on this quotient
is trivial. We may therefore use the uniqueness theorem of [GrBWY] to prove
that M + N is isometric to the Barnes-Wall lattice BW1g. [

5.2.3 DIHg: Given that F = AA; L AAy, what is J?

Proposition 5.15. If Fjy 2 Fy =2 AA; L AAy, M + N is non-integral or has a

r00t.

Proof. If Fiy 2 Fy =2 AA; 1L AAq, then M NJ = NNJ = DDg. We shall first
determine the structure of M NJ + NN J.

Let h = g~!. Then, by Lemma 5.10, we have (M N J)(h—1) < NN J. Since
(MNJ,(MNJ)h) =0, (MNJ)(h—1)=2Dg and det((M N J)(h — 1)) = 24,
Therefore, [N N.J : (M N J)(h — 1) = (2renkNOy1/2 — 93,

Let K = (M NJ)(h—1). Then, by (D.4), there exists a subset {n1,...,n6} C
N N J with (n;,n;) = 49; j such that

K =spang {(n; £n;)|t,j=1,2,...,6}
and

1
—m+n2—n3+n04), (=13 + 1m0 — 15 —i—%‘)}-

1
N N J =spany {771,772777477767 2

5(

By computing the Gram matrix, it is easy to show that {n;+n2, —m1+n2, =2+
13, —N3 + N4, —M4 + N5, —N5 + N } forms a basis of K = (M N J)(h — 1) = 2Dg.
Now let

ar=(m+n)h-1)""  ay=(m+m)(h-1)"" ag=(-n+mn)h—1)"",

ag=(—n3+m)(h—1)"" as=(—na+n)(h—1)"", ag=(-n5+ne)(h—1)"".

Then {1, ag, ag, oy, as, ag} is a basis of MNJ. Moreover, (a1, o) = 0, (a1, a3) =
—2, (Ozl‘,Odi_;,_l) = —2fori= 2, e ,5.
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By the definition, we have 7y = —%(al +a)(h—=1),(=m +m2—n3+m) =
(ag +ay)(h —1) and (=13 +na — 15 +16) = (a4 + o) (h — 1). Hence,
1 1 1
N 017 = spang { K. Lo +an)(h = 1) 0+ an)(h 1) e +aa) (b - 1) |
Since M = EFg, det(M) = 28 and |M/(Fy + M N J)| = 22. Note that M,
Fyr and M N J are all doubly even. Recall that Df/Dg = Zg x Zy. Since M N J
is a direct summand of M, the natural map -=M — D(= (M N.J)) is onto.

V2 V2
Similarly, the natural map %M — D(% (Fyr)) is also onto.

Define H := Fy N Fy. Let Hx := annp(H), for X = M,N. Since H
is the negated sublattice of the involution 5 on Fjs, H is isometric to either
0,AA;,AA; L AAq or 2A; since Fy; and F) are rectangular.

Let {al;,a3,} and {ak;, %} be bases of Fj; and Fiy such that (a’M,a?@ =
49, ; and (aﬁ\,,ag\,) = 44, j. Since |M : Fyr + M N J| = 22 and the natural map
%M — D(%FM) is onto, there exist 3' € (M N J)*, 5% € (M N J)* so that

1 1
v = 50411\4 +8' and  (u 2504?\4 + B

are glue vectors and the cosets % B+ (MnJ)), % (B*+ (M N J)) generate
the abelian group (% (Mn J)) /% (MNJ) = Zy® Zy. Since M is spanned
by norm 4 vectors, we may also assume that £3; and (3; both have norm 4 and

thus f1 and (B2 have norm 3.

Recall that a standard basis for the root lattice Dg is given by {(1,1,0,0,0,0),
(~1,1,0,0,0,0), (0, —1,1,0,0,0), (0,0, —1,1,0,0), (0,0,0, —1,1,0), (0,0,0,0, —1,1)}
and the elements of norm 3/2 in (Dg)* have the form (+1,...,+1) with evenly
many — signs or 3(£1,...,%1) with oddly many — signs (cf. [CS, Chapter 5]).
They are contained in two distinct cosets of (Dg)*/Dg. Note that (Dg)*/Dg have
3 nontrivial cosets and their elements have norm 3/2, 3/2, and 1 modulo 2Z,

respectively.

Now define ¢ : Dg — M N J by

(1,1,0,0,0,0) — ay, (=1,1,0,0,0,0) — ag, (0,—1,1,0,0,0) — as
(0,0,—1,1,0,0) — g,  (0,0,0,—1,1,0) — a5, (0,0,0,0,—1,1) — o
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A comparison of Gram matrices shows that ¢ is v/2 times an isometry. Since
%(—1,1,—1,1,—1,1) and %(1,1,—1,1,—1,1) are the representatives of the two
cosets of (Dg)*/Dg represented by norm 3/2 vectors, by (A.5),

1 1
¢) <2(_17 17 _]-a ]-7 _1) 1)> = 5(052 + oy + O[G)

and

1 1
(b (2(1) ]-7 _17 17 _17 1)) = §(a1 + a4 + Oé(j)

are the representatives of the two cosets of 2(M N J)*/(M N J) represented by

norm 3 vectors. Therefore, without loss, we may assume
{8,67} = {5(az2 + aa + ae), 5 (1 + as + ag)}.

Similarly, there exist 4!, 7% € (N N J)* with (v!,7') = (v%,7?) = 3 such that

1 1
N = 504}\74")’1: and (y = 504?\/4'72

are glue vectors and N = spany{ Fx+NNJ, &N, (N }. Moreover, % (71 + NN J),

% (v* + N N J) generate the group (% (NN J)) NNJ).

We shall prove that (3,7) = 1(mod Z), resulting in a contradiction.

a

Define ¢ : Dg — N N J by

(1,1,0,0,0,0) +— 11, (=1,1,0,0,0,0) — n2,
1

(07 _17 1707070) — 5(7’,1 + 72 + n3 + 774)7 (0707 _17 17070) = 14,
1

(0,0,0, _17 170> = 5(_773 + N4 =15+ 776>7 (07070707 _17 1) = 76-

By comparing the Gram matrices, it is easy to show that ¢ is a v/2 times an

isometry. Thus, we may choose v',~? such that

(v} = {<p (;(—1, 1,-1,1,-1, 1)) L0 (;(1, 1,-1,1, -1, 1))}

1 1
= {2(772 + 14+ 16), 5(771 +774+776)}-
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By the definition of aq, ..., ag, we have
1 1
771=§(a1—a2)(h—1)a 772:5(0414-042)(}1—1),

=[5l +a2) + (o + ap](h — 1),

N6 = [%(al + az) + (a3 + aq + a5 + ag)](h — 1).

Thus,
(g +ag+ag,m2+m+mn5) =—6 and (e +aq+ ag,m +n1+ 1) = —2.

Therefore, (3',7') =1/2 mod Z.

Subcase 1. H =20, AA; or AA; 1. AA;. In this case, we may choose the bases
{al;,a2,} and {ak;, %} of Fys and Fy such that (af,, ozgv) € {0,4}, for all 7, 5.

Hence,
1

(En,én) = (%on, FON) + (B4 =1/2 mod Z

and L = M + N is non-integral.

Subcase 2. H = 2A;. Then Hy; = Hy = 244, also. By replacing aZM by
—ozﬁw and oﬂ]'V by —a’}v for i = 1,2 if necessary, onlVI + a?w = a}v + oz?v € H. Write

p = a}w + a?w = oz}v + a?v. Then we calculate the difference of the glue vectors

1 1 1
v — (v = 5(04}\4 —afy) + Jlaz +ast+ag) — 5 (a1 +as + ag)

1 1

= §p+ 5(—041 +az) mod (Fy +MNJ).

Similarly,
1, .. 1 1
NN — (N = §(O‘N —ay) + 5(772 + 4+ a6) — 5(771 + 14 + 76)

1 1

=35P= 5(—771 +1n2) mod (Fx+NNJ).

Let vy = %p + %(—al + ag) and vy = %p - %(—771 + 12). Then vy and vy
are both norm 4 vectors in L. Recall that (—m + n2) = aa(h — 1). Since

(av, ozgw) = (az, &) = 0 for all i, j, we have (p, ;) = 0 for all 7.

1 1
p+5(—ar+a2), 5p— 5 (=m +mn2))

(vam,vn) =( 5
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Recall that (a’}v‘,,agw) = 46; ; and (oy,aj) = 46;; for i,j = 1,2. Moreover,
(z,yh) =0 for all z,y € M N J by (ii) of (5.9). Thus, (p,p) = (al; + a3, ok, +
a?w) =4+4=8and (—a; + az,as(h — 1)) = (—a1 + a2, —2) = —4.

Therefore, (var, vn) = $(8 — (—4)) = 3 and hence vj; — vy is a root in L. O

5.2.4 DIHg: Given that Fy; = Fy = DD,, what is J?

Next we shall consider the case Fiy = Fy = DDy. In this case, MNJ =2 NNJ =
DD,.

Notation 5.16. Let {a1, a0, a3,a4} C M N J such that (o, 0) = 49;5,1,7 =
1,2,3,4. Then M NJ = spany{a, az, as, %(al + g + a3+ ayg)}. In this case, the
norm 8 elements of M N J are given by +a; £ «; for ¢ # j.

Lemma 5.17. Let h = g~ '. By rearranging the subscripts if necessary, we have

N A J = spang {(M N J)(h — 1), %(al +as)(h —1), %(al +ag)(h— 1)},

Proof. Let K := (MnNJ)(h—1). Then by (ii) of Lemma 5.10, we have K < NN.J.
Since (M NJ, (M NJ)h) =0Dby (5.9), K = (MnJ)(h—1) = 2D,. Therefore, by
(D.5), we have K < NNJ < 1K.

Note that, by determinants, [N N .J : K| = v/24 = 22. Therefore, there exists
two glue vectors (31,02 € (NN J)\ K such that N NJ = spang{(M N J)(h —

1)7 617 /82}

Since K has minimal norm 8 and N N J is generated by norm 4 elements, we
may choose (31, B2 such that both are of norm 4. On the other hand, elements
of norm 4 in N N J are given by %fy(h — 1), where v € M N J with norm 8, i.e.,
v = fa; £+ o for some i # j. Since ay(h —1),0(h —1),a3(h — 1), cu(h — 1) €
(MnJ)(h—1) < NNJ, we may assume

B = %(az‘ +a;)(h—1) and [ = %(ak +ag(h—1)

for some i, j,k, ¢ € {1,2,3,4}. Note that [{i,7}N{k,¢}| = 1 because 51+ 2 ¢ K.

Therefore, by rearranging the indices if necessary, we may assume [3; = %(al +



FE Eg-Lattices and Dihedral Groups 647

az)(h—1), 82 = 3(a1 + as)(h — 1) and
N AJ = spang {(M 1 J)(h— 1), %(al +ag)(h—1), %(al +as)(h— 1)}
as desired. [

Proposition 5.18. If Fi; 2 Fny 2 DDy, then MNJ+ NNJ = EFE;.

Proof. First we shall note that (M NJ)+(MNJ)(h—1)=(MnNJ) L (MNJ)h =
DDys 1 DDy. Moreover, we have [ NNJ+MNJ:(MNJ)+(MnJ)(h—1)] =
INNJ : (MNJ)(h—1)] =+/(28-4)/(2*-4) = 4, by determinants. Therefore,
det(MNJ+NNJ)=(2*-4)2/42 = 28,

Now by (5.17), we have

1 1
NN J =spang{(M nNJ)(h—1), 5(041 + ag)(h —1), 5(041 +az)(h—1)}.
Next we shall show that (M NJ,NNJ) C 2Z. Since (M NJ,(MNJ)h)) =0 and
M N J is doubly even, it is clear that (M N J,(M N J)(h — 1)) C 2Z. Moreover,

for any i, j € {1,2,3,4},i # J,

0 if k¢ {i,7},

1
<Ozk, 5(052 + aj)(h - 1)> o -2 if ke {i7j}7

and

1 1
<2(a1 + oo + a3+ ag), i(ai +aj)(h — 1)) = _9.

Since M N J is spanned by a1, as, a3 and %(ozl +as+az+ayq) and NNJ =
spang {(MNJ)(h—1), 3(a1+az)(h—1), 3 (a1 +a3)(h—1)}, we have (MN.J, NNJ) C
27, as required. Therefore, % (MNJ+ NnNJ) is an integral lattice and has
determinant 1 and thus M NJ+ NNJ =2 EFEg, by the classification of unimodular

even lattices of rank 8. [J

Lemma 5.19. Let oy, a9, a3,a4 € M N J be as in Notation 5.16. Then
1
(MnJ)*= 75panz {1 —ag, 01 + a9, a1 + ag, 01 + g}

and

(NOJ) = ispanz {al(h ~ 1), a0(h — 1), a(h — 1), %(al +an+ as + o) (h — 1)} .
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Proof. Since (Za;)* = iZai and MNJ = spang{aj, ag, as, %(ozl +astas+ay)},

(M N J)*

1
:{ﬁ: Z(a1a1+a2a2+a3a3+a4a4) a; € Q, (B,7) € Z for all v € MOJ}

1
= {4(a1a1 + agae + azas + agoy)

4
a; €Zand » a; €2Z,i= 1,2,3,4}
=1

1
:ZspanZ {a1 — ag, 01 + a9, a1 + ag, a3 + g}

Now by (5.17), we have

N (1. = spany {(Mn T)(h—1), é(al +a)(h—1), %(al + ag)(h — 1)} .

Let 1 = 5(a1+az)(h—1), B2 = 3(a1—a2)(h—1), B3 = §(az+ay)(h—1), and
B4 = %(ag —ay)(h—1). Then {f1, B2, 03, B4} forms an orthogonal subset of NN.J
with (8;, 8;) = 46; ;. Note that (81 + B2+ B3+ 1) = (a1 +as)(h—1) € NN J.
Thus, N N J = spany{0, 52, B3, %(ﬂl + B2 + B3 + [4)} since both of them are
isomorphic to DD,4. Hence we have

1
(NNJ)* = 15Panz {B1 — B2, B1 + B2, B1 + B3, B3 + P4}
1 1
= spang {al(h —1),a0(h —1),a3(h — 1), 5(041 +ag +ag+ aq)(h — 1)} :
as desired. [

Lemma 5.20. We shall use the same notation as in (5.16). Then the cosets of
2(M N J)*/(MNJ) are represented by

1 1 1
0, §(a1+a2)7 5(041+0é3), §(a2+a3),

and the cosets of 2(N N J)*/(N N J) are represented by

1 1 1
*al(h — 1), 7(041 + oo + a3 +Oé4)(h — 1), f(al + g + a3 — Oz4)(h — 1).

0
T2 4 4

Moreover, (2(M N J)*,2(NNJ)*) C Z.



FE Eg-Lattices and Dihedral Groups 649

Proof. Since X := M NJ = DDy, it is clear that 2X*/X is a four-group. The
three nonzero vectors in the list

1 1 1
0, 5(0&14—042), 5(0(14-@3), 5(0&24-043),

have norms two, so all are in 2X* \ X. Since the difference of any two has
norm 2, no two are congruent modulo X. A similar argument proves the second

statement.
For the third statement, we calculate the following inner products.

For any 4,7,k € {1,2,3,4} with i # j,

0 if k¢ {i,j},

(OCZ‘ + oaj,ak(h — 1)) =
+4 if ke {i,j},

and

1
(a; £ ay, 5(041 +as+ag+ag)(h—1))=0o0r —4.

Since (M N J)* = %spanz {a1 —ag, a1 + a2, 01 + a3z, a1 + a4} and (NN J)* =
tspang {a1(h —1),az(h — 1),a3(h — 1), 3 (a1 + a2 + ag + as)(h — 1)} by (5.19),
we have (M N J)*, (N NJ)*) C 1Z and hence (2(M N J)*,2(N N J)*) C Z as
desired. [J

Remark 5.21. Note that the lattice Dy is BWs2, so the involutions in its isome-
try group BRW(22) = Weyl(F)) may be deduced from the theory in [GrIBW1],
especially Lemma 9.14 (with d = 2). The results are in Table (7).

Notation 5.22. Define H := Fj; N Fy and let Hx = annp, (H) for X =
M, N. Since H is the negated sublattice of the involution tx on Fjs, we have the
possibilities listed in Table 7. We label the case for %H by the corresponding

involution 24, --- ,2G. (i.e., the involution whose negated space is %H)

We shall prove the main result of this section, Theorem 5.26 in several steps.

Lemma 5.23. Suppose Fyy = Fy = DDy. If %H =~ AA, AL L AAL or Az
(i.e., the cases for 2B, 2D and 2F ), then the lattice L is non-integral.

Proof. We shall divide the proof into 3 cases. Recall notations (5.22).
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~Y

Table 7: The seven conjugacy classes of involutions in BRW*(22) =
Weyl(Fy)

Involution | Multiplicity of —1 | Isometry type of
negated sublattice
2A 1 Ay
2B 1 AAy
2C 2 Ay LAy
2D 2 A L AA
2E 3 A LA LA
2F 3 As
2G 4 Dy

Case 2B. In this case, %H ~ AA; and %HM =~ %HN =~ As. Then

Fy>H 1L Hyand M>HLHy LMNJ.
Let o € H with (a,a) = 8. Then H = Zo and H* = £ Za.

By (A.5), we have (%FM)*/%FM >~ 2(Fy)*/Fy. Thus, by (D.6), the
natural map 2(Fp)* — 2(H*) = 1Za is onto. Therefore, there exists dy € Hj,
with (6a7,60) = 3/2 such that Ta + 6ar € 2(Far)*. Note that the natural map
%M — D(%FM) is also onto since %M is unimodular and Fjs is a direct
summand of M. Therefore, there exists vys € 2(M N J)* with (yar, yar) = 2 such

that

1
&M:ZO&-F&M—F’)/M

is a glue vector for H L Hyy L M N J in M. Similarly, there exists oy € Hy
with (0n,0n) = 3/2 and yx € 2(N N J)* with (yn,vn) = 2 such that

1
§N=1a+5N+’}’N

is a glue vector for H L Ny L. NNJ in N.

Since (yar,Yn) € Z by (5.20) and Hys L Hy,

(v, @) + (0m,6N) + (Y1, YN) = mod Z,

N |

(€)= 3¢
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which is not an integer.

Case 2D. In this case, %H ~ A 1L AA; and %HM = %HN = A L
AAy, also. Take o, € H such that (a,a) = 8, (4,8) = 4 and (o, ) = 0.
Similarly, there exist ayr, By € Hyr and ay, By € Hy such that (apr, apr) =8,
(Ba, Byr) = 4 and (aar, Byr) = 0 and (an, an) = 8, (Bn, Bn) = 4and (an, fn) =
0.

Note that Z3 L Zfy L Zapy < anng,, (o) = AAs. Set A := annp,,(a) =
AAs. Then |A:ZB L ZBy L Zay| = /(4 x 4 x 8)/(23 x 4) = 2. Therefore,
there exists a p € (ZB L ZBy L Zay)* = %Zﬁ 1 %ZﬂM 1 %ZaM such that
A = spang{S, B, an, 1} and 2u € Z5 L ZBy L Zay.

Since A is generated by norm 4 vectors, we may choose p so that p has
norm 4. The only possibility is u = %(iﬁ + Oy £ apr). Therefore, A =
spang {8, Bu, anr, 5 (B+Bu+an)} and 2A% /A = Zy is generated by 38+ o +A.
Note also that 38 + Yajs has norm 3/2.

Now recall that Za = 2A4; and A = AAs. Thus, by (D.6), the natural map
2(Fy)* — 2(H*) = 1Zo is onto. Thus, there exists a § € 24* with (6,6) =
3/2 such that ia + 4§ € 2(Fy)*. By the previous paragraph, we may assume
§ = 38+ Lap. Since the natural map %M — D(%FM) is onto, there exists

vy € 2(M N J)* such that

& —1 +1[3+1 +
M—4a 5 4OéM T™M

is a glue vector for H 1. Hyy L MNJ in M. Similarly, there exists vy € 2(NNJ)*
such that

EN =St Bt sy +
N—4a 5 404N TN
is a glue vector for H L. Hy L NN J in N. Then
1 1 1
(nggN):TG(aaa)+Z(ﬁ7ﬂ)+ﬁ(aM’aN)+(7M7ryN)51/2 mOdZa

since (apr, an) =0 and (yar,vnv) € Z by (5.20). Therefore, L is not integral.

Case 2F. In this case, %H =~ Az and %HM = %HN ~ AA;. Then Fy; >

H 1 Hyand Fy > H 1L Hy. Let 0 € H*, apy € Hyy and any € Hy such that
(6’6):3/27 (OéM,OéM):gand (aN7OéN):8

651
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Recall in Case 2B that %H ~ AA; and %HM = %HN =~ As;. Now by

exchanging the role of H with Hys (or Hy) and using the same argument as in
Case 2B, we may show that there exist vay € 2(M N J)* and vy € 2(N N J)*
such that &y = 6 + %OAM + v is a glue vector for H | Hyy L M N J in M and
En=0+ ia]\; + v is a glue vector for H L Hy L (N NJ)in N. However,

(€n,6n) = (6,0) + (yar, yv) = 1/2 mod Z,

since (var,vn) € Z by (5.20). Again, L is not integral. [J

Lemma 5.24. Let vy be any norm 2 vector in 2(M N J)*. Then for each non-
zero coset yny + (NN J) in 2(N N J)*/(N N J), there exists a norm 2 vector
v €N + (N NJ) such that (yar,y) = —1.

Proof. Recall from (5.19) that
N 1
2(MNJ)* = ispanZ {ag — g, a1 + ag, 1 + ag, a3 + ay} .

Thus, all norm 2 vectors in 2(M N J)* have the form 1 (+a; + ;) for some i # j.
Without loss, we may assume vy = %(ai + o) by replacing o, a; by —ay, —a;

if necessary.

Now by (5.20), the non-zero cosets of 2(N N J)*/(N N J) are represented by
tai(h—1), $(o1+as+az+as)(h—1) and *(a;+as+as—ag)(h—1). Moreover,
by (5.17),

1
NNJ= §spanz{(ai:|:ocj)(h—1)\ 1<i<j<4}.

If yw+ (NNJ)= %al(h—l)—i—(NﬂJ), we take

1 1 1 1

v = §ai(h —-1)= §a1(h —-1)+ 5(—0z1 +a;)(h—1) € §a1(h —1)+(NNJ).
Recall from (5.16) that {1, a0, 03,04} € M N J and (o, ) = 46;; for

i,7=1,...,4. Moreover, (z,yh) =0 for all z,y € M N J by (5.9).

Thus, (v,7) = (3ai(h — 1), 2a;(h — 1)) = 1[(esh, k) + (a4, 05)] = 2 and
) =

(M) = Glos + o), 2o (h — 1)) = =3 (i + aj,0p) = —1.
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Ifywv+(NNJ)= %(al +as +as+ayg)(h—1)+ (NN J), we simply take
v = Ya1 + as + az + ag)(h — 1). Then (v,7) = 2 and
1

(ar,m) = (50 + ), (1 + a2+ g + ) (b — 1)

1
= - glaitaj, 01+ 0z + az + ay)

1
= —(4d44)=-1.
g4+

Finally we consider the case yv+NNJ = (a1 +as+ag—as)(h—1)+(NNJ).
Let {k,¢} ={1,2,3,4} — {i,j} and take

1 1 1
vy=—(j+aj+ar—oy)(h—1)= (a1 + a2+ a3 —as)(h—1)+ 5(&4 — ay)

4 4
1
E1(a1+a2+a3—a4)(h—1)+NﬂJ.

Then (v,7) = 2 and

—_

(ra1:7) = (5 (0 + ), (0 + g+ k — ) (b~ 1)

:—g(ai+aj7ai+aj+ozk—ozg)

1
= —(d44)=-1
gd+4

as desired. [
Lemma 5.25. If %H A L AL,AL LAy L Ay or Dy (i.e., the cases for 2C,
2F and 2G), then the lattice L has roots.

Proof. We continue to use the notations (5.22). First, we shall note that the nat-
ural maps %M — D(LFy), =M - D(L (MnJ)) and LN — D(%FN),

V2 V2 V2 V2
and %N — D(% (N N.J)) are all onto.
Case 2C. In this case, %H = A 1L Ay and %HM = %HN = A L

Ay. Let p!,u? be a basis of H such that (u', ) = 46;;. Let pl,,u3, and
W, 1% be bases of Hy and Hy which consist of norm 4 vectors. Then, Fy =
spang {u', p?, iy, 5 (ut + p? + pgy + p3,)} and Fy = spang{u', 12, pjy, 5 (u* +
p? + pk + p%)}. Therefore, by the same arguments as in Lemma 5.20, the cosets
representatives of (2F};)/Fu are given by

1

1 1
0, §(u1+ﬂ2), §(u1+u}u), §(M2+u}w),
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and the cosets representatives of (2Fy;)/Fyn are given by

1 1 1
0, S +p®), S +un), S+ uy).

Therefore, there exist yi,,72, € (M NJ)* so that

1 1
& = 5(m+ )+ and G = 5+ par) + s

are glue vectors for Fiy +(JNM) in M and such that v3,+(MNJ), 73, +(MNJ)
generate 2(M N J)* /(M N J).

Similarly, there exist vi,~v% € (N N J)* so that

1 1
&N = *5(,“1 + p2) +’Y]1V and (y = *5(,“1 +,U}V) +7J2Vv

are glue vectors for Fiy + N N.J in N, and such that v, + (N NJ), v + (N NJ)
generate 2(N N J)*/(N N J).

By Lemma (5.24), we may assume (yi,71;) = —1. Then

1 1
(Enrén) = (§(M1 + pi2) + Yirs —§(M1 + p12) +YN)

= —%((Ml, Ml) + (/‘1’2?/“1’2)) + (’7]1\47’7]1\7)

1
=——(44+4)—-1=-3
Ja+9)
and hence &y; + &y is a root.
Case 2E. In this case, %H =2 A 1L A L Ay and %HM & %HN =~ A
Let 1, pio, 3 € H be such that (u;, pj) = 46; 5. Let ppar € Hy and py € Hy
be norm 4 vectors. Then Hys = Zuys and Hy = Zuy. Moreover,

1
Far = spang {1, pa, i3, 5 (1 + p2 + 3 + par)} = DDy

and

1
Fyn = spang {1, pi2, i3, 5(/11 +p2 + p3 + pn)} = DDy,

Then, by (5.20), 5(u1 + p2) is in both 2(Fy)* and 2(Fy)*. Therefore, there exist
v € 2(M N J)* and vy € 2(N N J)* such that

1 1
Sv=g(m+pe)+ymeM and &y =—o(m+pa)+weN
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are norm 4 glue vectors for Fiy 1 MNJin M and Fy L NNJ in N, respectively.
By Lemma (5.24), we may assume (7yas,yn) = —1. Then,

(énr,€N) :(%(ul + p2) + Y1, —%(m + p2) +N)

1
== g+ p2pn+ p2) + (aryyv) = -2 -1=-3

and &yr + En is a root.

Case 2@G. In this case, %H ~ Dy and %HM = %HN = 0. Recall that
2(DDy4)*/DDy = (Dy)* /D4 by (A.5) and all non-trivial cosets of (D4)*/Dy4 can
be represented by norm 1 vectors [CS, p. 117]. Therefore, the non-trivial cosets
of 2(DDy)* /DD, can be represented by norm 2 vectors. Thus we can find vectors

v € 2H* with (v,v) =2 and yy € 2(M N J)*, vv € 2(N N J)* such that
fr=v+wmweM and {v=-y+wWEN

are norm 4 glue vectors for Fiy 1 M NJin M and Fy L. NNJ in N, respectively.
Again, we may assume (v, vn) = —1 by (5.24) and thus ({37,6y) = —3 and

there are roots. [

Theorem 5.26. Suppose Fyy = Fn = DDy. If L = M + N is integral and
rootless, then H = Fpy N Fy =0 or =2 AA;.

The proof of Theorem 5.26 now follows from Lemmas 5.23 and 5.25.

6 DIH; and DIH,5 theories

We shall study the cases when D = (tpr,tn) = Dihg or Dihia. The following is
our main theorem in this section. We refer to the notation table (Table 3) for
the definition of DIHg(14), DIHg(16) and DIH12(16).

Theorem 6.1. Let L be a rootless integral lattice which is a sum of sublattices
M and N isometric to EEg. If the associated dihedral group has order 6 or 12,
the possibilities for L + M + N, M, N are listed in Table (8).
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Table 8: DIHg and DIH5: Rootless cases

’ Name ‘ F = ‘ L contains ... ‘ with index ... ‘ D(L) ‘
DIHg(14) AAs > Ay ® Eg L AAy 32 193362
DIHg(16) 0 Ay ® Eg 1 38

| DIH15(16) | Ady L Ady | > Ay ® Eg L AAS? | 32 | 1% |

6.1 DIH;

Notation 6.2. Define t := tps, h := tpty. We suppose h has order 3. Then,
N = Mg, where g = h%. The third lattice in the orbit of D := (g,t) is Mg?, but
we shall not refer to it explicitly henceforth. Define F':= M NN, J := anng(F).
Note that F' is the common negated lattice for t); and ¢ in L, so is the fixed
point sublattice for g and is a direct summand of L (cf. (A.10)).

Lemma 6.3. Let X = M or N. Two of the sublattices {(J N X)g'|i € Z} are

equal or meet trivially.

Proof. We may assume X = M. Suppose that 0 £ U = (JNM)g' N (J N M)g’
for i, 7 not congruent modulo 3. Then U is negated by two distinct involutions

t9" and tgj, hence is centralized by g, a contradiction. [J

Lemma 6.4. If F =0, J = A, ® Ejg.

Proof. Use (3.2). O
Hypothesis 6.5. We assume F' # 0 and define the integer s by 3° := |L/(J+F)]|.

Lemma 6.6. L/(J L F) is an elementary abelian group, of order 3° where
s < srank(J).

Proof. Note that g acts trivially on both F' and L/J since L/J embeds in F™*.
Observe that g — 1 induces an embedding L/F — J. Furthermore, g — 1 induces
an embedding L/(J + F) — J/J(g — 1), which is an elementary abelian 3-group

whose rank is at most 3rank(J) since (g — 1)? induces the map —3g on J. O
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Lemma 6.7. s < rank(F) and s € {1,2,3}.

Proof. If s were 0, L = J + F and M would be orthogonally decomposable, a
contradiction. Therefore, s > 1. The two natural maps L — D(F) and L — D(J)
have common kernel J 1 F. Their images are therefore elementary abelian
group of rank s at most rank(F') and at most rank(J). In (6.6), we observed
the stronger statement that s < rank(J). Since rank(J) > 1, 8 = rank(J) +
rank(F) > rank(J) > 2s implies that s < 3. [J

Lemma 6.8. M/((MNJ)+ F)=L/(J L F) is an elementary abelian 3-group
of order 3°.

Proof. The quotient L/(J+ F') is elementary abelian by (6.6). Since L = M + N
and N = Mg, M covers L/L(g —1). Since L(g — 1) < J, M + J = L Therefore,
LIJLF)2M+J)/(J+F)=M+(J+F)/(J+F)=M/(Mn(J+F)).
The last denominator is (M N J) + F since F < M. O

Lemma 6.9. D(F) = 3° x 2renk(F),

Proof. Since %M = Eg and the natural map of %M to D(%F) is onto and

has kernel %(M NnJ LF), D(%F) = 3° is elementary abelian. [
Notation 6.10. Let X = MNJ,Y =NNJ and K = X+Y. Note that Y = Xg

and thus by Lemma 3.2, we have K = Ay ® (%X) .

Let {a, @'} be a set of fundamental roots for Az and denote o = —(a + ).

Let ¢’ be the isometry of As which is induced by the map o — o' — o’ — a.

V2
(%X) Recall that (z,2'g) = —3(z,2') for any z,2’ € K (cf. (3.2)). Therefore,
for any 3 € %X, we may identify (a ® 3)g with o ® 8 = ag’ ® 5 and identify

_ . ro 1
Y = Xg with ag’ ® (\/§X>

Lemma 6.11. We have J = L(g — 1) + K, where K = JNM + JN N as in
(6.10). The map g—1 takes L onto J and induces an isomorphism of L/(J + F)

and J/K, as abelian groups. In particular, both quotients have order 3%.

By identifying K with Ay ® (iX), we may assume X = M NJ =Za®
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Proof. Part 1: The map g— 1 induces a monomorphism. Clearly, L(g—1) < J
and ¢ acts trivially on L/L(g — 1). Obviously, F(g — 1) = 0. We also have
L>J+F>K+F. Since MNJ < K, t acts trivially on J/K. Therefore, so
does g, whence J(g — 1) < K. Since g acts trivially on L/J, L(g —1)? < K.

Furthermore, (g — 1)? annihilates L/(F + K), which is a quotient of L/F,
where the action of g has minimal polynomial 22 + x + 1. Therefore L/(F + K)
is annihilated by 3g, so is an elementary abelian 3-group. We have 3L < F + K.

Let P:={x € L|xz(g — 1) € K}. Then P is a sublattice and F + J < P < L.
By coprimeness, there are sublattices PT, P~ so that PT" NP~ = F + K and
Pt + P~ = P and t acts on P°/(F + K) as the scalar ¢ = +1. We shall prove
now that P~ = F + K and P* = F + J. We already know that P~ > F + K
and Pt > F + J.

Let v € P~ and suppose that v(g — 1) € K. Then v(g? — g) € K and this
element is fixed by t. Therefore, v(g? — g) € annx (M N J). By (3.2), there is
u € M N J so that u(g? — g) = v(g?> — ¢g). Then u — v € L is fixed by ¢g and so
u—v € F. Since u € K, v € F'+ K. We have proved that P~ = F 4+ K.

Now let v € PT. Assume that v ¢ F' + J. Since D acts on L/J such that g
acts trivially, coprimeness of |L/J| and |D/(g)| implies that L has a quotient of
order 3 on which ¢ and u act trivially. Since L = M + N, this is not possible. We
conclude that F + J = P*.

We conclude that P = P~ + PT = F 4+ .J and so g — 1 gives an embedding of
L/(J+ F) into J/K.

Part 2: The map g—1 induces an epimorphism. We know that L/(F +J) &
3% and this quotient injects into J/K. We now prove that J/K has order bounded
by 3°.

Consider the possibility that ¢t negates a nontrivial element x + K of J/K. By
(A.7), we may assume that 2t = —z. But then x € M N J < K, a contradiction.
Therefore, t acts trivially on the quotient J/K. It follows that the quotient J/K
is covered by JT(t). Therefore J/K embeds in the discriminant group of K*(t),
which by (3.2) is isometric to v/3(M N J). Since J/K is an elementary abelian
3-group and D(M N J) = 3% x 2747k (MNJ) " the embedding takes .J/K to the Sylow
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3-group of D(M N J), which is isomorphic to 3° (see (6.9) and use (A.13), applied

to %M and the sublattices %F and %(M nJ). O

Proposition 6.12. If L is rootless and F # 0, then s =1 and F = AA,. Also,
L/(JLF)=3.

Proof. We have s < 3, so by Proposition D.9, FF = AAy, EFEg or AAs 1 AAs
and s = 1,1 or 2, respectively. Note X = M N J is the sublattice of M which
is orthogonal to F. Since M = EFg, X =2 FEFEg, AAs and AAy | AAy if F =
AAs, EEg and AAs | AA,, respectively.

We shall show that L has roots if F = EFEg or AAy 1 AAs. The conclusion

in the surviving case follows from (6.9).

Casel: FF = EFEgand s = 1. In thiscase, X =2 Y = AA,. Hence K = As®As.
As in Notation 6.10, we shall identify X with Za ® As and Y with Zag' @ As.
Then FF L X 2 EEg | Z(a® Asg).

In this case, |M/(F + X)| = 3 and there exist v € (FEg)* and v € (A42)*
with (v,v) = 8/3 and (v/,7/) = 2/3 such that M = span,{F + X,v + a ®+'}.
Then N = Mg = spang{F + Y,y + ag’ ® 7'} and we have

L=M+ N =spany{FEs L (A2 ® A2), v+ (a®7),v+ (ag @)}

Let B := (v +(a®7)) = (v + (ag’ ®7)) = (@ — ag’) ® 7. Then (8,8) =
(@ —ag,a—ag) (v,7)=6-2/3=4.

Let a; be a root of Ay such that (a1,7’) = —1. Then a ® a; € Ay ® A,
where « is in the first tensor factor and oy is in the second tensor factor. Then
Bya® o) = (o —agd',a) - (7,a1) = 2+ 1) - (-1) = —3 and the norm of
B+ (a® ay) is given by

(B+(a®a), B+ (a®a1)) = (3, 0)+(a®a1, a®ar)+2(6, a®ay) = 4+4—6 = 2.

Thus, a1 = f+ (e ® ay) is a root in J. So, L has roots. In fact, we can say
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more. If we take as = B9 + ag’ ® a1, then as is also a root and

(a1,a2) = (B+a®@a,Bg+ g @ o)
=(8,89) + (B,a¢ @ 1) + (@ ® a1, 89) + (@ ® a1, 09’ ® 1)

1
=—-(4-3-3+4)=-1
2
Thus, a1, a2 spans a sublattice A isometric to As.

Case 2: ' = AAy 1 AAs and s = 2. In this case, X 2 Y = AA, 1 AAs.
Hence, K = Ay ® (A2 L As). Again, we shall identify X with Za ® (As L As)
and '+ X = AAy 1 AAy L ZO{@(AQ 1 Az) ~ AAy; 1 AAy 1 AAy 1 AA.
For convenience, we shall use a 4-tuple (1,&2,&3,£4) to denote an element in
(F+K) = (AA2)" L (AA2)" L (A2 ® A2)* L (A2 ® Ag)*, where £1,§3 € (AAy)*
and 3,8y € (A2 ® Ag)".

Recall that |M/(F+X)| = 3% and the cosets of M /(F+X) can be parametrized
by the tetracode (cf. [CS, p. 200]) whose generating matrix is given by

1110
1-101)/°

Hence, there exists a element v € (AA2)* with (y,7) = 4/3 and v/ € (A42)*

with (v/,7') = 2/3 such that

AAs | AAs | Za® (A2 1 Ag),

M = spany , R
(7,7,&@7,0),(7,-’7,0,0&@’7)

Therefore, we also have
AAy | AAy 1 Zag ® (As L A
N:Mgzspanz{ 2 L Ad, ag @ (As / 2),/}
(7,79 ®9,0), (v,—7,0,a9’ @)
and
L=M-+N =
span { AA2 i AA2 1 A2 X (A2 iR Ag), (’Y,’Y,Oé ®’)//,0), }
L =7.0,0@7), (37,09 ©7,0), (7, —7,0,a9' @) |

Let ﬂl = (’7777a ® ’}/70) - (77’77 Oég/ ® 7,70) and ﬂQ = (’}/; _7707a b2y 7/) -
(v, =7,0,ag’ ®~'). Then B1, 32 € L(g — 1) < J and both have norm 4.
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Let a7 and g be roots in Ay such that (a1,7') = (a2,7’) = —1 and (aq, ) =
1. Denote
aj =P1+(0,0,0® a1,0), ay=P1g + (0,0, a9 ® a1,0),
a? = B+ (0,0, ® a9,0), a3 = f1g +(0,0,ad @ az,0),
a} =2+ (0,0,0,a @ 1), a3 = Pag +(0,0,0,ag' ® a1),
at = B2+ (0,0,0,a ® as), a3 = P29 +(0,0,0,aq @ as).

Then similar to Case 1, we have the inner products
(ailﬂail) = (aévaé) =2, and (aivaé) =—1,

for any i = 1,2, 3,4. Thus, each pair {a}, ab}, for i = 1,2, 3,4, spans a sublattice
isometric to As. Moreover, (a}, a?) =0 for any i # j and k, ¢ € {1,2}. Therefore,
J > Ay L Ay L Ay L Ay. Moreover, |spang{at,ab|i = 1,2,3,4}/K| = 3? and
hence J = Ay 1 Ay | Ay 1 As. Again, L has roots. [J

Corollary 6.13. |J: M NJ+NnNJ| =3 and M NJ =anny(F) = EEg.

Proof. (6.11) and (6.12). O

Corollary 6.14. (i) M NJ + NN J is isometric to Ay ® Eg.
(i) L = M + N is unique up to isometry.

Proof. For (i), use (3.2) and for (ii), use (4.1). O

Lemma 6.15. If v = v; +v9 with vi € J* and vo € F™*, then vy has norm % and

v1 has norm in % + 27.

Proof. Since 3vy € F, we may assume that 3vy has norm 12 by (D.7) so that v

has norm %. It follows that v; has norm in % + 27.

6.1.1 DIHg: Explicit gluing

In this subsection, we shall describe the explicit gluing from F+ M NJ+NNJ
to L. As in Notation 6.10, X = M NJ,Y = NNJ and K = X +Y. Since
F = AAs, we have X 2 Y =2 FFEg and K = Ay ® Eg. We also identify X with
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Za® (%X) and Y with Zag' ® (%X), where « is a root of Ay and ¢ is a fixed
point free isometry of As such that ag’ ® 8 = (a ® (8)g as described in (6.10).

Then F' 1 X =2 AAy 1 Za® Eg = AAy 1 EFEg.

Recall that (AA2)*/AAy = 73 x Z3. Therefore, 2(AA2)*/AA;y is the unique
subgroup of order 3 in (AA3)*/AAs. Similarly, 2(Za ® Es)*/(Za ® Eg) is the
unique subgroup of order 3 in (Za ® Eg)*/(Za ® Eg) =2 7S x Zs.

Notation 6.16. Since F' 1 X < M and [M : F L X| = 3, there exists an
element p € F* 1 X* such that 3y € FF+ X and M = spany{F + X, u}.
Let v € (AA2)* be a representative of the generator of the order 3 subgroup in
2(AAs)*/AAy and v a representative of the generator of the order 3 subgroup
in (Eg)*/Es. Without loss, we may choose v and 4 so that (v,v) = 4/3 and
(v',4') = 4/3. Since the image of p in M/(F L X) is of order 3, it is easy to see
that

p=+(y+a®y) or pu=+(y-a®y) modulo F L X.

By replacing p by —u and +' by —+/ if necessary, we may assume p =y +a®7'.
Then v := pug =~v+ ag’ ®+ and N = span,{F + Y, v}.

Proposition 6.17. With the notation as in (6.16), L = M+ N = spany{AAs L
Ay ® B,y +a @9,y +ag @7}

Remark 6.18. Let 8= (a —ag) @+ = (v+a®+) — (y+ ag ®+'). Then
BeLlg—1)=J=ann(F)but 8= (a—ad)®+y ¢ K = Ay ® Es. Hence
J =spany {0, K} as |J : K| = 3. Note also that (4,3) =6-4/3 = 8.

Lemma 6.19. J*(t) = ann;(M N J) = 6E;.

Proof. By Remark (6.18), we have J = span, {3, K}, where = (o« — ag') ® v/
and K = MNJ+NNJ = Ay ® Eg. Recall that M N J is identified with
Za® Eg and N N J is identified with Zag’' ® Eg. Thus, by (3.2), anng (M NJ) =
Z(ag —ag'?) ® Eg = \/6Eg. Since (o, ag’ —ag'?) =0, B9 = (ag’ — ag?) @+ also
annihilates M NJ. Therefore, JT(t) = annj(MNJ) > spang{anng(MN.J),Bg}.
Since 7' + Eg is a generator of Ef/Es, we have spany{Fgs,~'} = Ef and hence

spang {annx (M N.J), Bg} = Z(ag — ag™) @ spany{Es,v'} = V6E;.



FE Eg-Lattices and Dihedral Groups 663

Note that (ag’—ag’?) has norm 6. Now by the index formula, we have det(J*(t)) =
26 x 3% = det(v/6E;) and thus, we have J*(t) = anny(M N J) = V6E;. O

Corollary 6.20. J is isometric to the Coxeter-Todd lattice. Fach of these is not

properly contained in an integral, rootless lattice.

Proof. This is an extension of the result (D.16). Embed J in J', a lattice
satisfying (D.15) and embed the Coxeter-Todd lattice P in a lattice @) satisfying
(D.15). Then both J" and @ satisfy the hypotheses of (D.15), so are isometric.
Since det(J) = det(P) = 3%, J = P. The second statement now follows from
(D.16).0

6.2 DIH

Notation 6.21. Let M, N be lattices isometric to F Fg such that their respective
associated involutions tys,tx generate D = Dihiy. Let h := tjrtn and g := h2.
Let z := h3, the central involution of D. We shall make use of the DI Hjg results
by working with the pair of distinct subgroups Dy := Dy,, = (tum,t9,) and
Dy := Dy, := (tn,t%). Note that each of these groups is normal in D since
each has index 2. Define M := Mg, N = Ng. If X is one of M, N, we denote by
Lx,Jx, Fx the lattices L := X + )Z', J, I associated to the pair X,)?, denoted
“M” and “N” in the DIHg section. We define Kx := (X NJ)+ (X NJ)g, a
Dx-submodule of Jx. Finally, we define F' := Fp to be {x € Ljzg = g} and
J = Jp :=annp(F). We assume L is rootless.

Lemma 6.22. An element of order 3 in D has commutator space of dimension
12.

Proof. The analysis of DI Hg shows just two possibilities in case of no roots (cf.
Lemma (6.4) and Proposition (6.12)). We suppose that g — 1 has rank 16, then

derive a contradiction.

From (6.4), M+ Mg = As®Es. From (3.5), there are only three involutions in
O(A2® Eg) which have negated space isometric to EEg. Therefore, L > M+ Mg.
Since D(M + Mg) = 3%, L/(M + Mg) is an elementary abelian 3-group of rank

at most 4, which is totally singular in the natural %Z/Z—Valued bilinear form.
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Note also that L is invariant under the isometry of order 3 on Ay ® Eg coming
from the natural action of O(As) x {1} on the tensor product. We now obtain a

contradiction from (A.18) since L is rootless. [

Corollary 6.23. Jy = Jn has rank 12 and Fy; =2 Fy = AAs.

Proof. Use (6.12) and (6.22). O

Corollary 6.24. The lattice J has rank 12 and contains each of Jyr and Jn
with finite index. The lattice F = Fp has rank 2, 3 or 4 and F/(Fy + Fn) is an

elementary abelian 2-group.

Proof. Use (6.23) and (A.2), which implies that F/(Fy + Fn) is elementary

abelian.

Notation 6.25. Set t := t); and u := ty.

Lemma 6.26. The involutions t9 and u commute, and in fact t9u = z.

Proof. This is a calculation in the dihedral group of order 12. See (6.21), (6.25).

We have h = tu and h3 = 2, so t9 = th* = wtut -t - tutu = utututu = uh® = uz. 0

We now study how ¢y acts on the lattice J.
Lemma 6.27. For X = M or N, Jx and Kx are D-submodules.
Proof. Clearly, t9 fixes Lyy = M + Mg, Fy, Jy and Ky = (M N Jy) + (M N
Jar)g, the Dys-submodule of J generated by the negated spaces of all involutions

of Dys. Since ty = u = t9z, it suffices to show that the central involution z fixes
all these sublattices, but that is trivial. [J

Lemma 6.28. The action of t on J/Jas is trivial.

Proof. Use (A.7) and the fact that M NJ < Jy. O

6.2.1 DIng: Study of JM and JN

We work out some general points about Fis, Fiv, Jar, Jn, Ky and K. We con-
tinue to use the hypothesis that L has no roots.
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Lemma 6.29. As in (6.25), t =ty u=1n.

(i) J(g—1) < Iy NJn and J/(Jy N JN) is an elementary abelian 3-group
of rank at most 3rank(J) = 6. Also, J/(Jy N Jy) is a trivial D-module.

(ii)J:JM—I—JN:L(g—l).

Proof. (i) Observe that g acts on J/Jys and that ¢ acts trivially on this quotient
(6.28). Since g is inverted by t, g acts trivially on J/Jp;. A similar argument
with u proves g acts trivially on J/Jy. Therefore, J(g — 1) < Jy N Jy. Since
(g —1)? acts on J as —3g, (i) follows.

(ii) We observe that Lx(g — 1) < Jx, for X = M,N. Since L = M + N,
L(g—1) < Jp + Jn. The right side is contained in J = anng,(F'). Suppose that
L(g—1) < J. Then J/L(g — 1) is a nonzero 3-group which is a trivial module
for D. It follows that L/(F + L(g — 1)) is an elementary abelian 3-group which
has a quotient of order 3 and is a trivial D-module. This is impossible since
L=M+N.So,J=Jy+Jy=Lg-1). O

Lemma 6.30. F = Fy; + Fl.

Proof. Since F'is the sublattice of fixed points for g. Then F'is a direct summand
of L and is D-invariant. Also, D acts on F' as a four-group and Tel(F, D) has
finite index in F. If F is any D-invariant 1-space in F', ¢t or u negates E (because
L = M + N). Therefore, Fj; + Fx has finite index in F' and is in fact 2-

coelementary abelian (A.2).

Consider the possibility that Fi; + Fy < F, i.e., that Fjs + Fiy is not a direct
summand. Since F; and Fy are direct summands, there are o € Fy, 3 € Fiy so
that 3(a+3) € L but o and 303 are not in L. Since by (6.23) Fas & Fy = A4,
we may assume that a, 3 each have norm 4. Then by Cauchy-Schwartz, %(a +03)
has norm at most 4 and, if equal to 4,  and § are equal. But then, %(a +0) =

«a € L, a contradiction. [J

6.2.2 DIHiy: the structure of F

Lemma 6.31. Suppose that Fyy # F. Then Fpr N Fy is 0 or has rank 1 and is

spanned by a vector of norm 4 or norm 12.
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Proof. Since F); and Fy are summands, Fy; # Fy implies rank(Fy;+ Fy) > 3,
so Fyy + Fy has rank 3 or 4. Assume that )y N Fy has neither rank 0 or rank
2. Since O(Fyr) = Syms x 2 and Fyy N Fy is an eigenlattice in Fj; for the
involution ¢, it must be spanned by a norm 4 vector or is the annihilator of a

norm 4 vector. [J

Lemma 6.32. Suppose that the distinct vectors u,v have norm 4 and u,v are in
L\ (J+ F). We suppose that uw € Ly \ (J + F) and v € Ly \ (J + F). Write
u = uy + ug and v = vy + ve, where uy,v; € spang(J) and ug,vy € spang(F).

We suppose that each of ui,us,v1,ve are nonzero. Then
(i) w1 and v1 have norm §;

(ii) ug and vy have norm %.

Proof. Since 4 = (u,u) = (u1,u1) + (u2,u2), (i) follows from (ii). To prove
(ii), use the fact that L/(J L F) is a 3-group, a rescaled version of (D.7) and
(ug,u2) < (u,u). O

Lemma 6.33. (i) Suppose that Fyf N Fx = Zu, where w # 0. Let v span
annp,, (u) and let w span annpy(u). Then F = span{fu,v,w,i(u + v), $(u +
w), (v +w)} and (u,u) =4, (v,v) =12 = (w,w).

(i) If the rank of O3(D(F)) is at least 2, then
(a) F = Fy L Fy (rank 4); or
(b) F has rank 3 and the number of nontrivial cosets of O3(D(F')) = 3 x 3

which have representing elements whose norms lie in % + 27, respectively % + 27

are 4 and 4, respectively.

Proof. (i) By (6.31), v has norm 4 or 12. The listed generators span F =
Fy 4 Fy since Fyy = span{u,v, 3(u+v)} and Fy = span{u,w, 3(u + w)}. If
(u,u) = 12, then v and w have norm 4 and 3(v + w) is a root in F, whereas L is

rootless. So, (u,u) =4 and (v,v) =12 = (w,w).

Now we prove (ii). Since we have already discussed the case of rank(F’) equal
to 2 and 4, we assume rank(F) = 3, for which we may use the earlier results.

In the above notation, we may assume that F' = span{u,v,w, %(u + v), %(u +
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w), 3(v + w)} and (u,u) = 4 and (v,v) = 12 = (w,w). Then O3(D(F)) = 32
and the pair of elements v, 3w map modulo F to generators of Os(D(F)). Since

their norms are %, % and they are orthogonal, the rest of (ii) follows. O

6.2.3 DIH2: A comparison of eigenlattices

Notation 6.34. Let v be the usual additive 3-adic valuation on Q, with v(3¥) =
k. Set P:= MgnJ, K := P+ Pg = Z[(9)]P, R := annk(P). Note that P is
the (—1)-eigenlattice of 9 in both J and K while R is the (+1)-eigenlattice of ¢9
in K.

We study the actions of v on J, Jys, P, K and R.

Lemma 6.35. J = Jy; = Jy and D(J) = 35.

Proof. Since J contains Jjs with finite index, we may use (6.20). O

Notation 6.36. Define integers r := rank(P*(u)), s := rank(P~(u)). We have
r =rank(R™(u)),s = rank(R" (u)) and 7 + s = 6.

Corollary 6.37. (r,s) € {(2,4),(4,2),(6,0)}.

Proof. Since P~ + R~ has finite index 3” in J (u) = NNJ = EEs and
det(P~ + R™) = 2m3" for some m > 6, the determinant index formula implies
that r is even. Similarly, we get siseven. If r = 0, then s = 6 and JNMg = JNN,
and so z := t9u is the identity on J. Since t9 # wu, we have a contradiction to

the DIH4 theory since the common negated space for t9 and w is at least 6-

dimensional. So, r # 0. [J

6.3 s=0
Lemma 6.38. If s =0, then the pair Mg, N is in case DIH4(15) or DIH4(16).

Proof. In this case, Mg N N is RSSD in Fy so is isometric to AAs or AA; or
V6A;. Then DIH, theory implies that Mg N N is isometric to AA; or 0. [J

Lemma 6.39. s # 0.

667
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Proof. Suppose that s = 0. Then u acts as 1 on Mg N J. The sublattice
(MgnJ) L (NNJ) has determinant 2!232 is contained in Tel(J,u), which
has determinant 2'2det(J) = 2'235. Since Mg N J = J~(#9), it follows from
determinant considerations that N N J is contained with index 32 in J*(#9).
Since s =0, JT(#9) < J (u) = NN J and we have a contradiction. [J

6.4 sec {24}

Lemma 6.40. If s > 0 and det(P~(u)) is not a power of 2, then s = 2 and
P~ (u) =2 2A5 and the pair Mg, N is in case DIH,(12).

Proof. Since P~ (u) is RSSD in P and det(P~(u)) is not a power of 2, (D.24)
implies that P~ (u) = AAs or 245 or (2A3)(AA;)™. Since s = rank(P~(u)) is 2
or 4, we have P~ (u) = 245 or (243)(AA1)%. By DIH, theory, MgN N = DD,.
Since P~ (u) is contained in Mg NN, P~ (u) = 245. O

Lemma 6.41. (i) If s > 0 and det(P~(u)) is a power of 2, then s = 2 and
P~ (u) = AA; L AA; or s =4 and P~ (u) = DDjy.

(ii) If P~ (u) = DDy, the pair Mg, N is in case DI H4(12).

(iii) If P~ (u) = AAy L AAy, the pair Mg, N is in case DIH4(14). In
particular, Fyy N Fy =0 and so F = Fyy 1L Fy.

Proof. (i) Use (D.24) and evenness of s.

(ii) This follows from DI H, theory since M gN N contains a copy of DDy and
Mg +# N.

(iii) Since dim(P~ (u)) = 2, it suffices by DI H4 theory to prove that dim(Mgn
N) # 4. Assume by way of contradiction that dim(MgNN) = 4. Then MgNN =
DDy and rank(MgN N N F) = 2. This means that F' = Fjy = Fy = AA2.
Therefore, Mg N N = DDy contains the sublattice P~ (u) L FF= AA; 1 AA; L
AA,, which is impossible. [

Lemma 6.42. Suppose that P~ (u) is isometric to 2A3. Then rank(L) = 14 and

L has roots.
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Proof. We have det(P~(u) L R™(u)) = 223 -263% = 283%. Since N N J covers
J/ Ky, the determinant formula implies that |J : Kps| = 3% and so det(J) = 3%.
Now use (6.20). O

Lemma 6.43. P~ (u) is not isometric to AA; L AA;.

Proof. Suppose P~ (u) = AA; 1 AA;. Then, P*(u) = v/2Q, where Q is the
rank 4 lattice which is described in (D.27). Also, Rt = v/64? and R~ = V6Q.
Then P~ (u) L R™(u) embeds in EEg. Since sublattices of Eg which are isometric
to A? are in a single orbit under O(Eg), it follows that +/3Q embeds in Q.

However, this is in contradiction with (D.32). O

To summarizes our conclusion, we have the proposition.

Proposition 6.44. P~ (u) = MgNN = DD4 and the pair is in case DI H4(12).

6.5 Uniqueness of the case DIH5(16)

As in other sections, we aim to use (4.1) for the case (6.41)(ii).

The input M, N determines the dihedral group (t,u) and therefore Mg and
Mg+ N. By DIH,4 theory, the isometry type of Mg+ N is determined up to
isometry. Since Mg + N has finite index in M + N, M + N is determined by
(4.1). Thus, Theorem (6.1) is proved.

7 DIH,, theory

Notation 7.1. Define ¢t := tp;, h := tptny. We suppose h has order 5. Let
g := h3. Then g also has order 5 and D :=< t7,ty >=<t,g >. In addition, we
have N = Mg. Define F':= M NN, J := annr(F). Note that F' is the common
negated lattice for tj; and ¢ty in L, so is the fixed point sublattice for g and is a
direct summand of L (A.10).

Definition 7.2. Define the integer s by 5° := |L/(J + F)|.

Lemma 7.3. Equivalent are (i) L =J+ F; (ii) s =0; (i) F =0; (i) J = L.
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Proof. Trivially, L = J 4+ F and s = 0 are equivalent. These conditions follow
if F =0orif J =0 (but the latter does not happen since g has order 5). If
L = J+ F holds, then M = (JN M) L F which implies that F' =0 and J = L
since M =2 FFEyg is orthogonally decomposable. [J

Lemma 7.4. (i) g acts trivially on both F and L/J.
(ii) g — 1 induces an embedding L/F — J.
(iii) g — 1 induces an embedding L/(J + F) — J/J(g — 1), whose rank is at

most Yrank(J) since (g — 1)* induces the map 5w on J, where w = —g> 4+ g — 1

mduces an invertible linear map on J.
(iv) s < grank(J), so that s =0 and F =0 or s € {1,2,3,4} and F # 0.

(v) The inclusion M < L induces an isomorphism M/(M N J) + F) =
L/(J+ F) = 5%, an elementary abelian group.

Proof. (i) and (ii) are trivial.

(i) This is equivalent to some known behavior in the ring of integers Z[e2™%/?],

but we give a self-contained proof here. We calculate (g — 1)* = g* — 4¢> + 6% —
49 +1 = (¢* + ¢® + ¢*> + g + 1) + 5w, which in End(J) is congruent to 5w.
Note that the images of g + 1 and ¢® + 1 are non zero-divisors (e.g., because
(g+1)(g*—g*>+g*>—g+1)=¢>+1=2, and 2 is a non zero-divisor) and are
associates in End(J) so that their ratio w is a unit. For background, we mention
[GHig].

(iv) The Jordan canonical form for the action of g—1 on J/5.J is a direct sum
of degree 4 indecomposable blocks, by (iii), since (g—1)* has determinant 5"***(/)
Since the action of g on L/J is trivial, s < frank(J). Since rank(J) < 16, s < 4.
For the case s = 0, see (7.3).

(v) Since N = Mg, N and M are congruent modulo J. Therefore L =
M+N=M+Jandso b5 =2 L/(J+F)=M+J)/(J+F)=(M+(J+
F)/(J+ F) = M/(Mn(J+ F)) (by a basic isomorphism theorem) and this
equals M/((M N J)+ F) (by the Dedekind law).

(
Since L(g — 1) < J, (g — 1) annihilates L/(J + F). Since (g — 1)* takes
(L/(J+F)) to5(L/(J+ F)), it follows that 5L < J + F. That is, L/(J + F) is
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an elementary abelian 5-group. [
Lemma 7.5. s =0, 1,2 or3 and F = M NN = 0, AAy, vV2M(4,25) or
V2A4(1).

Proof. We have that %M = Fg. The natural map of %M to D(%F) is

onto and has kernel % ((MnJ)LF)). Therefore, D(%F) = 5% is elementary
abelian. Now apply (D.18) to get the possibilities for - F and hence for F. Note

V2
that M = N is impossible here, since ty; # ty. O

7.1 DIH,;: Which ones are rootless?

From Lemma 7.5, s =0, 1, 2 or 3. We shall eliminate the case s =1, s = 2 and

s = 3, proving that s =0 and F' = 0.

Lemma 7.6. If L = M + N s integral and rootless, then F = M NN = 0.

Proof. By Lemma 7.5, we know that M NN 220, AA; v2M(4,25) or v/2A4(1)
since M # N. We shall eliminate the cases M N N = AAy, v/2M(4,25) and
V24,(1).

Case: F=MNN = AAy. In this case, M NJ =2 NNJ = AAy. Therefore,
there exist o € F* and f € (M NJ)* such that M = spany{F + (M NJ),a+ G}.
Without loss, we may assume (o, «) = 12/5 and (3, 3) = 8/5. Let v = Bg. Then,
(a4 B)g=a+v € N and we have N = spany{F + (N N J),a + ~}. Since L is
integral and rootless and since « + 3 € L has norm 4, by (D.20),

0> (a6, (a+B)g) = (a+ fa+7) = (@0) +(8,7) = & +(5,7)

Thus, we have (3,7) < —%2. However, by the Schwartz inequality,

B < VEAG =5

which is a contradiction.

1%

Case: F = M NN = 2M(4,25). In this case, M NJ = NnNJ
\/§M(4,25), also. Let ﬁu, \/51), ﬂw, V22 be a set of orthogonal elements in
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F = \/2M(4,25) such that their norms are 4,8, 20, 40, respectively (cf. (B.7)).
Let v2u/,v/20', V2w, /22’ be a sequence of pairwise orthogonal elements in
M N J such that their norms are 4,8, 20,40, respectively. By the construc-
tion in (B.8) and the uniqueness assertion, we may assume that the element
v=Y(w+z+2')is in M. Since v has norm 4, by (D.20),
0> (v,v9) = %(w—kx—i—w’,w—i—x—i—x’g) = %—l—%(
Thus, we have (z,2'g) < —30. By the Schwartz inequality,

(', 2"g)l < /(2" 2")(2'g, 2'g) = 20,

2,2 g).

which is again a contradiction.

Case: F = M NN = /2A4(1). Since F is a direct summand of M and N,

we have M NJ 2 N NJ = y244(1) by (D.22). Recall that (A44(1))* = = Ay.

By the construction in (D.23), there exists o € 2F* with (a,a) =2 x 8/5 =
16/5 and apy € 2(MNJ)* with (aar, anr) = 2x2/5 = 4/5 such that y = a+apy €
M.

Since (y,y) = 4, by (D.20),
0> (y,y9) = (a4 am,a+amg) = (o, a) + (anm, anmg)

and we have (ay, ang) < —(a,a) = —16/5. However, by the Schwartz inequal-
ity,

(s, ang)| </ (anr, ann) (g, ang) = 4/5,

which is a contradiction. [J

7.2 DIH;3: An orthogonal direct sum

For background, we refer to (B.3), (B.10), (D.19) — (D.21). Our goal here is to
build up an orthogonal direct sum of four copies of AAy inside L. We do so
one summand at a time. This direct sum shall determine L (see the following

subsection).

Notation 7.7. Define Z(i) := {z € M|(xz,x) = 4,(x,zg) = i}. Note that
(z,zg) = —3,—2,—1,0, or 1 by Lemma D.20.



FE Eg-Lattices and Dihedral Groups 673
Lemma 7.8. For u,v € M, (u,vg) = (u,vg') = (ug,v).

Proof. Sincet preserves the form, (u,vg) = (ut,vgt) = (—u,vtg~1) = (—u, —vg~1)

= (u,vg~1). This equals (ug,v) since g preserves the form. [J

Lemma 7.9. If u,v,w is any set of norm 4 vectors so that u+ v+ w = 0, then
one or three of u,v,w lies in Z(—2) U Z(0). In particular, Z(—2) U Z(0) # 0.

Proof. Suppose that we have norm 4 vectors u, v, w so that u+v+w = 0. Then
0= (u+v+wug+vg+wg) = (u,ug)+ (v,vg9) + (w,wg) + (u,vg) + (ug,v) +
(4, ) + (g, ) + (v, wg) + (vg, ) = (u, ug) + (v, v9) + (w, wg)(mod2), by (7.5)
whence evenly many of (u,ug), (v,vg), (w,wg) are odd. OJ

Now we look at D-submodules of L and decompositions.

Definition 7.10. Let My = {a € M| (a,a) = 4}. Define a partition of My
into sets M} := {a € My|aZ[D] = A4(1)} and M? := {a € My|aZ[D] = AA4}
(cf. (D.20)). For a,3 € M2, say that o and 3 are equivalent if and only if
aZ[D] = BZ[D)]. Define the partition Ny = N} U N? and equivalence relation on
NZ similarly.

Remark 7.11. The linear maps g* + g~* take M into M since they commute
with t. Also, g2 4 ¢ and g+ ¢g* are linear isomorphisms of M onto M since their

product is —1. Note that they may not preserve inner products.

Lemma 7.12. My = M} and M} = 0.

Proof. Supposing the lemma to be false, we take o € Mj. Then the norm of
alg® +¢%) is 4+ 2(ag? ag®) + 4 = 8 — 2 = 6 (cf. (D.20)), which is impossible
since M = EFEjg is doubly even. [J

Lemma 7.13. Let o € My. Then M NaZ[D] = AA3.

Proof. Let a € My. Then by (7.12), oZ|D] = AA,. In this case, we have either
(1) (a,g) = —2 and (a,ag2) =0or (2) (a,ag) =0 and (a, agQ) = -2

In case (1), we have a(g?+g3) € My and o and a(g?+g?3) generate a sublattice
of type AA? in M N oZ[D]. Similarly, ag, a(g? + g®)g generate a sublattice of
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type AA? in N N aZ[D]. Since M N N = 0, we have rank(M N oZ[D]) =
rank(N N aZ[D]) = 2. Moreover, {a, a(g* + %), ag, a(g>® + g*)} forms a Z-basis
of an AAy-sublattice of aZ[D] = AA4. Thus, {a,a(g? + ¢°),ag,a(g® + g*)} is
also a basis of aZ[D] and spany{a, a(g? 4+ ¢3)} is summand of aZ[D]. Hence,
M N aZ[D)] = spang{a, a(g® + %)} = AA? as desired.

In case (2), we have a(g + ¢*) € My and thus M N oZ[D] = spany{c, a(g +
g*)} = AA? by an argument as in case (1). O

Lemma 7.14. Suppose that a € M2, 3 € N? and oZ[D] = BZ[D). Let the equiv-
alence class of o be {xa,+a'} and let the equivalence class of 8 be {+3,+3'}.
After interchanging 8 and one of =3 if necessary, the Gram matriz of a, o/, 3, 3’

(2

2001 4002
2021—1:042—2
0120 0240
1-10 2 2-20 4

Proof. We think of A4 as the 5-tuples in Z® with zero coordinate sum. Index
coordinates with integers mod 5: 0, 1, 2, 3, 4. Consider g as addition by 1 mod
5 and t as negating indices modulo 5. We may take a := v/2(0,1,0,0,—1),a/ :=
v2(0,0,1,—1,0). We define 3 := ag, 8’ := o/g. The computation of the Gram

matrix is straightforward. [J

Lemma 7.15. Let m > 1. Suppose that U is a rank 4m Z[D]-invariant sublattice
of L which is generated as a Z[D]-module by S, a sublattice of U N M which is
isometric to AAY™. Then anny (U) contains a sublattice of type AAT™>™.

Proof. We may assume that m < 3. Since ¢ inverts g and g is fixed point free
on L, U™ (t) = U N M has rank 2m. Let S be a sublattice of U N M of type
AA2™. Then S has finite index in UN M. Let W := ann,(U), a direct summand
of L of rank 16 — 4m. The action of g on W is fixed point free and t inverts g
under conjugation, so W N M = anny(U) is a direct summand of M of rank
8 — 2m. It is contained in hence is equal to the annihilator in M of S, by rank
considerations, so is isometric to DDg, DDy, AAT or AA2. Each of these lattices

contains a sublattice of type AA§_2m. U
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Corollary 7.16. L contains an orthogonal direct sum of four D-invariant lat-

tices, each isometric to AAy.

Proof. We prove by induction that for k = 0,1, 2, 3,4, L contains an orthogonal
direct sum of k£ D-invariant lattices, each isometric to AA4. This is trivial for
k=0.If 0 <k <3, let U be such an orthogonal direct sum of k copies of AAy4.
Then M NU = AA%]’C and thus anny;(U) contains a norm 4 vector, say a. By
(7.12), aZ[D] =2 AA4. So, U L aZ[D] is an orthogonal direct sum of (k + 1)

D-invariant lattices, each isometric to AA4. I

Corollary 7.17. L = M + N is unique up to isometry.

Proof. Uniqueness follows from the isometry type of U (finite index in L) and
(4.1). We take the finite index sublattices M; := M NU and Ny := NNU and
use (7.14). An alternate proof is given by the gluing in (7.18) O

7.3 DIHy;: From AA} to L

We discuss the gluing from a sublattice U = Uy L Uy L Us L Uy, as in (7.16) to

L. We assume that each U; is invariant under D.

By construction, M/(MNU) = 2% MNU = AA§. A similar statement is true
with NV in place of M. Since L = M+ N, it follows that L/U is a 2-group. Since g
acts fixed point freely on L/U, L/U is elementary abelian of order 2% or 28. Also,
L/U is the direct sum of Cp i (t) and Cp,/y7(u), and each of the latter groups is
elementary abelian of order |L : U|% So |L : U]% =|M: MNU?=(24)2 =28,
Therefore, det(L) = 5* and the Smith invariant sequence of L is 1125,

Proposition 7.18. The gluing from U to L may be identified with the direct
sums of these two gluings from U N M to M and U NN to N. FEach gluing is
based on the extended Hamming code with parameters [8,4,4] with respect to the

orthogonal frame.

7.4 DIH,,: Explicit gluing and tensor products

In this section, we shall give the glue vectors from U = U; L Uy L Us L Uy
to L explicitly in Proposition 7.23 (cf. Proposition 7.18). We also show that L
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contains a sublattice isomorphic to a tensor product A4 ® A4.

Notation 7.19. Recall that M NU; = AA; L AA; for i =1,2,3,4. Let «; €
MyNU;i=1,2,3,4, such that («;, a;9) = —2. Note that such «; exists because
if (ay,0;9) # —2, then (a4, a;9) = 0 and (q, a;9%) = —2. In this case, a; =
ai(g+g*) € MyNU; and (&;, dyg) = —2 (7.11).

Set o := ai(g® + ¢3) for i = 1,2,3,4. Then o, € MyNU; and M NU; =
spang{a;, o} (7.11).

Lemma 7.20. Use the same notation as in (7.19). Then for alli =1,2,3,4, we
have (ai, ig) = =2, (i, aig?) = 0, (o4, 0f) = 0, (o, ojg) = 0 and (4, ajg) =
—2.

Proof. By definition, (a;, a;g) = —2 and («;, a;g%) = 0. Thus, we have (o}, ;) =

(0%(92 + 93), a;) = 0. Also,

(of, ag) = (i(g® + ¢°), i(g® + 9°)9)
= (@ig? a;g®) + (ig?, aigh) + (ig®, aig®) + (aig®, auig®)
=-24+04+4—-2=0

and
(i, ) = (i, o5(g* + 6°)g) = (i, ig?) + (o, ") =0 — 2 = 2.
O

Remark 7.21. Since M and U are doubly even and since %(U NM) = (A4)8
and (A1)* = A, for any 8 € M\ (UN M),

4 /
8= Z(%ai + %aé) where b;, b; € Z with some b;, b; odd.
i=1

Lemma 7.22. Let 5 € M\ (UNM) with (8,3) = 4. Then, one of the following

three cases holds.

(i) |bi| =1 and b; =0 for all i =1,2,3,4;

(ii) |b;| =1 and b; =0 for all i =1,2,3,4;
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(iii) There exists a 3-set {i,7,k} C {1,2,3,4} such that b? = b? =1 and b? =
b =1.

Proof. Let 8= S0 (%ai + %af) € M\ (UN M) with (3,8) = 4. Then we
have 3% (b2 + /%) = 4. Since no |b;| or |b| is greater than 1 (or else no b; or b
is odd), b;, b, € {—1,0,1}. Moreover, (3,3g) =0 or —2 since 3 € My. By (7.20),

4 b b, 4 ,
(ﬁaﬁg):<z 72 Zalg+ag)>
=1 =1
4

[t

:i > (b7(—2) + 20:b)(—
=1

4
Z (b2 + 2b;b}) .
1:1
If (ﬁ?ﬂg) = _27 then

4 4
D07 +2bl) =4 =" (7 +b).
=1 =1

and hence we have (*) 327, b(b; — 2b;) =

Set k; := bl(b; — 2b;). The values of k;, for all b;,b, € {—1,0,1}, are listed in
Table 9.

Table 9: Values of k;

b, 0 | —1|—1|—-1|1/[1]1
b; ~1,0,1|—-1| 0 | 1 |=1|0] 1
k=W, —2b)| 0 | -1 1|3 |3 |1]-1

Note that k; = 0,£1 or 3 for all ¢ = 1,2,3,4. Therefore, up to the order
of the indices, the values for (ki, ko, ks, ks) are (3,—1,—1,-1), (1,-1,1,—1),
(1,-1,0,0) or (0,0,0,0).

However, for (ki, ko, k3, ks) = (3,—1,—1,—1) or (1,—-1,1,-1), b* = b? =

for all i = 1,2,3,4 and then Z?:l(b? + b?) = 8 > 4. Therefore, (ki1, k2, k3, k4) =
(1,-1,0,0) or (0,0,0,0).
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If (K1, ko, k3, k4) = (1,—1,0,0), then we have, up to order, (b})? = 1 (whence
ki = 1), by = 0, b, = by = +1 (whence ks = —1) and by = b} = 0. Since
SL (02 4 b?) = 4, b3 + b7 = 1 and hence we have (iii).

If k; = b(b, —2b;) = 0 for all i = 1,2,3,4, then b, = 0 for all 4 and we have
(i). Note that if b} # 0, b, — 2b; # 0.

Now assume (3, 8g) = 0. Then Z?Zl (b7 + 2b;b]) = 0. Note that this equation
is the same as the above equation (*) in the case for (3, 8g) = —2 if we replace
b; by b, and b, by —b; for i = 1,2,3,4. Thus, by the same argument as in
the case for (8,3g) = —2, we have either b? + 2b;b, = 0 for all i = 1,2,3,4 or
b2 +2b1b) = 1,b3 + 2bobl, = —1, and b3 = by = 0. In the first case, we have b; = 0
and b§2 =1foralli =1,2,3,4, that means (ii) holds. For the later cases, we have
by = 1,00 =0, by =1,y = —1, bg = by = 0, and b + b2 = 1 and thus (iii) holds.
U

Proposition 7.23. By rearranging the indices if necessary, we have

o MOU,%(OQ—l—ozg+a3+a4),%(a’1+a’2+ag+af4),
= span
z %(al—i—az—1—0/2—1-041),%(041—1-043—1—0/2—1-0[3)

and

N:Mg:spanz{N“U’%%+ﬁ2+ﬂz+ﬂ4>,5<ﬂa+ﬁg+ﬁg+m>,},

$(B1+ B+ By + B)), 5(B1 + B3+ By + B5)

where B; = cig and B = olg for alli=1,2,3,4.

Proof. By (7.22), the norm 4 vectors in M \ (U N M) are of the form

1

1 1
Q(ialiagiagia4), —(+a) £ o+ af+al)), or i(iaiiajia;-:ta;),

2

where i, j, k are distinct elements in {1,2,3,4}.

Since M = EEg and U N M = (AA;)8, the cosets of M/(U N M) can be
identified with the codewords of the Hamming [8,4,4] code Hs.

Let ¢ : M/(UNM) — Hg be an isomorphism of binary codes. For any g € M,
we denote the coset 3+ U € M/(U N M) by 3. We shall also arrange the index

set such that the first 4 coordinates correspond to the coefficient of %al, %ozg, %043
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and fay and the last 4 coordinates correspond to the coefficient of o, $ab, 3o

1
and 5a7y.

Since (1,...,1) € Hg, we have

1
—(1+as+as+as+a) +ab+as + ) € M.
2

We shall also show that 3(a1 + a2 + a3 + au) € M and hence 3(o) + o +
o +afy) € M.

Since M /(M NU) = Hg, there exist (1,2, 03,04 € M \ (U N M) such that
©(B1), (B2), 0(B3), ©(B41) generates the Hamming code Hg. By (7.22), their pro-
jections to the last 4 coordinates are all even and thus spans an even subcode of
Z3, which has dimension < 3. Therefore, there exists a1, az,as,as € {0,1}, not
all zero such that (a1 + az B+ asfs+asf1) projects to zero and so must equal
(11110000). Therefore, (v + a + a3 + au) € M.

Since [M/(U N M)| = 24, there exists 3’ = (a; + a;j + o +ap) and B" =
$(um + ay + o, + ) such that

1 1
M = spany, {M N, §(a1 + oo + asg + ay), 5(0/1 +ah +af + aﬁl),ﬁ',ﬂ"} .

Note that
1
B+ 5" = (i + o + am + o) + (o + af, + o, + ap)).

Let A= ({i,j}U{m,n}) — ({i,j} N {m,n}) and A":= ({5, k} U{n, }) — ({5, K} O
{n, £}). We shall show that [{i, j}N{m,n}| = [{j,k}N{n, ¢} =1 and |ANA'| = 1.

Since ¢(B' 4+ 3") € Hg but p(3' + ) ¢ spang,{(11110000), (00001111)}, by
(7.22), we have

1
ﬁ,+/6” c §(ap—|—04q+a;)+04,/r)+MﬂU,
for some p,q € {i,7,m,n}, p,r € {j, k,n, £} such that p,q,r are distinct.

That means 3 (o +aj+am+an) € 3(ap+ag)+MNU and %(a;+a;€+a%+a}) €
3(al+al)+MNU. It implies that A = ({7, j}U{m,n})—({i,j}n{m,n}) = {p, ¢}
and A" = ((.K} U {n.€}) — (k) 0 {n,£}) = {p.r}. Hemce, |{i.5} 1 {m,n}| =
Hi,k}n{n,f}|=1and |[ANA|=1.
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By rearranging the indices if necessary, we may assume 3 = %(al +ag+ah+
ay), B = %(al + ag + af + of) and hence

M NU, 3(a1+ as + az + as), 3(ef + b + o + o),
3o 4+ o + ah + o), %(al + a3 + a5 + of)

M = spany, { 1

Now let 3; = ;g and (3] = alg for all i = 1,2,3,4. Then

N = Mo — spang 4 VU 3B+ B2 s+ 80), 381 + B + 55 + B1),
- 5(B1+ o+ By + 51), 5(B1 + B3+ By + B) ’

as desired. [J

Next we shall show that L contains a sublattice isomorphic to a tensor product
As® Ay

Notation 7.24. Take

1
Yo 1= 7(—(11 + a9 + 04/2 — Ozil),

2
71 = O,
1
Y2 = = 5(061 + g + a3 + ay),
V3 = as,
1 / /
V4= = 5(043 — o+ ay — ay)

in M (cf. (7.23)) and set R := spang{v1,72,73,74}. Then R = AA4. Note that
Yo=—(+72+7+74)

Lemma 7.25. For anyi1=0,1,2,3,4 and j = 1,2,3,4, we have

(i) (vi,vig) = (i vig*) = =2 and (vi,71:9%) = (v, vig®) = 0;

(ii) (Vj-1.79) = (vj-1,759") =1 and
(Vj-1,759%) = (vj-1,759%) = 0;

(iii) (7i,759") = 0 for any k if [i — j| > 1

(iv) vZ|D) = AAy.
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Proof. Straightforward. O

Proposition 7.26. Let T = RZ[D]. Then T = Ay ® Ay.

Proof. By (iv) of (7.25), vZ[D] = spang{vig’ | 7 =0,1,2,3,4} =2 AAy.

Let {e1,e2,€3,€4} be a fundamental basis of A4 and denote eg = —(e + e2 +
e3 + eq). Now define a linear map ¢ : T — Ay ® Ag by ¢(vig?) = €; ® e;, for
i,7 = 1,2,3,4. By the inner product formulas in (7.25),

(

4 ifi=kj=¢,

—2 ifi=kl|j—{ =1,

1 ifli—kl=1,—¢ =1,
0 if i — k| >1,|7—¢ >1.

(vig” 19" = (v, gt ) =

\

Hence, (7:97,7,9%) = (ei ® j,ex ® ¢7) for all i, j,k, £ and ¢ is an isometry. [J

A General results about lattices

Lemma A.1. Let p be a prime number, f(z) =1+ x4+ 22>+ -+ 2P~ L. Let L
be a Z[z]-module. Forv € L, pv € L(x — 1)+ Lf(x).

Proof. We may write f(z) = Y.2"0 o' = Y07 ((x — 1) + 1) = (z — 1)h(z) + p,
for some h(z) € Z[z]. Then if v € L, pv = v(f(z) — (x — 1)h(x)). O

Lemma A.2. Suppose that the four group D acts on the abelian group A. If the
fized point subgroup of D on A is 0, then A/Tel(A, D) is an elementary abelian
2-group.

Proof. Let a € A and let r € D. We claim that a(r + 1) is an eigenvector
for D. It is clearly an eigenvector for r. Take s € D so that D = (r,s). Then
alr+1)s=a(r+1)(s+1)—a(r+1)=—a(r+1) since a(r+1)(s+1) is a fixed

point. So, a(r + 1) is an eigenvector for D.

To prove the lemma, we just calculate that a(1+7)+a(l+s) +a(l+rs) =
2a + a(l + sr+ s+ rs) = 2a since a(l + sr + s+ rs) is a fixed point. [
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Lemma A.3. Suppose that X is a lattice of rank n and'Y is a sublattice of rank
m. Let p be a prime number. Suppose that the p-rank of D(X) is r. Then,
(Y NpX*)/(Y NpX) has p-rank at least r + m — n. In particular, the p-rank of
D(Y) is at least v +m —n; and if r +m > n, then p divides det(Y).

Proof. We may assume that Y is a direct summand of X. The quadratic space
X/pX has dimension n over F,, and its radical pX*/pX has dimension r. The
image of Y in X/pX is Y 4+ pX/pX, and it has dimension m since Y is a direct
summand of X. Let ¢ be the quotient map X/pX to (X/pX)/(pX*/pX) =
X/pX* = p". Then dim(q(Y + pX/pX)) < n —r, so that dim(Ker(q) N (Y +
pX/pX)>m—(n—r)=r+m-—n.

We note that Ker(q) = pX*/pX, so the above proves r+m —n < rank((Y N
pX*)+pX/pX) = rank(YNpX™*) /(Y NpX*NpX)) = rank((YNpX™)/(YNpX)) =
rank((Y NpX*)/pY). Note that (Y NpX*)/pY = (%Y NX*)/Y <Y*/Y, which

implies the inequality of the lemma. [J

Lemma A.4. Suppose that Y is an integral lattice such that there exists an
integer r > 0 so that D(Y') contains a direct product of rank(Y") cyclic groups of

order r. Then #Y is an integral lattice.

Proof. Let Y < X < Y* be a sublattice such that X/Y = (Z,) %Y. Then
x € X if and only if rz € Y. Let y,v/ € Y. Then (%y, #y’) = (3y,9) €
(X,Y)< (Y*Y)=2. O

Lemma A.5. Suppose that X is an integral lattice and that there is an integer
s > 1 so that ﬁX is an integral lattice. Then the subgroup sD(X) is isomorphic
to D(%X) and D(X)/sD(X) is isomorphic to s™(X),

Proof. Study the diagram below, in which the horizontal arrows are multiplica-
tion by ﬁ The hypothesis implies that the finite abelian group D(X) is a direct

sum of cyclic groups, each of which has order divisible by s.

X* — ﬁx*
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We take a vector a € R®X and note that a € (%X)* if and only if (a, %X) <
Z if and only if (%a, X) < Z if and only if %a € X* if and only if a € /s X*.

This proves the first statement. The second statement follows because D(X) is

a direct sum of rank(X) cyclic groups, each of which has order divisible by s. [

Lemma A.6. Let y be an order 2 isometry of a lattice X. Then X/Tel(X,y) is
an elementary abelian 2-group. Suppose that X/Tel(X,y) = 2¢. Then we have
det(XT(y))det(X~(y)) = 2%det(X) and for e = &, the image of X in D(X*(y))
is 2¢. In particular, for e = £, det(X¢(y)) divides 2°det(X) and is divisible by
2¢. Finally, ¢ < rank(X¢(y)), for e = £, so that ¢ < 3rank(X).

Proof. See [GrES]. O

Lemma A.7. Suppose that t is an involution acting on the abelian group X.
Suppose that Y is a t-invariant subgroup of odd index so that t acts on X/Y as
a scalar ¢ € {£1}. Then for every coset x +Y of Y in X, there exists u € x + X

so that ut = cu.

Proof. First, assume that ¢ = 1. Define n := 1(|X/Y| + 1), then take u :=
nx(t + 1). This is fixed by ¢t and u = 2nz = x(modY).

If ¢ = —1, apply the previous argument to the involution —¢. [J

Lemma A.8. If X and Y are abelian groups with |X : Y| odd, an involution r
acts on X, and Y is r-invariant, then X/Tel(X,r) =Y /Tel(Y,r).

Proof. Since X/Y has odd order, it is the direct sum of its two eigenspaces for
the action of r. Use (A.7) to show that Y + Tel(X,r) = X and Y NTel(X,r) =
Tel(Y,r). O

Lemma A.9. Suppose that X is an integral lattice which has rank m > 1 and
there exists a lattice W so that X < W < X* and W/X = 2", for some integer
r > 1. Suppose further that every nontrivial coset of X in W contains a vector

with noninteger norm. Then r = 1.

Proof. Note that if u 4+ X is a nontrivial coset of X in W, then (u,u) € § + Z.

Let ¢ : X — Y be an isometry of lattices, extended linearly to a map between
duals. Let Z be the lattice between X L Y and W L ¢(W) which is diagonal



684 Robert L. Griess Jr.and Ching Hung Lam

with respect to ¢, i.e., is generated by X L Y and all vectors of the form (z, z¢),
forz € W.

Then Z is an integral lattice. In any integral lattice, the even sublattice has
index 1 or 2. Therefore, r = 1 since the nontrivial cosets of X 1 Y in Z are odd.
O

Lemma A.10. Suppose that the integral lattice L has no vectors of norm 2 and
that L =M + N, where M = N =& EEg. The sublattices M, N,FF = M NN are
direct summands of L = M + N.

Proof. Note that L is the sum of even lattices, so is even. Therefore, it has no
vectors of norm 1 or 2. Since M defines the summand S of vectors negated by
tyr, we get S = M because M < § < %M and the minimum norm of L is 4.
A similar statement holds for N. The sublattice F' is therefore the sublattice of
vectors fixed by both t3; and ¢, so it is clearly a direct summand of L. [J

Lemma A.11. D = Dihg, (g) = O3(D) and t is an involution in D. Suppose
that D acts on the abelian group A, 3A =0 and A(g —1)> =0. Let e = +1. If
v € A and vt = ev, then v(g — 1)t = —ev(g — 1).

Proof. Calculate v(g — 1)t = vt(g~! — 1) = ev(g~! — 1). Since (¢ —1)2 =0 as
an automorphism of A, g acts as 1 on the image of g — 1, which is the image of
(g1 —1). Therefore, ev(g~t —1) =ev(gt -~ 1)g=cev(l — g) = —ev(g —1). O

Lemma A.12. Suppose that X is an integral lattice and Y has finite index, m,
in X. Then D(X) is a subquotient of D(Y) and |D(X)|m? = |D(Y)|. The groups

have isomorphic Sylow p-subgroups if p is a prime which does not divide m.

Proof. Straightforward. [J

Lemma A.13. Suppose that X is a lattice, that Y is a direct summand and
Z:=annx(Y). Letn:=|X :Y L Z|.

(i) The image of X in D(Y) has index dividing (det(Y'), det(X)). In particu-
lar, if (det(Y'),det(X)) =1, X maps onto D(Y)

(ii) Let A = annx~(Y). Then X*/(Y L A) =D(Y).
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(iii) There are epimorphisms of groups ¢1 : D(X) — X*/(X + A) and @3 :
DY)— X*/(X+ A).

(iv) We have isomorphisms Ker(p1) = (X+A)/X and Ker(pz) 2 ¢(X)/Y =
X/(Y L Z). The latter is a group of order n.

In particular, Im(p1) = Im(p2) has order 2det(Y).

(v) If p is a prime which does not divide n, then O,(D(Y)) injects into
Op(D(X)). This injection is an isomorphism onto if (p,det(Z)) = 1.

Proof. (i) This is clear since the natural map ¢ : X* — Y™ is onto and X has
index det(X) in X*.

(ii) The natural map X* — Y* followed by the quotient map ( : Y* — Y*/Y
has kernel Y 1 A.

(iii) Since D(X) = X*/X, we have the first epimorphism. Since X + A >

Y + A, existence of the second epimorphism follows from (ii).

(iv) First, Ker(¢y) =Y L A follows from (ii) and the definitions of ¢ and (.
So, Ker(p1) =2 (X+A)/(Y+A). Note that (X+A)/(Y+A) = (X+(Y+A)/(Y+
A)=X/(Y+A)NX)=X/(Y +Z)). The latter quotient has order n. For the
order statement, we use the formula [Im(y)||Ker(y)| = |D(Y)|. For the second
isomorphism, use Y* 2 X*/A and D(Y) = Y*/Y = (X*/A)/((Y + A)/A) and
note that in here the image of X is (X +A)/A)/((Y +A4)/A) = (X+A)/(Y +A).

(v) Let P be a Sylow p-subgroup of D(Y'). Then PNKer(y) = 0 since (p,n) =
1. Therefore P injects into I'm(v). The epimorphism ¢ has kernel A/Z = D(Z).
So, P is isomorphic to a Sylow p-subgroup of D(X) if (p,det(Z)) =1. O

Lemma A.14. Suppose that X is an integral lattice and E is an elementary
abelian 2-group acting in X. If H is an orthogonal direct summand of Tel(X, E)
and H is a direct summand of X, then the odd order Sylow groups of D(H) embed
in D(X). In other notation, Oy (D(H)) embeds in Oy (D(X))

Proof. Apply (A.13) toY = H, n a divisor of |X : Tel(X, F)|, which is a power
of 2. U

Lemma A.15. Suppose that X is a lattice and Y is a direct summand and
Z =annx(Y). Letn:=|X:Y 1L Z|.
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Suppose that v € X* and that v has order m modulo X. If (m,det(Z)) =1,
there exists w € Z so that v —w € Y* N X*. Therefore, the coset v+ X contains

a representative in Y*. Furthermore, any element of Y* N (v + X) has order m
modulo Y .

Proof. The image of v in D(Z) is zero, so the restriction of the function v to
Z is the same as taking a dot product with an element of Z. In other words,
the projection of v to Z* is already in Z. Thus, there exists w € Z so that
v—w € annx~(Z) =Y.

Define v := v—w. Then mu = mv—mw € X. Sincev—w € Y*, mu € XNY™*,

which is Y since Y is a direct summand of X.

Now consider an arbitrary u € (v+ X)NY™. We claim that its order modulo
Y is m. There is x € X so that v = z + v. Suppose k > 0. Then ku = kx + kv
is in X if and only if kv € X, i.e. if and only if m divides k. [J

Lemma A.16. Let D be a dihedral group of order 2n, n > 2 odd, and Y a
finitely generated free abelian group which is a Z[D]-module, so that an element
1 # g € D of odd order acts with zero fized point subgroup on Y. Let r be an
involution of D outside Z(D). Then Y/Tel(Y,r) is elementary abelian of order
9zrank(Y), Consequently, det(Tel(Y,r)) = 2" )det(Y).

Proof. The first statement follows since the odd order g is inverted by r and acts
without fixed points on Y. The second statement follows from the index formula

for determinants. [J

Lemma A.17. Suppose that X = Eg and that Y is a sublattice such that XY =
3% and Y = /3Eg. Then there exists an element g of order 3 in O(X) so that
X(g—1) =Y. In particular, Y defines a partition on the set of 240 roots in X

where two roots are equivalent if and only if their difference lies in'Y .

Proof. Note that Y has 80 nontrivial cosets in X and the set ® of roots has
cardinality 240. Let x,y € ® such that x—y € Y and z, y are linearly independent.
Then 6 < (z —y,z —y) =4 — 2(x,y), whence |(z,y)| < 2. Therefore (z,y) = —1
or —2. Since z,y are linearly independent roots, we have (z,y) = —1. Let z be a

third root which is congruent to x and y modulo Y. Then (z,z) = —1 = (y, 2) by
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the preceding discussion. Therefore the projection of z to the span of x,y must

be —x — y, which is a root. Therefore, x +y + z = 0.

It follows that a nontrivial coset of Y in X contains at most three roots. By

counting, a nontrivial coset of Y in X contains exactly three roots.

Let P := span{z,y} = Az, Q := annx(P). We claim that Y < P 1 @,
which has index 3 in X. Suppose the claim is not true. Then the structure of
P* means that there exists » € Y so that (r,x — y) is not divisible by 3. Since
x —1y €Y, we have a contradiction to Y 22 v/3Es. The claim implies that gp, an
automorphism of order 3 on P, extended to X by trivial action on @, leaves Y
invariant (since it leaves invariant any sublattice between P L @ and P* L Q¥).
Moreover, X(gp — 1) = Z(z — y).

Now take a root x’ which is in Q. Let 7/,z’ be the other members of its
equivalence class of /. We claim that these are also in Q. We know that 2’ —y €
Y <P L Q,so P = span{z’,y,z’} < P L Q. Now, we claim that the
projection of P’ to P is 0. Suppose otherwise. Then the projection of some root
u € P’ to P is nonzero. Therefore the projection is a root, i.e. u € P. But
then w is in the equivalence class of ¢ or —z and so P’ = P, a contradiction to
(a',P) =0.

We now have that the class of 2/ spans a copy of As in Q. We may continue
this procedure to get a sublattice U = Uy L Us L Us L Uy of X such that
U; =2 Ay for of X with the property that if g; is an automorphism of order 3 on
Ui extended to X by trivial action on annx(U;), then each U(g; — 1) <Y and,
by determinants, g := g1929g394 satisfies U(g —1) =Y. O

Proposition A.18. Suppose that T = As ® Eg.

(i) Then D(T) = 3% and the natural 17/ Z-valued quadratic form has mazimal
Witt indez; in fact, there is a natural identification of quadratic spaces D(T') with
Es/3Es, up to scaling.

(ii) Define Oy, == {X|T < X <T*, X is an integral lattice, dim(X/T) = k}

(dimension here means over F3).
(a) Oy is nonempty if and only if 0 < k < 4;

(b) Oy consists of even lattices for each k, 0 < k < 4;
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(¢) On T*/T, the action of g, the isometry of order 3 on T corresponding
to an order 3 symmetry of the As tensor factor, is trivial. Therefore any lattice

between T and T™ is g-invariant.

(7ii) the lattices in Oy embed in Eg | Eg. For a fized k, the embeddings are
unique up to the action of O(Eg L Eg).

(iv) the lattices in O are rootless if and only if k = 0.

Proof. (i) This follows since the quotient 7% /T is covered by %P, where P =
V6Fg is anny(E), where E is one of the three EEg-sublattices of 7.

(ii) Observe that X € O if and only if X/T is a totally singular subspace of
D(T). This implies (a). An integral lattice is even if it contains an even sublattice
of odd index. This implies (b). For (c), note that T*/T is covered by 3P and
P(g—1) <T(g—1)2=3T. Hence g acts trivially on D(T) = T*/T. This means
any lattice Y such that T'<Y < T* is g-invariant.

(iii) and (iv) First, we take X € O4 and prove X = Eg | Eg. Such an X is
even, unimodular and has rank 16, so is isometric to HS14 or Fg L FEg. Since
X has a fixed point free automorphism of order 3, X = FEg 1 FEg. Such an
automorphism fixes both direct summands. Call these summands X; and Xs.
Define Y; := X;(g — 1), for i = 1,2. Thus, Y; = /3E5s.

The action of g on X; = Ejg is unique up to conjugacy, namely as a diagonally

~

embedded cyclic group of order 3 in a natural O(As)?* subgroup of O(X;) =

Weyl(Es) (this follows from the corresponding conjugacy result for O™ (8,2)
Weyl(Es)/Z(Weyl(Es)).

We consider how T embeds in X. Since | X : T| = 34, | X; : TN X;| divides 3%.
Since T'N X; > X;(g — 1) and T has no roots, (A.17) implies that TN X; = Y],
fori=1,2.

IfU € O, T <U < X, then rootlessness of U implies that U N X; = Y; for
1 =1,2. Therefore, U =T, ie. k=0.01

Lemma A.19. Let q be an odd prime power and let (V, Q) be a finite dimensional

quadratic space over Fy. Let ¢ be a generator of F.

If dim (V') is odd, there exists g € GL(V) so that gQ = c*Q.
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If dim(V') is even, there exists g € GL(V') so that gQ = cQ.

Proof. The scalar transformation ¢ takes Q to ¢?@Q. This proves the result in

case dim(Q) is odd. Now suppose that dim(V') is even.

Suppose that V' has maximal Witt index. Let V = U & U’, where U, U’ are
each totally singular. We take g to be con U and 1 on U’.

Suppose that V' has nonmaximal Witt index. The previous paragraph allows
us to reduce the proof to the case dim(V') = 2 with V' anisotropic. (One could
also observe that if we write V' as the orthogonal direct sum of nonsingular 2-
spaces, the result follows from the case dim(V) = 2.) Then V may be identified
with Fy2 and @ with a scalar multiple of the norm map. We then take g to be
multiplication by a scalar b € F,2 such that b = ¢. O

B Characterizations of lattices of small rank

Some results in this section are in the literature. We collect them here for con-

venience.

Lemma B.1. Let J be a rank 2 integral lattice. If det(J) € {1,2,3,4,5,6}, then
J contains a vector of norm 1 or 2. If det(J) € {1,2}, J is rectangular. If J is
even and det(J) <6, J = A; L Ay or As.

Proof. The first two statements follows from values of the Hermite function
(see Appendix E). Suppose that J is even. Then J has a root, say u. Then
anny(u) has determinant 1det(J) or 2det(.J). If annj(u) = idet(J), then J is
an orthogonal direct sum Zu | Zv, for some vector v € J. For det(J) to be at
most 6 and J to be even, (v,v) = 2 and J is the lattice A; L A;. Now assume
that annj(u) has determinant 2 det(.J), an integer at most 12. Let v be a basis
for anny(u). Then i(u+v) € J and so (2 + (v,v)) € 2Z since J is assumed
to be even. Therefore, 2 + (v,v) € 8Z. Since (v,v) < 12, (v,v) = 6. Therefore,
$(u+v) is a root and we get J = Ay. O

Lemma B.2. Let J be a rank 3 integral lattice. If det(J) € {1,2,3}, then J is
rectangular or J is isometric to Z L Ay. If det(J) = 4, J is rectangular or is

isometric to As.



690 Robert L. Griess Jr.and Ching Hung Lam

Proof. If J contains a unit vector, J is orthogonally decomposable and we are
done by (B.1). Now use the Hermite function (see Section E and Table 12):

H(3,2) =1.67989473..., H(3,3) = 1.92299942 ... and H(3,4) = 2.11653473 ...
We therefore get an orthogonal decomposition unless possibly det(J) = 4 and J

contains no unit vector. Assume that this is so.

If D(J) is cyclic, the lattice K = J + 2J* which is strictly between J and J*
is integral and unimodular, so is isomorphic to Z3. So, J has index 2 in Z3, and
the result is easy to check. If D(J) = 2 x 2, we are done by a similar argument
provided a nontrivial coset of J in J* contains a vector of integral norm. If this

fails to happen, we quote (A.9) to get a contradiction. [

Lemma B.3. Suppose that X is an integral lattice which has rank 4 and deter-
minant 4. Then X embeds with index 2 in Z*. If X is odd, X is isometric to
one of 27 L 73, Ay L Ay L 7% A3 L Z. If X is even, X = Dj.

Proof. Clearly, if X embeds with index 2 in Z*, X may be thought of as the
annihilator mod 2 of a vector w € Z of the form (1,...,1,0,...,0). The isometry
types for X correspond to the cases where the weight of w is 1, 2, 3 and 4. It

therefore suffices to demonstrate such an embedding.

First, assume that D(X) is cyclic. Then X + 2X* is an integral lattice (since
(2z,2y) = (4x,y), for z,y € X*) and is unimodular, since it contains X with
index 2. Then the classification of unimodular integral lattices of small rank

implies X + 2X* = Z*, and the conclusion is clear.

Now, assume that D(X) is elementary abelian. By (A.9), there is a nontrivial
coset u + X of X in X* for which (u,u) is an integer. Therefore, the lattice
X' := X + Zu is integral and unimodular. By the classification of unimodular
integral lattices, X’ = 7Z*. O

Theorem B.4. Let L be a unimodular integral lattice of rank at most 8. Then
L=27Z" or L = Ey.

Proof. This is a well-known classification. The article [GrE8| has an elementary

proof and discusses the history. [

The next result is well known. The proof may be new.
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Proposition B.5. Let X be an integral lattice of determinant 3 and rank at most
6. Then X is rectangular; or X = Ay L Z™, for some m < 4; or X = Fg.

Proof. Let u € X*\ X. Since 3u € X, (u,u) € 3Z. Since det(X*) = 1,
(u,u) € s +Zor 2+17.

Suppose (u,u) € % + Z. Let T = Ay. Then we quote (D.7) to see that there

is a unimodular lattice, U, which contains X 1L T with index 3.

Suppose U is even. By the classification (B.4), U = FEg. A well-known
property of Ejg is that all As-sublattices are in one orbit under the Weyl group.
Therefore, X = Fg.

If U is not even, U = Z", for some n < 8. Any root in Z™ has the form
(+1,£1,0,0,...,0,0). It follows that every Ay sublattice of Z™ is in one orbit

under the isometry group 2 Sym,,. Therefore X = anny(T') is rectangular.

Suppose (u,u) € % + Z. Then we consider a unimodular lattice W which
contains X | Zov with index 3, where (v,v) = 3. By the classification, W = Z7.
Any norm 3 vector in Z™ has the form (+1,4+1,£1,0,0,...,0) (up to coordinate

permutation). Therefore, anny (v) must be isometric to Z* 1 Ay. O

Lemma B.6. If M is an even integral lattice of determinant 5 and rank 4, then
M = Ay.

Proof. Let u € M* so that uw+ M generates D(M). Then (u,u) = %, where k is
an integer. Since 5u € M, k is an even integer. Since H (4, %) = 1.029593054. . .,
a minimum norm vector in M™* does not lie in M, since M is an even lattice. We

may assume that u achieves this minimum norm. Thus, k € {2,4}.

Suppose that k& = 4. Then we may form M L Z5v, where (v,v) = % Define
w :=u+v. Thus, P := M + Zw is a unimodular integral lattice. By the classifi-
cation, P = Z5, so we identify P with Z®. Then M = annp(y) for some norm 5
vector y. The only possibilities for such y € P are (2,1,0,0,0), (1,1,1,1,1), up
to monomial transformations. Since M is even, the latter possibility must hold
and we get M = Ay.

32
Suppose that £ = 2. We let () be the rank 2 lattice with Gram matrix

So, det(Q)) = 5 and there is a generator v € Q* for @* modulo @ which has norm
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%. We then form M | @ and define w := u 4+ w. Then P := M + Q) + Zw is an
integral lattice of rank 6 and determinant 1. By the classification, P = Z%. In P,
M is the annihilator of a pair of norm 3 vector, say y and z. Each corresponds
in Z5 to some vector of shape (1,1,1,0,0,0), up to monomial transformation.
Since M is even, the 6-tuples representing y and z must have supports which
are disjoint 3-sets. However, since (y,z) = 2, by the Gram matrix, we have a

contradiction. J

Notation B.7. We denote by M(4,25) an even integral lattice of rank 4 and
determinant 25. We shall show that it is unique in (B.8).

Lemma B.8. (i) There exists a unique, up to isometry, rank 4 even integral

lattice whose discriminant group has order 25.

(ii) It is isometric to a gluing of the orthogonal direct sum As 1 /5A5 by a
glue vector of the shape u + v, where u is in the dual of the first summand and

(u,u) = %, and where v is in the dual of the second summand and has norm %.

(iii) The set of roots forms a system of type As; in particular, the lattice does

not contain a pair of orthogonal roots.

(iv) The isometry group is isomorphic to Syms X Syms X 2, where the first
factor acts as the Weyl group on the first summand in (iii) and trivially on the
second, the second factor acts as the Weyl group on the second summand of (iii)
and trivially on the first, and where the third direct factor acts as —1 on the

lattice.

(v) The isometry group acts transitively on (a) the siz roots; (b) the 18 norm
4 vectors; (c) ordered pairs of norm 2 and norm 4 vectors which are orthogonal;

(d) length 4 sequences of orthogonal vectors whose norms are 2, 4, 10, 20.

(vi) An orthogonal direct sum of two such embeds as a sublattice of index 5

m Es.
Proof. The construction of (ii) shows that such a lattice exists and it is easy to
deduce (iii), (iv), and (v).

We now prove (i). Suppose that L is such a lattice. We observe that if the

discriminant group were cyclic of order 25, the unique lattice strictly between L
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and its dual would be even and unimodular. Since L has rank 4, this is impossible.

Therefore, the discriminant group has shape 52.

Since H(4,25) = 3.44265186..., L contains a root, say u. Define N :=
anng,(u). Since H(3,50) = 4.91204199..., N contains a norm 2 or 4 element,

say v.

Define R := Zu 1 Zv and P := annr(R), a sublattice of rank 2 and de-
terminant 2(v,v) - 25. Also, the Sylow 5-group of D(P) has exponent 5. Then
P = /5J, where J is an even, integral lattice of rank 2 and det(J) = 2(v,v).
Since det(J) is even and the rank of the natural bilinear form on J/2J is even,
it follows that J = /2K, for an integral, positive definite lattice K. We have
det(K) = 3(v,v) € {1,2} and so K is rectangular. Also, P = v/10K. So, P has

rectangular basis w, x whose norm sequence is 10, 5(v, v)

Suppose that (v,v) = 2. Also, L/(R L P) = 2 x 2. A nontrivial coset of
R 1 P contains an element of the form %y + %z, where y € span{u,v} and
z € span{w,z}. We may furthermore arrange for y = au + bv, z = cw + dz,
where a,b,c,d € {0,1}. For the norm of %y + %z to be an even integer, we
needa =b=c=d=0o0ora=5b=c=d=1. This is incompatible with
L/(R L P) =2 x 2. Therefore, (v,v) = 4.

We have L/(R L P) = 52. Therefore, 1w and iz are in L* but are not in
L. Form the orthogonal sum L 1 Zy, where (y,y) = 5. Define v := %m + %y.
Then (v,v) = 1. Also, @ := L 4+ Zv has rank 5, is integral and contains L | Zy
with index 5, so has determinant 5. Since v is a unit vector, S := anng(v) has
rank 4 and determinant 5, so S = Ay. Therefore, Q = Zv L S and L = anng(y)
for some y € @ of norm 5, where y = e+ f, e € Zv, f € S§. Since S has no
vectors of odd norm, e # 0 has odd norm. Since (y,y) = 5 and since (e, e) is a
perfect square, (e,e) =1 and (f, f) = 4. Since O(A4) acts transitively on norm
4 vectors of Ay, f is uniquely determined up to the action of O(S). Therefore,

the isometry type of L is uniquely determined.

It remains to prove (vi). For one proof, use (B.9). Here is a second proof. We
may form an orthogonal direct sum of two such lattices and extend upwards by

certain glue vectors.

Let M; and M be two mutually orthogonal copies of L. Let u, v, w, x be the
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orthogonal elements of M; of norm 2,4, 10,20 as defined in the proof of (i). Let

', v, w', 2’ be the corresponding elements in M. Set
1 / / 1 / /
7:5(w+x+x) and ’y:g(x+w +a').

Their norm are both 2. By computing the Gram matrix, it is easy to show that
E = spang{ My, Ms,~,7'} is integral and has determinant 1. Thus, F is even and
so F = FEg. [

Lemma B.9. Let p be a prime which is 1(mod /). Suppose that M, M’ are
lattices such that D(M) and D(M') are elementary abelian p-groups which are
isometric as quadratic spaces over Fy,. Let ¢ be such an isometry and let c € F,, be
a square root of —1. Then the overlattice N of M L M’ spanned by the “diagonal
cosets” {a + capla € D(M)} is unimodular. Also, N is even if M and M’ are

even.

Proof. The hypotheses imply that N contains M + M’ with index |det(M)], so
is unimodular. It is integral since the space of diagonal cosets so indicated forms
a maximal totally singular subspace of the quadratic space D(M) 1 D(M'). The
last sentence follows since |N : M L M’| is odd. O

Lemma B.10. An even rank j lattice with discriminant group which is elemen-
tary abelian of order 125 is isometric to \/EAZ.

Proof. Suppose that L is such a lattice. Then det(y/5L*) = 5. We may apply
the result (B.6) to get v5L* = Ay. O

Lemma B.11. An even integral lattice of rank 4 and determinant 9 is isometric
to A3.

Proof. Let M be such a lattice. Since H(4,9) = 2.66666666 ... and H(3,18) =
3.494321858 ..., M contains an orthogonal pair of roots, u,v. Define P := Zu |
Zv. The natural map M — D(P) is onto since (detM, detP) = 1. Therefore,
Q@ := annyps(P) has determinant 36 and the image of M in D(Q) is 2 x 2. There-
fore, @) has a rectangular basis w, x, each of norm 6 or with respective norms 2,
18.
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We prove that 2, 18 does not occur. Suppose that it does. Then there is a
sublattice N isometric to A3. Since there are no even integer norm vectors in
N*\ N, N is a direct summand of M. By coprimeness, the natural map of M to
D(N) =2 23 is onto. Then the natural map of M to D(Zz) has image isomorphic

to 23. Since D(Zx) is cyclic, we have a contradiction.

Since M /(P L Q) = 2 x 2 and M is even, it is easy to see that M is one of
My == span{P,Q, 3 (u+w), 3(v + )} or My := span{P,Q, 3 (u+ z), 3 (v + w)}.
These two overlattices are isometric by the isometry defined by v — u,v +—
v,w — x,x — w. It is easy to see directly that they are isometric to A3. For

example, M; = span{u,z, 3(u+ )} L span{v,w,i(v+w)}. O

C Nonexistence of particular lattices

Lemma C.1. Let X =2 Z2. There is no sublattice of X whose discriminant group
18 3 X 3.

Proof. Let Y be such a sublattice. Its index is 3. Let e, f be an orthonormal
basis of X. Then Y contains W := span{3e,3f} with index 3. Let v € Y\ W,
so that Y = W + Zv. If vis e or f, clearly D(Y') is cyclic of order 9. We may
therefore assume that v = e+ f or e — f. Then Y is spanned by 3e and e + f,
and so its Smith invariant sequence 1, 9. This final contradiction completes the

proof. I

Lemma C.2. There does not exist an even rank /4 lattice of determinant 3.

Proof. Let L be such a lattice and let u € L* so that u generates L* modulo
L. Then (u,u) = % for some integer £ > 0. Since L is even, k is even. Since
H(4,3) = 1.169843567 - - - < 4/3, we may assume that k = 2.

We now form L L Z(3v), where (v,v) = 3. Define w := u + v. The lattice
P := L + Zw is unimodular, so is isometric to Z°. Since det(M) = 3, M =
annp(y) for some vector y of norm 3. This forces M to be isometric to Ay 1 Z2,

a contradiction to evenness. [

Corollary C.3. There does not exist an even rank 4 lattice whose discriminant

group is elementary abelian of order 33.
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Proof. If M is such a lattice, then 3M* has rank 4 and determinant 3. Now use
(C.2). O

D Properties of particular lattices

We discuss the properties of some particular lattices. The results are arranged

according to the form of their discriminant groups.

D.1 Discriminant groups which are 2-groups

Lemma D.1. Suppose that M # 0 is an SSD sublattice of Eg and that rank(M) <
4. Then M contains a root, v, and anny(r) is an SSD sublattice of Eg of rank
(rank(M) —1). Also M = Ag’mk(M) or Dy.

Proof. Let L := Eg. Let d := det(M), a power of 2, and k := rank(M). Note
that D(M) is elementary abelian of rank at most k. If d = 2%, then %M is
unimodular, hence is isometric to ZF, and the conclusion holds. So, we assume
that d < 2¥. For n < 4 and d|8, it is straightforward to check that the Hermite

function H satisfies H(n,d) < 4. Therefore, M contains a root, say r.

Suppose that M is a direct summand of L. By (2.8), N := annys(r) is RSSD
in L, hence is SSD in L by (2.7) and we apply induction to conclude that N is
an orthogonal sum of Ays. So M contains M’, an orthogonal sum of A;s, with
index 1 or 2. Furthermore, det(M') = 2¥. If the index were 1, we would be done,
so we assume the index is 2. Since d > 1, d = 2,4 or 8. By the index formula
for determinants, 22 is a divisor of d. Therefore, d = 4 or 8. However, if d = 8,
then det(M') = 32, which is impossible since rank(M’) < 4. Therefore, d = 4
and rank(M') = 4. Tt is trivial to deduce that M = Dj.

We now suppose that M is not a direct summand of L. Let S be the direct
summand of L determined by M. Then S is SSD and the above analysis says
S is isometric to some A" or D4. The only SSD sublattices of A" are the
orthogonal direct summands. The only SSD sublattices of D4 which are proper
have determinant 2* and so equal twice their duals and therefore are isometric
to A}. O
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Lemma D.2. Suppose that M is an SSD sublattice of Fg. Then M is one of the
sublattices in Table 10 and Table 11.

Table 10: SSD sublattices of Fg which span direct summands

Rank Type
0 0
Ay
Ay L A
A LA LA
Al LA LA LA, Dy
Dy 1 Ay
Dg
Er
Eg

DN | =W (N~

Table 11: SSD sublattices of Fs which do not span direct summands

Rank Type contained in the summand
4 AlJ_AlJ_AlJ_Al D4
5 AP Dy L Ay
6 A8 Dy 1L Ap L Ay Dg
7 | A{T, Dy LA LA 1L Ay, Dg LAy E;
8 A{8, Dy L Af*, Dy 1 Dy, Ey
DGLAlLAl,E7LA1

Proof. We may assume that 1 < rank(M) < 7. First we show that M contains

a root.

If rank(M) < 4, this follows from (D.1). If rank(M) > 4, then N :=

anny, (M) has rank at most 4, so is isometric to one of A¥ or Dy.

Suppose that rank(N) = 4. If N = A} and so anny(N) = A}, which contains

M and whose only SSD sublattices are orthogonal direct summands, so M =
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anny,(N) and the result follows in this case. If N = Dy, then M = Dy or A} by
an argument in the proof of (D.1).

We may therefore assume that rank(N) < 3, whence N = Aqank(N) and

rank(M) > 5. Furthermore, we may assume that rank(M) > rank(D(M)), or
else we deduce that M = AIank(M). It follows that det(M) is a proper divisor of

128.

Note that D(M) has rank which is congruent to rank(M) mod 2 (this follows
from the index determinant formula plus the fact that D(M) is an elementary
abelian 2-group). Therefore, since rank(M) < 7, det(M) is a proper divisor of

64, i.e. is a divisor of 32.

For any d > 2, H(n,d) is an increasing function of n for n € [5,00). For fixed
n, H(n,d) is increasing as a function of d. Since H(7,32) = 3.888997243 ..., we

conclude that M contains a root, say 7.

Since L/(M L N) is an elementary abelian 2-group by (A.6), M L N > 2L.
Also, r+2L contains a frame, F, a subset of 16 roots which span an A?—sublattice
of L. Since roots are orthogonally indecomposable in L, F' = (FNM)U(FNN).
It follows that M contains a sublattice M’ spanned by F'N M, M’ = A;ank(M),
and so M is generated by M’ and glue vectors of the form %(a +b+c+d), where
a, b, c,d are linearly independent elements of F"N M. It is now straightforward to
obtain the list in the conclusion by considering the cases of rank 5, 6 and 7 and

subspaces of the binary length 8 Hamming code. [J
Lemma D.3. Let X = Dg and let & ={Y C X|Y = DDg}. Then O(X) acts

transitively on G.
Proof. Let X = Dg and R = 2X*. Since D{/Dg = Zy x Z3, we have X > R >
2X and R/2X = D}/Dg = Zy x Zs. Thus, the index of R in X is 26/2% = 24,

Let ~: X — X/2X be the natural projection. Then for any Y € &, Y is a
totally isotropic subspace of X. Note that R/2X is the radical of X and thus
X/R = 2% is nonsingular. Therefore, dim(Y + R)/R < 2 and Y/(Y N R) =
(Y 4+ R)/R also has dimension < 2.

First we shall show that Y > 2X and dim(Y + R)/R = 2. Consider the tower
Y>YNR>YN2X.



FE Eg-Lattices and Dihedral Groups 699

Since Y N R + 2X is doubly even but R is not, R# Y NR+2X and (Y N R+
2X)/2X £ R/2X. Thus (YNR+2X)/2X =Y NR/Y N2X has dimension < 1

and hence
V:YN2X|=|Y:YNR|-[YNR:YN2X| <23

However, det(Y) = 28 and det(2X) = 2124 = 214, Therefore, |Y : Y N2X| > 23
and hence |Y : Y N2X| = 23. This implies Y N2X = 2X, i.e., Y > 2X. It also
implies that Y + R: R| = |Y : Y N R| = 22 and hence (Y + R)/R is a maximal
isotropic subspace of X/R & Z%.

Let 2X < M < X be such that M/2X is maximal totally isotropic subspace.

Then M > R and %M is an integral lattice. Set Meypen, = {a € M| %(a,a) IS

27}. Then Meyep is a sublattice of M of index 1 or 2. If Y is contained in such
M, then Y = Mcyen. That means Y is uniquely determined by M.

Finally, we shall note that the Weyl group acts on X/R as the symmetric
group Symg. Moreover, Symg acts faithfully on X/R = Z3 and fixes the form
(, ), so it acts as Sp(4,2). Thus it acts transitively on maximal totally isotropic

subspace and we have the desired conclusion. []

Lemma D.4. Let X = Dg and let Y = DDg be a sublattice of X. Then there
exists a subset {ni,...,n¢} C X with (n;,n;) = 26; ; such that

Y =spang{n; £n;| i,j =1,...,6}
and

1 1
5(—771 +m2 — 13+ M4), 5(—773 +na—1n5+16) ¢ -

X = Spany {7717 712,14, 76,
Proof. We shall use the standard model for Dg, i.e.,
Dg = {(:L‘l,l‘g,...,l'ﬁ) S Z6|ZE1 +--+x26=0 mod 2}

Let ﬁl - (]—7 17070707 O)a ﬁ? = (_17 1707070)0)5 /63 = (0505 ]-a 17070)7 /64 - (0707 _17 17070))
B5 = (0,0,0,0, 1, 1), and ﬂe = (0,0,0,0, —1, 1). Then, (ﬁl,ﬂ]) = 25i,j and

W = spang{f; + B;]i,j =1,2,3,4,5,6} = DDs.
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Note also that {(1,1,0,0,0,0), (-1,1,0,0,0,0), (0,0,-1,1,0,0), (0,0,0,0,—1,1),
(—-1,0,—1,0,0,0), (0,0,—1,0,—1,0)} forms a basis for X (since their Gram ma-

trix has determinant 4). By expressing them in f,..., 3, we have
1 1
X = spang {ﬂlyﬁ% Ba, Be. 5(—& + B2 — B3 + Ba), 5(—ﬂ3 + B4 — B5 + ﬁG)} :

Let Y =2 DDg be a sublattice of X. Then by Lemma D.3, there exists
g € O(X) such that Y = Wg. Now set 7; = ;g and we have the desired result.
O

Lemma D.5. Let X = Dy and letY = DDy be a sublattice of X. ThenY = 2X*
and hence X < %Y.

Proof. The radical of the form on X/2X is 2X*/2X. If W is any As-sublattice of
X, its image in X/2X complements 2X*/2X. Therefore, every element of X \2X*
has norm 2(mod4). It follows that Y < 2X*. By determinants, Y = 2X*. O

Lemma D.6. Let X = Dy and let H =2 AA; be a sublattice of X. Then the
image of the natural map X* to H* is H* = %H.

Proof. A generator of H has norm 4, so H is a direct summand of L. In general,
if W is a lattice and Y is a direct summand of W, the natural map W* — Y* is

onto. The lemma follows. [

D.2 Discriminant groups which are 3-groups

Lemma D.7. Let L be the As-lattice, with basis of roots r,s. Let g € O(L)
and |g| = 3. (i) Then L* = %L and every nontrivial coset of L in L* has
MANIMUM NOTM % All norms in such a coset lie in % +2Z. (i) If = is any root,

annp(x) = Z(zg — xg?) and xg — xg* has norm 6.

Proof. (i) The transformation ¢g : r +— s,s — —r — s is an isometry of order 3
and h := g — g~ ! satisfies h? = —3 and (zh,yh) = 3(z,y) for all z,y € Q ® L.
Furthermore, g acts indecomposably on L/3L = 32. We have %L = Lh™2 >
Lh~=! > L, with each containment having index 3 (since h? = —3). Since L* lies

strictly between L and %L and is g-invariant, L* = Lh~!.
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Since L* = %L, the minimum norm in L* is Z by (D.7). The final statement
follows since the six roots +r, £s,+(r + s) fall in two orbits under the action of
(g), the differences rg* — sg* lie in 3L* and r and —r are not congruent modulo
3L*.

(ii) The element xg—xg* has norm 6 and is clearly in anny,(z). The sublattice
Zx 1 Z(xg—xg?) has norm 2-6 = 12, so has index 3 in L, which has determinant

3. Since L is indecomposable, anny,(z) is not properly larger than Z(xg — xg?).
O

Lemma D.8. Let X = Ay and let Y < X, |X : Y| = 3. Then either Y = 3X*

and its Smith invariant sequence 3,9; or'Y has Gram matrix , which

has Smith invariant sequence 1,27. In particular, such'Y has D(Y) of rank 2 if
and only if Y = 3X*.

Proof. Let r,s,t be roots in X such that r + s+t = 0. Any two of them form
a basis for X. The sublattices span{r,3s}, span{s, 3t}, span{t,3r} of index 3 are
distinct (since their sets of roots partition the six roots of X) and the index 3
sublattice 3X™* contains no roots. Since there are just four sublattices of index 3
in X, we have listed all four. It is straightforward to check the assertions about
the Gram matrices. Note that 3X* = v/3X. O

Proposition D.9. Suppose that M is a sublattice of L = Eg, that M is a direct
summand of L, that M has discriminant group which is elementary abelian of
order 3%, for some s. Then M 1is 0, L, or is a natural As, Ay 1 As, or Eg
sublattice. The respective values of s are 0, 0, 1, 2 and 1. In case M is not
a direct summand, the list of possibilities expands to include Ay 1 Ay 1 A,
Ay 1L Ay L Ay 1 Ay and Ay 1L Eg sublattices.

Proof. One of M and anng(M) has rank at most 4 and the images of L in
their discriminant group are isomorphic. Therefore, s < 4. If s were equal to
4, then both M and anny (M) would have rank 4, and each would be isometric
to v/3 times some rank 4 integral unimodular lattice. By (B.4), each would be

isomorphic to v/3Z*, which would contradict their evenness. Therefore, s < 3.

The second statement is easy to derive from the first, which we now prove.
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We may replace M by its annihilator in L if necessary to assume that r :=
rank(M) < 4. Since M is even and det(M) is a power of 3, r is even. We may
assume that r > 2 and that s > 1. If r =2, M = Ay (B.1). We therefore may

and do assume that r = 4.

For s € {1,3}, we quote (C.2) and (C.3) to see that there is no such M. If
s = 2 we quote (B.11) to identify M. O

Lemma D.10. We have (E{, Ef) = %Z and the norms of vectors in E§ \ Eg are
in % + Z.

Proof. This follows from the fact that Eg has a sublattice of index 3 which
is isometric to A3 and the facts that (A3, A3) = 2Z and that a glue vector for
A3 in Eg has nontrivial projection to the spaces spanned by each of the three
summands. []

Hypothesis D.11. L is a rank 12 even integral lattice, D(L) = 3%, for some

integer k, L is rootless and L* contains no vector of norm %
Lemma D.12. The quadratic space D(L) in (D.11) has nonmazimal Witt index

if k is even.

Proof. If the Witt index were maximal for k is even, there would exist a lattice
M which satisfies 3L < 3M < L and 3M/3L is a totally singular space of
dimension %
that rank(M) € 8Z, a contradiction. [J

Such an M is even and unimodular. A well-known theorem says

Proposition D.13. Let L, L’ be two lattices which satisfy hypothesis (D.11) for
k even, and which have the same determinant. There exists an embedding of
L L L' into the Leech lattice.

Proof. We form L L L'. The quadratic spaces D(L), D(L)" have nonmaximal
Witt index.

Let g be a linear isomorphism from D(L) to D(L') which takes the quadratic
form on D(L) to the negative of the quadratic form on D(L') (A.19).

Now, form the overlattice J by gluing from D(L) to D(L') with g. Clearly, .J
has rank 24, is even and unimodular. The famous characterization of the Leech

lattices reduces the proof to showing that J is rootless.
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Suppose that J has a root, s. Write s = r + r/ as a sum of its projections
to the rational spaces spanned by L, L’ respectively. The norm of any element
x € L* has the form a/3, where a is an even integer at least 4. The norm of any
element x € L™ has the form b/3, where b is an even integer at least 4. Therefore,
we may assume that 7,7/ have respective norms at least %. Then (s,s) > % > 2,

a contradiction. [

Lemma D.14. Let L be an even integral rootless lattice of rank 12 with D(L) =
3%, for an integer k, and an automorphism g of order 3 without eigenvalue 1 such
that L*(g — 1) < L. Then L satisfies hypothesis (D.11).

Proof. We need to show that if v € L*, then (v,v) > %. This follows since
vig—1) e L, (v(g—1),v(g — 1)) = 3(v,v) and L is rootless. [J

Corollary D.15. If L, L’ satisfy hypotheses of (D.14) and each of L, L' is
not properly contained in a rank 12 integral rootless lattice (such an overlattice
satisfies (D.14)), then L = L' and k = 6.

Proof. Let A be the Leech lattice. We use results from [Grl2] which analyze

the elements of order 3 in A.

Take two copies Li, Ly of L. We have by (D.13), an embedding of L; L Lo
in A. Identify Ly | Lo with a sublattice of A.

Since Li, Lo are not properly contained in another lattice which satisfies
(D.14) and since A is rootless, L; and Lo are direct summands of A. Since they
are direct summands, Lo = annp(L1), L1 = annp(L2) and the natural maps
of A to D(L;) and D(Lz) are onto. The gluing construction shows that the
automorphism ¢ of order 3 in L as in (D.14) extends to an automorphism of A

by given action on Ly and trivial action on L;. Denote the extension by g.
We now do the same for L', ¢’ in place of L, g.

From Theorem 10.35 of [Gr12], g and ¢’ are conjugate in O(A) and det(L) =
det(L') = 35. A conjugating element takes the fixed point sublattice L; of g to
the fixed point sublattice L) of ¢’. Therefore, L and L’ are isometric. [J

Corollary D.16. The Cozeter-Todd lattice is not properly contained in an inte-

gral, rootless lattice.

703
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Proof. Embed the Coxeter-Todd lattice P in a lattice @ satisfying the hypothesis
of (D.15). Since det(P) = 35 = det(Q), P = Q. O

Lemma D.17. Let X 2 Eg, P < X, P = FEg and Q := annx(P).

(i) There exists a sublattice R = Ay so that RN (P U Q) contains no roots.
(ii) If r € R is a root, then the orthogonal projection of v to P has norm g

and the projection to Q has norm %

Proof. (i) We may pass to a sublattice Q1 L Q2 L Q3 L Q of type A3, where
P>0Q1 1L Q21 Q3. Then X is described by a standard gluing with a tetracode,
the subspace of F3 spanned by (0,1,1,1),(1,0,1,2), and elements v; of the dual
of Q; (Q4 := Q) where v; has norm % Then for example take R to be the span
of vg + w3 + v4,v1 + v3 — w, where w € v4 + @ has norm % but (w,vs) = —%. See
(D.7).

(i) This follows since the norms in any nontrivial coset of Q in Q* is 2 + 2Z.
]

D.3 Discriminant groups which are 5-groups

Proposition D.18. Suppose that M is a sublattice of L = Fg, that M is a direct
summand, that M has discriminant group which is elementary abelian of order
5%, for some s < 4. Then M is 0, a natural Ay sublattice, the rank 4 lattice
M(4,25) (cf. (B.7)), the rank 4 lattice /5A; = A4(1) (c¢f. (D.19)) or L. The

respective values of s are 0, 1, 2, 8 and 0.

Proof. We may replace M by its annihilator in L if necessary to assume that
r:= rank(M) < 4. Since M is even and det(M) is a power of 5, r is even. We
may assume that » > 2 and that s > 1. If r = 2, det(M) = 3(mod4) (consider

ab
the form of a Gram matrix bl which has even entries on the diagonal and

odd determinant, whence b is odd). This is not possible since det(M) is a power
of 5.

We therefore may and do assume that r = 4.
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Suppose that s = 4, i.e., that D(M) = 5*. Then M = /5., where J is an

o~ Zrank(M)

integral lattice of determinant 1. Then J , which is not an even lattice.

This is a contradiction since M is even. We conclude s = rank(D(M)) < 3. If
s = 0, M is a rank 4 unimodular integral lattice, hence is odd by (B.4), a
contradiction. Therefore, 1 < s < 3. The results (B.6), (B.8) and (B.10) identify
M. O

Notation D.19. The lattice A4(1) is defined by the Gram matrix

4 -1-1-1
-14 —-1-1
-1-14 -1
-1-1-114

It is spanned by vectors vy, - - - ,v5 which satisfy v; + v9 + v3 +v4 + v5 = 0 and
(vi,vj) = —1 4 56;;. Its isometry group contains Syms x (—1).

Lemma D.20. Suppose that u is a norm 4 vector in an integral lattice U where
g acts as isometries so that 1 + g + ¢> + ¢° + ¢* acts as 0.Then one of three

possibilities occurs.

(i) The unordered pair of scalars (u,ug) = (u,g*u) and (u,ug?) = (u,ug?)

equals the unordered set {0, —2}; or

(ii) The unordered pair of scalars (u,ug) = (u,g*u) and (u,ug?) = (u,ug?)

equals the unordered set {—3,1}; or
(iit) (u,ug) = (u,ug?) = (u,ug’) = (u, g*u) = —1.
The isometry types of the lattice span{u,ug, ug?, ug®, ug*} in these respective
cases are AAy, Ay, Ag(1).
Proof. Straightforward. O
Lemma D.21. Let X = A4(1) (D.19). Then
(i) X is rootless and contains exactly 10 elements of norm 4;
(ii) Suppose u € X has norm 4. Then annx(u) = \/5As3.

(i17) O(X) = 2 x Syms; furthermore, if X4 is the set of norm 4 vectors and
O is an orbit of a subgroup of order 5 in O(X) on X4, then the subgroup of
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O(X) which preserves O is a subgroup isomorphic to Syms, and is the subgroup

generated by all reflections.

(iv) Suppose that Y = Ay and that g € O(Y) has order 5, then Y (g—1) = X.
Also, O(Y)NO(Y (g — 1)) = Nowv)({9)) = 2 x 5:4, where the right direct factor

is a Frobenius group of order 20.

(v) D(X) is elementary abelian.

Proof. (i) If the set of roots R in X were nonempty, then R would have an
isometry of order 5. Since the rank of R is at most 4, R would be an A4-system
and so the sublattice of X which R generates would be A4, which has determinant
5. Since det(X) = 53, this is a contradiction.

By construction, X has an cyclic group Z of order 10 in O(X) which has an
orbit of 10 norm 4 vectors, which are denoted +wv; in (D.19). Suppose that w
is a norm 4 vector outside the previous orbit. Let g € Z have order 5. Then
w + wg + wg® + wg® + wg* = 0. Therefore 0 = (v, w + wg + wg? + wg> + wg?),
which means that there exists an index i so that (v, wg’) is even. Since wg® and
v are linearly independent, (v,wg’) is not +4 and the sublattice X’ which wg’
and v span has rank 2. Since (v,wg’) € {—2,0,2}, X' = AA; L AA; or AA,.
This contradicts (A.3) (in that notation, n =4, m =2, p =5, r = 3).

(ii) Let K := annx(u). Since (u,u) = 4 is relatively prime to det(X),
the natural map X — D(Zu) is onto. Therefore Zu 1 K has index 4 in X.
Hence det(Zu | K) = 4% .53 and detK = 4 -53. Since D(X) < D(Zu 1 K) =
D(Zu) x D(K) and the Smith invariant sequence of X is 1,5,5,5, D(K) contains
an elementary group 5%. Moreover, the image of X in D(K) isomorphic to the
image of X in D(Zu), which is isomorphic to Zs. Therefore, D(K) = Z4 x Z3
by determinants. Hence, the Smith invariant sequence for K is 5,5,20 and so
K = /5W, for an integral lattice W such that D(W) = 4. Since X is even, W
is even. We identify W with A3 by (B.2).

(iii) We use the notation in the proof of (i). By (D.20), for any two distinct
vectors of the form wvg’, the inner product is —1, so the symmetric group on the
set of all vg® acts as isometries on the Z-free module spanned by them, and on

the quotient of this module by the Z-span of v + vg + vg? + vg> + vg?, which is
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isometric to X.

Pairs of elements of norm 4 fall into classes according to their inner products:
+4,4+1. An orbit of an element of order 5 on Xy gives pairs only with inner
products 4, —1 (since the sum of these five values is 0). There are two such
orbits and an inner product between norm 4 vectors from different orbits is one
of —4,1. The map —1 interchanges these two orbits. Therefore, the stabilizer of
O has index 2 in O(X). It contains the map which interchanges distinct vg’ and
vg’ and fixes other vg* in the orbit. Such a map is a reflection on the ambient
vector space. Since Syms has just two classes of involutions, it is clear that every
reflection in O(X) = (—1) x Stabo(x)(O) is contained in Stabo(x)(O).

(iv) We have Y (g — 1) = spanz{vg’ — vg’|i,j € Z}. By checking a Gram
matrix, one sees that it is isometric to X. We consider O(Y) N O(Y (g — 1)),
which clearly contains No(y)((g)). We show that this containment is equality.
We take for Y the standard model, the set of coordinate sum 0 vectors in Z°. Take
v € Y(g—1), anorm 4 vector. It has shape (1,1,—1,—1,0) (up to reindexing).
The coordinate permutation ¢ which transposes the last two coordinates is not in
O(Y (g—1)) (since v(t—1) has norm 2). Therefore O(Y") does not stabilize Y (g—1).
Since No(yy({g)) is a maximal subgroup of O(Y), it equals O(Y) N O(Y (g — 1)).

(v) Since A4(1) = V5A] by (B.10), (A4(1))* = —=As. Thus, 544(1)" < Ay(1)
and D(A4(1)) is elementary abelian. [J

Lemma D.22. Let X = A4(1) be a sublattice of Es. If X is a direct summand,
then annp (X) = Ay4(1).

Proof. . Let Y = FEg and let X = A4(1) be a sublattice of Y. Since X is a
direct summand, the natural map Y — D(X) is onto. Similarly, the natural map
from Y — D(anny (X)) is also onto and these two images are isomorphic. Thus,
D(anny (X)) = D(X) = 5. Hence, anny (X) is isomorphic to A4(1) by (B.10).00

Remark D.23. Note that A4(1) can be embedded into Eg as a direct summand.
Recall that

A4(1) = V5A;

(1,-4,1,1,1)}.

Sl

1 1 1
= Spanz{%(l, 17 17 1, —4), ﬁ(:h 1, 1, —4, 1), %(1, 1, —4, 17 1),
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Then,
(A1) = -4 L )25: Oand z; € Z,i=1,....5
= —= =45y ~=T1,...,T Ty = U and x; s =1,..., .
4 \/5 4 5 1 5 a
Let
Aq(1) L Ay(1), -1(1,-1,0,0,0|2,-2,0,0,0
Y — spany (1) L Ag(1), & ( | )

%(0,1,—1,0,0|0,2,—270, ), %(0,0,1,—1,0|0,0,2,—2,0,)

Then Y is a rank 8 even lattice and |Y : A4(1) L A4(1)| = 53. Thus det(Y) =1
and Y = Eg. Clearly, A4(1) is a direct summand by the construction.

D.4 Discriminant groups of unrestricted types

We have O(FEg) = Weyl(Eg)x (—1). Thus, outer involutions are negatives of inner

involutions. The next result does not treat inner and outer cases differently.

Lemma D.24. Let t € O(Fs) be an involution. The negated sublattice for t
is either SSD (so occurs in the list for Eg (D.2)) or is RSSD but not SSD and
18 1sometric to one Of AAQ,AAQ 1 Al,AAQ 1 Al 1 A1,AA2 1 A1 1 A1 1
Ay, A5, As L A1, Fg. Moreover, the isometry types of the RSSD sublattices de-
termine them uniquely up to the action of O(Fg).

Proof. Let S be the negated sublattice and assume that it is not SSD. Then
the image of Eg in D(S) has index 3 and is an elementary abelian 2-group, so
that det(S) = 2%3, where a < rank(S). Note that rank(S) > 2. Now, let
T := anng,(S), a sublattice of rank at most 4. Since det(S L T) = 2223,
det(T) = 2% and the image of Eg in D(T') is all of D(T"). Therefore, T is SSD
and we may find the isometry type of T" among the SSD sublattices of Eg. As we
search through SSD sublattices of rank at most 4 (all have the form A} or Dy),

it is routine to determine the annihilators of their embeddings in Fg. [

Lemma D.25. Suppose that R 1 Q is an orthogonal direct sum with Q =2 AAs
and R = Dy. Let ¢ : D(R) — D(Q) be any monomorphism (recall that D(R) =
2x 2 and D(Q) = 2 x 2 x 3). Then the lattice X which is between R 1 Q
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and R* 1 @Q* and which is the diagonal with respect to ¢ is isometric to Eg.
Furthermore, if X is a lattice isometric to Eg which contains R L Q, then X is

realized this way.

Proof. Such X have determinant 3. The cosets of order 2 for D4 in its dual
have odd integer norms (the minimum is 1). The cosets of order 2 for AAs in its
dual have odd integer norms (the minimum is 1). It follows that such X above

are even lattices. By a well-known characterization, X = Eg (cf. (B.5)).

Conversely, suppose that X is a lattice containing R 1 @, X = FEg. Since
det(X) is odd, the image of the natural map X — D(R) is onto. Therefore,
|X : R L Q] =4. The image of X in D(Q) is isomorphic to the image of X in
D(R). The last statement follows. O

Corollary D.26. (i) Let Y be a sublattice of X = FEg so that Y = Dy. Then
annx(Y) = AAs.

(ii) Let U be a sublattice of X = Fg so that U =2 AAs and X/(U L annx(U))
is an elementary abelian 2-group. Then X/(U L annx(U)) = 2% and annx (U) =
Dy.

Proof. (i) Let Z := annx(Y). Since (det(X),det(Y)) = 1, the natural map of
X to D(Y') = 2x2 is onto, so the natural map of X to D(Z) = 2 x 2 x 3 has image
2 x 2. Since rank(Z) = 2, this means %Z is an integral lattice of determinant 3.
It is not rectangular, or else there exists a root of X whose annihilator contains
Y, whereas a root of Fg has annihilator which is an As-sublattice, which does not
contain a Dy-sublattice (since an Ajs lattice does not contain an Aj-sublattice).

Therefore, by (B.1), %Z = A,

(ii) Use (B.3). O

Notation D.27. We define two rank 4 lattices X, Q. First, X = A2A4,, D(X) =
22 x 3. Let X have the decomposition into indecomposable summands X = X; L
Xo L X3, where X7 & Xo =2 A and X3 = As. Let ap € X1, a9 € X9, 3,04 € X3
be roots with (as,aq) = —1.

We define Q = anng,(P), where P is a sublattice of Eg isometric to AZ.
Then D(Q) =2 22 x 3 and rank(Q) = 4. Then Q is not a root lattice (because in
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E, the annihilator of an Aj-sublattice is an As-sublattice; in an As-lattice, the

annihilator of an A;j-sublattice is not a root lattice).

We use the standard model for Ejg, the annihilator in the standard model of
Es of J := span{(1,-1,0,0,0,0,0,0),(0,1,—1,0,0,0,0,0)}. So, FEg is the set of

Es vectors with equal first three coordinates.

We may take P to be the span of (0,0,0,1,1,0,0,0) and (0,0,0,1,—1,0,0,0).
Therefore, Q = span{u,@Q,w}, where u = (2,2,2,0,0,0,0,0), Q1 is the Ds-
sublattice supported on the last three coordinates, and w := (1,1,1,0,0,1,1,1).

Lemma D.28. The action of O(Q1) = 2 x Symg extends to an action on Q.
This action is faithful on Q/3Q*.

Proof. The action of O(Q1) = 2 x Syms extends to an action on @ by letting
reflections in roots of )1 act trivially on v and by making the central involution
of O(Q1) act as —1 on Q. The induced action on Q/3Q* is faithful since ()1 maps
onto Q/3Q* (because (3,det(Q1)) = 1) and the action on @Q1/3Q; is faithful. In
more detail, the action of O2(O(Q1)) = 23 is by diagonal matrices and any normal
subgroup of O(Q1) meets O2(O(Q1)) nontrivially. [

Lemma D.29. We use notation (D.27). Then X contains a sublattice Y = 1/3Q
and X >Y > 3X.

Proof. We define 31 := a1 + as + ag, 0o := —2a3 — ay, B3 := a3 + 2a4. Then
Y] := span{B1, B2, 3} = v/3D3. The vector 34 := 3a; — 3ay is orthogonal to Vi
and has norm 36. Finally, define v := %54 + %(61 + 2062+ 303) = 201 — ag + 20y.
Then Y := span{Y1, B4,7} is the unique lattice containing Y7 1 Z3; with index 2
whose intersection with %Yl is Y7 and whose intersection with %Z@; is Z34. There
is an analogous characterization for @ and v/3Q. We conclude that Y 2 1/3Q.

Moreover, by direct calculation, it is easy to show that

3ar =7+ 01— B3, 3ag =7+ P1— F3— b,
3az = (1 +203+ B4 — 27, 3oy =2y — (1 + B2+ B3+ Ba).

Hence, Y also contains 3X. [J
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Lemma D.30. Let M be the set of rank n integral lattices. For q € Z, let
M(q) be the set of X € M such that X < qX*. Suppose that q is a prime,
XY € M(q), Y > X and q divides |Y : X|. Then ¢"*? divides det(X). In
particular, if "2 does not divide det(X), then X is not properly contained in a
member of M(q).

Proof. Use the index formula for determinants of lattices. [J

Proposition D.31. For an integral lattice K, define K := K +2K*. Let
A:={(R,9)|R<S<R*R=3Q,5=X}

B:={(T,U)|T <U<R"T=V3X,U=Q}
A= {(R,9)|R < S <R R <3R* det(R) = 2°3°, S =~ X}
B = {(T,U)|T <U <RY T < 3T, det(T) = 223°,U = Q}.

Then (i) A=A"#0 and B= B # 0;

(ii) the map (T,U) — (v/3U, %T) gives a bijection from B onto A; further-
more if (T,U) € B, then T > 3U and if (R,S) € A, then R > 35;

(iii) O(R*) has one orbit on A and on B.

Proof. Clearly, A C A" and B C B'. From (D.29), A # () and B # (). Moreover,

the formula in (ii) gives a bijection between A and B.
Now, let (E, F) be in A/UB'.

We claim that 3F = F N 3F*. We prove this with the theory of modules over
a PID. Since D(F) =2 2% x 3, there exists a basis a, b, c,d of F* so that a, b, 2c, 6d
is a basis of F. Then a, b, 2¢, 2d is a basis of F. Since 3F* has basis 3a, 3b, 3¢, 3d,
F N 3F* has basis 3a, 3b, 6¢, 6d. The claim follows.

Note that F/ 3F is an elementary abelian 3-group of rank 3 and the claim
implies that it is a nonsingular quadratic space. Therefore, its totally singular

subspaces have dimension at most 1.

We now study E’ := F + 3F, which maps onto a totally singular subspace

of F/3F. Since totally singular subspaces have dimension at most 1, |F : E’| is
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divisible by 3% and so its determinant is |F' : E'|*det(F) = |F : E'|*223. However,
E’ contains E, which has determinant 223°. We conclude that £ = E’ has index
9 in F. Therefore, E = E' > 3F. The remaining parts of (ii) follow.

Let (T,U) € B. The action of O(U) = Symy4 x 2 on U/3U is that of a
monomial group with respect to a basis of equal norm nonsingular vectors (D.28).
It follows that the action is transitive on maximal totally singular subspaces, of
which T/ 3U is one. This proves transitivity for B. Therefore B = B’ and, using
the O(U)-equivariant bijection (i), A =.A". O

Corollary D.32. v/3Q does not embed in Q and v/3X does not embed in X.

Proof. Use (D.31), (D.29) and the fact that X is not isometric to @ (X is a root
lattice and @ is not). O

Lemma D.33. Suppose that S | T is an orthogonal direct sum with S = Ay, T =2
Es. The set of Eg lattices which contain S L T is in bijection with {X|S L T <
X<S*1T*|X:SLT|=35SNX=5T"NX=T}

Proof. This is clear since any FEg lattice containing S 1 T lies in S* 1L T* and
since the nontrivial cosets of S in S* have norms in % + 27 and the nontrivial

cosets of T' in T™ have norms in % +27. O

Lemma D.34. (i) Up to the action of the root reflection group of Dy, there is a
unique embedding of AAs sublattices.

(ii) We have transitivity of O(Dy) on the set of A sublattices and on the set of
AAs-sublattices. In Dy, the annihilator of an AAs sublattice is an Ay sublattice,

and the annihilator of an Ao sublattice is an AAs-sublattice.

Proof. (i) Let X = Dy and Y = AAy. Since every element of Y has norm
divisible by 4, Y < 2X*. Now let s := f — 1, where f € O2(Weyl(X)), f? = —1.
Then s~ ! takes 2X* to X and takes Y to an Ay sublattice of X. Now use
the well-known results that Ag sublattices form one orbit under Weyl(X) and
O(As2) = Dihqs is induced on an A, sublattice of Dy by its stabilizer in Weyl(Dy).

(ii) We may take Y := span{(—2,0,0,0),(1,1,1,1)} = AA,. Its annihilator
is Z := span{(0,1,-1,0),(0,0,1,—1)} = Ag. Trivially, annx = (Z) =Y. O
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Lemma D.35. Let X = FEg and Y, Z sublattices such that Z = Dy and Y =
annx(Z) =2 AAs. Define W := 2Y™* (alternatively, W may be characterized by
the property that Y < W <Y* W/Y = 3). Then W < X*.

Proof. By coprimeness, the natural map X — Z* is onto, and the image of X

in D(Z) has order 4. Therefore, the image of the natural map X — D(Y) has

order 4 and so the image of the natural map X — Y™ is %Y. The dual of %Y is

2Y*, which contains Y with index 3 and satisfies (X,2Y*) <Z. O

E Values of the Hermite function

Notation E.1. Let n and d be positive integers. Define the Hermite function

n—1

Theorem E.2 (Hermite: cf. proof in [Kn], p. 83; or [GrGL]). If a positive
definite rank n lattice has determinant d, it contains a nonzero vector of norm
< H(n,d).

F Embeddings of NREES pairs in the Leech lattice

If M, N is an NREES pair, then except for the case DIH4(15), L = M + N
can be embedded in the Leech lattice A. In this section, we shall describe such

embeddings explicitly.
In the exceptional case DI Hy(15), M NN = AA; and [tatn| = 2. See (5.5).

F.1 The Leech lattice and its isometry group

We shall recall some notations and review certain basic properties of the Leech
lattice A and its isometry group O(A), which is also known as Cop, a perfect
group of order 222 .39 .5%.72.11-.13-23.

713
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Table 12: Values of the Hermite function H(n,d); see [Kn], p.83.

| H(n,d) || d| H(n.d) |
1.679894733 1.830904128
1.922999426 2.026228495
2.116534735 2.177324216
2.279967929 2.302240057
2.422827457 2.409605343
2.666666666 2.504278443
10[2.872579586 2.589289450
12[3.052571313 2.666666668
16[3.359789466/4] 12 [2.865519818
20[5.163977796324]3.845998854] 4] 25 [3.442651865
24]5.656854249]350[4.912041997( 4] 125]5.147965271

5] 6[2.5439450336] 3 [2.465284531] 7] 32 [3.888997243

d

211.632993162
312.000000000
412.309401077
5 |2.581988897
6
7
8
9

2.828427125
3.055050464
3.265986324
3.464101616
12}4.000000000

|| O | W N X

O 0[N | =] W[ N

NN NN NS
Wl w|w|w|w|w|w|w|w|w]|w
NN NSNS SN Y SN NSNS

Let Q ={1,2,3,...,24} be a set of 24 element and let G be the extended Golay
code of length 24 indexed by 2. A subset S C 2 is called a G-set if S = supp « for
some codeword o € G. We shall identify a G-set with the corresponding codeword
in G. A G-set O is called an octad if |O| = 8 and is called a dodecad if |O| = 12.
A sextet is a partition of §2 into six 4-element sets of which the union of any two

forms a octad. Each 4-element set in a sextet is called a tetrad.

For explicit calculations, we shall use the notion of hexacode balance to denote
the codewords of the Golay code and the vectors in the Leech lattice. First we

arrange the set {2 into a 4 x 6 array such that the six columns forms a sextet.
For each codeword in G, 0 and 1 are marked by a blanked and non-blanked

space, respectively, at the corresponding positions in the array.

The following is a standard construction of the Leech lattice.

Definition F.1 (Standard Leech lattice [CS, Gr12]). Let e; := —= (0,...,4,...,0)

NG
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for i € . Then (e;,e;) = 2d; ;. Denote ex := ) ..y ¢; for X € G. The standard
Leech lattice A is a lattice of rank 24 generated by the vectors:

26X where X is a generator of the Golay code G;

1
—eq—e1;
4 Q 1,

ei:I:ej, i,jGQ.

Remark F.2. By arranging the set {2 into a 4 x 6 array, every vector in the

Leech lattice A can be written as the form

1
X = —=[X1 X2 X3X4X5X6], juxtaposition of column vectors.

V8

For example,

22|00/00
1122/00(00

V82 210 00 0
220 0/00

1
denotes the vector 5 e, where A is the codeword

* ok

L

L

k3

Definition F.3. A set of vectors {£01,...,£024} C A is called a frame of A
if (8;,5;) = 8d;; for all i,j € {1,...,24}. For example, {£2ey,...,+2e94} is a

frame and we call it the standard frame.

Next, we shall recall some basic facts about the involutions in O(A).
Let F = {£04,..., %024} be a frame. For any subset S C 2, we can define
an isometry sg : R — R by 5?(@») = -3 ifi € S and ag(ﬁi) =g ifi¢S.

The involutions in O(A) can be characterized as follows:

Theorem F.4 ([CS, Grl2]). There are exactly 4 conjugacy classes of involutions
in O(A). They correspond to the involutions €%, where F is a frame and S € G

715
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is an octad, the complement of an octad, a dodecad, or the set Q). Moreover, the
eigen-sublattice {v € A | €% (v) = —v} is isomorphic to EEs, BWy, DD, and
A, respectively, where BW 16 is the Barnes-Wall lattice of rank 16.

F.2 Standard FFEgs in the Leech lattice

We shall describe some standard E Egs in the Leech lattice in this subsection.

F.2.1 FFEj corresponding to octads in different frames

Let F = {£01,...,£024} C A be a frame and denote «; := 3;/2. For any octad
O, denote

1

Er(O) = span {ai +aj,i,5€0, - Zai} .
2
€0

Then Ex(0O) is a sublattice of A isomorphic to EEg. If {£2ey,...,+2e9} is the
standard frame, we shall simply denote Ex(O) by E(O).

Next we shall consider another frame. Let

-11 11

1 -111
At

211 1-11

1 1 1-1

Notation F.5. Define a linear map £ : A — A by X = AX D, where

1
X = NG (X1 X5 X5 X4 X5X¢]

is a vector in the Leech lattice A and D is the diagonal matrix

100000
10000
01000
00100
00010
0000 1]

o O O o O

Recall that ¢ defines an isometry of A (cf. [CS, p. 288] and [Grl12, p. 97]).
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Let F := {£2ey,...,+2e24} be the standard frame. Then F¢ = {£2e1,...,£2ex}
is also a frame. In this case, E(0)§ = Er, (O) is also isomorphic to E'Eg for any
octad O. Note that if F is a frame and g € O(A), then Fyg is also a frame.

F.2.2 FEFEjg associated to an even permutation in an octad stabilizer

The subgroup of Symgq which fixes G setwise is the Mathieu group Mas4, which
is a simple group of order 210 .33 .5.7.11-23. Recall that Mo, is transitive on
octads. The stabilizer of an octad is the group 2*: Alts = AGL(4,2) and it acts as
the alternating group Altg on the octad. If we fix a particular point outside the
octad, then every even permutation on the octad can be extended to a unique

element of My, which fixes the point.

Let 0 = (ij)(kl) € Sym(O) be a product of 2 disjoint transpositions on the
standard octad O. Then o determines a sextet which contains {3, j, k,¢} as a
tetrad and o extends uniquely to an element ¢ which fixes a particular point
outside the octad. Note that 7 fixes 2 tetrads pointwise and fixes the other 4
tetrads setwise. Moreover, ¢ has a rank 8 (—1)-eigenlattice which we call E, and
that F is isometric to FEg.

Take & to be the involution (UP6) listed in [Grl2, pp. 49-52].

(UP 6)

Then ¢ stabilizes the octad

k%

k%

Xk

and determines as above the sublattice
138
E = spany {:ta,- + aj, 3 Z;ﬁi%} ,
1=

where i,j = 1,...,8, ¢ = +1 such that []>_, ¢ = 1 and
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2-90 0 0 0 0 -2 2,0 0 0 0

110 000 00 110 000 00
o] = — s g = —= )
V8 0 200 0 0 0 V8 0 200 0 0 0
0-20 0 0 0 0-2/0 0 00

00 0 2 00 0 0 0-200 0

110 0-2000 1100 2000
oy = — y gy = —= )
V8l 0O 0 0 0 0—2 V8l 0 0 0 0] 0—2
00 0 0 2 0 0 00 0 20

0 0 0 0-2 0 00 0 0/ 20

110 0 0 0 02 1100 0 00 2
a5 = —= > Qg = —= )
V8 0 02 0/ 0 0 V8 0 0—2 0/ 0 0
0 0l 0-2/ 0 0 0 0l 0-2/ 0 0

0 0 0 0 02 0 0 0 0 0-2

110 0 0 0-2 0 1100 0 0-20
a7 = —— R ag = —— .
V8 0 00 200 0 V8000 2 0 0
0 0—-2 0/ 0 0O 0 0 20 00

Then F is a sublattice in A which is isomorphic to EEg. By our construction, it

is also clear that & acts as —1 on F and 1 on annp(E).

Recall that G is acting on A from the right according to our convention.

F.3 FEFEg pairs in the Leech lattice

In this subsection, we shall describe certain NREES pairs M, N explicitly inside
the Leech lattice. By using the uniqueness theorem (cf. Theorem 4.1), we know
that our examples are actually isomorphic to the lattices in Table 1. It turns out
that except for DIH4(15), all lattices in Table 1 can be embedded into the Leech

lattice.

We shall note that the lattice L = M + N is uniquely determined (up to
isometry) by the rank of L and the order of the dihedral group D := (tps,tn)
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except for DI Hg(16,0) and DIHg(16, DDy). Extra information about annps(N)

is needed to distinguish them.

Let M and N be EEj sublattices of the Leech lattice A. Let t := t); and
u = ty be the involutions of A such that ¢ and v act on M and N as —1 and
act as 1 on M* and N, respectively. Since M and N are SSD, u and t are
isometries of A. Moreover, they are conjugate to each other in the Conway group
Cog =2 2.Coy. Set g :=tu and D := (t,u), the dihedral group generated by ¢t and
u. Then g is also an element of C'og. The Isometry type of L = M + N is, in
fact, determined by the conjugacy class of g = tu in C'oy. The correspondence is

given in Table 13.

Table 13: NREE8SUMs in A and Conjugacy classes of g = t/ty

Name Trace of g on A Conjugacy classes of
g in 2.Coq

DIH,(12) 8 +2A
DIH,(16) -8 -2A
DIH,(14) 0 2C
DIHg(14) 6 +3B
DIHg(16) 0 +3D
DIHg(16,0) 8 +4A
DIHg(15) 4 +4C
DIHg(16,DDy) 0 4D
DIH(16) 4 +5B
DIH5(16) 2 +6E

Here 2A, 2C, ...are the notation in the Altas [ATLAS]. They denote the conju-
gacy classes of C'oq while 4+2A, -2A, etc denote the lift of the elements in Co; to
CO() = 2.C01.

Notation F.6. In this subsection, @, @', O”, etc denote some arbitrary octads

719
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while O1, O3, O3, and O4 denote the fixed octads given as follows.

x % %% x| % x
ko ok k
(91: ) 02: )
ko ok *
ko ok *
% % % k| % %
k ok ko k| ok ok
O3 = , Oy =
ko ok
k%

Remark F.7. All the Gram matrices in this subsection are computed by mul-
tiplying the matrix A by its transpose A!, where A is the matrix whose rows
form an ordered basis given in each case. The Smith invariants sequences are

computed using the command ismith in Maple 8.

F.3.1 |g|=2.
In this case, M NN =20,AA,AA; L AA | or DDy.

Case: DIH,(15): This case does not embed into A.

If MNN = AA;, then L = M+N = DIH4(15) contains a sublattice isometric
to AA; L EE7; | EFE7, which cannot be embedded in the Leech lattice A because
the (—1)-eigenlattice of the involution g = tjstx has rank 14 but there is no such
involution in O(A) (cf. Theorem F.4).

Notation F.8. Let O = {iy,...,ig} and O' = {ji1,...,Js} be 2 distinct octads
and denote M := E(O) and N := E(0’). Since the Golay code G is a type I
code (doubly even) and the minimal norm of G is 8, |O N 0’| is either 0, 2, or 4.

DIH,(16)
When [ONO'| =0, clearly MNN =0and M + N = EEs | EFs.

DIH,(14)
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Suppose O N O" = {iy,ia} = {j1,7j2}. Then [ONO'|=2and F=MNN =
spang{e;, + €, e, —ei,} = AA; L AA;. In this case, annp(F) = anny(F) =
DDg and L contains a sublattice of type AA; 1 AA; 1 DDg 1. DDg which has
index 2% in L. Note that L is of rank 14. By computing the Gram matrices, it is
easy to check that

1
{5lei 4 Hei)Ul—ei +ei | T2k 23 U{—ei, + ey, —eiy — eip}

is a basis of M and
1
{_eiQ + i, —€i — €i2} U {ejkﬂ - ejk’ 3<k< 7} U {§(ej1 +eeet ejs)}
is a basis of N. Thus,

1
{5(61& +oe +€i8)} U {_eik + eik—l‘S > k> 3} U {_eiQ + €iy, —€i; — 62'2}

1
U {ejkfl - ejk|3 <k< 8} U {§(€j1 +"'+€js)}

is a basis of L and the Gram matrix of L is given by

(4 000000-2100001]
0 4-20000000000 0
0-24-2000000000 0
00-24-200000000 0
000-24-20000000 0
0000-24-2-220000 1
00000-240-20000 0
2000 0-204-2000 0 -2
100002-2-24-2000 0
00000000 -24-200 0
0000000GO0O0-24-200
000000O0GO0O0O0-24-20
0000000O0O0OGO0-24 0
1000010-200000 4

The Smith invariant sequence is 11112222222244.

DIH,(12)
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Suppose O N O" = {iy,i2,i3,i4} = {Jj1,72,73,J4} (cf. Notation F.8). Then
|ONO'|=4and F = M NN =spang{e;, +e;|1 <k <l<4} = DD,. Thus,
annp(F) = anny(F) = DDy. In this case, L is of rank 12 and it contains a
sublattice of type DDy, 1 DD, 1 DD, which has index 2* in L. Note that
{ei, + €iy, i, — €iy, €iy — €y, €15 — €4, } is a basis of ' = M N N. A check of Gram

matrices also shows that

{eil +6i27e’il_ei27€i2_6i37€i3_ei4}u{ei4_ei5aei5_ei67ei6_ei77 2 (ei1 +-- '+ei8)}

is a basis of M and

{ei, +ei2vei1_ei27ei2_6i37ei3_ei4}u{ej4_ej57ejs_ejsvejs_ejw B (€j1+' ) '+ej8)}

is a basis of N. Therefore, L = M + N has a basis

{e’il + €igy€i1 — €iy,y ECiyp — €i3,Cj3 — ei4}

U{ei4 = €5, Cig — Cig, Cig — Cir, (eh +oeee eig)}

2
U{6j4 — €45, €55 — €j6s €js — Cjrs 7(63'1 +-- +€j8)}
and the Gram matrix of L is given by
[(4020000-200 0—2]
0 4-20000O0O0O0O0TO0
2-24-2000 00000
0 0-24-2000-20200
00 0-24-200200-1
000 0-24-20 0 00
0000 0-240W0T0V0F20
-20 0 0000 4-10 0 2
000-2200-14-200
0000OO0OO0OO0OTUO0-24-20
000 O0OO0OO0OO0OTO0OTU 0-=-240
-20 0 0-100 200 0 4

whose Smith invariant sequence is 111122222244.
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lg| = 3.

F.3.2

In this case, M NN =0 or AAs.

DIHg(16)

EEg, where O is the octad described in

~

Notation F.9. Let M := E(O,)

., Os} of M, where

Notation (F.6). We choose a basis {f1, ..

1
V8

B =

S o o o[ o & o[ o & o[ o o o
o o o ollo oo o|llo oo ol oo o
S o o ol o o ol oo ol oo o
o o o ollo oo o|lloc oo ol oo o
¥ o © ol F o ol o ¥ olld a a «
o A_.* o o|llo o A_x olleo o o A__L N NN
~[< ~[< ~[< ~%

Il Il Il I

& S St &
S © o o|[c © © o[ © © o[ o © o
o o o ollo oo o|lloc oo ol oo o
S o o ol o o o[ oo o[ oo o
o o o ollo oo o|llc oo ol oo o
A_1 S o oo A__l === A_H,. S A_T S 5 o
+ © o of|llo v o o||lc o w o A_,A o o o

S
V8

Br =
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Let N be the lattice generated by the vectors

99 2.9 2 0 020020 2
110 00 00 2 1]-2 ol-2 0 0-2
a] = — A g = — ,
T8l o olo oo 2 > V8| 0 o 0 0 2-2
0 00 00 2 ol 0 00 0

0 oo o 0-2 ol 0 of 0 2

1] 222 229/ 2 0 1 9l 0 2-2 2
a3 = — A oy = — ,
T80 0 0 0-2 0 YT VB1-2 0-2 0 0 0
000020 00 00 0-2

0 oo o 0-2 ol 0 of 0 2

110 00 o 2 0 1 ol 0 0 0-2
oy —= —— i g = ——= )
5T R 222 222 2 0 578l 0 2 0 2—2 2
0 00 0-2 0 —92 0-2 0l 0 0

“9 929 02 1 11 1-3 1
110 0 0o o-2 0 11 11 111
ar = — ' ag = — :
"7 V8l o ol 0o o-2 o TR 11 111
00 0 0-2 0 111 111

By checking the inner products, it is easy to shows that N = EFEg. Note that
aq,...,ay are supported on octads and thus N < A by (F.1).

In this case, M NN = 0. Then {f,f2,...,0s,1,...,ag} is a basis of L =
M + N and the Gram matrix of L = M + N is given by
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M+ N = Ay, ® Fg. The

By looking at the Gram matrix, it is clear that L
Smith invariant sequence is 1111111133333333.

DIHg(14)

ME, where Oy is the octad described in Notation

E(O2) and N :

(F.6) and ¢ is the isometry defined in Notation (F.5).

Let M :

Notation F.10. Set

S o o o[ o & o
o o o ollo oo o
S © o ol o o o
o o o ol o o o
S o o o A_A S o o
o Aﬂ <+ Oofllo o o o
— 7ﬁ — 7ﬁ
1 Il
& =
S o o o[ © & o
o o o ollo oo o
S © o ol o o o
o o o ollo o oo
S o o ol[¥ © & o
o o A_1 <t ﬂ_u <+ o o
— 7ﬁ — 7ﬁ
1 Il
2 &
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0 0 4—4 0 0 0 0l 0 4—4 0
1000 000 10000 00
TR0 0 0 o o of T=8 o0 0o oo
000000 0000 00
0000 00 0 2/ 2 2] 2 2
1000000 1200000
T Rl=4 0 0 0 0 of TRl 2 000 0 0 of
400000 2 000 0 00

Then {71,...,78} is a basis of M and {y1&,...,7s¢} is a basis of N.

By the definition of £, it is easy to show that v1& = —v1, 72& = —v2. Moreover,
for any o € M = E(O2), o is supported on Oz if and only if o € spany{y1,72}-
Hence, F = M N N = spang{v1,72} = AAs. Then anny/(F) = anny(F) = EFEg
and L = M + N is of rank 14.

Note that {v1,72,73,...,78} is a basis of M and {v1,72,73&,...,78§} is a
basis of N. Therefore,

{71”72} U {73a o 778} U {7357 s ,786}

is a basis of L and the Gram matrix of L is given by

(4200000000000 0]
24 -2000-20-20010 2 0
0-24-2000007100-20
00-24-20001-2100 0
000-24-2000T1-210 0
0000-2400001-200
0-200004-220000 1
000000 -240000—1-2
0-20100204-2000 0
001-21000-24-200 0
0001-21000-24-200
0000 1-20000-2400
02-20000-10000 4 2
0000001-20000 2 4
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whose Smith invariant sequence is 1111 11111 33366.

Recall that anny(F) + anny(F) =2 A ® Eg (cf. (3.2)) and thus L contains
a sublattice isometric to AAs L (As ® Fjg).

F.3.3 |g| =4.
In this case, M "N =0 or AA;. There are 2 subcases for M NN = 0.

DIHjg(16,0)
Let M := E(O;), where O; is the octad as described in Notation (F.6).

Take {f1,...,0s} as defined in Notation (F.9). Then it is a basis of M =
E(O1). Let N be the EEg sublattice generated by

0 oo oo o 00oo0oo0o0
12222000 11404000
T8 0 0 0 0 00 >~ 8l oo oo o0 o0
_9-9/-2-9 0 0 000000
—4 04 ol 0 0 2 02 0 0 0
100 0000 1]=2 o=2 ol 0 0

g = — oy = —
T8 00 00 00 TR 2 002000 0
00 0000 ol 2 000
00 0o o0 o0 0200200
_1jooo0o0o00 11020200
T /8l—4 0l-4 0l 0 0 678 2 0l 2 00 0
00 0000 —2 0-2 ol 0 0
0—4] 0—4/ 0 0 0 200 20 0
_1joooo000 - 1/0-20-200
"8l o oo oo o *T V80 20 200
0 00 o000 020200

In this case, M NN = 0 and anny (M) = annp(N) = 0. Moreover, the set
{B1,...,0s8,a1,...ag} forms a basis of L = M + N and the Gram matrix of L is
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4 0-20 0 0 0-21-22 00 0 0 0]

0 4-2000001-2-22202000
-2-24-2000 0-12 0-22-1020
0 0-24-20001000-2200
00 0-24-200-100120-22-1
0000-24-201020U0TV00-22
00000-240-100W0T0T1T0-=2
-20 0 00O0O04-21-11-11-11
1 1-11-11-1-24-20 0 0 0 0 O
-2-22 00001-240-202000
2-200000-1004-202000
0 2-2010010-2-24-20200
002-2000-10020-24-2020
0 0-12-201 1 0000-24-20
00002-20-1002000-24-=-2
0000-12-21000000-24 ]

The Smith invariant sequence is 1111111122222222.

It is clear that L < anna(E(O3)) (see (F.6) for the definition of O3). On
the other hand, det(L) = 28 = det(anna(E(03))). Hence, L = anny(E(03)) is
isomorphic to BWig (cf. Section (5.2.2)).

DIHg(16,DDy)

Define M := E(O3)§ and N := E(O4), where Oy and Oy are defined as in
Notation (F.6). We shall use the set {71&,...,7s{} defined in Notation (F.10) as

a basis of M and the set {aq,...,as} as a basis of N, where

a1 =

=
o O o O
=)
o o &
=)
o O O O
= e e )

P
o O o O
o o o O
S O = O
o e R e I
o O o O
S O o O
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0 000 4 0 0 0 0l 0 0—-4 0
110 0 0—4/ 0 0 110 0 0 4 00
a3 = —= , Q4= —= )
V8 0 0 0 0ol 0 0 V8 0 00 0 0 0
0 000 000 0 000 0 00
0 000 0 40 0 0l 0 0 0—4
110 0 0 0-4 0 1100 00 4 0
a5 = ——= , O = ——= )
V8 0 0 0 0 0 0 V8 0 0 0 00 0
0 000 0 00 0 000 0 0 O
0 04 0 00 0 0—2-2/—2-2
110 0 4 0 0 0 110 0-2-2-2-2
o7 = — , a8 = —— .
V8 0 0 0 0l 0 0 V8 0 0 0 0 0 0
0 000 0 00 000 0 00
Recall that
k| k sk |k 3k kook [k ok
* ko |k ok
02: and04:
k
*
and
—11 1 11| [*2 -1
101 -111 0 1
_ =+
211 1-11 0 1
1 1 1-=11]0 1

Therefore, no vector in M = E(O3)¢{ can be supported on O4 and hence MNN =

0. Moreover, we have

annar(N) = {7 € M| (v, 0;) =0, forall i =1,...,8}
= {7€ € M| suppy N O4 = 0}
= SpanZ{r)qfv 7255 736-7 775} = DDy.
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Set

0 0 0-11 0 0O

0 00 10 0

0 0 0 1 0 0O

0 0 0 0 0-1

0 000 0 0 1
0 000 0 0 1f

0 0 0 0 0 1

04

0 0-1 00 O
0 01000

00 1 000

0 0 0 0-1 0

0000 10
0 00 o0 1 0f

0 0 0O 10

Then

.,8)

O0foralli=1,..
{a € E(Oy)|(cr,6;) =0 for all i =1,2,3,4}

{a € E(O4)|(a, &) =

anny (M)

0 00 400

0 00 400

0 00 0 0 0f

0 000 0 00

0 0]—2-2|—2-2
0 0]—2-2|—-2-2
0 0 0O 0 OO
0 000 0 0 O

0 0 4 0 00

0 004 0000

0 0 00 0 0
000000
0 000 40
0000 40

(

0 0 0 0 0 of
000000

spany

S
V8

.,78&} is a basis of

'70487'7157 ..

M + N is of rank 16 and {aj, ..

In this case, L
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L. The Gram matrix of L is given by

To~T7T—- T ococloocococaoo
coo~GYoco0cocjococococo § o
o~ YoaTooloocoo G« 9o
n/_A02_I_.nUnUOO00044402
N~ Tooooooloo v G ooo
coocoocoocoocoooloqY w9 oooo
coocoocoocoocoocolfwYooooo
coococoocoocool+ Yo0o0o0cooo
coocoocooco Y v|oooooo oo
cxmocoooow J|loooocoooo
cooco {Yvooclooocooo ToT
00044400000002&1
UUJ.ALJH000000017.011_A
o §¥ vV coocoocoocloococoa {§ o~
T+ Yocoococmocjlooco 7 o-o0oo
+ Y ocoocoocoocooocjlocoocoocoa Yoo

whose Smith invariant sequence is 1111111122224444.

A check of the Gram matrices also shows that

57 ’Yéf} = DD4

= spang {5, %6,

annpr(annpr(N))

and

= DD47

s}

= spanZ{ai, az, as, «

anny(anny(M))

where

00 0 0 4 4
00 00 00
0 00 0 0 Of
00 00 00

1

V8

/
8

v

0 0—-2-2|—-2-2

0 0 0 0 0 0
00 0 0 0 0

0 0 2 2 2 2

0 0 0 0 4—4

0 000 0 0 O

0 00 0 0 0f

0 00 00 O

1

V8

/
7

v

_
VB

/
8

(07
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Let K = annps(anny(N)) + anny(anny(M)). Then K is generated by

Y5E, Y6E, E, 186, a1, a3, as, og,

The determinant of K is 28 and thus it is also isometric to EEg.

DIHg(15)
When M NN =2 AAq, this is the only possible case.

Let 01 and o9 be the involutions given as follows.

o] = s 02 =

(UP 12) (UP 11)

Then,

0102 = is of order 4.

(UP12xUP 11)

Let M and N be the EFEjy lattices corresponding to o; and og, respectively.
Then,

0000 0 00
1100 0 0 00
M NN =spany { —= = AA;.
V8l 0 0—-2 2/—2 2
0 0 2—-2/-2 2
Let
0 000 0 0 0 0 000 O 0O
1100 0000 1100 0 0 00
o = — s Qg = —= )
V8 0 0 0 0l 0—4 V8 0 0—-2 2[—2 2
0 000 0 4 0 0 0 2—2—2 2
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00 0 0 0 O

0 0-2 2| 2-2

0 0—-2-2/ 2 2f

0 0 0 0 0 O

2 000 00O

0-2—2-2| 2 2

0 200 0 0 0f

0-21 0 0 0 O

-2 0 0 00 O

0 0 0-2/ 0 2

0 0—-2 0 0 2

0 20 0 0] 2-2

0 0 0 00O
0 0 0 00O

0 0 0 0 0 of

0 0—-4 4 0 0

1

V8

~=

1

V8

/
6

(0}

1

VB

/
8

[0}

29_~700 N N o o 02704
nﬁQOO J.A./_HOO 09_~20
S O N ™ S © o© o S o © o
00%2 o o o © 0042
OOn_VO 0029_~ 009_~2
S o o o 009_~2 S o o o
- ~|% Rl
Il Il Il
g S g
S o o o A_10>00 S o o o
o o o o <+ o o o o o o o
S o © o S © © o© S o © o
o o < < o o o o o o o ©
OOOﬂ_u S © o o S © © o
o o o o© o o o o 004A_1
Y ~[% Y
Il Il Il
g S S

0 0 00 0 O

0 0 00 0 O

0 0 4 0 0—4f
00 00 0 0

0 00O 0O

0 0 4 0—4 0
0 0 0 0 0 of
000000

0 00 0 0O
0 40 0 00

0—4/ 0 0l 0 0Of
0 000 0 00

1

V8

-~

1

NE

/
7

(%

Note that M N N = spanz{as}. A check of Gram matrices also shows that

., a4} is a basis of N. Thus,

.,ag} is a basis of M and {a], ag, o, ..

{ala 2,03, ..
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{a1,00,0a3,...,a8} U{a),a5,..., a5} is a basis of L = M + N and the Gram

matrix of L is given by

[4-200000002-100 00
-24-20000 0-2-200 0 00
0-24-2000-222-100 0-1
0 0-24-200200-12-1020 0
000-24-200U00200000O0
0000-24-2000-111-10
0 000O0-2400U0T0U0T0UO0O0
0 0-200 0 4-1-10 1 -11 2
0-22 00 0-14 00 0 0 0 O
2-22-1000-104-20 0 0 -2
-10-12 0-10 0 0-24-20 00
000-1010100-24-2020
0000O01O0-10020-24-20
0000O0-101000O0-240
| 0 0-10 000 2 0-200 00 4|

The Smith invariant sequence for L is 111111111144444.

F.3.4 |g| =5.

In this case, M N N =0 and anny;(N) = anny (M) = 0.

DIH;((16) Let o1 and o2 be the involutions given as follows:

01 = , 02=

(UP 6) (UP 11)
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Then,

is of order 5.

0102 =

(UP6xUP 11)

Let M and N be the EFEjy lattices corresponding to o1 and o2, respectively.

Then, M NN =0 and annps(N)

=M+ N is of

0. The lattice L

anny (M)

rank 16. By Gram matrices, it is easy to check

form a basis of M and

S o JH S o a a o NN o o N o anﬁ ) o~ o o
o O O & o] ﬂ_v S AN nk N O O nﬁ S O AN o o o
9_~ o o o 9_. S o nk nw Mu N N S o o© o o n/_ﬂ o o
© N o o ﬂ_u N o o o« n/_d © o« 9_~ e 9_~ e <
N o N 9_~ S © o o S o o o S O AN S N n/_H N
JH o o o o O o o o o o o o o W o nﬁ o o o
TS TEY TEY — e TEY
I I Il Il I
S S S g )
S o o o S oo o] [coc oo oo S o o o
o o o o o o o o < © o o o <+ o o o o o o
=== + o o o S o o o S o - o ===
o o o o o A_T o o o o A_T o o o n_u o o o o o
4 S o o S o o o S o o o > o o o === A__*
<+ o o o o o o o o o o o o o o o < o o o
~[€ ~[€ ~[% ~[% ~[%
I I Il Il I
S S S S )




Robert L. Griess Jr.and Ching Hung Lam

736

00 0 0 0 O

0 0—-2 2| 2-2

0 0-2-2| 2 2f

0 0 0 00 O

0 0 0O 0O
0 0 OO0 0O

0 0-2 2-2 2f

0 0—-2 2/-2 2

_ b
W

/
4

(07

S
V8

~©

0 0 0O 0O

0 0 4 0-4 0
0 0 0 0 0 of
000000

0 0 0 0 0 O

00 00 0 0
0 0 4 0 0—4/
0 0 000 0

o a @ o
o o o o
S Jﬂ ) J.
o o n/_H ™
S aﬁ N o
o o o o
— 7ﬁ

I

i
S o o A_x
o o o
S o o o
o o o o
> 5 o o
o o o o

1
V8

~10

1
V8

~nI-

=M+ N.

.,a4} is a basis of L

/
-, a8, 00, ..

form a basis of N. In addition, {a1, ..

The Gram matrix of L is then given by

4-20000002-10002000

-24-2000000-11-11-110

0-24-2000001-2102000

0 0-24-20000-110201-1-1

0 00-24-20-200201-2101

0 000-24-200201-21-101

000O0O0-24001-2290-10020

0 000-2004-110-12-11-2

2000000-14-200200P00
-1-11-10 01 1-24-20 00 0 0
01-2101-200-24-2020 020
0-1101-22-100-24-2000
01 00-21022000-24-20-2
0-1011-1-1-10 0 0 0-24-20
010-10001O0O0O0O0O0-24020
0 00-1110-200200-2020 4

The Smith invariant sequence is 1111111111115555.
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F.3.5 |g|=6.
In this case, M NN =0, and anny (M) = anny (N) = AA,.

DIH;2(16)

Let 01 and o9 be the involutions given as follows:

0—1: b 0—2: 9

(UP 11xUP 6) (UP 10)
Then,

0102 = is of order 6.

(UP 11 xUP 6xUP 10)

Let M and N be the EFEjg lattices corresponding to o1 and o9, respectively.
Then, M N N = 0. Moreover, we have

0000007 |00 00 2-2
ann(N)—isan 0000001/ 000000
MUE)=RPPHZ T 0l 0 0l 0 of =2 ol 2 0 2 0
—4 00 000 | 2 0-20 0-2
>~ AAs
and
0 000 o000 /|0 o00O0TO0O0
1 0 000 o000 o0o0 0o 2-2
anny(M) = —=spany, '
V8 0 40 0 0 0| 0=2 0-2/0 2
0-4 0 0 0 0| 0-2 0 22 0

= AAs;.
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M + N is of rank 16. By Gram matrices, it is easy to check

In this case, L

S S © ™ S« o Jﬂ ~ nﬂaO = ﬁﬂ S o« S ~© o o > nﬂa2 <INE= Oan/_ﬂ ~
o o O_H =) N o N o NN o o (o Iien) 9_~ o S n/_ﬂ SR o N N o O O &N &
n/n o O O 9_~ [« nﬂ [=) S O AN 9_~ =i === o N o o S AN n/_H o S O AN 9_~
o N o o o N o Jﬂ o o 9,“ nﬂ S O nﬂ o 9_~ S o JH aﬂ o o o aﬂ J‘
N o o O S © o o© S © o o© S © © o © AN n/_H oS © © o S o o O
~% IS IS ~% ~% ~|% ~%
| Il Il Il Il Il I
S S S S 3 RS &
S o o o S o o o[ ool o oo o o o o S o o o[ o o o
o o o o o o o o A__; S o o o ¥ o o o o o o o o o o o o A__; o
o o o o - o o © === =) % S < o o o o [en] A_z o o S © o o
o o o o o A_1 o o o o o < o o o o o o o o o ¥ o o o o < o
Aﬁ o o o S o O O S o o o S o O o = A_1 o o S o © O S © o O
<+ o o o o o o o o o o o o o o o <+ o o o o o o o o o o o
<
Il
S

1

1
067:%

form a basis of M and

_
e

/
5

a
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SRS Jﬂ
o ol o
S o o o
o o o e
S o o
o o o o
— 7ﬁ
1
i
S o o o
o o o A_.L
S 5 & =
o o o o
S o o o
o o o o

_ b
VB

/
7

(%

,ag} is a basis of L and the

/
a8, 00,0 0

form a basis for N. Note that {aq,..

Gram matrix of L is given by

c T ormaT =% oococo oo«
coocoocoo mooococooco Y wo
coocoJaTJoloocoo <« 9o
0101_AO_|__020009_~4QOJ~
O‘|_*10011_A1_AOO?_~49_~000
o~ Y mococoocoloqY +9oco0coo
_I,.OIOO_I_.IOJHALAV_HOOOOO
N~ Tooocooco|l Y o0oo0cocooo
OAUOnUn/_HAUOAAOOO_I__QOOG_H
cocooc Y volo~ro T o7 o~
0000444004011_*21_‘1__
0004440400000401
co Y v Y ocococjloo -0 7T oo~
0444000001410000
nﬁA.nﬂOOOOO_I_AOl_I_.lOO_I_.
+ Y oocoocoocooclaTooocooo

The Smith invariant sequence is 1111111111116666.

= (0102)%. Then

Now let g
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Note that Mg is also isometric to £ Eg and it has a basis

N o o o NN o™ S o o & N © o nﬁ
nﬂ o o o nk o nr o o LH nr Jd S N o
SO N ©O O SO AN AN O_ o O n/_~ N o O o O
o JH o o oca a o o o 9_~ o~ o O ™ nﬂ
= Jd o o =) 0_ o o === S O © O
N O 9_~ o o o o o o o o o o 9_~ o~
— 7ﬁ — ﬁ — 7ﬁ — 7ﬁ

Il Il Il Il

= > > >

S S S S
S o & o S o o o S o o = S o -+ o
o O o O o O O O O O O O o o 0_ o
[ === o < © O o O o O o o o <
o o o o o A_T o o o o A__l S o o o o
S - © o S © © o© S © © O S o o o
A_i o o o o o o o o o o o o o o o

1
0419:%

1

1
a59=ﬁ

Hence we have

1
V8

MgnN

Ve
o O aO o S O O AN
o o o o S O AN O
o I o o SO AN o O

_

o < o oll* 9_~ n/_~ nﬂ
o o o o S AN o O
o o o o A./_H o o o
S 5 o o|l° @« nﬂ
o o o ofl*e @ 9_~ N
S © O ol < n/_ﬂ 9_~
o O o O S O AN AN
(e} A_z o O o O o O
-+ o o O o O O O

N

g

o)

o8

n

= DD,
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Note that

tMg = g_ltMg =

and it commutes with ¢x. In this case, ty74 and ¢y generates a dihedral group of
order 4 and Mg+ N is isometric to the lattice DI Hy(12).
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