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Abstract: By Tits’ deformation argument, a generic Iwahori–Hecke algebra
H associated to a finite Coxeter group W is abstractly isomorphic to the
group algebra of W . Lusztig has shown how one can construct an explicit
isomorphism, provided that the Kazhdan–Lusztig basis of H satisfies certain
deep properties. If W is crystallographic and H is a one-parameter algebra,
then these properties are known to hold thanks to a geometric interpretation.
In this paper, we develop some new general methods for verifying these
properties, and we do verify them for two-parameter algebras of type I2(m)
and F4 (where no geometric interpretation is available in general). Combined
with previous work by Alvis, Bonnafé, DuCloux, Iancu and the author, we
can then extend Lusztig’s construction of an explicit isomorphism to all types
of W , without any restriction on the parameters of H.
Keywords: Coxeter groups, Hecke algebras, Kazhdan–Lusztig cells

1. Introduction

Let (W,S) be a Coxeter system where W is finite. Let F be a field of char-
acteristic zero and A = F [v±1

s | s ∈ S] the ring of Laurent polynomials over F ,
where {vs | s ∈ S} is a collection of indeterminates such that vs = vt whenever
s, t ∈ S are conjugate in W . Let H be the associated “generic” Iwahori–Hecke
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algebra. This is an associative algebra over A, which is free as an A-module with
basis {Tw | w ∈ W}. The multiplication is given by the rule

TsTw =

{
Tsw if l(sw) > l(w),

Tsw + (vs − v−1
s )Tw if l(sw) < l(w),

where s ∈ S and w ∈ W ; here, l : W → Z>0 is the usual length function on W .

Let K be the field of fractions of A. By scalar extension, we obtain a K-algebra
HK = K ⊗A H, which is well-known to be separable. On the other hand, there
is a unique ring homomorphism θ1 : A → F such that θ1(vs) = 1 for all s ∈ S.
Then we can regard F as an A-algebra (via θ1) and obtain F ⊗A H = F [W ], the
group algebra of W over F . By a general deformation argument due to Tits (see
[5, Chap. IV, §2, Exercise 27]), one can show that HK′ and K ′[W ] are abstractly
isomorphic where K ′ ⊇ K is a sufficiently large field extension.

One of the purposes of this paper is to prove the following finer result which
was first obtained by Lusztig [17] for finite Weyl groups in the case where all vs

(s ∈ S) are equal.

Theorem 1.1. There exists an algebra homomorphism ψ : H → A[W ] with the
following properties:

(a) If we extend scalars from A to F (via θ1), then ψ induces the identity
map.

(b) If we extend scalars from A to K, we obtain an isomorphism ψK : HK
∼→

K[W ].

In particular, (b) implies that, if F is a splitting field for W , then HK
∼= K[W ]

is a split semisimple algebra. Recall that it is known that F0 = Q
(
cos(2π/mst

) |
s, t ∈ S) ⊆ R is a splitting field for W ; see [14, Theorem 6.3.8]. (Here, mst

denotes the order of st in W .) Note that F0 = Q if W is a finite Weyl group,
that is, if mst ∈ {2, 3, 4, 6} for all s, t ∈ S.

The above result shows that, when W is finite, the algebra HK and its rep-
resentation theory can be understood, at least in principle, via the isomorphism
HK

∼→ K[W ]; see [14] and [22, §20–24] where this is further developped.

This paper is organised as follows. In Section 2, we recall the basic facts about
Kazhdan–Lusztig bases and cells. We present Lusztig’s conjectures P1–P15 and
explain, following [22], how the validity of these conjectures leads to a proof of
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Theorem 1.1. In this argument, a special role is played by Lusztig’s asymptotic
ring J which is defined using the leading coefficients of the structure constants of
the Kazhdan–Lusztig basis.

Now, P1–P15 are known to hold for finite Weyl groups in the equal param-
eter case, thanks to a deep geometric interpretation of the Kazhdan–Lusztig
basis; see Kazhdan–Lusztig [16], Lusztig [22], Springer [23]. The case of non-
crystallographic finite Coxeter groups is covered by Alvis [1] and DuCloux [6].
So it remains to consider the case of unequal parameters where W is of type
Bn, F4 or I2(m) (m even). Type Bn (with two independent parameters and a
certain monomial order on them) has been dealt with by Bonnafé, Iancu and the
author; see [4], [3], [13], [9]. In Sections 3 and 4, we develop new general methods
for verifying P1–P15, based on the “leading matrix coefficients” introduced in
[7]. In Section 5, we show how this can be used to deal with W of type F4 and
I2(m), for all choices of parameters. We also indicate how our methods lead to
a new proof of P1–P15 for type H4, which is based on the results of Alvis [1]
and Alvis–Lusztig [2] but which does not rely on DuCloux’s computation [6] of
all structure constants of the Kazhdan–Lusztig basis.

Finally, we put all the pieces into place and complete the proof of Theorem 1.1.

2. The Kazhdan–Lusztig basis

It will be convenient to slightly change the setting of the introduction. So
let (W,S) be a Coxeter system and l : W → Z>0 be the usual length function.
Throughout this paper, W will be finite. Let Γ be an abelian group (written
additively). Following Lusztig [22], a function L : W → Γ is called a weight
function if L(ww′) = L(w) + L(w′) whenever w, w′ ∈ W are such that l(ww′) =
l(w) + l(w′). Note that L is uniquely determined by the values {L(s) | s ∈ S}.
Furthermore, if {cs | s ∈ S} is a collection of elements in Γ such that cs = ct

whenever s, t ∈ S are conjugate in W , then there is (unique) weight function
L : W → Γ such that L(s) = cs for all s ∈ S.

Let R ⊆ C be a subring and A = R[Γ] be the free R-module with basis
{εg | g ∈ Γ}. There is a well-defined ring structure on A such that εgεg′ = εg+g′

for all g, g′ ∈ Γ. We write 1 = ε0 ∈ A. Given a ∈ A we denote by ag the
coefficient of εg, so that a =

∑
g∈Γ ag εg. Let H = HA(W,S, L) be the generic

Iwahori–Hecke algebra over A with parameters {vs | s ∈ S} where vs := εL(s)
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for s ∈ S. This an associative algebra which is free as an A-module, with basis
{Tw | w ∈ W}. The multiplication is given by the rule

TsTw =

{
Tsw if l(sw) > l(w),

Tsw + (vs − v−1
s )Tw if l(sw) < l(w),

where s ∈ S and w ∈ W . The element T1 is the identity element.

Example 2.1. Assume that Γ = Z. Then A is nothing but the ring of Laurent
polynomials over R in an indeterminate ε; we will usually denote v = ε. Then H
is an associative algebra over A = R[v, v−1] with relations:

TsTw =

{
Tsw if l(sw) > l(w),

Tsw + (vcs − v−cs)Tw if l(sw) < l(w),

where s ∈ S and w ∈ W . This is the setting of Lusztig [22].

Example 2.2. (a) Assume that Γ = Z and L is constant on S; this case will be
referred to as the equal parameter case. Note that we are automatically in this
case when W is of type An−1, Dn, I2(m) where m is odd, H3, H4, E6, E7 or E8

(since all generators in S are conjugate in W ).

(b) Assume that W is finite and irreducible. Then unequal parameters can
only arise in types Bn, I2(m) where m is even, and F4.

Example 2.3. A “universal” weight function is given as follows. Let Γ0 be the
group of all tuples (ns)s∈S where ns ∈ Z for all s ∈ S and ns = nt whenever
s, t ∈ S are conjugate in W . (The addition is defined componentwise). Let
L0 : W → Γ0 be the weight function given by sending s ∈ S to the tuple (nt)t∈S

where nt = 1 if t is conjugate to s and nt = 0, otherwise. Let A0 = R[Γ0] and
H0 = HA0(W,S, L0) be the associated Iwahori–Hecke algebra, with parameters
{vs | s ∈ S}. Then A0 = R[Γ0] is nothing but the ring of Laurent polynomials in
indeterminates vs (s ∈ S) with coefficients in R, where vs = vt whenever s, t ∈ S

are conjugate in W . Furthermore, if S′ ⊆ S is a set of representatives for the
classes of S under conjugation, then {vs | s ∈ S′} are algebraically independent.

Remark 2.4. Let k be any commutative ring (with 1) and assume we are given
a collection of elements {ξs | s ∈ S} ⊆ k× such that ξs = ξt whenever s, t ∈ S

are conjugate in W . Then we have an associated Iwahori–Hecke algebra H =
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Hk(W,S, {ξs}) over k. Again, this is an associative algebra; it is free as a k-
module with basis {Tw | w ∈ W}. The multiplication is given by the rule

TsTw =

{
Tsw if l(sw) > l(w),

Tsw + (ξs − ξ−1
s )Tw if l(sw) < l(w),

where s ∈ S and w ∈ W . Now let A0 be as in Example 2.3, where R = Z. Then
we can certainly find a (unique) unital ring homomorphism θ0 : A0 → k such that
θ0(vs) = ξs for all s ∈ S. Regarding k as an A0-module (via θ0), we find that H

is obtained by extension of scalars from H0:

Hk(W,S, {ξs}) ∼= k ⊗A H0.

We conclude that Hk(W,S, {ξs}) can always be obtained by “specialisation” from
the “universal” generic Iwahori–Hecke algebra H0.

We now recall the basic facts about the Kazhdan–Lusztig basis of H, follow-
ing Lusztig [18], [22]. For this purpose, we need to assume that Γ admits a
total ordering 6 which is compatible with the group structure, that is, whenever
g, g′, h ∈ Γ are such that g 6 g′, then g + h 6 g′ + h. Such an order on Γ will be
called a monomial order. One readily checks that this implies that A = R[Γ] is
an integral domain; we usually reserve the letter K to denote its field of fractions.
We will assume throughout that

L(s) > 0 for all s ∈ S.

Now, there is a unique ring involution A → A, a 7→ ā, such that εg = ε−g for all
g ∈ Γ. We can extend this map to a ring involution H → H, h 7→ h, such that

∑

w∈W

awTw =
∑

w∈W

āwT−1
w−1 (aw ∈ A).

We define Γ>0 = {g ∈ Γ | g > 0} and denote by Z[Γ>0] the set of all integral
linear combinations of terms εg where g > 0. The notations Z[Γ>0], Z[Γ60],
Z[Γ<0] have a similar meaning.

Theorem 2.5 (Kazhdan–Lusztig [15], Lusztig [18], [22]). For each w ∈ W , there
exists a unique C ′

w ∈ H (depending on 6) such that

• C
′
w = C ′

w and
• C ′

w = Tw +
∑

y∈W py,wTy where py,w ∈ Z[Γ<0] for all y ∈ W .
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The elements {C ′
w | w ∈ W} form an A-basis of H, and we have py,w = 0 unless

y < w (where < denotes the Bruhat–Chevalley order on W ).

Here we follow the original notation in [15], [18]; the element C ′
w is denoted

by cw in [22, Theorem 5.2]. As in [22], it will be convenient to work with the
following alternative version of the Kazhdan–Lusztig basis. We set Cw = (C ′

w)†

where † : H → H is the A-algebra automorphism defined by T †s = −T−1
s (s ∈ S);

see [22, 3.5]. Note that h = j(h)† = j(h†) for all h ∈ H where j : H → H is the
ring involution such that j(a) = ā for a ∈ A and j(Tw) = (−1)l(w)Tw for w ∈ W .
Thus, we have

• Cw = j(C ′
w) = Cw and

• Cw = (−1)l(w)Tw +
∑

y∈W (−1)l(y)py,wTy where py,w ∈ Z[Γ>0].

Since the elements {Cw | w ∈ W} form a basis of H, we can write

CxCy =
∑

z∈W

hx,y,z Cz for any x, y ∈ W,

where hx,y,z = hx,y,z ∈ A for all x, y, z ∈ W . The structure constants hx,y,z can
de described more explicitly in the following special case. Let s ∈ S and w ∈ W .
Then we have

Cs Cw =





Csw +
∑
y∈W

sy<y<w

µs
y,w Cy if sw > w,

(vs + v−1
s )Cw if sw < w,

where µs
y,w ∈ A; see [22, Theorem 6.6].

Remark 2.6. We refer to [22, Chap. 8] for the definition of the preorders 6L, 6R,
6LR and the corresponding equivalence relations ∼L, ∼R, ∼LR on W . (Note
that these depend on the weight function L and the monomial order on Γ.) The
equivalence classes with respect to these relations are called left, right and two-
sided cells of W , respectively.

Each left cell C gives rise to a representation of H (and of W ). This is con-
structed as follows (see [18, §7]). Let [C]A be an A-module with a free A-basis
{ew | w ∈ C}. Then the action of Cw (w ∈ W ) on [C]A is given by the Kazhdan–
Lusztig structure constants, that is, we have

Cw.ex =
∑

y∈C

hw,x,y ey for all x ∈ C and w ∈ W.
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Furthermore, let θ1 : A → R be the unique ring homomorphism such that θ1(εg) =
1 for all g ∈ Γ. Extending scalars from A to R (via θ1), we obtain a module
[C]1 := R⊗A [C]A for R[W ] = R⊗A H.

Following Lusztig [22], given z ∈ W , we define

a(z) := min{g ∈ Γ>0 | εg hx,y,z ∈ Z[Γ>0] for all x, y ∈ W}.
Thus, we obtain a function a : W → Γ. (If Γ = Z with its natural order, then
this reduces to the function first defined by Lusztig [20].) Given x, y, z ∈ W , we
define γx,y,z−1 ∈ Z to be the constant term of εa(z) hx,y,z, that is, we have

εa(z) hx,y,z ≡ γx,y,z−1 mod Z[Γ>0].

Next, recall that p1,z is the coefficient of T1 in the expansion of C ′
w in the T -basis.

By [22, Prop. 5.4], we have p1,z 6= 0. As in [22, 14.1], we define ∆(z) ∈ Γ>0 and
0 6= nz ∈ Z by the condition that ε∆(z)p1,z ≡ nz mod Z[Γ<0]. We set

D = {z ∈ W | a(z) = ∆(z)}.
Now Lusztig [22, Chap. 14] has formulated the following 15 conjectures:

P1. For any z ∈ W we have a(z) 6 ∆(z).
P2. If d ∈ D and x, y ∈ W satisfy γx,y,d 6= 0, then x = y−1.
P3. If y ∈ W , there exists a unique d ∈ D such that γy−1,y,d 6= 0.
P4. If z′ 6LR z then a(z′) > a(z). Hence, if z′ ∼LR z, then a(z) = a(z′).
P5. If d ∈ D, y ∈ W , γy−1,y,d 6= 0, then γy−1,y,d = nd = ±1.
P6. If d ∈ D, then d2 = 1.
P7. For any x, y, z ∈ W , we have γx,y,z = γy,z,x.
P8. Let x, y, z ∈ W be such that γx,y,z 6= 0. Then x ∼L y−1, y ∼L z−1,

z ∼L x−1.
P9. If z′ 6L z and a(z′) = a(z), then z′ ∼L z.

P10. If z′ 6R z and a(z′) = a(z), then z′ ∼R z.
P11. If z′ 6LR z and a(z′) = a(z), then z′ ∼LR z.
P12. Let I ⊆ S and WI be the parabolic subgroup generated by I. If y ∈ WI ,

then a(y) computed in terms of WI is equal to a(y) computed in terms
of W .

P13. Any left cell C of W contains a unique element d ∈ D. We have γx−1,x,d 6=
0 for all x ∈ C.

P14. For any z ∈ W , we have z ∼LR z−1.
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P15. If x, x′, y, w ∈ W are such that a(w) = a(y), then
∑

y′∈W

hw,x′,y′ ⊗ hx,y′,y =
∑

y′∈W

hy′,x′,y ⊗ hx,w,y′ in Z[Γ]⊗Z Z[Γ].

(The above formulation of P15 is taken from Bonnafé [3].)

Remark 2.7. Assume that we are in the equal parameter case; see Example 2.2.
In this case, A = Z[Γ] is nothing but the ring of Laurent polynomials in one
variable v. Suppose that all polynomials px,y ∈ Z[v−1] and all structure constants
hx,y,z ∈ Z[v, v−1] have non-negative coefficients. Then Lusztig [22, Chap. 15]
shows that P1–P15 follow.

Now, if (W,S) is a finite Weyl group, that is, if mst ∈ {2, 3, 4, 6} for all s, t ∈ S,
then the required non-negativity of the coefficients is shown by using a deep
geometric interpretation of the Kazhdan–Lusztig basis; see Kazhdan–Lusztig [16],
Springer [23]. Thus, P1–P15 hold for finite Weyl groups in the equal parameter
case. If (W,S) is of type I2(m) (where m 6∈ {2, 3, 4, 6}), H3 or H4, the non-
negativity of the coefficients has been checked explicitly by Alvis [1] and DuCloux
[6].

Note that simple examples show that the coefficients of the polynomials py,w

or hx,y,z may be negative in the presence of unequal parameters; see Lusztig [18,
p. 106], [22, §7].

We now use P1–P15 to perform the following constructions, following Lusztig
[22]. Let J be the free Z-module with basis {tw | w ∈ W}. We define a bilinear
product on J by

txty =
∑

z∈W

γx,y,z−1 tz (x, y ∈ W ).

Remark 2.8. By [22, 5.6], the map H → H defined by Cw 7→ Cw−1 (w ∈ W )
is an anti-involution; so we have hx,y,z = hy−1,x−1,z−1 for all w, x, y, z ∈ W . In
particular, this implies that a(z) = a(z−1) for all z ∈ W . By [22, 13.9], the map
J → J defined by tw 7→ tw−1 (w ∈ W ) also is an anti-involution of J; so we have
γx,y,z = γy−1,x−1,z−1 for all x, y, z ∈ W .

Theorem 2.9 (Lusztig [22, Chap. 18]). Assume that P1–P15 hold. Then J is
an associative ring with identity element 1J =

∑
d∈D ndtd. Let JA = A ⊗Z J.
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Then we have a unital homomorphism of A-algebras

φ : H → JA, Cw 7→
∑

z∈W,d∈D
a(z)=a(d)

hw,d,z nd tz,

The ring J will be called the asymptotic algebra associated to H (with respect
to 6). It first appeared in [21] in the equal parameter case.

Remark 2.10. In [22, Theorem 18.9], the formula for φ looks somewhat different:
instead of the factor nd, there is a factor n̂z which is defined as follows. Given
z ∈ W , there is a unique element of D such that γz,z−1,d 6= 0; then n̂z = nd = ±1
(see P3, P5, P13). Now one easily checks, using P1–P15, that the map tw 7→
n̂wn̂w−1tw defines a ring involution of J. Composing Lusztig’s homomorphism in
[22, 18.9] with this involution, we obtain the above formula (which seems more
natural; see, e.g., the discussion in [11, §5]).

The structure of J is to some extent clarified by the following remark, which
is taken from [22, 20.1].

Remark 2.11. Assume that P1–P15 hold. Recall that A = R[Γ] where R ⊆ C
is a subring. Now assume that R is a field. Let θ1 : A → R be the unique ring
homomorphism such that θ1(εg) = 1 for all g ∈ Γ. Then R⊗A H = R[W ]. Via θ

and extension of scalars, we obtain an induced homomorphism of R-algebras

φ1 : R[W ] → JR = R⊗Z J, Cw 7→
∑

z∈W,d∈D
a(z)=a(d)

θ(hw,d,z) nd tz.

Now, the kernel of φ1 is a nilpotent ideal in R[W ]; see [22, Prop. 18.12(a)]. Since
R[W ] is a semisimple algebra, we conclude that φ1 is injective and, hence, an
isomorphism. In particular, we can now conclude that

• JR
∼= R[W ] is a semisimple algebra;

• JR is split if R is a splitting field for W .

We can push this discussion even further. Let P be the matrix of φ : H → JA

with respect to the standard bases of H and JA. Let P1 be the matrix obtained
by applying θ1 to all entries of P . Then P1 is the matrix of φ1 with respect
to the standard bases of R[W ] and JR. We have seen above that det(P1) 6= 0.
Hence, clearly, we also have det(P ) 6= 0. Consequently, we obtain an induced
isomorphism φK : HK

∼→ JK where K is the field of fractions of A. In particular,
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if R is a splitting field for W , then JR is split semisimple and, hence, HK
∼= JK

will be split semisimple, too.

We now obtain the following result which was first obtained by Lusztig [17]
(for finite Weyl groups in the equal parameter case).

Theorem 2.12 (Lusztig). Assume that R is a field and that P1–P15 hold.
Then there exists an algebra homomorphism ψ : H → A[W ] with the following
properties:

(a) Let θ1 : A → R be the unique ring homomorphism such that θ1(εg) = 1
for all g ∈ Γ. If we extend scalars from A to R (via θ1), then ψ induces
the identity map.

(b) If we extend scalars from A to K (the field of fractions of A), then ψ

induces an isomorphism ψK : HK
∼→ K[W ]. In particular, HK is a

semisimple algebra, which is split if R is a splitting field for W .

Proof. As in Remark 2.11, we have an isomorphism φ1 : R[W ] ∼→ JR. Let α :=
φ−1

1 : JR
∼→ R[W ]. By extension of scalars, we obtain an isomorphism of A-

algebras αA : JA
∼→ A[W ]. Now set ψ := αA ◦ φ : H → A[W ].

(a) If we extend scalars from A to R via θ1, then HR = R[W ]. Furthermore,
φ : H → JA induces the map φ1 already considered at the beginning of the proof.
Hence ψ induces the identity map.

(b) This immediately follows from (a) by a formal argument: Let Q be the
matrix of the A-linear map ψ with respect to the standard A-bases of H and A[W ].
We only need to show that det(Q) 6= 0. But, by (a), we have θ1(det(Q)) = 1; in
particular, det(Q) 6= 0.

Finally, note that, if R is a splitting field for W , then so is K. Hence, in this
case, HK

∼= K[W ] is a split semisimple algebra. ¤

Note that the statement of the above result does not make any reference to the
monomial order 6 on Γ or the corresponding Kazhdan–Lusztig basis; these are
only needed in the proof.

Remark 2.13. Assume that P1–P14 hold. Then the partitions of W into left,
right and two-sided cells can be recovered from the structure of J. Indeed, given
x, y ∈ W , write x ↔L y if there exists some z ∈ W such that γx,y−1,z 6= 0. Then
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one easily checks that ∼L is the transitive closure of ↔L. (Note that, by [22,
Prop. 18.4(a)], the relations ∼L and ↔L are actually the same when we are in
the equal parameter case.) Thus, the left cells are determined by J. Furthermore,
we have x ∼R y if and only if x−1 ∼L y−1. Finally, by P4, P9, the two-sided
cells are the smallest subsets of W which are at the same time unions of left cells
and unions of right cells.

3. The a-function and orthogonal representations

The aim of this and the following section is to develop some new methods
for verifying P1–P15 for a given group W and weight function L. These meth-
ods should not rely on any positivity properties or geometric interpretations as
mentioned in Remark 2.7, so that we may hope to be able to apply them in the
general case of unequal parameters.

One of the main problems in the verification of P1–P15 is the determination
of the a-function. Note that, if we just wanted to use the definition of a(z), then
we would have to compute all structure constants hx,y,z where x, y ∈ W—which
is very hard to get a hold on. We shall now describe a situation in which this
problem can be solved by a different approach, which is inspired by [13, §4].

For the rest of this section, let us assume that R = R. Then R is a splitting
field for W ; see [14, 6.3.8]. The set of irreducible representations of W (up to
isomorphism) will be denoted by

Irr(W ) = {Eλ | λ ∈ Λ}

where Λ is some finite indexing set and Eλ is an R-vectorspace with a given
R[W ]-module structure. We shall also write

dλ = dim Eλ for all λ ∈ Λ.

Let K be the field of fractions of A. By extension of scalars, we obtain a K-algebra
HK = K ⊗A H. This algebra is known to be split semisimple; see [14, 9.3.5].
Furthermore, by Tits’ Deformation Theorem, the irreducible representations of
HK (up to isomorphism) are in bijection with the irreducible representations of
W ; see [14, 8.1.7]. Thus, we can write

Irr(HK) = {Eλ
ε | λ ∈ Λ}.
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The correspondence Eλ ↔ Eλ
ε is uniquely determined by the following condition:

trace
(
w, Eλ

)
= θ1

(
trace(Tw, Eλ

ε )
)

for all w ∈ W,

where θ1 : A → F is the unique ring homomorphism such that θ1(εg) = 1 for all
g ∈ Γ. Note also that trace

(
Tw, Eλ

ε

) ∈ A for all w ∈ W . Note that all these
statements can be proved without using P1–P15.

The algebra H is symmetric, with trace from τ : H → A given by τ(T1) = 1
and τ(Tw) = 0 for 1 6= w ∈ W . The sets {Tw | w ∈ W} and {Tw−1 | w ∈ W}
form a pair of dual bases. Hence we have the following orthogonality relations
for the irreducible representations of HK :

∑

w∈W

trace
(
Tw, Eλ

ε

)
trace

(
Tw−1 , Eµ

ε

)
=

{
dλ cλ if λ = µ,

0 if λ 6= µ;

see [14, 8.1.7]. Here, 0 6= cλ ∈ A and, following Lusztig, we can write

cλ = fλ ε−2aλ + combination of terms εg where g > −2aλ,

where aλ ∈ Γ>0 and fλ is a strictly positive real number; see [14, 9.4.7]. These
invariants are explicitly known for all types of W ; see Lusztig [22, Chap. 22].

We shall also need the basis which is dual to the Kazhdan–Lusztig basis. Let
{Dw | w ∈ W} ⊆ H be such that τ(Cx Dy−1) = δxy for all x, y ∈ W . Then

hx,y,z = τ(CxCyDz−1) for all x, y, z ∈ W.

One also shows that Dw can be written as a sum of (−1)l(w)Tw and a Z[Γ>0]-linear
combination of terms Ty (y ∈ W ); see [22, Chap. 10] or [7, 2.4]

We now recall the basic facts concerning the leading matrix coefficients intro-
duced in [7]. Let us write

A>0 = set of R-linear combinations of terms εg where g > 0,

A>0 = set of R-linear combinations of terms εg where g > 0.

Note that 1 + A>0 is multiplicatively closed. Furthermore, every element x ∈ K

can be written in the form

x = rx εγx
1 + p

1 + q
where rx ∈ R, γx ∈ Γ and p, q ∈ A>0;
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note that, if x 6= 0, then rx and γx indeed are uniquely determined by x; if x = 0,
we have r0 = 0 and we set γ0 := +∞ by convention. We set

O := {x ∈ K | γx > 0} and p := {x ∈ K | γx > 0}.
Then it is easily verified that O is a valuation ring in K, with maximal ideal p.
Note that we have

O ∩A = A>0 and p ∩A = A>0.

We have a well-defined R-linear ring homomorphism O → R with kernel p. The
image of x ∈ O in R is called the constant term of x. Thus, the constant term of
x is 0 if x ∈ p; the constant term equals rx if x ∈ O×.

By [7, Prop. 4.3], each Eλ
ε affords a so-called orthogonal representation. By

[7, Theorem 4.4 and Remark 4.5], this implies that there exists a basis of Eλ
ε

such that the corresponding matrix representation ρλ : HK → Mdλ
(K) has the

following properties. Let λ ∈ Λ and 1 6 i, j 6 dλ. For any h ∈ HK , we denote
by ρλ

ij(h) the (i, j)-entry of the matrix ρλ(h). Then

εaλρλ
ij(Tw) ∈ O, εaλρλ

ij(Cw) ∈ O, εaλρλ
ij(Dw) ∈ O

for any w ∈ W and

(−1)l(w)εaλρλ
ij(Tw) ≡ εaλρλ

ij(Cw) ≡ εaλρλ
ij(Dw) mod p.

Hence, the above three elements of O have the same constant term which we
denote by cij

w,λ. The constants cij
w,λ ∈ R are called the leading matrix coefficients

of ρλ. Given w ∈ W , there exists some λ ∈ Λ and i, j ∈ {1, . . . , dλ} such that
cij
w,λ 6= 0. We use this fact to define the following relation.

Definition 3.1. Let λ ∈ Λ and w ∈ W . We write Eλ !L w if cij
w,λ 6= 0 for some

i, j ∈ {1, . . . , dλ}.
(This is in analogy to Lusztig [22, 20.2] or [19, p. 139]; see Lemma 3.2 below.)

One can show that “!L” does not depend on the choice of the orthogonal
representations ρλ (see [11, Remark 3.10]), but we don’t need this here. For
our purposes, the characterisation of “!L” given in the following result will be
sufficient.

Recall from Remark 2.6 that every left cell C of W gives rise to a left R[W ]-
module denoted by [C]1.
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Lemma 3.2. Let λ ∈ Λ and C be a left cell of W . Then Eλ !L w for some
w ∈ C if and only if Eλ is a constituent of [C]1.

Proof. Let i ∈ {1, . . . , dλ}. The assertion immediately follows from the identity

1
fλ

dλ∑

k=1

∑

w∈C

(cik
w,λ)2 = multiplicity of Eλ in [C]1.

which was proved in [7, Prop. 4.7]. ¤

Remark 3.3. Let w, w′ ∈ W and λ ∈ Λ be such that Eλ !L w and Eλ !L w′.
Let C, C′ be the left cells such that w ∈ C and w′ ∈ C′. By Lemma 3.2, Eλ is a
constituent of both [C]1 and [C′]1. Hence, HomW ([C]1, [C′]1) 6= 0 and so C,C′ are
contained in the same two-sided cell. In particular, w ∼LR w′.

This argument also implies P14, i.e., the assertion that w ∼LR w−1 for all
w ∈ W . Indeed, choose λ ∈ Λ such that Eλ !L w, that is, cij

w,λ 6= 0 for some

i, j ∈ {1, . . . , dλ}. By [7, Theorem 4.4], we also have cji
w−1,λ

= cij
w,λ 6= 0 and so

Eλ !L w−1. Hence, the previous discussion shows that w ∼LR w−1, as claimed.

(This was first proved by Lusztig [19, Lemma 5.2] in the equal parameter
case. One can check that Lusztig’s proof also carries over to the case of unequal
parameters.)

Lemma 3.4. Let z ∈ W and λ ∈ Λ be such Eλ !L z. Then a(z) > aλ.

(A similar result was proved in [13, Prop. 4.1], but under additional assump-
tions. See also Lusztig [20, Prop. 6.4] where this result was obtained in the equal
parameter case, based on the geometric interpretation which is available there.)

Proof. We begin by considering the structure constant hx,y,z for x, y ∈ W . We
have hx,y,z = τ(CxCyDz−1). Now, by the general theory of symmetric algebras
(see [14, Chap. 7]), we have

τ(h) =
∑

λ∈Λ

c−1
λ trace(h,Eλ) =

∑

λ∈Λ

c−1
λ trace

(
ρλ(h)

)
=

∑

λ∈Λ

∑

16i6dλ

c−1
λ ρλ

ii(h),

for any h ∈ H. Since ρλ(CxCyDz−1) = ρλ(Cx)ρλ(Cy)ρλ(Dz−1), we obtain

hx,y,z =
∑

µ∈Λ

∑

16i,j,k6dµ

c−1
µ ρµ

ij(Cx) ρµ
jk(Cy) ρµ

ki(Dz−1).
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We multiply this identity on both sides by ρλ
ls(Dx−1) ρλ

rl(Dy−1) (where λ ∈ Λ and
1 6 l, r, s 6 dλ) and sum over all x, y ∈ W . Now, since {Cw | w ∈ w} and
{Dw−1 | w ∈ W} form a pair of dual bases for H, we have the following Schur
relations (see [14, Chap. 7]):

∑

w∈W

ρλ
ij(Cw) ρµ

kl(Dw−1) = δilδjkδλµcλ,

where λ, µ ∈ Λ, 1 6 i, j 6 dλ and 1 6 k, l 6 dµ. Then a straightforward
computation yields that

ρλ
rs(Dz−1) =

∑

x,y∈W

c−1
λ ρλ

ls(Dx−1) ρλ
rl(Dy−1) hx,y,z.

Further multiplying by εa(z) and noting that c−1
λ = f−1

λ ε2aλ/(1 + gλ) where
gλ ∈ F [Γ>0], we obtain

εa(z) ρλ
rs(Dz−1) =

∑

x,y∈W

f−1
λ

1 + gλ

(
εaλρλ

ls(Dx−1)
) (

εaλρλ
rl(Dy−1)

)(
εa(z) hx,y,z

)
.

Now all terms in the above sum lie in O, hence the whole sum will lie in O and
so εa(z) ρλ

rs(Dz−1) ∈ O.

Now assume, if possible, that a(z) < aλ. Then we could conclude that the
constant term of εaλ ρλ

rs(Dz−1) is zero, that is, crs
z−1,λ = 0, and this holds for all

1 6 r, s 6 dλ. Since ρλ is an orthogonal representation, [7, Theorem 4.4] shows
that then we also have crs

z,λ = 0 for all 1 6 r, s 6 dλ, a contradiction. ¤

We would like to find conditions which ensure that equality holds in Lemma 3.4.
Consider the following property:

E1. Let x, y ∈ W and λ, µ ∈ Λ be such that Eλ !L x and Eµ !L y. If
x 6L y, then aµ 6 aλ. In particular, if x ∈ W and λ, µ ∈ Λ are such that
Eλ !L x and Eµ !L x, then aλ = aµ.

Assume that E1 holds and let z ∈ W . Then we define ã(z) = aλ where λ ∈ Λ
is such that Eλ !L z. Note that ã(z) is well-defined by E1. Furthermore, we
have:

E1’. If x, y ∈ W are such that x 6LR y, then ã(y) 6 ã(x). In particular, ã is
constant on two-sided cells.
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Thus, Lemma 3.2 shows that, letting C be the left cell containing z ∈ W , then

ã(z) = aλ if Eλ is a constituent of [C]1.

Now Lusztig [22, 20.6, 20.7] shows that, if P1–P15 hold, then E1 holds and we
have a(z) = ã(z) for all z ∈ W . Our aim is to show that E1 is sufficient to prove
the equality a(z) = ã(z) for all z ∈ W ; see Proposition 3.6 below. This will be
one of the key steps in our verification of P1–P15 for W of type F4 and I2(m).

Lemma 3.5. Assume that E1 holds. Let w ∈ W and λ ∈ Λ.

(a) If ρλ(Cw) 6= 0 then ã(w) 6 aλ.
(b) If ρλ(Dw−1) 6= 0 then ã(w) > aλ.
(c) We have εã(w)ρλ

ij(Dw−1) ∈ O for all i, j ∈ {1, . . . , dλ}.

Proof. (a) Let C be a left cell such that Eλ occurs as a constituent of [C]1. Now,
if ρλ(Cw) 6= 0, then Cw cannot act as zero in [C]A. Hence, there exist x, y ∈ C

such that hw,x,y 6= 0. We have ã(x) = ã(y) = aλ by E1’ and Lemma 3.2. Since,
hw,x,y 6= 0, we have y 6R w and so ã(w) 6 ã(y) = aλ by E1’.

(b) Again, let C be a left cell such that Eλ occurs as a constituent of [C]1. Now,
if ρλ(Dw−1) 6= 0, then Dw−1 cannot act as zero in [C]A. Hence, there exists some
x ∈ C such that Dw−1Cx 6= 0. We have ã(x) = aλ by E1’ and Lemma 3.2. Now,
since τ is non-degenerate, there exists some y ∈ W such that τ(Dw−1CxCy) 6= 0.
Then we also have hx,y,w = τ(CxCyDw−1) = τ(Dw−1CxCy) 6= 0 and so w 6R x.
This implies aλ = ã(x) 6 ã(w) by E1’.

(c) Since ρλ is an orthogonal representation, we have εaλρλ
ij(Dw−1) ∈ O for all

i, j ∈ {1, . . . , dλ}. Hence the assertion follows from (b). ¤

Proposition 3.6. Assume that E1 holds. Then a(z) = ã(z) for all z ∈ W .
Furthermore, for x, y, z ∈ W , we have

γx,y,z = γy,z,x = γz,x,y =
∑

λ∈Λ

∑

16i,j,k6dλ

f−1
λ cij

x,λ cjk
y,λ cki

z,λ.

Proof. Assume that cij
z,λ 6= 0. Now recall that cij

z,λ is the constant term of
εaλ(Tz), εaλ(Cz) and εaλ(Dz). Hence, we have ρλ(Cx) 6= 0 and ρλ(Dz) 6= 0.
So Lemma 3.5 yields that a(z) = aλ = ã(z).
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Let x, y, z ∈ W . As in the proof of Lemma 3.4, we find that

εã(z)hx,y,z−1 = εã(z)τ(CxCyDz) = εã(z)
∑

λ∈Λ

c−1
λ trace(CxCyDz, E

λ)

=
∑

λ∈Λ

f−1
λ

1 + gλ
ε2aλ+ã(z) trace

(
ρλ(CxCyDz)

)
.

Now ρλ(CxCyDz) = ρλ(Cx)ρλ(Cy)ρλ(Dz) and so the above expression equals

∑

λ∈Λ

∑

16i,j,k6dλ

f−1
λ

1 + gλ

(
εaλρλ

ij(Cx)
) (

εaλρλ
jk(Cy)

) (
εã(z)ρλ

ki(Dz)
)
.

Furthermore, by Lemma 3.5(b), we have ã(z) > aλ for all non-zero terms in the
above sum. So the above sum can be rewritten as

∑

λ∈Λ : aλ6ã(z)

∑

16i,j,k6dλ

f−1
λ εã(z)−aλ

1 + gλ

(
εaλρλ

ij(Cx)
) (

εaλρλ
jk(Cy)

) (
εaλρλ

ki(Dz)
)
.

Since each ρλ is an orthogonal representation, the terms εaλρλ
ij(Cx), εaλρλ

jk(Cy),
εaλρλ

ki(Dz) all lie in O. Hence, the whole sum lies in O. First of all, this shows
that εã(z)hx,y,z−1 ∈ O ∩ Z[Γ] = Z[Γ>0] and so a(z) = a(z−1) 6 ã(z) (where the
first equality holds by Remark 2.8). The reverse inequality holds by Lemma 3.4.
Thus, we have shown that ã(z) = a(z).

Now let us return to the above sum. We have already noted that each term
lies in O, hence the constant term of the whole sum above can be computed term
by term. Thus, the contant term of εa(z)hx,y,z−1 equals

∑

λ∈Λ : aλ=ã(z)

∑

16i,j,k6dλ

f−1
λ cij

x,λ cjk
y,λ cki

z,λ.

We note that, in fact, the sum can be extended over all λ ∈ Λ. Indeed, if cki
z,λ 6= 0

for some λ, k, i, then ã(z) = aλ by the definition of ã(z). Thus, we have reached
the conclusion that

γx,y,z =
∑

λ∈Λ

∑

16i,j,k6dλ

f−1
λ cij

x,λ cjk
y,λ cki

z,λ.

It remains to notice that the expression on the right hand side is symmetrical
under cyclic permutations of x, y, z. This immediately yields that γx,y,z = γy,z,x =
γz,x,y. ¤
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Lemma 3.7. Assume that E1 holds. Let w ∈ W . Then a(w) 6 ∆(w). Further-
more,

∑

λ∈Λ

∑

16i6dλ

f−1
λ cii

w,λ =

{
nw if w ∈ D,

0 otherwise.

Proof. We use an argument similar to that in the proof of [13, Lemma 4.6]. First
note that τ(Cw) = p1,w. So we obtain the identity

p1,w =
∑

λ∈Λ

c−1
λ trace(ρλ(Cw)) =

∑

λ∈Λ

∑

16i6dλ

f−1
λ

1 + gλ
εaλ

(
εaλρλ

ii(Cw)
)
.

By Proposition 3.6 and Lemma 3.5(a), we have a(w) = ã(w) 6 aλ for all non-zero
terms in the above sum. Thus, we obtain

ε−a(w)p1,w =
∑

λ∈Λ : a(w)6aλ

∑

16i6dλ

f−1
λ

1 + gλ
εaλ−a(w)

(
εaλρλ

ii(Cw)
)
.

Since each ρλ is orthogonal, each term εaλρλ
ii(Cw) lies in O. This shows, first

of all, that ε−a(w)p1,w ∈ O ∩ Z[Γ] = Z[Γ>0] and so a(w) 6 ∆(w), as required.
Furthermore, the constant term of the whole sum can be determined term by
term. Thus, we have

ε−a(w)p1,w ≡
∑

λ∈Λ : a(w)=aλ

∑

16i6dλ

f−1
λ cii

w,λ.

But then the sum can be extended over all λ ∈ Λ because we have cii
w,λ = 0

unless a(w) = ã(w) = aλ. On the other hand, we have ε−a(w)p1,w ≡ nw if
a(w) = ∆(w), and ε−a(w)p1,w ≡ 0 if a(w) < ∆(w). ¤

Corollary 3.8. Assume that E1 holds. Then P1, P4, P7 and P8 hold. Fur-
thermore, for any z ∈ W , we have a(z) = aλ where λ ∈ Λ is such that Eλ !L z.

Proof. By Proposition 3.6, we have a(z) = ã(z) and γx,y,z = γy,z,x for all x, y, z ∈
W . Hence, by E1’ and Lemma 3.7, we have that P1, P4, P7 hold. Finally, note
that P8 is a formal consequence of P7 and Remark 2.8; see [22, 14.8]. ¤

Remark 3.9. Assume that E1 holds. Then Proposition 3.6 and Lemma 3.7 show
that γx,y,z and nw (w ∈ D) can be recovered from the knowledge of the lead-
ing matrix coefficients. Consequently, by Remark 2.13, the partition of W into
left, right and two-sided cells is completely determined by the leading matrix
coefficients.
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This leads to a new approach to contructing Lusztig’s asymptotic ring J and
study its representation theory; see [11] for further details.

4. Methods for checking P1–P15

Our aim now is to formulate a set of conditions which, together with E1 (for-
mulated in the previous section), imply most of the properties P1–P15. Consider
the following properties:

E2. Let x, y ∈ W and λ, µ ∈ Λ be such that Eλ !L x and Eµ !L y. If
x 6LR y and aλ = aµ, then x ∼LR y.

E3. Let x, y ∈ W be such that x 6L y and x ∼LR y, then x ∼L y.
E4. Let C be a left cell of W . Then the function C → Γ>0, w 7→ ∆(w), reaches

its minimum at exactly one element of C.

Note that, if E1 is assumed to hold, then E2 can be reformulated as follows:

E2’. If x, y ∈ W are such that x 6LR y and ã(x) = ã(y), then x ∼LR y.

Remark 4.1. The relevance of the above set of conditions is explained as follows.

Assume that, for a given group W and weight function L : W → Γ, we can
compute explicitly all polynomials py,w where y 6 w in W and all polynomials
µs

y,w where y, w ∈ W and s ∈ S are such that sy < y < w < sw.

Then note that this information alone is sufficient to determine the pre-order
relations 6L, 6R, 6LR and the corresponding equivalence relations. Further-
more, we can construct the representations afforded by the various left cells of
W . Finally, the irreducible representations of W and the invariants aλ for λ ∈ Λ
are explicitly known in all cases. Thus, given the above information alone, we
can verify that E1–E4 hold.

Remark 4.2. Assume that P1–P15 hold for W . Then E1–E4 hold for W .

Indeed, by [22, 20.6, 20.7] (whose proofs involve P1–P15), we have a(z) = aλ

if Eλ !L z (see also Lemma 3.2). Hence P4 implies E1 and P11 implies E2.
Furthermore, E3 follows by a combination of P4 and P9. Finally, E4 follows
from P1 and P13, where the minimum of the ∆-function is reached at the unique
element of D contained in a given left cell.
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Lemma 4.3. Assume that P1 holds. Let D = {d ∈ W | a(d) = ∆(d)}. Then
∑

d∈D
γx−1,y,d nd = δxy for any x, y ∈ W.

Proof. As in the proof of [22, 14.5], we compute the constant term of τ(Cx−1Cy)
in two ways. On the one hand, we have τ(Cx−1Cy) ∈ δxy + Z[Γ>0]; hence
τ(Cx−1Cy) has constant term δxy. On the other hand, we have

τ(Cx−1Cy) =
∑

z∈W

hx−1,y,zτ(Cz) =
∑

z∈W

hx−1,y,z p1,z

=
∑

z∈W

ε∆(z)−a(z)
(
εa(z)hx−1,y,z

) (
ε−∆(z)p1,z

)
.

Now, by the definition of ∆(z), the term ε−∆(z)p1,z lies in Z[Γ>0] and has con-
stant term nz. The term εa(z)hx−1,y,z also lies in Z[Γ>0] and has constant term
γx−1,y,z−1 . Finally, by P1, we have a(z) 6 ∆(z). Hence, the constant term of the
whole sum can be computed term by term and we obtain

δxy =
∑

z∈W : a(z)=∆(z)

γx−1,y,z−1 nz.

Now, by [22, 5.6], we have p1,z = p1,z−1 and so nz = nz−1 , ∆(z) = ∆(z−1). Since
we also have a(z) = a(z−1) by Remark 2.8, we can rewrite the above expression
as

δxy =
∑

z∈W : a(z)=∆(z)

γx−1,y,z nz =
∑

d∈D
γx−1,y,d nd,

as desired. ¤

Proposition 4.4. Assume that E1–E4 hold for W and all parabolic subgroups
of W . Then P1–P14 hold for W .

Proof. By Corollary 3.8, we already know that P1, P4, P7, P8 hold. Now let
us consider the remaining properties.

P2 Let x, y ∈ W and assume that γx−1,y,d 6= 0 for some d ∈ D. First we
show that d is uniquely determined by this condition. Indeed, let C be the left
cell containing x. By P8, we have d ∼L x, i.e., d ∈ C. By P1, P4, we have
∆(d) = a(d) = a(w) 6 ∆(w) for all w ∈ C. Thus, the ∆-function, restricted to
C, reaches its minimum at d. Now E4 shows that d is uniquely determined, as
claimed.
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Hence, the sum in Lemma 4.3 reduces to one term and we have γx−1,y,dnd = δxy.
Since the left hand side is assumed to be non-zero, we deduce that x = y.

P3 Let y ∈ W . By Lemma 4.3, there exists some d ∈ D such that γy−1,y,d 6= 0.
Arguing as in the proof of P2, we see that d is uniquely determined.

P5 is a formal consequence of P1, P3; see [22, 14.5].

P6 is a formal consequence of P2, P3; see [22, 14.6].

P9 Let x, y ∈ W be such that x 6L y and a(x) = a(y). In particular, we have
x 6LR y and, by E1 and Proposition 3.6, we have ã(x) = ã(y). So E2’ implies
that x ∼LR y. Finally, E3 yields x ∼L y, as required.

P10 is a formal consequence of P9; see [22, 14.10].

P11 is a formal consequence of P4, P9, P10; see [22, 14.11].

P12 Since E1–E4 are assumed to hold for W and for WI , we already know
that P1–P11 hold for W and WI . Now P12 is a formal consequence of P3, P4,
P8 for W and WI ; see [22, 14.12].

P13 Let C be a left cell. First we show that C contains at most one element
from D. Let d ∈ C∩D. By P1, P4, we have ∆(d) = a(d) = a(w) 6 ∆(w) for all
w ∈ C. Thus, the ∆-function (restricted to C) reaches its minimum at d. So E4
shows that d is uniquely determined, as claimed.

Now let x ∈ C. By Lemma 4.3, there exists some d ∈ D such that γx−1,x,d 6= 0.
By P8, we have d ∈ C and so d ∈ C∩D. By the previus argument, C∩D = {d}.

P14 is a formal consequence of P6, P13; see [22, 14.14]. ¤

Finally, we discuss the remaining property in Lusztig’s list which is not covered
by the above arguments: property P15.

Remark 4.5. Assume that we are in the equal parameter case. Then, by [22,
14.15 and 15.7], P15 can be deduced once P4, P9 and P10 are known to hold.
Hence, in this case, all of P1–P15 are a consequence of E1–E4.

The following two results will be useful in dealing with P15 in the case of
unequal parameters.
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Remark 4.6. Following [22, 14.15], we can reformulate P15 as follows. Let Γ̆
be an isomorphic copy of Γ; then L induces a weight function L̆ : W → Γ̆. Let
H̆ = HĂ(W,S, L̆) be the corresponding Iwahori–Hecke algebra over Ă = R[Γ̆],
with parameters {v̆s | s ∈ S}. We have a corresponding Kazhdan–Lusztig basis
{C̆w | w ∈ W}. We shall regard A and Ă as subrings of A = R[Γ ⊕ Γ̆]. By
extension of scalars, we obtain A-algebras HA = A ⊗A H and H̆A = A ⊗Ă H̆.
Let E be the free A-module with basis {ew | w ∈ W}. We have an obvious left
HA-module structure and an obvious right H̆A-module structure on E (induced
by left and right multiplication). Now consider the following condition, where
s, t ∈ S and w ∈ W :

(Cs.ew).C̆t −Cs.(ew.C̆t) = combination of ey where y 6LR w, y 6∼LR w. (∗)

As remarked in [22, 14.15], (∗) is already known to hold if sw < w or wt < w.
Hence, it is sufficient to consider (∗) for the cases where both sw > w and wt > w.

The discussion in [22, 14.15] shows that P15 is equivalent to (∗), provided that
P4, P11 are already known to hold.

By looking at the proof of Theorems 2.9, one notices that it only requires a
property which looks weaker than P15; we called this property P15’ in [10, §5].
The following result shows that, in fact, P15 is equivalent to P15’.

Lemma 4.7. Assume that P1, P4, P7, P8 hold. Then P15 is equivalent to the
following property

P15′. If x, x′, y, w ∈ W satisfy a(w) = a(y), then

∑

u∈W

γw,x′,u−1 hx,u,y =
∑

u∈W

hx,w,u γu,x′,y−1 .

Note that, on both sides, the sum needs only be extended over all u ∈ W such
that a(u) = a(w) = a(y) (thanks to P4).

Proof. First note that P15′ appears in [22, 18.9(b)], where it is deduced from P4,
P15. Now we have to show that, conversely, P1, P4, P7, P8 and P15′ imply
P15. First we claim that P15′ implies the following statement (which appears
in [22, 18.10]):
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If x, y, y′ ∈ W are such that a(y) = a(y′), then

hx,y′,y =
∑

d∈D,z∈W
a(d)=a(z)

hx,d,z nd γz,y′,y−1 . (∗)

To see this, note that on the right hand side, we may replace the condition
a(d) = a(z) by the condition a(d) = a(y′); see P4, P8. Using also P15′ (where
w = d ∈ D and x′ is replaced by y′), we see that the right hand side of (∗) equals

∑

d∈D : a(d)=a(y′)

nd

(∑

z∈W

hx,d,z γz,y′,y−1

)
=

∑

d∈D : a(d)=a(y′)

nd

(∑

z∈W

γd,y′,z−1 hx,z,y

)
.

Now γd,y′,z−1 = 0 unless a(d) = a(y′); see P8, P4. Using also P7 and Lemma 4.3,
the right hand side of the above equation can be rewritten as

∑

z∈W

hx,z,y

(∑

d∈D
γy′,z−1,d nd

)
=

∑

z∈W

hx,z,y δzy′ = hx,y′,y.

Thus, (∗) is proved.

Now consider the left hand side in P15 where x, x,′ y, w ∈ W are such that
a := a(w) = a(y). If hw,x′,y′ 6= 0 then y′ 6R w and so a = a(w) 6 a(y′) by
P4; similarly, if hx,y′,y 6= 0, then y 6L y′ and so a(y′) 6 a(y) = a. Hence,
a(y′) = a, and so we may assume that the sum only runs over all y′ ∈ W such
that a(y′) = a. Inserting now (∗) into the left hand side of P15, we obtain the
expression

∑

y′∈W
a(y′)=a

∑
d∈D,z∈W
a(d)=a(z)

γz,y′,y−1 hw,x′,y′ ⊗ hx,d,z nd

=
∑

d∈D,z∈W
a(d)=a(z)

( ∑

y′∈W
a(y′)=a

γz,y′,y−1 hw,x′,y′
)
⊗ hx,d,z nd.

Now, using Remark 2.8 and P15′, we can rewrite the interior sum as follows:
∑

y′∈W
a(y′)=a

γz,y′,y−1 hw,x′,y′ =
∑

y′∈W
a(y′)=a

γy′−1,z−1,y hx′−1,w−1,y′−1

=
∑
u∈W

a(u)=a

hx′−1,w−1,u γu,z−1,y =
∑
u∈W

a(u)=a

γw−1,z−1,u−1 hx′−1,u,y−1

=
∑
u∈W

a(u)=a

γz,w,u hu−1,x′,y =
∑
u∈W

a(u)=a

γz,w,u−1 hu,x′,y.
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Inserting this back into the above expression, we find that
∑

d∈D,z∈W
a(d)=a(z)

( ∑

y′∈W
a(y′)=a

γz,y′,y−1 hw,x′,y′
)
⊗ hx,d,z nd

=
∑

d∈D,z∈W
a(d)=a(z)

( ∑
u∈W

a(u)=a

γz,w,u−1 hu,x′,y

)
⊗ hx,d,z nd.

Using also (∗), we obtain the expression
∑
u∈W

a(u)=a

hu,x′,y ⊗
( ∑

d∈D,z∈W
a(d)=a(z)

γz,w,u−1 hx,d,z nd

)
=

∑
u∈W

a(u)=a

hu,x′,y ⊗ hx,w,u,

which is the right hand side of P15. Note that, in the right hand side of P15, the
sum need only be extended over all y′ ∈ W such that a(y′) = a. (The argument
is similar to the one we used to prove the analogous statement for the left hand
side.) ¤

Example 4.8. Assume that (W,S) is of type H4. Then we are in the equal
parameter case. So, in order to verify P1–P15, it is sufficient to verify E1–E4;
see Remark 4.5. Now Alvis [1] has computed all polynomials py,w where y 6 w in
W . Since we are in the equal parameter case, this also determines all polynomials
µs

y,w where y, w ∈ W and s ∈ S are such that sy < y < w < sw; see [22, 6.5].
In this way, Alvis explicitly determined the relations 6L and 6LR; he also found
the decomposition of the left cell representations into irreducibles.

It turns out that the partial order induced on the set of two-sided cells is a
total order. (I thank Alvis for having verified this using the data in [1].) With
the notation in [loc. cit.], this total order is given by:

G∗ 6LR F ∗ 6LR E∗ 6LR D∗ 6LR C∗ 6LR B∗ 6LR A∗

= A 6LR B 6LR C 6LR D 6LR E 6LR F 6LR G.

Comparing with the information on the invariants aλ provided by Alvis–Lusztig
[2], we see that E1 and E2 hold. Furthermore, E3 is already explicitly stated in
[1, Cor. 3.3]. Finally, E4 is readily checked using Alvis’ computation of the left
cells and the polynomials py,w.

In this way, we obtain an alternative proof of P1–P15 for H4, which does not
rely on DuCloux’s computation [6] of all structure constants hx,y,z (x, y, z ∈ W ).

Similar arguments can of course also be applied to (W,S) of type H3.
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5. Lusztig’s homomorphism

We now use the methods developped in the previous section to verify P1–P15
for type F4 and I2(m). Then we are in a position to extend the construction of
Lusztig’s isomorphism to the general case of unequal parameters.

Proposition 5.1. Let 3 6 m < ∞ and (W,S) be of type I2(m), with generators
s1, s2 such that (s1s2)m = 1. Then P1–P15 hold for any weight function L : W →
Γ and any monomial order 6 such that L(si) > 0 for i = 1, 2.

Proof. If L(s1) = L(s2), this is proved by DuCloux [6], following the approach
in [22, 17.5] (concerning the infinite dihedral group). Now assume that L(s1) 6=
L(s2); in particular, m > 4 is even. Without loss of generality, we can assume
that L(s1) > L(s2). It is probably possible to use arguments similar to those in
[6] and [22, 17.5] (which essentially amount to computing all structure constants
hx,y,z). However, in the present case, it is rather straightforward to verify E1–E4.
Indeed, by [14, §5.4], we have

Irr(W ) = {1W , ε, ε1, ε2, ρ1, ρ2, . . . , ρ(m−2)/2)},

where 1W is the trivial representation, ε is the sign representation, ε1, ε2 are two
further 1-dimensional representations, and all ρj are 2-dimensional. We fix the
notation such that s1 acts as +1 in ε1 and as −1 in ε2. Using [14, 8.3.4], we find

a1W = 0, f1W = 1,

aε1 = L(s2), fε1 = 1,

aρj = L(s1), fρj =
m

2− ζ2j − ζ−2j
for all j,

aε2 =
m

2
(
L(s1)− L(s2)

)
+ L(s2), fε2 = 1,

aε =
m

2
(
L(s1) + L(s2)

)
fε = 1;

where ζ ∈ C is a root of unity of order m. Observe that, in the above list, the
a-values are in strictly increasing order from top to bottom.

Now, by [22, 6.6, 7.5, 7.6] and [14, Exc. 11.3], we have the following multipli-
cation rules for the Kazhdan–Lusztig basis. For any k > 0, write 1k = s1s2s1 · · ·
(k factors) and 2k = s2s1s2 · · · (k factors). Given k, l ∈ Z, we define δk>l to be 1
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if k > l and to be 0 otherwise. Then

C11C1k+1
= (vs1 + v−1

s1
)C1k+1

,

C21C2k+1
= (vs2 + v−1

s2
)C2k+1

,

C21C1k
= C2k+1

,

C11C2k
= C1k+1

+ δk>1ζC1k−1
+ δk>3C1k−3

,

for any 0 6 k < m, where ζ = vs1v
−1
s2

+ v−1
s1

vs2 . Using this information, the
pre-order relations 6L, 6R and 6LR are easily and explicitly determined; see
[22, 8.8]. The two-sided cells and the partial order on them are given by

{1m} 6LR {1m−1} 6LR W \ {10, 21, 1m−1, 1m} 6LR {21} 6LR {10}. (♥)

The set W \{10, 21, 1m−1, 1m} consists of two left cells, {11, 22, 13, . . . , 2m−2} and
{12, 23, 14, . . . , 2m−1}, but these are not related by 6L. (If they were, then, by
[22, 8.6], the right descent set of the elements in one of them would have to be
contained in the right descent set of the elements in the other one—which is not
the case.) The other two-sided cells are just left cells. In particular, we see that
E3 holds.

Now we can also construct the representations given by the various left cells
and decompose them into irreducibles; we obtain:

{10} affords 1W ,

{21} affords ε1,

{11, 22, 13, . . . , 2m−2} affords ρ1 + ρ2 + · · ·+ ρ(m−2)/2,

{12, 23, 14, . . . , 2m−1} affords ρ1 + ρ2 + · · ·+ ρ(m−2)/2,

{1m−1} affords ε2,

{1m} affords ε.

Using this list and the above information on the a-values and the partial order
on the two-sided cells, we see that E1 and E2 hold.
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Next, by [22, 7.4, 7.6] and [14, Exc. 11.3], the polynomials py,w are explicitly
known. Thus, we can determine the function w 7→ ∆(w). We obtain

∆(12k) = ∆(22k) = kL(s1) + kL(s2) if k > 0,

∆(21) = L(s2)

∆(12k+1) = (k + 1)L(s1)− kL(s2) if k > 0

∆(22k+1) = kL(s1) + (k − 1)L(s2) if k > 1.

Thus, we see that E4 holds. In the left cell {11, 22, 13, . . . , 2m−2}, the function ∆
reaches its minimum at 11; in the left cell {12, 23, 14, . . . , 2m−1}, the minimum is
reached at 23. We see that

D = {10, 21, 11, 23, 1m−1, 1m},
n10 = n21 = n11 = n23 = n1m = +1, n1m−1 = −(−1)m/2.

Thus, we have verified that E1–E4 hold for W . We also know that P1–P15 hold
for every proper parabolic subgroup of W . (Note that the only proper parabolic
subgroups of W are 〈s1〉 and 〈s2〉.) Hence, by Remark 4.2 and Proposition 4.4,
we can conclude that P1–P14 hold for W .

It remains to verify P15. For this purpose, we must check that condition (∗)
in Remark 4.6 holds for all w ∈ W and i, j ∈ {1, 2} such that siw > w, wsj > w.
A similar verification is done by Lusztig [22, 17.5] for the infinite dihedral group.
We notice that the same arguments also work in our situation if w is such that
we do not encounter the longest element w0 = 1m = 2m in the course of the
verification. This certainly is the case if l(w) < m − 2. Thus, we already know
that (∗) holds when l(w) < m − 2. It remains to verify (∗) when l(w) equals
m− 2 or m− 1, that is, when w ∈ {1m−2, 2m−2, 1m−1, 2m−1}.

Assume first that w = 1m−2. The left descent set of w is {s1} and, since m is
even, the right descent set of w is {s2}. So we must check (∗) with s = s2 and
t = s1. Using the above multiplication formulas, we find:

(C21 .e1m−2).C̆11 = e2m−1 .C̆11 .

Now, since m is even, {s2} is the right descent set of 1m−1. Hence right-handed
versions of the above multiplication rules imply that

(C21 .e1m−2).C̆11 = e2m−1 .C̆11 = e2m + δm>2ζ̆e2m−2 + δm>4e2m−4 ,
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where ζ̆ = v̆s1 v̆
−1
s2

+ v̆−1
s1

v̆s2 . On the other hand, we have

C21 .(e1m−2 .C̆11) = C21 .
(
e1m−1 + δm>3ζ̆e1m−3 + δm>5e2m−5

)

= e2m + δm>3ζ̆e2m−2 + δm>5e2m−4 .

Now note that, since m is even, we have δm>3 = δm>2 and δm>4 = δm>5. Hence,
we actually see that the expression in (∗) is zero.

Now assume that w = 2m−2. Then we must check (∗) with s = s1 and t = s2.
Arguing as above, we find that

(C11 .e2m−2).C̆21 =
(
e1m−1 + δm>3ζe1m−3 + δm>5em−5

)
.C̆21

= e1m + δm>3ζe1m−2 + δm>5em−4,

C11 .(e2m−2 .C̆21) = C11 .e2m−1 = e1m + δm>2ζe1m−2 + δm>4em−4.

Again, we see that the difference of these two expressions is zero.

Next, let w = 1m−1. Then we must check (∗) with s = t = s2. We obtain

(C21 .e1m−1).C̆21 = e2m .C̆21 = (v̆s2 + v̆−1
s2

)e2m ,

C21 .(e1m−1 .C̆21) = C21 .e1m = (vs2 + v−1
s2

)e2m .

Hence the difference of these two expressions is a scalar multiple of e2m . The
description of 6LR in (♥) now shows that (∗) holds.

Finally, let w = 2m−1. Then we must check (∗) with s = t = s1. We find

(C11 .e2m−1).C̆11 =
(
e1m + δm>2ζe1m−2 + δm>4e1m−4

)
.C̆11 .

Furthermore, we obtain:

e1m .C̆11 = (v̆s1 + v̆−1
s1

)e1m ,

e1m−2 .C̆11 = e1m−1 + δm>3ζ̆e1m−3 + δm>5e1m−5 ,

e1m−4 .C̆11 = e1m−3 + δm>5ζ̆e1m−5 + δm>7e1m−7 .

Inserting this into the above expression, we obtain

(C11 .e2m−1).C̆11 = (v̆s1 + v̆−1
s1

)e1m + δm>2ζe1m−1

+ (δm>3ζζ̆ + δm>4)e1m−3 + (ζ + ζ̆)δm>5e1m−5 + δm>7e1m−7 .
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A similar computation yields

C11 .(e2m−1 .C̆11) = (vs1 + v−1
s1

)e1m + δm>2ζ̆e1m−1

+ (δm>3ζζ̆ + δm>4)e1m−3 + (ζ + ζ̆)δm>5e1m−5 + δm>7e1m−7

and so

(C11 .e2m−1).C̆11−C11 .(e2m−1 .C̆11) = (v̆s1+v̆−1
s1
−vs1−v−1

s1
)e1m+δm>2(ζ−ζ̆)e1m−1 .

The description of 6LR in (♥) now shows that (∗) holds.

Thus, we have verified that P15 holds. ¤

Proposition 5.2. Let (W,S) be of type F4 with generators and diagram given
by:

F4
s1 s2 s3 s4t t t t>

Then P1–P15 hold for any weight function L : W → Γ and any monomial order
6 such that L(si) > 0 for i = 1, 2, 3, 4.

Proof. The weight function L is specified by a := L(s1) = L(s2) > 0 and b :=
L(s3) = L(s4) > 0. We may assume without loss of generality that b > a. The
preorder relations 6L, 6R, 6LR and the corresponding equivalence relations
on W have been determined in [8], based on an explicit computation of all the
polynomials py,w (where y 6 w in W ) and all polynomials µs

y,w (where s ∈ S and
sy < y < w < sw) using CHEVIE [12]. (The programs are available upon request.)
Once all this information is available, it is also a straightforward matter to check
that condition (∗) in Remark 4.6 is satisfied, that is, P15 holds. Furthermore,
E3 and E4 are explicitly stated in [8].

To check E1 and E2, it is sufficient to use the information contained in Table 1
(which is taken from [10, p. 318]) and Table 2 (which is taken from [8, p. 362]).
In these tables, the irreducible representations of W are denoted by di where
d is the dimension and i is an additional index; for example, 11 is the trivial
representation, 14 is the sign representation and 42 is the reflection representation.

Thus, by Proposition 4.4, P1–P14 hold for W . (Note that, using similar
computational methods, E1–E4 are easily verified for all proper parabolic sub-
groups.) ¤
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Table 1. The invariants fλ and aλ for type F4

b>2a>0 b=2a>0 2a>b>a>0 b=a>0

Eλ fλ aλ fλ aλ fλ aλ fλ aλ

11 1 0 1 0 1 0 1 0

12 1 12b−9a 2 15a 1 11b−7a 8 4a

13 1 3a 2 3a 1 −b+5a 8 4a

14 1 12b+12a 1 36a 1 12b+12a 1 24a

21 1 3b−3a 2 3a 1 2b−a 2 a

22 1 3b+9a 2 15a 1 2b+11a 2 13a

23 1 a 1 a 1 a 2 a

24 1 12b+a 1 25a 1 12b+a 2 13a

41 2 3b+a 2 7a 2 3b+a 8 4a

91 1 2b−a 2 3a 1 b+a 1 2a

92 1 6b−2a 1 10a 1 6b−2a 8 4a

93 1 2b+2a 1 6a 1 2b+2a 8 4a

94 1 6b+3a 2 15a 1 5b+5a 1 10a

61 3 3b+a 3 7a 3 3b+a 3 4a

62 3 3b+a 3 7a 3 3b+a 12 4a

121 6 3b+a 6 7a 6 3b+a 24 4a

42 1 b 1 2a 1 b 2 a

43 1 7b−3a 1 11a 1 7b−3a 4 4a

44 1 b+3a 1 5a 1 b+3a 4 4a

45 1 7b+6a 1 20a 1 7b+6a 2 13a

81 1 3b 1 6a 1 3b 1 3a

82 1 3b+6a 1 12a 1 3b+6a 1 9a

83 1 b+a 2 3a 1 3a 1 3a

84 1 7b+a 2 15a 1 6b+3a 1 9a

161 2 3b+a 2 7a 2 3b+a 4 4a

(This table corrects some errors concerning fλ in [10, Table 1].)

Theorem 5.3. Lusztig’s conjectures P1–P15 hold in the following cases.

(a) The equal parameter case where Γ = Z and L(s) = a > 0 for all s ∈ S

(where a is fixed).
(b) (W,S) of type Bn, F4 or I2(m) (m even), with weight function L : W → Γ

given by:
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Table 2. Partial order on two-sided cells in type F4

a = b

c14

c 45

c94
¿
¿

\
\
c82

c84
¿
¿

\
\
c121
¿
¿

\
\
c81

c83
¿
¿

\
\
c91

c 42

c11

b = 2a

c14

c24

c45

c12
¡¡A

AA
c43

c92c82

@@¢
¢¢

c161
¡¡A

AA
c93

c44c81

@@¢
¢¢

c13

c42

c23

c11

2a > b > a

c14

c24

c45

c22

c94
´́

c84

c12

c43

c92

c161 QQ

c82
¢
¢
¢

A
A
A

´́
c93

c44

c13

c83

c91 QQ

c81
¢
¢
¢

A
A
A

c21

c42

c23

c11

b > 2a

c14

c24
¡¡@@

c12
c45

@@¡¡

c 84
´́@

@ c94
c

c
cc c22

c82

QQ
c161

c43

c92

¡
¡

´́@
@ c81

c21

c91
#

#
##

QQ
c 83

c93

c44

¡
¡

¡¡@@
c13

c42

@@¡¡

c23

c11

A box indicates a two-sided cell with several irreducible components, given as follows:

42 = {21, 23, 42}, 45 = {22, 24, 45}, 13 = {13, 21, 83, 91}, 12 = {12, 22, 84, 94},
121 = {12, 13, 41, 43, 44, 61, 62, 92, 93, 121, 161}, 161 = {41, 61, 62, 121, 161}.

Otherwise, the two-sided cell contains just one irreducible respresentation.

Bn tb 4 ta ta p p p ta

I2(m)
m even

tb m ta F4 ta ta 4 tb tb

where a, b ∈ Γ>0 are such that b > ra for all r ∈ Z>1.

Proof. (a) See Remark 2.7. (b) For types I2(m) (m even) and F4, see Propo-
sitions 5.1 and 5.2. Now let W be of type Bn with parameters as above. The
left, right and two-sided cells are explicitly determined by Bonnafé and Iancu
[4], [3]. A special feature of this case is that all left cells give rise to irreducible
representations of W ; see [4, Prop. 7.9]; furthermore, two left cells give rise to
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isomorphic irreducible representations of W if and only if they contained in the
same two-sided cell; see [3, §3]. Based on these results, it is shown in [13, Theo-
rem 1.3] that P1–P15 hold except possibly P9, P10, P15. In [9, Theorem 5.13],
the following implication is shown for all x, y ∈ W :

x ∼LR y and x 6L y ⇒ x ∼L y. (♥)

This then yields P9, P10; see [9, Cor. 7.12]. Finally, P15′ is shown in [9,
Prop. 7.6] under the additional assumption that y ∼L x′ ∼R w−1. However, if
this additional assumption is not satisfied, then one easily sees, using P9 and
P10, that both sides of P15′ are zero. Thus, P15′ holds in general and then
Lemma 4.7 is used to deduce that P15 also holds. ¤

Corollary 5.4. Assume that W is finite and let L0 : W → Γ0 be the “universal”
weight function of Remark 2.3. Then P1–P15 hold for at least one monomial
order on Γ0 where L0(s) > 0 for all s ∈ S.

Proof. By standard reduction arguments, we can assume that (W,S) is irre-
ducible. If (W,S) if of type Bn, F4 or I2(m) (m even), we choose a monomial order
as in Theorem 5.3(b). Otherwise, we are automatically in the equal parameter
case. Hence P1–P15 hold by Theorem 5.3(a). ¤

Finally, we can show that Theorem 2.12 holds without using the hypothesis
that P1–P15 are satisfied!

Corollary 5.5. Let R ⊆ C be a field. Then the statements in Theorem 2.12
hold for any weight function L : W → Γ where Γ is an abelian group such that
A = R[Γ] is an integral domain.

Note that this implies Theorem 1.1, as stated in the introduction.

Proof. Let Γ0, A0 and H0 be as in Remark 2.3. To distinguish A0 from A, let
us write the elements of A0 as R-linear combinations of εg

0 where g ∈ Γ0. By
Corollary 5.4, we can choose a monomial order 6 on Γ0 such that P1–P15 hold.
Let ψ0 : H0 → A0[W ] be the corresponding homomorphism of Theorem 2.12.

Let Q0 be the matrix of the A0-linear map ψ0 with respect to the standard
A0-bases of H0 and A0[W ]. Let θ0 : A0 → R be the unique ring homomorphism
such that θ0(ε

g
0) = 1 for all g ∈ Γ0. We denote by θ0(Q0) the matrix obtained by

applying θ0 to all entries of Q0. By Theorem 2.12, θ0(Q0) is the identity matrix.
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Now, there is a group homomorphism α : Γ0 → Γ such that α((ns)s∈S) =∑
s∈S nsL(s). This extends to a ring homomorphism A0 → A which we de-

note by the same symbol. Extending scalars from A0 to A (via α), we obtain
H = A ⊗A0 H0 and A[W ] = A ⊗A0 A0[W ]. Furthermore, ψ0 induces an algebra
homomorphism ψ̄0 : H → A[W ]. Let Q := α(Q0) be the matrix obtained by
applying α to all entries of Q0. Then, clearly, Q is the matrix of the A-linear
map ψ̄0 with respect to the standard A-bases of H and A[W ].

Let θ1 : A → R be the unique ring homomorphism such that θ1(εg) = 1 for all
g ∈ Γ. As in the proof of Theorem 2.12, it remains to show that, if we apply θ1

to all entries of Q, then we obtain the identity matrix. But, we certainly have
θ0 = θ1 ◦α and, hence, θ1(Q) = θ1(α(Q0)) = θ0(Q0). So it remains to recall that
the latter matrix is the identity matrix. ¤
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ple 4.8. (This information can be obtained from the data produced in [1].)
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[4] C. Bonnafé and L. Iancu, Left cells in type Bn with unequal parameters, Represent.

Theory 7 (2003), 587–609.
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