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Abstract: Seeking for a converse to a well-known theorem by Borel–Tits,
we address the question whether the group of rational points G(k) of an
anisotropic reductive k-group can admit a split spherical BN-pair. We show
that if k is a perfect field or a local field, then such a BN-pair must be
virtually trivial. We also consider arbitrary compact groups and show that
the only abstract BN-pairs they can admit are spherical, and even virtually
trivial provided they are split.
Keywords: BN-pair, building, anisotropic reductive group, compact group

1. Introduction

In a seminal paper [5], Armand Borel and Jacques Tits established — amongst
other things — that the group G(k) of k-rational points of a (connected) reductive
linear algebraic k-group G always possesses a canonical BN-pair, where k is an
arbitrary ground field. More precisely, they showed that if P is a minimal para-
bolic k-subgroup of G, and if N is the normalizer in G of some maximal k-split
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torus contained in P , then (P (k), N(k)) is a BN-pair for G(k). This result con-
stitutes a cornerstone in understanding the abstract group structure of the group
of k-rational points G(k). As an application, it yields for example the celebrated
simplicity result of Tits [19]. Of course, the aforementioned BN-pair is trivial
when G is anisotropic over k. (Abusing slightly the standard conventions, we
shall say that G is anisotropic if it has no proper k-parabolic subgroup, i.e. if
P = G. As is well-known, this definition coincides with the standard one in case
G is semi-simple (see [4, 11.21])). In fact, the abstract group structure of G(k)
remains intriguing and mysterious to a large extent in the anisotropic case. In
this context, we propose the following.

Conjecture (Converse to Borel–Tits). Let G be a reductive algebraic k-group
which is anisotropic over k. Then every split spherical BN-pair for G(k) is virtu-
ally trivial.

Recall that a BN-pair (B,N) for a group G is called spherical if the associated
Weyl group W := N/T is finite, where T := B ∩ N . It is said to be split if it
is saturated (i.e. T =

⋂
w∈W wBw−1), and if there exists a nilpotent normal

subgroup U / B such that B ∼= U o T . This implies that the associated building
enjoys the Moufang property (see e.g. [11]). The BN-pair is called virtually
trivial if the associated building is finite or, equivalently, if B has finite index
in G. The BN-pair (P (k), N(k)) for G(k) described above is always split ([4,
14.19]). It is virtually trivial if and only if either k is finite or G is k-anisotropic.
In particular, over infinite ground fields the conjecture can really be thought as a
converse to the Borel–Tits theorem.

Besides the natural search for a converse to Borel–Tits, a motivation to consider
the above conjecture is provided by the recent work of Peter Abramenko and Ken
Brown [1], who constructed Weyl transitive actions on trees for certain anisotropic
groups over global function fields. We refer to [2, Ch. 6] for more details on
the relations and distinctions between BN-pairs, strong transitivity and Weyl
transitivity.

Our first contribution concerns the special case when the ground field k is a
local field. The k-anisotropy of G is then equivalent to the compactness of G(k)
(see [13]). In fact, our first step will be to establish the following two results,
which concern arbitrary compact topological groups (not necessarily associated
with algebraic groups).
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Theorem 1. Let G be a compact group. Then every BN-pair for G is spherical.

Theorem 2. Let G be a compact group. Then every split spherical BN-pair for
G is virtually trivial.

We emphasize that the BN-pairs appearing in these statements are abstract :
The corresponding subgroups B and N are not supposed to be closed in G. Spe-
cializing to anisotropic groups over local fields, we deduce the following immediate
corollary.

Theorem 3. Let k be a local field and G be a connected semi-simple algebraic
k-group which is anisotropic over k. Then:

(1) Every BN-pair for G(k) is spherical.
(2) Every split spherical BN-pair G(k) is virtually trivial.

Finally, we consider the case of perfect ground fields.

Theorem 4. Let k be a perfect field and G be a reductive algebraic k-group which
is anisotropic over k. Then every split spherical BN-pair for G(k) is virtually
trivial.

Notice that Theorems 3 and 4 are logically independent, since there exist local
fields which are not perfect and vice-versa.

It would be very interesting to sharpen the conclusion of Theorems 3 and 4,
that is, to show that, under suitable assumptions, the BN-pair must be trivial,
and not only virtually trivial. However, we expect this to be quite difficult, since
it is closely related to a conjecture due to Andrei Rapinchuk and Gopal Prasad
(see [14]), which may be stated as follows: “Let G be a reductive k-group which is
anisotropic over k. Then, every finite quotient of G(k) is solvable.” As of today,
this conjecture was confirmed only when G is the multiplicative group of a finite
dimensional division algebra (see [15]). We now sketch informally how these two
problems are related.

On one side, if G(k) possesses a BN-pair with finite associated building ∆, and
if K := ker(G(k) y ∆) is the kernel of the corresponding action, then G(k)/K

is a finite group whose action on ∆ is faithful, and thus G(k)/K is a finite group
which possesses a faithful BN-pair. But these groups have been classified: they are
simple Chevalley groups, and in particular are not solvable (up to two exceptions).
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Thus, if the BN-pair for G(k) were nontrivial, there would exist (modulo these
two exceptions) a non-solvable finite quotient of G(k).

Conversely, suppose that G(k) possesses a nontrivial and non-solvable finite
quotient F ′ := G(k)/K. Let R � F ′ be the solvable radical of F ′, that is, its
largest solvable normal subgroup. Going to the quotient F := F ′/R, we thus
know that G(k) surjects onto a nontrivial finite group with trivial solvable radical
(namely, F ). Let now M be a minimal normal subgroup of F . Then M is a
direct product of non-Abelian simple groups which are pairwise isomorphic, say
M ∼= S1×· · ·×Sk with Si

∼= S for all i ∈ {1, . . . , k}. By the classification of finite
simple groups, S is very likely to be a Chevalley group. Such a group possesses a
root datum, and thus also a nontrivial BN-pair whose associated (finite) building
is in bijection with S/B. Repeating this construction for each Si, we then get
a finite building ∆ = ∆1 × · · · × ∆k on which M = S1 × · · · × Sk acts strongly
transitively. Finally, the action of Aut(M) on the set of p-Sylow subgroups of M

(where p = char k) induces an action of Aut(M) on ∆ making the diagram

F
α−−−−−→ Aut(M)

ι

x
y

M −−−−−−−→
strongly tr.

Aut(∆)

commute, where α(f) denotes the conjugation by f for all f ∈ F . In particular,
we get a strongly transitive action of F , and thus also of G(k), on the finite
building ∆. This yields a nontrivial and virtually trivial BN-pair for G(k).

General conventions. All algebraic groups considered here are supposed to be
affine, all topological groups are assumed Hausdorff and all BN-pairs have finite
rank.

2. Proof of Theorem 1

2.1. Heuristic sketch. Let G be a compact group and let (B,N) be a BN-pair
for G. Let also ∆ be the associated building. We consider the Davis realization of
∆, noted |∆|CAT(0) in this paper, and which is a complete CAT(0) space, as well as
a simplicial complex, on which G acts by simplicial isometries. The key step in the
proof of Theorem 1 is to establish that this action is elliptic (Theorem 2.5 below).
To do so, we use a result of Martin Bridson stating that such an action is always
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semi-simple, and we then argue by contradiction, assuming that G possesses an
element with no fixed point. Such an element would then generate a subgroup Q

of G which acts by translations on |∆|CAT(0). Moreover, the structure of simplicial
complex of |∆|CAT(0) implies that the set of translation lengths of the elements
of Q is discrete at 0. The contradiction now comes from divisibility properties of
compact and procyclic groups, which we apply to Q.

2.2. Procyclic groups. Let G be a profinite group. Recall that G is said to be
procyclic if there exists a g ∈ G such that the subgroup generated by g is dense
in G, that is, G = 〈g〉. Moreover G is said to be pro-p for some prime p if every
finite Hausdorff quotient of G is a p-group.

The following basic properties of procyclic groups can be found in [16, 2.7].
The symbol P denotes the set of all primes.

Proposition 2.1. Let G be a procyclic group. Then,

(i) G is the direct product G =
∏

p∈PGp of its p-Sylow subgroups, and each Gp

is a pro-p procyclic group.
(ii) G is, in a unique way, a quotient of Ẑ :=

∏
p∈P Zp. If G is pro-p for some

p ∈ P, then it is a quotient of Zp.

2.3. Divisible groups. Recall that an element g ∈ G is said to be n-divisible
for some n ∈ N if there exists an h ∈ G such that hn = g. We say that g is
divisible if it is n-divisible for each n ≥ 1. The group G is called n-divisible
(respectively divisible) when all its elements are.

Now, every prime q different from p is invertible in Zp since its p-adic valuation
is zero. Hence, the additive group Zp is q-divisible for each q ∈ P \ {p}. In
particular, Proposition 2.1 implies that if a procyclic group G has trivial q-Sylow
subgroups, then G is q-divisible.

We conclude this paragraph by stating the following characterization of divisi-
bility for compact groups (see [12, Corollaire 2]).

Proposition 2.2. Let G be a compact topological group. Then, G is divisible if
and only if it is connected.

2.4. Semi-simple actions on CAT(0) spaces. Let G be a group acting on
a metric space (X, d). For every g ∈ G, we define the translation length of
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g by |g| := inf{d(x, g · x) | x ∈ X} ∈ [0,∞) and the minimal set of g by
Min(g) := {x ∈ X | d(x, g · x) = |g|}. An element g ∈ G is said to be semi-
simple when Min(g) is nonempty. In that case, we say that g is elliptic if it
fixes some point, that is, if |g| = 0; otherwise, if |g| > 0, we call g hyperbolic.

A geodesic line (respectively, geodesic segment) in X is an isometry f : R→
X (respectively, f : [0; 1] → X); by abuse of language, we will identify f with its
image in X.

The following lemma follows from Proposition 2.4 in [6].

Lemma 2.3. Let (X, d) be a complete CAT(0) metric space, and let C be a closed
convex nonempty subset of X. Then:

(i) For every x ∈ X, there is a unique y ∈ C such that d(x, y) = d(x,C), where
d(x,C) := infz∈C d(x, z). We call y the projection of x on C and we write
y = projC x.

(ii) For all x1, x2 ∈ X, we have d(projC x1,projC x2) ≤ d(x1, x2).

Suppose now that (X, d) is a cell complex. We then say that G acts by cellular
isometries on X if it preserves the metric, as well as the cell decomposition of
X.

The following result is due to Martin Bridson [7].

Proposition 2.4. Let X be a locally Euclidean CAT(0) cell complex with finitely
many isometry types of cells, and G be a group acting on X by cellular isometries.
Then every element of G is semi-simple. Moreover, inf{|g| 6= 0 | g ∈ G} > 0.

We now establish the following result, which is the key ingredient for the proof
of Theorem 1:

Theorem 2.5. Let X be a locally Euclidean CAT(0) cell complex with finitely
many isometry types of cells, and G be a compact group acting on X by cellular
isometries (not necessarily continuously). Then every element of G is elliptic.

Proof. Suppose for a contradiction there exists a g ∈ G without fixed point.
Proposition 2.4 then implies that g is hyperbolic. Let Q = 〈g〉 be the closure of
the subgroup generated by g in G. So, Q is compact.

Claim 1: Q is Abelian.
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This is clear since it contains a dense Abelian (in fact cyclic) subgroup.

Claim 2: For every h ∈ Q, the minimal set Min(h) is a closed convex subset of X

which is stabilized by Q.

This follows from [6, Proposition II.6.2].

Claim 3: For every h ∈ Q and every nonempty closed convex subset C of X

stabilized by Q, the set C ∩Min(h) is nonempty.

Note first that Min(h) is nonempty by Proposition 2.4. Let x ∈ Min(h) and
consider the projections y := projC x and z := projC hx provided by Lemma 2.3.
Since hC = C, we then obtain

d(x, y) = inf
c∈C

d(x, c) = inf
c∈C

d(hx, hc) = inf
c∈C

d(hx, c) = d(hx, z).

Hence d(hx, hy) = d(x, y) = d(hx, z), and so z = hy = projC hx by uniqueness of
projections. Since in addition d(y, z) ≤ d(x, hx) = |h| by Lemma 2.3, we finally
get d(y, hy) = |h| and therefore y ∈ C ∩Min(h).

Claim 4: For all h1, h2 ∈ Q, the set Min(h1) ∩Min(h2) is nonempty.

As Min(h1) and Min(h2) are nonempty by Proposition 2.4, the claim follows from
Claims 2 and 3.

Claim 5: Let h ∈ Q and let C be a nonempty closed convex subset of X stabilized
by Q. We may thus consider the action of h on C. Denote by |h|C the translation
length of h for this action. Then, h is semi-simple in C and |h| = |h|C .

Claim 3 yields that if x ∈ Min(h), then y := projC x ∈ Min(h). Since Min(h) is
nonempty by Proposition 2.4, the claim follows.

Claim 6: For every h ∈ Q and n ≥ 1, we have |hn| = n|h|.

By Claim 4, we may choose an x ∈ Min(h) ∩ Min(hn). Note that h is elliptic
(respectively hyperbolic) if and only if hn is so (see [6, II.6.7 and II.6.8]). In
particular, if h is hyperbolic, then x belongs to some h-axis, which is also an
hn-axis. In any case, we obtain d(x, hnx) = nd(x, hx), whence |hn| = d(x, hnx) =
nd(x, hx) = n|h|.
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Claim 7: Every divisible element of Q is elliptic.

Let h ∈ Q be divisible and suppose for a contradiction it is not elliptic. Then h is
hyperbolic by Proposition 2.4. For each natural number n ≥ 1, choose an hn ∈ Q

such that hn
n = h. In particular, all hn are hyperbolic. Moreover, |hn

n| = n|hn|
by Claim 6. Therefore, we obtain a sequence (hn) of elements of Q such that
|hn| = |h|/n > 0, contradicting the second part of Proposition 2.4.

We now establish the desired contradiction to the hyperbolicity of g. First note
that the component group P := Q/Q0 of Q is a profinite group. In fact, it is even
procyclic, since the subgroup generated by the projection of g in P is dense in P ,
the natural mapping π : Q → Q/Q0 being continuous. In particular, it follows
from Proposition 2.1 that P is the product of its p-Sylow subgroups Pp. Moreover,
each Pp is a pro-p group and is therefore q-divisible for every q ∈ P \ {p}. For
each p ∈ P, let Qp be the subgroup of Q which is the pre-image of Pp under π.

Claim 8: If h, a, d ∈ Q with ha = dn for some n ≥ 1 and a is elliptic, then
|h| = n|d|.

Write C := Min(h)∩Min(a). Then C is nonempty by Claim 4. Since dn stabilizes
C, Claim 5 implies that it is semi-simple in C with translation length |dn|C = |dn|.
Thus, |dn|C = |dn| = n|d| by Claim 6. Note also that ha is semi-simple in C with
translation length |ha|C = |h|. Therefore, |h| = |ha|C = |dn|C = n|d|, as desired.

Claim 9: Let h ∈ Q be hyperbolic. Suppose that hai = dni
i for all i ≥ 1, where

ai, di ∈ Q, each ai is elliptic and where ni ≥ 1. Then the set {ni | i ≥ 1} is
bounded.

Indeed, by Claim 8, the sequence (di) of elements of Q is such that |di| = |h|/ni >

0. The claim now follows from the second part of Proposition 2.4.

Claim 10: Let p ∈ P. Then all elements of Qp are elliptic.

Suppose for a contradiction there exists an h ∈ Qp which is not elliptic, and is thus
hyperbolic by Proposition 2.4. Let q ∈ P \ {p}. Since Pp = π(Qp) is q-divisible,
there exists an hq ∈ Q such that hq

qQ0 = hQ0. Let a ∈ Q0 such that ha = hq
q.

By Proposition 2.2, since Q0 is compact and connected, it is divisible, and so a
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is elliptic by Claim 7. Since the set of natural prime numbers distinct from p is
unbounded, the desired contradiction now comes from Claim 9.

Let now gQ0 = (gp)p∈P be the decomposition of π(g) in P =
∏

p∈P Pp (that is,
each gp ∈ Pp). Let q ∈ P, and choose an aq ∈ Qp such that π(aq) = g−1

q . Then
π(gaq) has no component in the q-Sylow of P , and is therefore q-divisible in P .
Hence, there exist an hq ∈ Q and an a ∈ Q0 such that gaqa = hq

q. By Claim 10,
we know that aq is elliptic. But so is a, and hence the product a′ := aqa is also
elliptic by Claim 4. Since q is an arbitrary prime, Claim 9 again yields the desired
contradiction. ¤

2.5. The Davis realization of a building. We recall from [10] that any build-
ing ∆ admits a metric realization, denoted by |∆|CAT(0), which is a locally Eu-
clidean CAT(0) cell complex with finitely many types of cells. Moreover any group
of type-preserving automorphisms of ∆ acts in a canonical way by cellular isome-
tries on |∆|CAT(0). Finally, the cell supporting any point of |∆|CAT(0) determines
a unique spherical residue of ∆. In particular, an automorphism of ∆ which fixes
a point in |∆|CAT(0) must stabilize the corresponding spherical residue in ∆.

Here is a reformulation of Theorem 1.

Theorem 2.6. Let G be a compact group acting strongly transitively by type-
preserving automorphisms on a thick building ∆. Then, ∆ is spherical.

Proof. Let (W,S) be the Coxeter system associated to ∆, and let Σ be the fun-
damental apartment of ∆. Then, the action of the stabilizer in G of Σ can be
identified with the action of W on this apartment ([20, 2.8]).

Claim 1: |Σ|CAT(0) is a closed convex subset of |∆|CAT(0).

A basic fact about buildings is the existence, for each pair (Σ, C) consisting of an
apartment Σ and of a chamber C ∈ Σ, of a retraction of ∆ onto Σ centered at C,
that is, of a simplicial map ρ = ρΣ,C : ∆ → Σ preserving minimal galleries from
C and such that ρ|Σ = id|Σ. The induced mapping ρ : |∆|CAT(0) → |Σ|CAT(0)

then maps every geodesic segment of |∆|CAT(0) onto a piecewise geodesic segment
of |Σ|CAT(0) of same length. In particular, the mapping ρ is distance decreasing
(see [10, Lemme 11.2]). Hence, if x and y are two points in |Σ|CAT(0), then the
geodesic segment from x to y is entirely contained in |Σ|CAT(0) since its image by
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ρ is also a geodesic from x to y. This proves that |Σ|CAT(0) is convex. To see it is
closed, it suffices to note that it is complete as a metric space since it is precisely
the Davis realization of the building Σ.

Claim 2: If g ∈ G is elliptic in X = |∆|CAT(0) and stabilizes |Σ|CAT(0), then g is
also elliptic in |Σ|CAT(0).

This follows from Claim 5 in the proof of Theorem 2.5.

Theorem 2.5 now implies that the induced action of W on |Σ|CAT(0) is elliptic,
that is, every w ∈ W is elliptic. Notice that the W -action on |Σ|CAT(0) is proper,
since by construction, it is cellular and the stabilizer of every point is a spherical
(in particular finite) parabolic subgroup of W . Recalling now that every infinite
finitely generated Coxeter group contains elements of infinite order (in fact, so do
all finitely generated infinite linear groups by a classical result of Schur [17]; in the
special case of Coxeter groups, a direct argument may be found in [2, Proposition
2.74]), we deduce that W is finite. In other words ∆ is spherical. ¤

3. Proof of Theorem 2

3.1. Heuristic sketch. Let G be a compact group possessing a split spherical
BN-pair, and let ∆ be the associated building. We first establish Theorem 2 when
G acts continuously on ∆. In that case, 2-transitive actions (which are closely
related to strongly transitive actions) of G on subspaces X of ∆ are easily seen
to be possible only for finite X. The second step is then to show that the action
of G on ∆ has to be continuous. This uses the fact that buildings arising from
split spherical BN-pairs are Moufang (see Proposition 3.3 below).

3.2. Continuous actions on buildings. Recall that a topological space X is
said to satisfy the T1 separation axiom when all its singletons are closed. The
following is probably well-known.

Lemma 3.1. Let G be a compact group. If G admits a continuous 2-transitive
action on a T1 topological space X, then X is finite.

Proof. Define Y := {(x, y) ∈ X × X | x 6= y} ⊂ X × X, and fix x, y ∈ X

with x 6= y. Since the orbit map αx : G → X : g 7→ g · x is continuous, so is
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αx×αy : G → X×X : g 7→ (g·x, g·y). By 2-transitivity, we get Y = (αx×αy)(G),
and so Y is compact.

Note also that the mapping f : X×X → X×X : (a, b) 7→ (x, b) is continuous.
Setting Z := X \ {x}, we then get Z × {x} = f−1({(x, x)}) ∩ Y , so that Z × {x}
is closed in Y , and hence compact. It follows that Z is compact, being the image
of Z × {x} by the projection on the first factor X ×X → X, which is of course
continuous.

In particular, Z is closed, and hence {x} is open. It follows that X is discrete,
and therefore finite since X = αx(G) is compact. ¤

Let ∆ be a building of type (W,S), and denote by Ch∆ the set of its chambers.
Consider the chamber system Γ of ∆, which is the labelled graph with vertex set
Ch∆ and with an edge labelled by s ∈ S for each pair of s-adjacent chambers
of ∆ (see [8, Ch.I Appendix D]). Let J ⊂ S. A J-gallery in Γ between two
chambers x and y of ∆ is a sequence (x = x0, x1, . . . , xl = y) of chambers of ∆
such that for each i ∈ {1, . . . , l}, there exists an s ∈ J such that xi−1 is s-adjacent
to xi. The natural number l is called the length of the gallery. A minimal
gallery is a gallery of minimal length. The distance in ∆ between two chambers
x, y ∈ Ch∆ is the length of a minimal gallery joining x to y. The diameter of Γ
is the supremum (in N ∪ {∞}) of the distances between its vertices.

Let J ⊂ S. The J-residue R = RJ(x) of some chamber x ∈ Ch∆ is the set of
chambers of ∆ which are connected to x by a J-gallery. When J has cardinality
1, we call R a panel.

In this paper, we will say that a group G acts continuously on ∆ if the
stabilizers of the residues of ∆ are closed in G. Note that we can of course
restrict our attention to the maximal proper residues, the others being obtained
as intersections of those.

Lemma 3.2. Let G be a compact group acting continuously and strongly transi-
tively by type-preserving automorphisms on a spherical thick building ∆. Then ∆
is finite.

Proof. The stabilizer H in G of a panel P of ∆ is a closed and thus compact
subgroup of G.



550 Pierre-Emmanuel Caprace and Timothée Marquis

Claim 1: H acts 2-transitively on Ch(P ).

Indeed, let C be a chamber of P and let B := StabG(C) ⊂ H. We first show that
B, and thus also H, is transitive on the set C = P \ {C}. Let C1, C2 ∈ C and let
Σ1 (respectively, Σ2) be an apartment containing C and C1 (respectively, C and
C2). By strong transitivity, B is transitive on the set of apartments containing C,
and so there exists a b ∈ B such that bΣ1 = Σ2. Hence bC1 = C2. It now remains
to show that H is transitive on P . But if C1, C2 ∈ P , then since ∆ is thick, we
may choose a chamber C in P different from C1, C2. The stabilizer B′ of C in G

is then contained in H and is transitive on P \ {C} by the previous argument.

Now, identifying ∆ with ∆(G,B), so that H = B ∪BsB for some generator s

of the corresponding Weyl group, we get a 2-transitive, continuous action by left
translation of the compact group H on the topological space H/B. Moreover, this
space is T1 since B is closed in G by hypothesis. Lemma 3.1 then implies that P

is finite. In other words, as P was arbitrary, the building ∆ is locally finite, that
is, every panel is finite. The following observation now allows us to conclude:

Claim 2: Every locally finite spherical building is finite.

Indeed, let Γ = Ch ∆ be the graph whose vertices are the chambers of ∆, and
such that two chambers of ∆ are adjacent if they share a common panel. Since
∆ is locally finite, so is Γ. Hence, fixing a vertex x ∈ Γ, each ball in Γ centered
at x with radius n (n ∈ N) possesses a finite number of vertices. Moreover, as ∆
is spherical, the diameter of ∆ is finite ([8, Ch.IV, 3]), and hence the diameter of
Γ is also finite. Thus Γ is contained in such a ball, and is therefore finite. ¤

3.3. Moufang buildings. Let ∆ = ∆(G,B) be the building associated to a split
spherical BN-pair (B = T nU,N) of type (W,S). It is well-known (see the main
result of [11]) that the existence of a splitting for the above BN-pair is equivalent
to the fact that the building ∆ enjoys the Moufang property, as defined in [20,
Chapter 11].

Two chambers x, y ∈ Ch∆ are called opposite if they are at maximal distance
in the chamber system of ∆. Similarly, one can define opposite residues (see for
instance [2, 5.7]). The set of chambers (respectively, residues) of ∆ which are
opposite to a given chamber C (respectively, residue R) will be denoted by Cop

(respectively, Rop).
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Proposition 3.3. Let P = BWJB be a proper standard parabolic subgroup of
∆ = ∆(G,B) for some proper subset J of S, let C be the fundamental chamber
(i.e. the unique chamber fixed by B) and let R be the unique J-residue containing
C. Define the subgroup V :=

⋂
p∈P pUp−1 of G. Then V acts simply transitively

on Rop.

Proof. Let Σ be an apartment containing C. By [20, 9.11], there exists a minimal
galery γR′ , one for each residue R′ ∈ Rop, beginning at C and ending at a chamber
C ′ in R′ such that the type of γR′ is independent of the choice of R′ and C =
projR C ′. Let R′ ∈ Rop be the unique residue of Σ opposite R and let C ′ be the
last chamber of γR′ . Let also α be a root of Σ containing C but not C ′. By [20,
8.21], R ∩ Σ ⊂ α. By [20, 9.7], therefore, R is fixed pointwise by the root group
Uα. Since P maps R to itself, we have C ∈ R ⊂ αp and hence p−1Uαp ⊂ U

for all p ∈ P by the definition of root subgroups (see [20, 11.1]) and the fact
that the ‘radical’ U does not depend on the choice of the apartment Σ (see [20,
Proposition 11.11(iii)]). Thus Uα ⊂ V . Now, as in [2, 7.67], one shows that the
subgroup of V generated by all Uα’s of the latter form acts transitively on the set
{γR′′ | R′′ ∈ Rop}, and hence also on Rop.

Suppose h ∈ V maps R′ ∈ Rop to itself. Then h acts trivially on R. Since the
restriction of projR′ to R is a bijection from R to R′ (by [20, 9.11] again), it follows
that h acts trivially on R′. By [20, 9.8], therefore, h fixes two opposite chambers
of Σ and hence h fixes Σ. By [20, 9.7] again, we conclude that h = 1. ¤

In particular, we have the following (compare [8, Ch.IV, 5]).

Lemma 3.4. Let C be the fundamental chamber of ∆. Then U acts simply tran-
sitively on Cop. Equivalently, U acts simply transitively on the set of apartments
containing C.

Lemma 3.5. Let P = BWJB be a proper standard parabolic subgroup of ∆ =
∆(G,B) for some proper subset J of S, let C be the fundamental chamber and let
R be the unique J-residue containing C. Then there exist two chambers in Cop

which are opposite to one another. In particular, |Rop| ≥ 2.

Proof. The first assertion holds by [2, Proposition 4.104] and the second follows
since no proper residue contains two opposite chambers. ¤
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We are now ready to complete the proof of Theorem 2.

Theorem 3.6. Let G be a compact topological group possessing a spherical split
BN-pair (B = T n U,N). Then the associated building is finite.

Proof. Let ∆ = ∆(G,B) be the building associated to (B,N), and let (W,S) be
the corresponding Coxeter system.

We start with some basic observations in the case (W,S) is not irreducible.
Suppose thus that S decomposes as S = S1 q S2 with s1s2 = s2s1 for all s1 ∈ S1

and s2 ∈ S2. Then W splits as a direct product W ∼= W1×W2, where Wi = 〈Si〉,
and the building ∆ decomposes canonically as a product ∆ = ∆1×∆2 of buildings
of type (W1, S1) and (W2, S2) respectively (see [20, Proposition 7.33]).

In particular, we obtain induced actions of G on both ∆1 and ∆2, which are
obviously strongly transitive. The corresponding BN-pairs for G may be described
as follows. Since each s ∈ S can be written as a coset nT ∈ N/T = W , we may
choose, for i = 1, 2, a set N i of representatives in N for the elements of Si. For
each i = 1, 2, consider now the subgroup Ni of N generated by N i and T , and
set Bi := 〈B ∪ N3−i〉 = BN3−iB ≤ G. Then (Bi, Ni) is a spherical BN-pair for
G, and the associated building is nothing but ∆i = ∆(G,Bi).

We claim that the BN-pair (Bi, Ni) is split. This follows readily from the afore-
mentioned equivalence between splittings of BN-pairs and the Moufang property
for the associated buildings. More precisely, consider the group Ui =

⋂
g∈Bi

gUg−1

which is the kernel of the U -action on ∆3−i. Then Ui acts sharply transitively
on the chambers of ∆i which are opposite the standard chamber C, which by
definition is the unique chamber fixed by Bi. Therefore we have Bi

∼= Ti n Ui,
where Ti =

⋂
w∈Wi

wBiw
−1, and Ui induces a splitting of the BN-pair (Bi, Ni) as

claimed.

This shows that the given split BN-pair for G yields various split BN-pairs for G

corresponding to the various irreducible components of ∆. Since Ch∆ is naturally
in one-to-one correspondence with the Cartesian product Ch∆1× · · · ×Ch∆n of
the chamber sets of the various irreducible components of ∆, the desired finiteness
result readily follows provided we establish it for each irreducible BN-pair (Bi, Ni)
as above. In other words, there is no loss of generality in assuming that the
building ∆ is irreducible. We adopt henceforth this additional assumption.
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Let now P denote the set of maximal proper standard parabolic subgroups of
G. Pick any P ∈ P. Thus P is of the form P = BWJB for some maximal subset
J ( S, where WJ = 〈J〉. In particular, P is a maximal subgroup of G (see [2,
Lemma 6.43(1)]). Define the normal subgroup

V :=
⋂

p∈P

pUp−1 E P

of P . As V is contained in U , it is also nilpotent. Moreover, V acts faithfully on
∆. Indeed, the kernel ker(G y ∆) of the action of G on ∆ is obviously contained
in the stabilizer of the chambers of the fundamental apartment Σ, that is, in⋂

w∈W wBw−1 = T , and so

V ∩ ker(G y ∆) ⊆ U ∩ T = {1}.

Now, since V is normal in P , we have P ⊆ NG(V ). Moreover, as the conju-
gation automorphism κg : G → G : x 7→ gxg−1 is continuous, we get NG(V ) ⊇
NG(V ) and so NG(V ) ⊇ P . Hence, by maximality of P , we obtain that either
NG(V ) = P or NG(V ) = G.

Claim: NG(V ) = P for all P ∈ P.

Assume for a contradiction that NG(V ) = G for some P ∈ P. In other words,
V / G. In particular, the center Z (V ) ⊆ V of V is also a normal subgroup of
G. Moreover, V is nontrivial since, by Proposition 3.3, it acts transitively on Rop

and since |Rop| ≥ 2 by Lemma 3.5. As V is nilpotent, this implies that Z (V ) is
also nontrivial.

Now, using again the continuity of the conjugation automorphism κh (for h ∈
G), we see that Z (V ) = ZG(V ) ∩ V is contained in Z (V ) = ZG(V ) ∩ V .
Moreover, as V acts faithfully on ∆, so does Z (V ). This implies in particular
that Z (V ), and thus also Z (V ), act nontrivially on ∆.

Tits’ transitivity Lemma (see [8, Lemma 6.61]) then guarantees that the group
Z (V ) is transitive on the chambers of ∆. In fact, this action is even simply
transitive. Indeed, the stabilizers in Z (V ) of the chambers of ∆ are all conjugate
by transitivity. They are thus all equal since Z (V ) is Abelian, and are therefore
contained in the kernel ker(G y ∆) of the action of G on ∆. Since Z (V ) ⊆ Z (V ),
this implies that the action of Z (V ) on Ch∆ is free. But since Z (V ) ⊆ V ⊆
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U ⊆ B, and as B stabilizes the fundamental chamber, it follows that Z (V ) acts
trivially on ∆. This contradiction establishes the Claim.

Since the normalizer of a closed subgroup is closed, we deduce from the Claim
that every P ∈ P is closed. But this means that G acts continuously on ∆, and
so Lemma 3.2 ensures that ∆ is finite, as desired. ¤

4. Proof of Theorem 4

Let k be a perfect field and let K = k be its algebraic closure. In what follows,
we identify an algebraic k-group G with its group of K-rational points.

The main tool for the proof of Theorem 4 is the following result due to Borel
and Tits (see [3]).

Proposition 4.1. Let G be a reductive algebraic k-group and let U be a unipotent
k-subgroup of G. If k is perfect, then there exists a parabolic k-subgroup P of G

whose unipotent radical Ru(P ) contains U .

In particular, if G is anisotropic over k, then U must be trivial.

Proof of Theorem 4. Suppose for a contradiction that the split spherical BN-pair
(B,N) for the reductive k-group G is such that B has infinite index in G(k).
Let ∆ = ∆(G(k), B) be the associated building, and let W be the corresponding
(finite) Weyl group. Also, denote by B the Zariski closure of B in G.

The Bruhat decomposition for G yields G =
∐

w∈W BwB. Since G(k) is Zariski
dense in G by [4, 18.3], we have

G = G(k) =
∐

w∈W

BwB ⊆
∐

w∈W

BwB.

As G is connected, it cannot be written as a finite union of closed subsets in a
nontrivial way. Therefore, we deduce that BwB is dense in G for some w ∈ W .
In particular, so is BwB.

Let now A := (B)0 be the identity component of B. Since A has finite index
in B, it follows that BwB is a finite union of double cosets modulo A. As before,
this implies that some double coset of the form AzA is dense in G.

Claim: B 6= G.
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Indeed, let U be the nilpotent normal subgroup of B arising from the splitting
of the BN-pair, and suppose for a contradiction that B is dense in G. Then the
Zariski closure U of U in G is a nilpotent normal subgroup of B = G ([4, 2.1]).
Its identity component U

0 is thus contained in the radical of G, which coincides
with the connected center Z (G)0 ([4, 11.21]). Hence, since U

0 has finite index in
U , we get

[U : U ∩Z (G)] ≤ [U : U ∩ U
0] = [UU

0 : U
0] ≤ [U : U

0] < ∞.

Now, if u ∈ U∩Z (G), then u acts trivially on ∆ since for any chamber gB, we have
ugB = guB = gB. As U acts simply transitively on Cop by Lemma 3.4, where
C = 1GB is the fundamental chamber of ∆, this implies that u = 1: otherwise, ∆
would contain only one apartment, so that [G(k) : B] < ∞, a contradiction. So
U ∩Z (G) = {1} and therefore U is finite. Using again the sharp transitivity of
U on Cop, we deduce that ∆ is the reunion of finitely many apartments, hence is
finite, contradicting once more our initial hypothesis. The claim stands proven.

In particular A is a proper closed connected subgroup of G such that AzA

is dense in G for some z ∈ G. The main result of [9] now implies that A is
not reductive, i.e. the unipotent radical Ru(A) is nontrivial. Moreover, since
B is contained in G(k) and is dense in B, we know that B is defined on k ([4,
AG.14.4]). Hence, A is also k-defined ([4, 1.2]), and so is Ru(A) since k is perfect
([18, 12.1.7(d)]). Thus Ru(A) is a nontrivial unipotent k-subgroup of G. As
remarked after Proposition 4.1 above, this contradicts the assumption that G is
anisotropic over k. ¤
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