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Abstract: Let F be a non-Archimedean local field, let n > 1 be an
integer and G = GLn(F ). Let G′ be an inner form of G, so that G′ is
isomorphic to GLm(D), for a central F -division algebra of dimension
d2, md = n. Using the structure theory of Sécherre and Stevens, we
define a concept of parametric degree for irreducible cuspidal represen-
tations of G′. We show that the image, under the Jacquet-Langlands
correspondence, of the set of equivalence classes of irreducible cuspi-
dal representations of G is the set of equivalence classes of irreducible
cuspidal representations of G′ of parametric degree n. In earlier pa-
pers, we defined a notion of essential tameness for irreducible cuspidal
representations of G. We generalize this to representations of G′, and
show that it is preserved by the Jacquet-Langlands correspondence.
As in the earlier papers, the irreducible, essentially tame, cuspidal
representations of G admit an explicit parametrization in terms of ad-

missible pairs, which can be explicitly related to the local Langlands
correspondence. Here, we generalize this construction to the case of
irreducible, essentially tame, cuspidal representations of G′ of para-
metric degree n. We determine completely the behaviour of the two
parametrizations relative to the Jacquet-Langlands correspondence.
As a consequence, we prove a conjecture of Bushnell and Fröhlich of
1983.
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470 C.J. BUSHNELL AND G. HENNIART

Let F be a non-Archimedean local field with finite residue field of characteristic
p. In a series of papers [11], [12], [14], we gave an explicit description of the
local Langlands correspondence in the essentially tame case. In this paper, we
give a parallel description of the Jacquet-Langlands correspondence. The results
illuminate those of the earlier papers. They finally answer the most interesting
of the questions left open in [6].

We emphasize that, in this paper, the characteristic of F is arbitrary. The
technical issues which forced us to restrict, in [14] in particular, to the charac-
teristic zero case do not intervene here. The parts of [14] to which we appeal in
this paper are valid in all characteristics.

1. Let n > 1 be an integer and let G be an inner form of GLn(F ). Thus there is
a central F -division algebra D, of dimension d2, d > 1, such that G ∼= GLm(D),
md = n. Let A¤

m(D) denote the set of equivalence classes of irreducible smooth
representations of G which are essentially square-integrable, modulo the centre
F× of G. Thus, in particular, A¤

n(F ) denotes the set of equivalence classes
of irreducible smooth representations of GLn(F ) which are essentially square-
integrable modulo centre.

The Jacquet-Langlands correspondence gives a canonical bijection

(1.1) j : A¤
n(F ) ≈−−−→ A¤

m(D),

specified by a character relation on elliptic regular elements.
The idea of the correspondence, and the basic method for proving it, both

originate with Jacquet, Langlands [27] which treats the case n = 2 when F has
characteristic zero. For the general case with F of characteristic zero, see Deligne,
Kazhdan, Vignéras [21], also Rogawski [37]. The positive characteristic case is
treated by Badulescu [2], with a supplement in [16] required for this paper.

2. The set A¤
m(D) contains the set A0

m(D) of equivalence classes of irreducible
cuspidal representations of GLm(D). An early step in this paper identifies the
image of A0

n(F ) in A¤
m(D) under the map (1.1).

This relies on a notion of parametric degree for representations π ∈ A¤
m(D),

generalizing the cases of A¤
n(F ), A¤

1 (D) treated in [9]. The definition in [9]
uses the classification theory for cuspidal representations of GLn(F ) in [17] and
the analogous results of Broussous [4] or Zink [43] for GL1(D). The necessary
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elements of the classification are now available for GLm(D) in the paper [41] of
Sécherre and Stevens, the culmination of Sécherre’s programme [38], [39], [40].

For π ∈ A¤
m(D), the parametric degree δ(π) is a positive integer dividing n. If

δ(π) = n, then π is cuspidal. The converse holds for GLn(F ) but not in general.
Just as in [9], the parametric degree is determined by the normalized formal
degree. Since the Jacquet-Langlands correspondence preserves the normalized
formal degree [21], [37], [16], it must also preserve the parametric degree. Thus

(2.1) j
(
A0

n(F )
)

= {π ∈ A¤
m(D) : δ(π) = n} ⊂ A0

m(D).

For π ∈ A¤
m(D), let t(π) denote the number of unramified characters χ of F×

such that χπ ∼= π. (Here we use the customary notation: χπ is the representation
g 7→ χ(Nrd g)π(g), where Nrd denotes the reduced norm map GLm(D) → F×.)
The integer t(π) divides δ(π). One says that π is essentially tame if p does not
divide δ(π)/t(π). In particular, if p does not divide n, every π ∈ A¤

m(D) is
essentially tame.

We denote by Aet
m(D) the set of classes of representations π ∈ A¤

m(D) which
have δ(π) = n and are essentially tame. This generalizes the definition of Aet

n (F )
in [11].

Because it preserves both the parametric degree and the t-invariant, the
Jacquet-Langlands correspondence (1.1) induces a canonical bijection

(2.2) j : Aet
n (F ) ≈−−−→ Aet

m(D).

The aim of the paper is to make this map explicit, in a manner parallel to that
of [11], [12], [14].

3. Such an aim, of course, requires an explicit description of both sets Aet
n (F ),

Aet
m(D). For the first of them, we have the “näıve correspondence” of [11]. This

is a canonical bijection

(3.1)
Pn(F ) −→ Aet

n (F ),

(E/F, ξ) 7−→ F Πξ,

where Pn(F ) is the set of F -isomorphism classes of admissible pairs (E/F, ξ)
of degree n (the definition is recalled in 4.1 below). The map (3.1) generalizes
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the constructions of Howe’s early paper [26]. Our first task is to produce an
analogous bijection

(3.2)
Pn(F ) −→ Aet

m(D),

(E/F, ξ) 7−→ DΠξ.

4. Here, and indeed throughout the paper, we rely on [38–41]. These papers
contain all the necessary elements of a complete theory of types [19] for the
groups GLm(D), directly generalizing [17] and [4]. In particular, the cuspidal
representations of GLm(D) are explicitly presented as induced representations.
The description extends in essence to all of A¤

m(D). However, the theory exhibits
some novel technical difficulties, as compared with the “split” case of GLn(F ),
and it has not yet reached the same level of completeness. Consequently, we
cannot simply follow [11] to construct the bijection (3.2): our approach must be
more indirect.

We start in §§3,4 by attaching to π ∈ Aet
m(D) an admissible pair, using the

classification in [41]. The process involves many choices, and there is no guaran-
tee, at first, that it has any intrinsic meaning. (However, in the case of GL1(D)
with p not dividing dimF D, it is easy to see that it gives the bijection of [20],
[28], on which [6] is based.)

Let π ∈ Aet
m(D) be totally ramified, in the sense that t(π) = 1. An admis-

sible pair (E/F, ξ) attached to π then has E/F totally ramified. Some simple
calculations show that (E/F, ξ) can be recovered from the values of the charac-
ter function trπ of π at certain elliptic regular elements. The pair is therefore
uniquely determined by π, up to F -isomorphism. Further calculation shows that
π is matched, via the Jacquet-Langlands correspondence (2.2), with the repre-
sentation F Πνξ ∈ Aet

n (F ), where ν is an unramified quadratic character of F×

depending only on the integers m, d. This step is to be found in §5, the formula
for ν being given in 5.3.

5. The core of the paper is §6. We take a general representation π ∈ Aet
m(D),

with an attached admissible pair (E/F, ξ) (possibly one of many). We calculate
the character value trπ(ζu) at suitable elements ζu near a root of unity ζ ∈
E, that generates the maximal unramified sub-extension K/F of E/F . The
outcome is an expression for trπ(ζu) in terms of (E/F, ξ) and character values
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tr ρ(u), for various essentially tame, totally ramified, cuspidal representations ρ

of the G-centralizer of K. We know, from §5, how such representations relate to
representations of split groups and to admissible pairs. We are able to deduce
that the process, of attaching an admissible pair to π ∈ Aet

m(D), yields the inverse
of a canonical bijection (3.2). This is the Parametrization Theorem of 6.1.

We further show that, if (E/F, ξ) ∈ Pn(F ), then DΠξ is of the form j(F Πνξ),
for a canonically determined, tame, quadratic character ν of E×: this is the First
Comparison Theorem 6.1.

We calculate the character Dνξ = νξ in terms of the “symplectic signs” ubiq-
uitous in [14]. We interpret these signs in terms of m, D and (E/F, ξ) to give an
explicit formula for the restriction Dνξ | UE : see 6.9 Corollary and (6.7.4).

It remains only to calculate the value of the tamely ramified character Dνξ at
one prime element of E. This is the subject of the Second Comparison Theorem
of 7.1. We leave the answer in terms of symplectic signs: a calculation along the
lines of the proof of 8.4 Theorem of [14] is necessary to reduce it to numerical
form.

Together, the two Comparison Theorems show:

Theorem A. Let D be a central F -division algebra of dimension d2, d > 1, let
m > 1 be an integer and set n = md. If (E/F, ξ) is an admissible pair with
[E:F ] = n, there is a canonically determined, tamely ramified character ν = Dνξ

such that (E/F, νξ) is admissible, ν2 = 1, and

DΠξ = j(F Πνξ),

where j : Aet
n (F ) → Aet

m(D) is the Jacquet-Langlands correspondence.

The determination of Dνξ in the theorems of 6.1, 7.1 implies immediately:

Theorem B. For i = 1, 2, let (E/F, ξi) be an admissible pair with [E:F ] = n.
If ξ−1

1 ξ2 is tamely ramified, then Dνξ1 = Dνξ2 .

A closer examination of the form of the character Dνξ, which we omit here,
yields:

Theorem C. For i = 1, 2, let Di be a central F -division algebra and suppose
that dimF D1 = dimF D2 = d2, d > 1. If (E/F, ξ) is an admissible pair with
[E:F ] divisible by d, then D1νξ = D2νξ.
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6. We put these results in the context of the Langlands correspondence: since
we now appeal to essential features of [14], we have to assume that F has charac-
teristic zero. Let WF denote the Weil group of F , and let G0

n(F ) denote the set
of equivalence classes of irreducible smooth representations of WF of dimension
n. If (E/F, ξ) is an admissible pair with [E:F ] = n, we may view ξ as a character
of WE via class field theory and form the induced representation

F Σξ = IndWF

WE
ξ

of WF . This representation is irreducible, and we so obtain a bijection

(E/F, ξ) 7−→ F Σξ

of Pn(F ) with the subset Get
n (F ) of classes of representations σ ∈ G0

n(F ) which
are essentially tame, in an obvious sense [11]. The Langlands correspondence
then induces a canonical bijection

F L : Get
n (F ) −→ Aet

n (F ).

This is of the form F Σξ 7→ F Πµξ, for a canonically determined, tamely ramified
character µ = F µξ of E×.

Composing with the Jacquet-Langlands correspondence

j : Aet
n (F ) −→ Aet

m(D),

we obtain the Langlands correspondence

DL : Get
n (F ) −→ Aet

m(D).

This is bijective. Combining the results of this paper with those of [12], [14], we
get:

Theorem D.

(1) Let (E/F, ξ) be an admissible pair in which [E:F ] = n. There is a canon-
ically determined, tamely ramified character λ = Dλξ of E× such that

DL : F Σξ 7−→ DΠλξ.



JACQUET-LANGLANDS CORRESPONDENCE 475

Indeed, Dλξ = F µξ · Dνξ.
(2) If (E/F, ξi), i = 1, 2, are admissible pairs such that ξ−1

1 ξ2 is tamely
ramified, then

Dλξ1 = Dλξ2 .

(3) The character λ = Dλξ satisfies λ4 = 1 and λ2 | UE = 1.

This result was conjectured, for the case m = 1, in [6]. However, the values
for λ proposed there (and in [34]) are no closer to reality than those proposed by
Moy [33] for the character F µξ: see the discussion in [12] 2.2.

7. A number of discrete technical issues, of possibly wider interest, arise in
the course of the paper. The first of these, already mentioned, is the relation
between the (algebraic) parametric degree and the (analytic) formal degree. This
is general in nature, independent of any consideration of characteristic and of our
underlying tameness hypotheses. We have therefore given it separate treatment
in Appendix 1.

At a critical point in the character calculations of §7, we have to evaluate
the character of a “wide extension” (aka “β-extension”) of the Heisenberg rep-
resentation containing a simple character. The same problem arose at the corre-
sponding point of [14], where we returned to the original definition in [17]. The
extra complexity of the general case in [39] makes that a daunting prospect here.
We have substituted a general argument, based on the interaction between the
Glauberman correspondence and intertwining of representations. This simplifies
a parallel result of Stevens (the Principal Lemma 2.4 of [42]), so we have included
a proof in Appendix 2.

Notation

Throughout, F denotes a non-Archimedean local field. The discrete valuation
ring in F is denoted oF , and the maximal ideal of oF is pF . We write kF =
oF /pF , q = qF = |kF |, and we let p denote the characteristic of kF . We set
UF = U0

F = o×F , and Uk
F = 1+pk

F , k > 1. We write υF for the canonical
(surjective) valuation map F× → Z. We denote by µF the group of roots of
unity in F of order relatively prime to p.
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We use the obvious analogues of these conventions for a finite field extension
E/F . Additionally, we denote by NE/F and TrE/F the relative norm and trace
maps E → F respectively.

If D is a central F -division algebra of finite dimension, then oD is the discrete
valuation ring in D and pD is the unique maximal ideal of oD. We denote by kD

the field oD/pD: this is finite, with qD = qd
F elements, where d2 = dimF D. We

set UD = o×D and Uk
D = 1+pk

D, k > 1.

If A is a finite-dimensional, central simple F -algebra, then NrdA : A× → F×

is the reduced norm map.

Most notation concerning the internal structure of representations is intro-
duced as it arises, but is kept closely parallel to the standard usage of [17].

1. Classical character relations

We fix an integer n > 1. We are concerned with locally profinite groups of the
form G = GLm(D), where D is a central F -division algebra of finite dimension
d2, d > 1, and n = md. We set A = Mm(D), so that G = A×.

To reach the effective starting point of the paper, we have to gather threads
from several sources and weave them together. In this section, we concentrate on
ideas from harmonic analysis, some elementary, some deriving ultimately from
the trace formula. The main point is to recall the Jacquet-Langlands correspon-
dence and its main properties. In characteristic zero, we can largely rely on
the original sources [21], [37]. In positive characteristic, the situation is more
involved. The principal result is given in [2], relying on [1], [29], [30]. A crucial
point for us comes from the recent [16].

One proof has been deferred to the end of the next section, as it will be easier
to treat with the machinery of hereditary orders to hand.

1.1. We recall some basic results from the Appendix to [8]. Those pages were
written for the split case G = GLn(F ), but no attention was paid to the charac-
teristic of F . The proofs apply unchanged to the present situation.

Let g ∈ G and denote by fA
g (t) ∈ F [t] the reduced characteristic polynomial

of g. For us, g is regular if fA
g (t) has no repeated root in an algebraic closure of

F . It is elliptic regular if it is regular and fA
g (t) is irreducible over F . We denote

by Greg, Gell
reg the sets of regular or elliptic regular elements of G respectively.
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Remark. In [8], we introduced the notion of a quasi-regular element of G: an
element g ∈ G is quasi-regular if fA

g (t) has no repeated irreducible factor over F .
An element is elliptic quasi-regular if it is quasi-regular and fA

g (t) is irreducible
over F . Everything we do applies equally, on replacing “regular” by “quasi-
regular” and “elliptic regular” by “elliptic quasi-regular”.

We fix a Haar measure µG on G and use it to define the structure of a con-
volution algebra on the space H(G) of locally constant, compactly supported
functions G → C. If (π, V ) is an irreducible smooth representation of G, we
extend π to an algebra homomorphism π : H(G) → EndC(V ) in the standard
way [13] §4. Since (π, V ) is admissible, each operator π(ϕ), ϕ ∈ H(G), has
finite-dimensional range and so its trace trπ(ϕ) is defined. As in [8] A.11, we
have:

Proposition. There is a locally constant function trπ : Greg → C such that

trπ(ϕ) =
∫

G

trπ(g) ϕ(g) dµG(g),

for all ϕ ∈ H(G) with support contained in Greg.

One refers to the function trπ as the character of π.

1.2. We need more detail in one particular case. We take an irreducible cuspidal
representation π of G and assume it is given as an induced representation

π ∼= c-IndG
J Λ,

where J is an open subgroup of G, compact modulo the centre F× of G, and Λ

is an irreducible smooth representation of J . In particular, dimΛ is finite. If K

is a compact open subgroup of G, A.14 of [8] gives the expression

(1.2.1) trπ(g) =
∑

x∈K\G/J

∑

y∈KxJ/J

trΛ(y−1gy), g ∈ Greg.

Here, we regard tr Λ as a function on G, vanishing outside of J . If we confine g

to a fixed compact subset C of Greg, only finitely many of the inner terms
∑

y∈KxJ/J

trΛ(y−1gy)

can be non-zero loc. cit.
This uniform convergence property of (1.2.1) is stronger than we need for the

purely algebraic manipulations in this paper. The following non-uniform version
is easier to use here.
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Lemma. Let g ∈ Gell
reg. There exist only finitely many cosets xJ ∈ G/J such

that x−1gx ∈ J . In particular, only finitely many terms trΛ(x−1gx), x ∈ G/J ,
are non-zero.

Proof. The F -subalgebra F [g] of A is a field, and any two F -embeddings of
F [g] in A are G-conjugate, by the Skolem-Noether Theorem. It follows that
the G-conjugacy class C(g) = {x−1gx : x ∈ G} of g is the set of zeros of the
polynomial function h 7→ fA

g (h), h ∈ G. That is, C(g) is closed in G and hence
locally compact. Consider the intersection J ∩ C(g). The reduced norm map
NrdA is constant on C(g). On the other hand, J has a unique maximal compact
subgroup J = {x ∈ J : ‖NrdA x‖ = 1} and J/J is cyclic. It follows that J∩C(g)
is compact.

The G-centralizer of g is the group F [g]×, and F [g]×/F× is compact. The set
S of x ∈ G for which x−1gx ∈ J satisfies JSF [g]× = S. The local compactness of
C(g) implies, via Arens’ Theorem [32] 2.13, that the canonical map G/F [g]× →
C(g) is a homeomorphism. Consequently, the image S/F [g]× of S in G/F [g]×

is homeomorphic to J ∩ C(g) and is compact. Hence S is compact modulo F×.
The quotient space J\S is therefore finite, as required. ¤

The lemma allows us to use the Mackey Formula (1.2.1) in the form

(1.2.2) trπ(g) =
∑

x∈G/J

trΛ(x−1gx), g ∈ Gell
reg,

without having to be concerned about convergence issues.

1.3. The group G acts on the set Gell
reg by conjugation. The map g 7→ fA

g (t)
induces a bijection between G\Gell

reg and the set of monic, irreducible, separable
polynomials over F of degree n (cf. 2.1 below).

The same applies if we replace A by another n2-dimensional, central simple
F -algebra A′ and set G′ = A′×. Thus we have a canonical bijection G\Gell

reg
∼=

G′\G′ellreg. We say that elements g ∈ Gell
reg, g′ ∈ G′ellreg are associate if their

conjugacy classes correspond under this bijection, that is, if fA′
g′ = fA

g .

If g ∈ Gell
reg, it is in practice safe to use the same notation g for an element of

G′ellreg which is associate to g.
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1.4. Let A = Mm(D) and G = A× = GLm(D). If π is a smooth representation
of G and χ is a character of F×, we denote by χπ the representation

χπ : g 7−→ χ(NrdA g) π(g), g ∈ G.

Let A¤
m(D) denote the set of equivalence classes of irreducible smooth repre-

sentations of G which are essentially square-integrable modulo the centre F× of
G.

Jacquet-Langlands Correspondence. Let D, D′ be central F -division alge-
bras of dimension d2, d′2 respectively. Let m, m′ be positive integers such that
md = m′d′ = n. Set G = GLm(D), G′ = GLm′(D′). There is a unique bijection

(1.4.1)
j : A¤

m(D) −→ A¤
m′(D′),

π 7−→ π′,

with the following property. If g ∈ Gell
reg and if g′ ∈ G′ellreg is associate to g, then

(−1)m trπ(g) = (−1)m′
trπ′(g′).

We refer to the map j as the Jacquet-Langlands correspondence between G

and G′.
We note some obvious properties, using the same notation.

(1.4.2) If π ∈ A¤
m(D) and π′ = jπ, then the central characters ωπ, ωπ′ of π, π′

are equal.

(1.4.3) If π ∈ A¤
m(D) and π′ = jπ, then j(χπ) = χπ′, for any character χ of

F×.

For an irreducible smooth representation π of (say) G, we let t(π) denote the
number of unramified characters χ of F× such that χπ ∼= π. From (1.4.3) we
deduce that:

(1.4.4) If π ∈ A¤
m(D) and π′ = jπ, then t(π) = t(π′).

We shall also need the following fact, which is bound up in the proof of the
existence and uniqueness of the Jacquet-Langlands correspondence in all cases.
We treat it as a consequence from which we shall derive stronger results of the
same kind.
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(1.4.5) Let π1, π2, . . . , πr be distinct elements of A¤
m(D), and set G = GLm(D).

The set of functions on Gell
reg, defined by

{trπi | Gell
reg : 1 6 i 6 r},

is linearly independent.

Proof. Let C be a central F -division algebra of dimension n2 = m2d2, and write
G′ = GL1(C). The set G′ellreg is dense in G′ and, for π ∈ A¤

1 (C), the function trπ

is locally constant on G′. The result is therefore elementary for G′ and holds in
general as a consequence of (1.4.1). ¤

1.5. Write G = GLm(D) and let (π, V ) ∈ A¤
m(D) be square-integrable modulo

centre. Let (π̌, V̌ ) be the contragredient of (π, V ) and let µ̇G be a Haar measure
on G/F×. For vi ∈ V and v̌i ∈ V̌ , we have the first Schur orthogonality relation

∫

G/F×
〈π̌(g)v̌1, v1〉 〈v̌2, π(g)v2〉 dµ̇G(g) = d(π, µ̇G)−1〈v̌1, v2〉 〈v̌2, v1〉,

where d(π, µ̇G) is a positive real constant called the formal degree of π relative
to µ̇G. (See, for instance, [13] 10a.2 for an exposition of this topic.)

Clearly, if χ is a character of F× which is unitary, in that |χ| = 1, then χπ

is square-integrable mod. centre and d(χπ, µ̇G) = d(π, µ̇G). For an arbitrary
π ∈ A¤

m(D), there is an unramified character χ of F× such that π0 = χπ is
square-integrable mod. centre. We define d(π, µ̇G) = d(π0, µ̇G).

We discuss ways in which the Haar measure µ̇G may be conveniently normal-
ized. In the case m = 1, the group D×/F× is compact, so one may choose µ̇D×

to give D×/F× mass 1. For this choice of Haar measure, every π ∈ A¤
1 (D) has

formal degree equal to dimπ.
In general, let π ∈ A¤

m(D). The cuspidal support of π then consists of un-
ramified twists of a cuspidal representation σ ∈ A¤

m′(D), for some divisor m′ of
m. In the case where m′ = 1 and σ is of dimension 1, the representation π is of
the form χ · StG, where χ is a unitary character of F× and StG is the Steinberg
representation of G. (We recall more of this matter in Appendix 1 below.)

There is a unique Haar measure µ̈G on G/F× such that

(1.5.1) d(StG, µ̈G) = 1.
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We set

(1.5.2) deg π = d(π, µ̈G), π ∈ A¤
m(D),

and call deg π the normalized formal degree of π.

The following result may be found in [21] when F has characteristic zero, in
[16] when F has characteristic p (but the scheme of proof in [16] applies equally
in characteristic zero).

Theorem.

(1) Let π ∈ A¤
m(D); there is an open neighbourhood N of 1 in G such that

trπ(g) = (−1)m−1 deg π, g ∈ N ∩Gell
reg.

(2) Using the notation of (1.4), we have

deg π = deg π′,

for every π ∈ A¤
m(D) and π′ = jπ ∈ A¤

m′(D′).

1.6. If G is any of the groups GLm(D), an element g ∈ G is called pro-unipotent
if gpr → 1 as r →∞. Let uGell

reg denote the set of pro-unipotent, elliptic regular
elements of G.

Let N be an open neighbourhood of 1 in G = GLm(D). We say that N is u-
small if N∩Gell

reg ⊂ uGell
reg. Such neighbourhoods exist. For example, the group of

elements x ∈ GLm(oD) such that x ≡ 1 (mod pD) is open in G and is a u-small
neighbourhood of 1.

Lemma. Let G = GLm(D), G′ = GLm′(D′), for central F -division algebras D,
D′ such that m2 dimD = m′2 dimD′. Let N be a u-small open neighbourhood of
1 in G. There exists a u-small open neighbourhood N′ of 1 in G′ such that every
element of N′ ∩ uG′ellreg is associate to an element of N.

Proof. See 2.9 below. ¤

We use the lemma to prove the following result, needed in 7.9 at the end of
the proof of the Second Comparison Theorem (7.1).
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Proposition. Let (uj)j>1 be a sequence of elements of uGell
reg such that uj → 1

as j →∞. There is a sequence of elements u′j ∈ uG′ellreg such that u′j is associate
to uj, for each j, and u′j → 1.

Proof. We have to show that, if N′ is an open neighbourhood of 1 in G′, then we
may choose u′j associate to uj such that u′j ∈ N′ for all but finitely many values
of j. We may assume that N′ is u-small. By the lemma, there is a u-small open
neighbourhood N of 1 in G such that every element of N ∩ uGell

reg is associate to
an element of N′. However, N contains uj for all but finitely many j. ¤

2. Types and cuspidal representations

We recall material of a more algebraic nature. We work with a central simple
F -algebra A of dimension n2, n > 1, and the group G = A×. We review
the structure theory for the irreducible cuspidal representations of the locally
profinite group G, as it is worked out in [38–41]. We give no detail at all, beyond
establishing the vocabulary and standardizing the notation.

This analysis leads to a notion of parametric degree generalizing that of [9].
We connect it with the normalized formal degree of 1.5, to reach the starting
point of the paper.

2.1. We recall standard facts concerning the algebra A. Most of this material
can be found in, for example, [35].

Let V be a simple left A-module. As such, V is uniquely determined up to
A-isomorphism. We define EndA(V ) so that V is a right EndA(V )-module. The
F -algebra D = EndA(V ) is a division algebra. The given action of A on V

induces an isomorphism A ∼= EndD(V ) of F -algebras1.

Let V have dimension m as D-vector space. The choice of a D-basis of V

induces an isomorphism A ∼= Mm(D). It follows that dimF D = d2, where
md = n, and dimF V = nd. The choice of a basis, and hence of an isomorphism
A ∼= Mm(D), enables us to view D as embedded in A as the algebra of “scalar
matrices” diag(x, x, . . . , x), x ∈ D. This embedding does, of course, vary with
the choice of basis.

1The authors of [38–41] prefer to have EndA(V ) acting on the left, so D here corresponds

to the opposite of D in those papers.
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We mention some basic facts concerning subfields of A. Let E ⊃ F be a
subfield of A. The degree [E:F ] thus divides n. Conversely, any field extension
E/F , of degree dividing n, is isomorphic to an F -subalgebra of A. Any two
F -embeddings E → A are G-conjugate.

(2.1.1) Let E/F be a subfield of A, of degree r, and let B denote the A-centralizer
of E.

(1) The algebra B is a central simple E-algebra of E-dimension n2/r2.
(2) There is an E-isomorphism B ∼= Ml(C), where C is a central E-division

algebra of dimension c2, such that c = d/gcd(d, r) and lc = n/r.

The assertion concerning the value of c follows from [35] Theorem 31.9 (or see
[44]).

2.2. We make summary remarks (see [35] or [7]) concerning the class of heredi-
tary oF -orders in A.

We view V as a right D-vector space. An oD-lattice in V is a finitely generated
oD-submodule of V which spans V over D (or F ).

Let L be an oD-lattice chain in V . Thus L is a non-empty set of right oD-
lattices in V , linearly ordered by inclusion and stable under translation by D×.
It admits an enumeration L = {Li : i ∈ Z}, with the following properties.

(2.2.1)

(1) Li ! Li+1, i ∈ Z, and
(2) there exists an integer e > 1 such that Li+e = LipD, i ∈ Z.

The integer e = eD(L) is the D-period of L.

For j ∈ Z, put

Aj(L) = {x ∈ A : xLi ⊂ Li+j , i ∈ Z}.

The set A = A0(L) is a ring, and an oF -order in A. It is indeed a hereditary
oF -order, in the sense of [35]. All such orders arise, in this way, from lattice
chains in V .

The set P = A1(L) is the Jacobson radical of A (we use the notation P =
radA) and Aj(L) = Pj (with a suitable interpretation in the case j < 0).
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The lattice chain L is the set of all A-lattices in V . We use the alternative
notation e(A|oD) = eD(L). We will also use the notation e(A|oF ) for F -period
of L, defined by pF A = Pe(A|oF ). As pF oD = pd

D, we have e(A|oF ) = e(A|oD)d.

We set UA = U0
A = A× and U j

A = 1+Pj , j > 1. These groups U j
A, j > 0, are

compact open subgroups of G. We shall also need the group

KA = {g ∈ G : gAg−1 = A}.

This is an open subgroup of G, compact modulo the centre F× of G. It normalizes
all of the groups Uk

A, k > 0. Writing A = A0(L) as above, we can also view KA

as the group of g ∈ G for which gL = L.

The group KA comes with a canonical homomorphism υA : KA → Z defined
by the equivalent conditions gA = Ag = PυA(g) or gLi = Li+υA(g), for g ∈ KA

and i ∈ Z. The homomorphism υA : KA → Z is surjective if and only if there
exists x ∈ KA such that P = xA = Ax. Hereditary orders with this property are
called principal orders [7].

Remark. Since we give no proofs in this area, we have no need of the notion
of a “lattice sequence” in V , or the associated non-standard filtration of UA,
which plays such an important rôle in [38–41]. Indeed, we only ever deal with
the standard filtration (U j

A) of UA, and the hereditary order A will almost always
be principal.

2.3. We combine the considerations of the preceding two paragraphs. Let A be
a hereditary oF -order in A and E/F a subfield of A. We say that A is E-pure if
E× ⊂ KA.

We recall [41] 1.7:

(2.3.1) Let E/F be a subfield of A and let B denote the A-centralizer of E.

(1) Let A be an E-pure hereditary oF -order in A. The set B = A ∩ B is a
hereditary oE-order in B and Q = P ∩B is the Jacobson radical of B.

(2) Let B be a hereditary oE-order in B and put Q = radB. There is a
unique pair (ρ,A), consisting of an integer ρ > 1 and an E-pure hered-
itary oF -order in A, such that Pk ∩ B = Qk′ , k ∈ Z, where P = radA

and k′ is the least integer > k/ρ. Moreover, KB = KA ∩B.
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If A is any E-pure hereditary order in A, it has become common to refer to
B = A ∩ B as the “trace” of A, and to A as a “continuation” of B to A. If
we start from B, we refer to the order A, given by (2.3.1)(2), as the canonical
continuation of B to A.

A special case is worthy of overt mention: see [5] for details.

(2.3.2) Suppose, in the situation of (2.3.1)(2), that the oE-order B is maximal.
The canonical continuation A of B is then the unique E-pure hereditary oF -order
in A intersecting B in B. The order A is, moreover, maximal among E-pure
hereditary orders in A.

In the situation of (2.3.2), the orders B, A, are both principal.

2.4. We examine the irreducible cuspidal representations of G, starting with an
extreme case. Let A be a maximal oF -order in A. The order A is therefore given
by an oD-lattice chain of the form L = {Lpi

D : i ∈ Z}, for a fixed oD-lattice L in
V . Any two maximal orders in A are G-conjugate.

We may identify A with Mm(D) via a basis of V , as in 2.1, chosen to be an
oD-basis of L. The order A then becomes identified with Mm(oD). Taking the
case A = Mm(oD) and viewing D as the algebra of scalar matrices in A (as in
2.1), we get

radA = pDA = ApD = Mm(pD),

KA = D×UA.

We conclude that UA/U1
A
∼= GLm(kD). If $D is a prime element of D, viewed

as an element of KA, then $D acts (by conjugation) on this group. The action
is that of a generator of Gal(kD/kF ) acting on matrix coefficients.

Definition 1. A maximal simple type of level zero in G is a pair (U, λ), where

(1) U = UA, for a maximal oF -order A in A, and
(2) λ is an irreducible representation of UA, trivial on U1

A and inflated from
an irreducible cuspidal representation of the finite group UA/U1

A
∼= GLm(kD).

Let (U, λ), U = UA, be a maximal simple type of level zero in G. The following
lemma is a straightforward instance of the more general considerations of [24].
However, it can equally be proved by a direct calculation, essentially identical to
that in the split case G = GLn(F ).
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Lemma.

(1) Let τ be an irreducible representation of U = UA, trivial on U1
A. If τ

intertwines with λ in G, there exists x ∈ KA such that τx ∼= λ.
(2) Let J(λ) denote the set of elements of G which intertwine the repre-

sentation λ, let wλ be the number of distinct KA-conjugates of λ. The
set J(λ) is then the unique subgroup of KA of index wλ and containing
F×UA. The group J(λ) normalizes the pair (U, λ).

The integer wλ may also be described as follows. The representation λ is
inflated from an irreducible cuspidal representation λ̃ of GLm(kD), via an iso-
morphism UA/U1

A
∼= GLm(kD). The number of distinct conjugates of λ̃, under

the natural action of Gal(kD/kF ), is then wλ.

The group KA/F×UA is cyclic of order d, so wλ divides d. In this situation,
we define the parametric degree δ0(λ) of λ by

(2.4.1) δ0(λ) = mwλ.

Remark 1. In practice, it is usually more convenient to think of λ̃ as being
given, via the Green parametrization, by a character χ of l×, where l/kD is a field
extension of degree m contained in Mm(kD). Since λ̃ is cuspidal, the character χ

is l/kD-regular, in that its conjugates χσ, σ ∈ Gal(l/kD) are distinct. Moreover,

(2.4.2) tr λ̃(x) = (−1)m−1
∑

σ∈Gal(l/kD)

χσ(x),

for every l/kD-regular element x of l×. The number of distinct conjugates of
χ under Gal(l/kF ) is then δ0(λ) = mwλ. (For the Green parametrization, see
[25] or [31], although the authors find the character tables in [34] particularly
convenient. The summary in [14] §2 will be adequate for the purposes of this
paper.)

We note the following straightforward consequence of the lemma.

Proposition. Let (U, λ) be a maximal simple type in G of level zero.

(1) The representation λ admits extension to a representation Λ of the group
J(λ).
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(2) The representation Λ is uniquely determined up to twisting with a char-
acter of the form χA = χ ◦ NrdA, where χ is an unramified character of
F×.

(3) Let χ be an unramified character of F×. The representations Λ and
χA ⊗ Λ intertwine in G if and only if they are equivalent. Moreover,
Λ ∼= χA ⊗ Λ if and only if χδ0(λ) = 1.

(4) The representation
πΛ = c-IndG

J(λ)Λ

of G is irreducible and cuspidal.

Representations (J(λ), Λ), of this form, constitute the class of extended max-
imal simple types of level zero in G.

Let π be an irreducible cuspidal representation of G. One says that π has level
zero if it admits a non-zero vector fixed by U1

A, for some maximal oF -order A in
A. The main result in this area is:

Theorem. Let π be an irreducible cuspidal representation of G, of level zero.

(1) The representation π contains a maximal simple type (U, λ) of level zero.
(2) There exists an extended maximal simple type (J(λ), Λ) such that Λ |

U ∼= λ and π ∼= πΛ.
(3) The representation π determines both (U, λ) and (J(λ), Λ) uniquely, up

to G-conjugacy.
(4) The number t(π) of unramified characters χ of F× satisfying χπ ∼= π is

given by t(π) = δ0(λ).

The proof is comparatively straightforward, mimicking the corresponding re-
sult in the split case. It can again be regarded as a simple instance of [24].

Definition 2. Let π be an irreducible cuspidal representation of G ∼= GLm(D),
of level zero. The parametric degree δ(π) of π is δ0(λ), where (U, λ) is a maximal
simple type contained in π.

Part (4) of the theorem implies that the definition of δ(π) is independent of
the choice of type λ.

Remark 2. In the split case G = GLn(F ), an irreducible cuspidal representation
of G (of level zero) always satisfies δ(π) = n. This, however, fails for general
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groups GLm(D). If π is an irreducible cuspidal representation of GLm(D) of
level zero, then m divides δ(π) and δ(π) divides n, but δ(π) is subject to some
further combinatorial constraints. For, let l/kD be a field extension of degree m

as above, and write Γ = Gal(l/kF ), ∆ = Gal(l/kD). Let χ be a character of
l×, and let Φ be the subgroup of Γ which fixes χ. The character χ gives rise
to a maximal simple type if and only if Φ ∩ ∆ is trivial. In other words, if we
fix a positive integer δ, divisible by m and dividing n, there exists an irreducible
cuspidal representation π of G, of level zero and with δ(π) = δ, if and only if n/δ

is relatively prime to m.

2.5. We proceed to the general case. We follow [38–40] and, particularly, the
summary in [41]. We abbreviate the treatment as much as possible, while keeping
the terminology and notation strictly parallel to those of [17].

Let E/F be a finite field extension, and let β ∈ E×. We assume throughout
that υE(β) < 0 and that E = F [β]. Let A be a central simple F -algebra as
before and let ι : E → A be an F -embedding. Let A be an ιE-pure hereditary
oF -order in A. The period eA = e(A|oF ) = de(A|oD) is divisible by e(E|F ) and
υA(ιβ) = eAυE(β)/e(E|F ). Any quadruple [A, `A, r, ιβ], with `A = −υA(ιβ) and
r < `A, is then a pure stratum in A.

Attached to the pure stratum [A, `A, r, ιβ] is the critical exponent k0(ιβ, A) ∈
Z ∪ {−∞}. By definition, [A, `A, r, ιβ] is simple if −k0(ιβ, A) > r. The critical
exponent satisfies

e(E|F ) k0(ιβ, A) = eA k0(β, A(E)),

where A(E) is the unique E-pure hereditary oF -order in the algebra EndF (E).
We henceforward assume that [A, `A, 0, ιβ] is a simple stratum. We identify

E with its image in A and suppress the notation ι. The stratum gives rise to a
pair

H(β, A) ⊂ J(β, A) ⊂ A

of oF -orders in A. We take the standard filtration subgroups of unit groups

Hk(β, A) = H(β, A) ∩ Uk
A = H(β, A)× ∩ Uk

A,

Jk(β, A) = J(β, A) ∩ Uk
A = J(β, A)× ∩ Uk

A,

for k ∈ Z, k > 0.
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We choose, once for all, a character ψF of F which is “of level one”. That
is to say, pF ⊂ KerψF but ψF | oF 6= 1. We use ψF to construct the finite set
C(A, β, ψF ) of so-called simple characters of the group H1(β, A).

Comment. The definitions in [38] of the orders H, J, and the simple charac-
ter set C are necessarily indirect. However, as pointed out in [38] Propositions
3.42 and 3.45, one may see ex post facto that the obvious generalization of the
approach of [17], via simple approximations to pure strata, applies without sig-
nificant change. When we need to enter into more detail, this is the method we
shall adopt. We therefore say no more at this stage concerning the constructions
in [38].

We summarize some of the main points.

(2.5.1) Let B denote the A-centralizer of E, let B = A ∩ B, and let θ ∈
C(A, β, ψF ). Abbreviate Jk = Jk(β, A), and so on.

(1) We have J0 = UBJ1 and UB ∩ J1 = U1
B.

(2) There exists a unique irreducible representation ηθ of J1 such that ηθ | H1

contains θ.
(3) For g ∈ G, the following are equivalent:

(a) g intertwines θ;
(b) g intertwines ηθ;
(c) g ∈ J1B×J1.

(4) If g ∈ J1B×J1, the coset J1gJ1 supports a one-dimensional space of
intertwining operators for the representation ηθ.

We need to delineate more carefully a phenomenon underlying parts of (2.5.1).
The quotient

(2.5.2) V(β, A) = J1(β, A)/H1(β, A) = J1/H1

is a vector space over kE and hence an elementary abelian p-group. It has a
sequence of subspaces

Vk(β, A) = Jk/Hk, k > 1.

For x, y ∈ Jk(β, A), the commutator [x, y] = xyx−1y−1 lies in H2k, and we
consider the pairing hθ : (x, y) 7→ θ[x, y]. The values of this pairing are p-th
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roots of unity, and hθ defines an alternating bilinear form

(2.5.3) hθ : Vk(β, A)×Vk(β, A) −→ Fp, k > 1,

over Fp. We then have [38] Théorème 3.52:

(2.5.4) The alternating form (2.5.3) is nondegenerate, for every k > 1. As
alternating space, V(β, A) is the orthogonal sum of nondegenerate alternating
spaces isometric to Vk(β, A)/Vk+1(β, A) = Jk/Jk+1Hk, k > 1.

For the next step, we need a simplified version of the main result of [39]. As
before, [A, `, 0, β] is a simple stratum in A and θ ∈ C(A, β, ψF ). Again, B is the
A-centralizer of E = F [β] and B = A ∩B.

(2.5.5) There exists an irreducible representation κ of J = J0(β, A) such that

(1) κ | J1 ∼= ηθ, and
(2) κ is intertwined by every element of B×.

These conditions determine κ uniquely, up to tensoring with a character of
UB/U1

B = J/J1 of the form χ ◦ NrdB, where χ is a character of UE trivial
on U1

E.

We call κ a wide extension2 of ηθ. Since dimκ has p-power dimension, two
wide extensions κi of ηθ are equivalent if and only if the p-regular parts of the
characters det κi are the same.

2.6. We use a special case of the foregoing to make a fundamental definition.

Definition. A maximal simple type of positive level in G is a pair (J, λ) con-
structed as follows.

(1) There is a simple stratum [A, `, 0, β] in A, such that J = J0(β, A), satisfy-
ing the following condition: if B is the A-centralizer of the field E = F [β]
and B = A ∩B, then B is a maximal oE-order in B.

(2) There is a simple character θ ∈ C(A, β, ψF ) and a maximal simple type
(UB, σB) of level zero in B× such that λ is a representation of J of the
form

λ = σ ⊗ κ,

2This term is intended to replace the arcane expression “β-extension” surviving from [17].
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where

(a) κ is a wide extension of ηθ, and

(b) σ is the representation of J , trivial on J1, deduced from σB via the
isomorphism UB/U1

B
∼= J/J1.

Using the same notation, we note a particular property given by [40] Propo-
sition 4.3.

(2.6.1) Let g ∈ G. The following conditions are equivalent:

(1) g intertwines λ;
(2) g normalizes J and λg ∼= λ;
(3) g ∈ JB(σB)J1, where JB(σB) is the normalizer of the simple type (UB, σB)

in B×.

We write J(λ) = JB(σB)J1.

We define the parametric degree δ0(λ) of the maximal simple type (J, λ) by

δ0(λ) = δ0(σB) [E:F ].

One may show directly that δ0(λ) does indeed depend only on the isomorphism
class of the pair (J, λ), and not on the simple stratum and simple character
we chose to describe it. There is no need to enter into the detail, since it is a
consequence of 2.7 Proposition below.

When speaking of a maximal simple type in G, we mean either a maximal
simple type of level zero or a maximal simple type of positive level.

We now extend the definition as before. We recall that, if χ is a character of
F×, then χA denotes the character χ ◦NrdA of G.

(2.6.2) Let (J, λ) be a maximal simple type in G, as in the Definition.

(1) The representation λ admits extension to a representation Λ of J(λ).
(2) The set of such extensions consists of the representations χA ⊗ Λ, where

χ ranges over the unramified characters of F×.
(3) The representation χA⊗Λ intertwines with Λ if and only if it is equivalent

to Λ. The group of unramified characters χ satisfying χA ⊗ Λ ∼= Λ has
order δ0(σB)f(E|F ).
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(4) The representation of G defined by

πΛ = c-IndG
J(λ)Λ

is irreducible and cuspidal. Moreover,
(a) if χ is an unramified character of F×, then πχA⊗Λ

∼= χπΛ, and
(b) t(πΛ) = δ0(σB)f(E|F ).

A pair of the form (J(λ), Λ), obtained from a maximal simple type (J, λ) as in
(2.6.2), is called an extended maximal simple type of positive level in G. We can
now complete the picture with the following, which is the main result of [41].

Theorem. Let π be an irreducible cuspidal representation of G, not of level zero.
There is a maximal simple type (J, λ) in G, of positive level, such that π contains
λ. Consequently, there exists an extended maximal simple type (J , Λ) in G such
that π ∼= c-IndG

J Λ.

2.7. Let π be an irreducible cuspidal representation of G = A× ∼= GLm(D).
Attached to π we have the numerical invariant t(π) (as in 1.4). Comparing
central characters, we see that t(π) divides n. The representation π contains a
maximal simple type (J, λ), the parametric degree δ0(λ) of which also divides n,
and t(π) divides δ0(λ).

Proposition. Let π be an irreducible cuspidal representation of G ∼= GLm(D).
If (Ji, λi), i = 1, 2, are maximal simple types occurring in π, then δ0(λ1) =
δ0(λ2).

Proof. We need an auxiliary result. To state it, we need another notation. If
a, b are positive rational numbers, we write a ≡ b (mod pZ) to mean that ab−1

is a power (positive or negative) of p. We choose a Haar measure µ̇ on G/F×,
with the property that µ̇(PF×/F×) is an integral power of p, for any open pro-p
subgroup P of G.

Lemma. Let (J, λ) be a maximal simple type in G. If it has positive level and
is based on a simple stratum [A, `, 0, β] (as in 2.6 Definition,), set E = F [β]. If
it has level zero, set E = F .

If τ is an irreducible representation of G containing λ, then τ is cuspidal and

(2.7.1) d(τ, µ̇) ≡ t(τ)
n

q − 1
qn/e(E|F ) − 1

(mod pZ).
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Proof. If τ is an irreducible representation of G containing λ, then

τ ∼= c-IndG
J(λ)Θ,

for an irreducible representation Θ of J(λ) extending λ. Indeed, (J(λ),Θ) is
an extended maximal simple type. Theorem A.14 of [8] shows that the formal
degree d(τ, µ̇) of π is given by

d(τ, µ̇) =
dimΘ

µ̇(J(λ))
=

dimλ

µ̇(J(λ))
.

(As remarked in §1, the proof of this result in [8] applies unchanged to our present
situation.) We evaluate this expression to sufficient accuracy.

Suppose, for the moment, that we are in the positive level case and use the
notation of the definition in 2.6. We have dim Θ = dimλ = dim σB · dimκ,
and dimκ is a power of p. If B ∼= Ml(C), where C is a central E-division
algebra such that dimE C = c2, then σB is the inflation of an irreducible cuspidal
representation of GLl(kC). Therefore

dimσB ≡ |GLl(kC)|
ql
C − 1

(mod pZ),

where qC = |kC |. The group J(λ) contains F×J , J = J0(β, A), with index
e(E|F )lc/δ0(σB). Thus

µ̇(J(λ)/F×) =
e(E|F )lc
δ0(σB)

µ̇(J/UF )

=
n

f(E|F )δ0(σB)
µ̇(J/UF )

=
n

t(τ)
µ̇(J/UF ).

The measure factor satisfies µ̇(J/UF ) ≡ |GLl(kC)|/(q−1) (mod pZ), giving

d(τ, µ̇) ≡ t(τ)
n

q − 1
ql
C − 1

(mod pZ),

while qC = qc
E , so

ql
C = qlc

E = q
n/[E:F ]
E = qn/e(E|F ).
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Thus the lemma is proved when (J, λ) has positive level. When (J, λ) has level
zero, one uses the same argument with E = F and GLl(kC) = GLm(kD). ¤

We return to the statement of the proposition. If π contains the two maximal
simple types (Ji, λi), (2.7.1) implies (in the obvious notation) that e(E1|F ) =
e(E2|F ). However, t(π) = f(Ei|F )δ0(σBi), and δ0(λi) = [Ei:F ]δ0(σBi), whence
the result follows. ¤

We may now make a formal definition.

Definition. Let π be an irreducible cuspidal representation of G ∼= GLm(D).
The parametric degree δ(π) of π is δ(π) = δ0(λ), for any maximal simple type
(J, λ) contained in π.

We have already remarked, at the beginning of the paragraph:

(2.7.3) Let π be an irreducible cuspidal representation of G. The integer δ(π)
divides n and is divisible by t(π).

2.8. We now state a result connecting the preceding material with that of §1.
The proof, however, requires a distinctive family of ideas, so we have given it
separate treatment in Appendix 1.

Let G = GLm(D) as before, with dimD = d2 and n = md. Take π ∈ A¤
m(D).

If π is cuspidal, its parametric degree δ(π) has just been defined in 2.7. Otherwise,
there is a positive divisor r of m and an irreducible cuspidal representation σ of
GLr(D) such that the cuspidal support of π consists of unramified twists of σ

(1.5). We set

(2.8.1) δ(π) = δ(σ).

In this situation, we also have the relation

(2.8.2) t(π) = t(σ).

Theorem. Let π ∈ A¤
m(D). The normalized formal degree deg π satisfies

deg π ≡ t(π) (qn − 1)/(qt(π)n/δ(π) − 1) (mod pZ).

Proof. See Appendix 1 below. ¤
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Corollary 1. Let j : A¤
n(F ) → A¤

m(D) denote the Jacquet-Langlands corre-
spondence. If π ∈ A¤

n(F ), then δ(jπ) = δ(π).

Proof. Write τ = jπ. We have t(τ) = t(π) (1.4.4) and deg π = deg jπ (1.5
Theorem). Consequently,

(qt(π)n/δ(π) − 1) ≡ (qt(π)n/δ(τ) − 1) (mod pZ),

whence the assertion follows. ¤

Let π ∈ A¤
m(D). The integer t(π) divides δ(π) (2.7.3). We say that π is

essentially tame if p does not divide δ(π)/t(π).

Lemma. Let π ∈ A¤
m(D) be cuspidal. The representation π is essentially tame

if and only if either

(a) π has level zero, or
(b) π has positive level and contains a maximal simple type based on a simple

stratum [A, `, 0, β] such that the field extension F [β]/F is tamely ramified.

A general element π ∈ A¤
m(D) is essentially tame if and only if some element of

its cuspidal support is essentially tame.

Proof. If π has level zero, then t(π) = δ(π) (2.4 Theorem), and so π is essentially
tame. If π has positive level, it contains a maximal simple type based on a simple
stratum [A, `, 0, β], and δ(π)/t(π) = e(F [β]|F ). The final assertion follows from
(2.8.1), (2.8.2). ¤

The proof of (b) shows that, if π is essentially tame, then F [γ]/F is tamely
ramified for any simple stratum [A′, `′, 0, γ] underlying a maximal simple type
occurring in π.

Notation. Let Aet
m(D) denote the set of π ∈ A¤

m(D) which are essentially tame
and satisfy δ(π) = n.

All elements of Aet
m(D) are cuspidal and, in particular, Aet

n (F ) is the set of
equivalence classes of irreducible, essentially tame, cuspidal representations of
GLn(F ). (This notation agrees with that of [11].) From Corollary 1 and (1.4.4),
we obtain:
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Corollary 2. The Jacquet-Langlands correspondence j : A¤
n(F ) → A¤

m(D) in-
duces a bijection Aet

n (F ) → Aet
m(D).

Corollary 2 provides the true starting point of the paper. It is our task to
render the map Aet

n (F ) → Aet
m(D) explicit.

2.9. We prove 1.6 Lemma. For the first step, let C be a central F -division
algebra of dimension n2 = m2d2, d2 = dim D, and suppose that G′ = GL1(C).
In the algebra A = Mm(D), we choose a maximal order M. Shrinking the given
neighbourhood N, we may assume that it takes the form Uk

M, for some integer
k > 1. Set N′ = Umk

C = 1+pmk
C , and let x ∈ N′ be elliptic regular. Let E = F [x],

let e′ = e(F [x]|F ) and let e be the least common multiple of e′ and d. Since d

divides e and e divides n, the order M contains a principal order A of F -period
e. There is an F -embedding φ : E → A such that A is φ(E)-pure. We write
x = 1+y and compare valuations:

υA(φy) = eυE(y)/e′ = eυC(y)/n > emk/n = ek/d.

However, U
ek/d
A ⊂ Uk

M, so x is associate to an element of N, as required.
We next treat the case where G = GL1(C) and G′ = GLm(D). We take N of

the form Umk
C , for some k > 1. We fix a maximal order M in Mm(D) as before,

and set N′ = Uk
M. If x = 1+y ∈ N′ is elliptic regular, we put E = F [x] and

define e′ = e(E|F ) in the same way. We have

υE(y) > e′υM(y)/d > e′k/d.

If we choose an F -embedding φ : E → C, we get

υC(φy) = nυE(y)/e′ > kn/d = mk.

It follows that x is associate to an element of N, as required.
The general case of the proposition now follows from a simple transitivity

argument. ¤

3. Tame ramification

Let A be a central simple F -algebra, exactly as in §2. We set out, in an explicit
form, some special properties of simple strata [A, `, r, β] in A for which the field
extension F [β]/F is tamely ramified.
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3.1. We start by recalling a fundamental property of tamely ramified simple
strata.

Let E/F be a finite, tamely ramified field extension, let β ∈ E× satisfy
E = F [β] and υE(β) < 0. Let A(E) denote the split central simple F -algebra
EndF (E) and let A(E) denote the unique E-pure hereditary oF -order in A(E).
Thus A(E) is associated to the lattice chain {pk

E : k ∈ Z} in the F -vector space
E. Write kF (β) = k0(β, A(E)). We recall that kF (β) 6 υE(β) if and only if β is
minimal over F .

Proposition. Suppose that kF (β) > υE(β). There exists a simple stratum
[A(E),−υE(β),−kF (β), γ], equivalent to [A(E),−υE(β),−kF (β), β] and with γ ∈
E.

Proof. See 8.5 Lemma of [14]. ¤

Let A be a central simple F -algebra of dimension n2. Suppose that E has been
embedded in A as an F -subalgebra. Let A be an E-pure hereditary oF -order in
A.

Corollary. Let ` = −υA(β) and r = −k0(β, A). The stratum [A, `, r, γ] is then
simple and equivalent to [A, `, r, β].

Proof. We have ` = −υE(β)e(A|oF )e(E|F )−1 and r = −k(β)e(A|oF )e(E|F )−1

(2.5). Applying these identities to γ, in place of β, the result follows. ¤

3.2. We take a simple stratum [A, `, 0, β] in A, such that E = F [β]/F is tamely
ramified. We define the orders H(β, A), J(β, A) and the simple character set
C(A, β, ψF ) following the recipes in Propositions 3.42, 3.45 of [38]: these are
strictly parallel to the treatment of the split case in [17]. It is convenient, in the
present general discussion to impose the following simplifying assumption.

Hypothesis. There is a subfield Ẽ ⊃ E of A such that A is Ẽ-pure, Ẽ/E is
unramified and [Ẽ:F ] = n.

The field Ẽ is its own centralizer in A and oẼ is the unique oẼ-order in
Ẽ. It follows from (2.3.2) that A is the unique Ẽ-pure hereditary order in A. In
particular, the hypothesis holds when the stratum [A, `, 0, β] underlies a maximal
simple type (as in 2.6 Definition). From the start of §4, we will always be in that
situation.
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Let K/F be a subfield of Ẽ: in particular, K/F is tamely ramified. We let
AK denote the A-centralizer of K and AK = A ∩ AK . Thus (2.3.2) AK is the
unique Ẽ-pure hereditary oK-order in AK . Let GK = A×K .

Proposition.

(1) The quadruple [AK , `, 0, β] is a simple stratum in AK and

H(β, AK) = H(β, A) ∩AK , J(β, AK) = J(β, A) ∩AK ,

H1(β, AK) = H1(β, A) ∩GK , J1(β, AK) = J1(β, A) ∩GK .

(2) Let ψK = ψF ◦ TrK/F and let θ ∈ C(A, β, ψF ). The restriction θK = θ |
H1(β, AK) then lies in C(AK , β, ψK).

Proof. Regarding the simplicity of [AK , `, 0, β]: this reduces to an assertion con-
cerning the relation between kF (β) and kK(β). In other words, we need only
consider the split case, where the result is given by [8] 2.4.

For the other assertions, we proceed by “induction along β” in the manner
familiar from [17]. Suppose first that β is minimal over F . Thus either β ∈ K

or β is minimal over K (cf. [8] 2.9). Let B denote the A-centralizer of β and set
B = A∩B. We have H(β, A) = B+P[`/2]+1, where P = radA. Define an integer
`′ by βAK = P−`′

K , where PK = radAK . We then have P[`/2]+1∩AK ⊃ P
[`′/2]+1
K

whence H(β, A) ∩AK ⊃ H(β, AK). Similarly for J and, in multiplicative terms,

H1(β, AK) ⊂ H1(β, A) ∩GK , J1(β, AK) ⊂ J1(β, A) ∩GK .

Take θ ∈ C(A, β, ψF ) and consider the character ϑ = θ | H1(β, A) ∩ GK . Cer-
tainly, ϑ is normalized by J1(β, A)∩GK . Using the explicit form for simple char-
acters, one sees that the restriction θK = ϑ | H1(β, AK) lies in C(AK , β, ψK). In
particular, θK is intertwined by the subgroup J1(β, A) ∩GK of U1

AK
and stable

under conjugation by J1(β, AK). It follows that J1(β, A) ∩ GK is contained in,
and hence equal to, J1(β, AK). The nondegeneracy property (2.5.4) implies that
the character θK cannot be extended to a J1(β, AK)-stable character of a sub-
group of J1(β, AK) containing H1(β, AK) strictly. All assertions follow in this
case.

For the general step of the induction, let r = −k0(β, A) < `, and choose γ ∈ E

so that [A, `, r, γ] is simple and equivalent to [A, `, 0, β]. Define the integer r′ by
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(β−γ)AK = P−r′
K . This gives H(β, A) = B+H[r/2]+1(γ, A), where B is the A-

centralizer of β. We have P[r/2]+1 ∩AK = P
[r′/2]+1
K , so by inductive hypothesis

we get H(β, A) ∩ AK ⊃ H(β, AK). Similarly for J. The argument concludes
exactly as before. ¤

We remark that some of the hypotheses can be weakened here, but we are not
currently concerned with achieving generality.

3.3. By the term 1-pair we mean a pair (E/F, ξ) in which E/F is a finite, tamely
ramified field extension and ξ is a character of U1

E . Two such pairs (Ei/F, ξi),
i = 1, 2, are said to be F -isomorphic if there is an F -isomorphism α : E1 → E2

such that ξ1 = ξ2 ◦ α.

The 1-pair (E/F, ξ) is called admissible if ξ does not factor through NE/K ,
for any field K satisfying F ⊂ K  E.

We return to the central simple algebra A as above, and the simple stratum
[A, `, 0, β] in A, with E = F [β]/F tamely ramified and satisfying 3.2 Hypothesis.
Let B denote the A-centralizer of β and set B = A∩B. Let θ ∈ C(A, β, ψF ). The
restriction of θ to H1(β, A) ∩ B = U1

B factors through NrdB , [38] Proposition
3.47. That is, there exists a unique character ξθ of U1

E = NrdB(U1
B) such that

θ | U1
B = ξθ ◦NrdB .

Proposition. The 1-pair (E/F, ξθ) is admissible: if r0 = −kF (β) then ξθ | Ur0
E

does not factor through NE/K when F ⊂ K  E.

Proof. We first recall [11] A.1 Lemma:

Lemma. Let E/F be a finite, tamely ramified field extension, and let ψ be a
character of U i

E, for some i > 1. There exists a unique sub-extension E′/F of
E/F , such that ψ factors through NE/E′ , and which is minimal for this property.

We return to the proposition. If E = F , there is nothing to say, so we assume
the contrary. We set `0 = −υE(β) and proceed by induction along β.

Assume first that β is minimal over F . In this case, r0 = `0. The character
ξθ has level `0, and ξθ(1+x) = ψF (TrE/F βx), x ∈ p`0

E . Therefore ξθ | U `0
E does

not factor through any non-trivial norm map over F .

In general, we choose a simple stratum [A(E), `0, r0, γ] equivalent to [A(E), `0,
r0, β], with γ ∈ E (3.1). The element β−γ ∈ E is then minimal over F [γ]. The
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character ξθ is of the form ξ1ξ2, for factors ξi as follows. First, ξ1 has level r

and ξ1(1+y) = ψF (TrE/F (β−γ)y), y ∈ pr0
E . As in the first step, ξ1 | Ur0

E does
not factor through NE/K if F [γ] ⊂ K  E. The other factor is of the form
ξ2 = ξ0 ◦NE/F [γ], for a character ξ0 of U1

F [γ]. By inductive hypothesis, ξ2 | Ur0+1
E

does not factor through NE/K if F ⊂ K  F [γ]. Consider the set of fields L,
with F ⊂ L ⊂ E, such that ξ2 | Ur0+1

E factors through NE/L. By the lemma,
this set has a unique minimal element, which is clearly F [γ]. We conclude that if
ξθ | Ur0

E factors through NE/K , then K ⊃ F [γ]. It follows that if ξθ | Ur0
E factors

through NE/K , then K = E, as required. ¤

Comment. Théorème 3.53 of [38] gives a bijection

C(A(E), β, ψF ) ∼= C(A, β, ψF )

that is canonical, for a fixed choice of β. Characters corresponding under this
bijection give rise to the same admissible 1-pair. In the split case, elements of
C(A(E), β, ψF ) give rise to isomorphic 1-pairs if and only if they are conjugate
in A(E)× = AutF (E). This level of precision is not presently available in the
general case.

4. Attached pairs

In this section, we give an approximate description of the elements of Aet
m(D),

in terms of admissible pairs. Initially, this process involves arbitrary choices
and has no particular invariance properties. The main results of later sections
will show that it provides a canonical parametrization of the representations in
Aet

m(D), generalizing that for Aet
n (F ) in [11].

4.1. We recall a standard definition, cf. [11], [26].

Definition. Let E/F be a finite, tamely ramified field extension and let ξ be a
character of E×. The pair (E/F, ξ) is admissible if

(1) ξ does not factor through NE/K , for any field K such that F ⊂ K  E,
and

(2) if ξ | U1
E does factor through NE/K , F ⊂ K ⊂ E, then E/K is unramified.

We define F -isomorphism of admissible pairs in the same way as for 1-pairs
(3.3). The degree of (E/F, ξ) is [E:F ].

From 3.3 Lemma, we have:
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Lemma. Let (E/F, ξ) be an admissible pair. There is a unique sub-extension
E0/F of E/F such that ξ | U1

E factors through NE/E0 , and which is minimal for
this property.

The extension E/E0 is, by definition, unramified. Putting the lemma another
way, there is a unique admissible 1-pair (E0/F, ξ0) with E0 ⊂ E and ξ | U1

E =
ξ0 ◦NE/E0 .

4.2. Let π ∈ Aet
m(D) have level zero. By 2.4 Theorem (1), π contains a repre-

sentation λ of GLm(oD), inflated from an irreducible cuspidal representation λ̃

of GLm(kD). The representation λ̃ is given, via the Green parametrization, by a
character ξ̃ of l×, where l/kD is a field extension of degree m (cf. (2.4.2)). Since
(by definition) δ(π) = n, the character ξ̃ is l/kF -regular.

Let E/F be unramified of degree n. We identify kE with l. We define a
tamely ramified character ξ of E× by deeming that ξ | UE shall be the inflation
of ξ̃ and that ξ | F× shall be the central character of π.

Proposition. The pair (E/F, ξ) is admissible. The process π 7→ (E/F, ξ) in-
duces a canonical bijection between the set of π ∈ Aet

m(D) of level zero and the
set of F -isomorphism classes of admissible pairs (E/F, ξ), of degree n, in which
ξ is tamely ramified.

Proof. The conjugates ξσ | UE , σ ∈ Gal(E/F ), are distinct, so (E/F, ξ) is ad-
missible. The second assertion restates 2.4 Theorem (3). ¤

4.3. Let π ∈ Aet
m(D) be of positive level. Thus π contains an extended maximal

simple type (J , Λ), as in 2.6 Theorem. The extended type (J , Λ) is based on
a simple stratum [A, `, 0, β] in A = Mm(D) such that the field extension E0 =
F [β]/F is tamely ramified (2.8 Lemma). The order A is a maximal among
E0-pure hereditary orders in A. We let B denote the A-centralizer of E0 and
B = A ∩ B. Thus B is a maximal oE0-order in B. As in the general discussion
of 2.5, there exists an unramified field extension E/E0 inside B, such that B is
E-pure and [E:F ] = n. In particular, 3.2 Hypothesis applies.

The restriction Λ | H1(β, A) is a multiple of some θ ∈ C(A, β, ψF ). There is a
unique character ξ0 of U1

E0
satisfying θ | U1

B = ξ0 ◦ NrdB [38] Proposition 3.47.
The 1-pair (E0/F, ξ0) is admissible (3.3 Proposition).



502 C.J. BUSHNELL AND G. HENNIART

For the next step of the construction, we need to temporarily fix a prime
element $F of F .

Lemma 1. There exists a unique character ξw of E× such that

(a) ξw | U1
E = ξ0 ◦NE/E0 ,

(b) ξw($F ) = 1, and
(c) ξpa

w = 1, for some integer a.

The proof is immediate. For the next step, let η be the unique irreducible
representation of J1 = J1(β, A) containing θ. Abbreviate also J = J(β, A).

Lemma 2. There exists a unique irreducible representation Λw of J such that

(a) Λw | J is a wide extension of η,
(b) $F ∈ KerΛw, and
(c) (det Λw)pb

= 1, for some integer b.

Proof. Conditions (a) and (c) determine Λw | J uniquely (cf. (2.5.5)), and are
certainly achievable. Taken together with (b), they determine the restriction of
Λ to F×J . The hypothesis δ(π) = n implies that the group J is E×J = E×

0 J ,
which contains F×J with index e(E0|F ). Since p does not divide e(E0|F ) and
dimΛw = dim η is a power of p, the lemma follows. ¤

As in the discussion of 2.6, we have a decomposition Λ = Λt ⊗ Λw, for a
uniquely determined representation Λt of J , trivial on J1. Writing JB = J ∩B,
we have J = JBJ1 and the pair (JB , Λt | JB) is an extended maximal simple
type in B× of level zero. Following 2.4 and 4.2, it gives rise to an admissible pair
(E/E0, ξt) in which ξt is tamely ramified. We define ξ = ξt · ξw.

Proposition. The pair (E/F, ξ) is admissible of degree n, and satisfies t(π) =
f(E|F ). The definition of ξ is independent of the choice of $F in its construc-
tion.

The proof is immediate. An admissible pair obtained from π, in this manner,
will be said to be attached to π.

Remark. Take E, E0 and ξw as above. Let (E/E0, ϑ) be an admissible pair
with ϑ tamely ramified. The pair (E/F, ϑξw) is then admissible and, following
through the constructions of 2.6, there exists a representation π′ ∈ Aet

m(D) to
which this admissible pair is attached.
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4.4. Let Pn(F ) denote the set of F -isomorphism classes of admissible pairs over
F , of degree n. In [11] 2.3, we produced a canonical bijection

(4.4.1)
Pn(F ) −→ Aet

n (F ),

(E/F, ξ) 7−→ F Πξ.

In this case, the construction of 4.3 is the inverse map F Πξ 7→ (E/F, ξ). In
the split case therefore, the construction is canonical, and yields a bijection
Aet

n (F ) → Pn(F ).

5. Totally ramified representations

In this section, we prove a special case of our main result. Throughout, D

denotes a central F -division algebra of dimension d2, d > 1, and A = Mm(D),
G = GLm(D), where md = n.

5.1. We establish the notation and hypotheses for the rest of the section. We
take π ∈ Aet

m(D) and assume it is totally ramified, that is, t(π) = 1. If we exclude
the trivial case n = 1, the representation π then cannot be of level zero (cf. 2.4
Theorem (4)).

We attach to π an admissible pair (E/F, ξ) as in 4.3, using an extended max-
imal simple type (J , Λ) in π, which contains a simple character θ ∈ C(A, β, ψF ),
for some simple stratum [A, `, 0, β] in A. In this case, the field F [β] is E. By
4.3 Proposition, the extension E/F is totally ramified of degree n (and Hypoth-
esis 3.2 is trivially verified). It follows that the hereditary order A is minimal,
and radA = $A, for any prime element $ of E. The group J is E×J1, where
J1 = J1(β, A). Therefore Λ | J1 is equivalent to the unique irreducible represen-
tation η of J1 which contains θ.

5.2. We need a property of the character of the representation Λ.

Lemma 1. There is a constant εA = ±1 such that

(5.2.1) trΛ(x) = εA ξ(x),

for every x ∈ E with υE(x) relatively prime to n.

Proof. This is a standard application of the Glauberman correspondence, strictly
parallel to the corresponding result 4.1 Lemma in [11]. ¤
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As recalled in 2.5, the space V = V(β, A) carries a nondegenerate alternating
form hθ. The group E× acts on V via its natural conjugation action on J1(β, A),
and this action fixes the form hθ (as follows from (2.5.1)(3)). The pair (V, hθ)
thus provides a symplectic representation over Fp of the cyclic group Ψ = ΨE/F =
E×/F×U1

E . The symplectic sign tΨ (V(β, A)) is thus defined, as in [14] 3.4.

Lemma 2. The sign εA of (5.2.1) is given by

(5.2.2) εA = tΨ (V(β, A)).

Proof. This is an instance of [6] (8.6.1). ¤

5.3. We state the main result of the section. Let jA : Aet
n (F ) → Aet

m(D) de-
note the bijection induced by the Jacquet-Langlands correspondence A¤

n(F ) →
A¤

m(D). We use the notation F Πξ, (E/F, ξ) ∈ Pn(F ), as in 4.4.

Theorem. Let π ∈ Aet
m(D) be totally ramified, and let (E/F, ξ) be an admissible

pair attached to π. If ν denotes the unramified character of E× given by

ν(x) = (−1)m(d−1) υE(x), x ∈ E×,

then

π = jA(F Πνξ).

Before proving the theorem, we note some consequences.

Corollary. Let π ∈ Aet
m(D) be totally ramified.

(1) Any two admissible pairs attached to π are F -isomorphic.
(2) The attachment process induces a canonical bijection between the set of

totally ramified elements of Aet
m(D) and the set of F -isomorphism classes

of admissible pairs (E/F, ξ) in which E/F is totally ramified of degree n.

Proof. The assertions are valid in the case π ∈ Aet
n (F ), by [11] 2.3 Theorem.

The general case follows from the theorem. ¤

5.4. We start the proof of the theorem. We use the Mackey formula (1.2.2) to
follow the corresponding passage of [11].
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Proposition 1.

(1) There exists g ∈ Gell
reg such that gcd (υF (NrdA g), n) = 1 and trπ(g) 6= 0.

(2) Let g ∈ Gell
reg satisfy gcd (υF (NrdA g), n) = 1. If trπ(g) 6= 0, then g is

G-conjugate to an element of E×.

Proof. Let Xn denote the group of unramified characters χ of F× satisfying
χn = 1. Since π is totally ramified, the representations χπ, χ ∈ Xn, are distinct,
whence the character functions trχπ : g 7→ χ(NrdA g) tr π(g) are linearly inde-
pendent on Gell

reg (1.4.5). The first assertion follows directly. The proof of the
second is identical to that of part (1) of 4.1 Proposition of [11]. ¤

Let Aut(E|F ) denote the group of F -automorphisms of the field E. Following
the proof of part (2) of 4.1 Proposition of [11], we get:

Proposition 2. If g ∈ E× satisfies gcd (υE(g), n) = 1 then

trπ(g) = εA

∑

α∈Aut(E|F )

ξα(g),

where εA = ±1 is given by (5.2.2).

5.5. Define τ ∈ Aet
n (F ) by the condition π = jA(τ). There exists an admissible

pair (K/F, ζ), uniquely determined up to F -isomorphism, such that τ = F Πζ

[11] 2.3. We have t(τ) = t(π) = 1 (1.4.4), so τ is totally ramified. It follows that
K/F is totally ramified of degree n.

Applying 5.4 Proposition 1 to τ , the character relation trπ = (−1)m(d−1)tr τ

implies that K is F -isomorphic to E. We henceforth take K = E.

We apply 5.4 Proposition 2 to the representations π, τ . If $ is a prime element
of E, we get

(5.5.1) εA

∑

α∈Aut(E|F )

ξα($au) = (−1)m(d−1) εM

∑

α∈Aut(E|F )

ζα($au),

for u ∈ UE , any integer a relatively prime to n, and a constant εM = ±1 obtained
as follows. The representation τ contains a simple character θM ∈ C(M, γ, ψF ),
for some simple stratum [M, `M , 0, γ] in M = Mn(F ), with F [γ] = E and θM |
U1

E = ζ | U1
E . The sign εM is then tΨ (V(γ, M)), in the notation of (5.2).
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We fix a and view the two sides of (5.5.1) as functions of u. Since E/F is totally
ramified and (E/F, ξ) is admissible, the characters ξα | UE , α ∈ Aut(E|F ), are
distinct and hence linearly independent as functions on UE . The same applies
with ζ in place of ξ. We deduce that, for some α ∈ Aut(E|F ), we have ξ |
UE = ζα | UE . Replacing (E/F, ζ) by the isomorphic pair (E/F, ζα) leaves τ

unchanged, so we can assume that ζ agrees with ξ on UE .

Comparing coefficients of ξ | UE in (5.5.1), we obtain

ζ($au) = (−1)m(d−1) εAεM ξ($au).

To complete the proof, it remains only to show that

(5.5.2) εA = εM .

5.6. We prove (5.5.2). As before, let A, M be the unique E-pure hereditary
orders in A = Mm(D), M = Mn(F ) respectively. Each of these has F -period n =
e(E|F ) and so is a minimal hereditary order. We have simple strata [A, l, 0, β],
[M, l, 0, γ] in A, M , with E = F [β] = F [γ]. The ε-invariants are given by

εA = tΨ (V(A, β)), εM = tΨ (V(M, γ)),

where Ψ = ΨE/F . This group is cyclic, generated by the image of $. The desired
relation (5.5.2) thus follows from:

Proposition. The symplectic FpΨ -modules V(A, β), V(M, γ) are isometric.

Proof. Indeed, it is enough to show that V(A, β), V(M, γ) are isomorphic as
FpΨ -modules [14] 3.3.

Let P = radA. If $ is a prime element of E, we have P = $A, so all
the quotients Pj/Pj+1, j ∈ Z, are Ψ -isomorphic to A/P. Similarly for M and
PM = radM.

Lemma. Each of the FpΨ -modules A/P, M/PM is isomorphic to the regular
representation kF Ψ .

Proof. In the case of M, the quotient M/PM is a sum of n copies of kF , permuted
cyclically by $, with $n acting trivially: it is therefore of the desired form.
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In the case of A, the quotient A/P is the direct sum of m copies of kD.
The element $ permutes these cyclically, and $m acts on each factor kD as a
generator of Gal(kD/kF ). By the Normal Basis Theorem, the kF Ψm-module kD

is free of rank one, so A/P is kF Ψ -free of rank one, as required. ¤

It is now convenient to choose the prime element $, as we may, so that
$n ∈ F . Thus, if E′ is a field, F ⊂ E′ ⊂ E, then E′ = F [$[E:E′]].

Let i > 0 be an integer, and let Ei/F be the least sub-extension of E/F such
that ξ | U i+1

E factors through NE/Ei
(cf. 3.3 Lemma). We recall that i > 1 is

a jump of ξ if Ei 6= Ei−1. Denote by WM the Ψ -module M/PM, and let W
(i)
M

denote the submodule of E×
i fixed points: these are the same as the $ni-fixed

points, ni = [E:Ei].
Exactly as in [14] 8.5 (see also (2.5.4) above), the semisimple Ψ -module V(M, β)

is the direct sum of the modules W
(j)
M /W

(j+1)
M , where 2j ranges over the even

jumps of ξ. The same observation applies with A, W = A/P in place of M, WM .
The proposition now follows from the lemma. ¤

This completes the proof of 5.3 Theorem. ¤

6. Comparison and parametrization

In this section, we extend the scope of 5.3 Corollary to obtain a canonical
parametrization of the representations π ∈ Aet

m(D) in terms of admissible pairs.
Simultaneously, we give the first step to describing the relation between this
parametrization and the Jacquet-Langlands correspondence.

6.1. Let π ∈ Aet
m(D) have attached simple pair (E/F, ξ). We use all the associ-

ated notations from the definition of (E/F, ξ) in §4. In particular, π contains an
extended maximal simple type (J , Λ). If π has positive level, (J , Λ) is based on a
simple stratum [A, `, 0, β] in A, satisfying Hypothesis 3.2. The representation Λ

contains a simple character θ ∈ C(A, β, ψF ). We set E0 = F [β] and let B denote
the A-centralizer of E0. We also set B = A ∩B, Q = P ∩B = radB.

We prove:

Parametrization Theorem.

(1) Let π ∈ Aet
m(D) have attached simple pair (E/F, ξ). If (E′/F, ξ′) is

another simple pair attached to π, then (E′/F, ξ′) is F -isomorphic to
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(E/F, ξ).
(2) Let (E/F, ξ) be an admissible pair of degree n. There exists a unique

element DΠξ ∈ Aet
m(D) with attached admissible pair F -isomorphic to

(E/F, ξ). The map

Pn(F ) −→ Aet
m(D),

(E/F, ξ) 7−→ DΠξ,

is a bijection.

Remark. For representations π of level zero and admissible pairs (E/F, ξ) with
ξ tamely ramified, the theorem reduces to 4.2 Proposition.

The simple stratum [A, `, 0, β] gives rise to the group V = V(β, A), which
furnishes a symplectic representation of the finite abelian group Ψ = E×/U1

EF×

over Fp. In particular, it gives a symplectic representation of the cyclic group
µE , so the fine symplectic signs tkµE

(V), k = 0, 1, are defined as in [14] §3. We
recall that t0µE

(V) = ±1 is a constant, while t1µE
(V) is a character of µE with

values in {±1}.
The symplectic representation of Ψ over Fp afforded by V(β, A) depends, up

to isometry, only on the algebra A and the restriction of ξ to U1
E . Indeed, as

in [14], it depends only on the sequence of “jump fields” Ei/F defined by this
character. We therefore use a notation parallel to that of [14],

(6.1.1) Aεk
(E/F,ξ)(µE) = tkµE

(V), k = 0, 1,

or, more commonly, the abbreviated version

(6.1.2) εk
A(µE) = Aεk

(E/F,ξ)(µE).

We remark that, in the case where π has level zero, the ε-invariants are all trivial.
We shall also prove:

First Comparison Theorem. Let (E/F, ξ) be an admissible pair of degree n.
There exists a unique tamely ramified character ν = Dνξ of E× with the following
properties.

(1) The restriction of ν to µE is the character

ε1A(µE) ε1M (µE) = Aε1(E/F,ξ)(µE) ·M ε1(E/F,ξ)(µE).
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(2) The pair (E/F, νξ) is admissible and

DΠξ = jA(F Πνξ),

where jA : Aet
n (F ) → Aet

m(D) is the Jacquet-Langlands correspondence.

The proofs of the two theorems are entwined, and occupy the rest of the
section.

6.2. We take π ∈ Aet
m(D) with attached simple pair (E/F, ξ), and use the nota-

tion of 6.1. Until declared otherwise (at the end of 6.8), we assume that π does
not have level zero or, equivalently, that ξ is not tamely ramified.

As in 2.1, the E0-algebra B takes the form B ∼= Ml(C), for an integer l and a
central E0-division algebra C of dimension c2, lc = n/[E0:F ].

Let K/F be the maximal unramified sub-extension of E/F . Set

Σ = Gal(K/F ), Σ0 = Gal(E/E0).

If K0 = K ∩ E0, restriction of operators identifies Σ0 with Gal(K/K0).
Let AK denote the A-centralizer of K, GK = A×K . Thus AK

∼= MmK
(DK), for

a central K-division algebra DK of K-dimension d2
K , say, and mKdK = n/[K:F ].

Set AK = A ∩ AK . Thus AK is a hereditary oK-order in AK . It is E-pure,
and is the unique E-pure hereditary order in AK (cf. 2.3). From 3.2 Proposition,
we have:

(6.2.1)

(1) The stratum [AK , `, 0, β] is simple.
(2) We have the relations

H1(β, AK) = H1(β, A) ∩GK , J1(β, AK) = J1(β, A) ∩GK .

(3) The restriction θ | H1(β, AK) = θK lies in C(AK , β, ψK), where ψK =
ψF ◦ TrK/F .

The discussion in 3.2 likewise gives the relation

(6.2.2) H1(β, A) ∩ E = U1
E , and θ | U1

E = ξ | U1
E .

The same holds with (AK , θK) replacing (A, θ).
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6.3. We fix a root of unity ζ ∈ µK = µE such that K = F [ζ]. We let u

range over the set u(GK)ellreg of pro-unipotent, elliptic regular elements of GK .
(Regularity and ellipticity are measured relative to the base field K in this set.)
The element h = ζu then lies in Gell

reg, so we may use (1.2.2) to evaluate the
character of π at h,

(6.3.1) trπ(h) =
∑

x∈G/J

trΛ(x−1hx).

A coset xJ can only contribute to the sum if x−1hx ∈ J or, equivalently, x−1hx ∈
J0.

Lemma. Let x ∈ G and suppose x−1hx ∈ J0. There then exists y ∈ NG(K×)
such that xJ = yJ . For any such y, we have y−1uy ∈ J1 (and hence y−1uy ∈
J1 ∩GK).

Proof. This is identical to the proof of 5.4 Lemma 1 in [14]: as noted there, the
argument applies to pro-unipotent, elliptic regular elements u of GK . ¤

The sum in (6.3.1) is therefore effectively taken over the space NG(K×)J/J ,
which we now describe more conveniently.

Let Σt denote the unique subgroup of Σ0 = Gal(E/E0) of index c. The
residue field kE is a maximal subfield of the algebra B/Q ∼= Ml(kC). The group
Σ is canonically identified with Gal(kE/kF ) via its actions on roots of unity.
The subgroups Σ0, Σt are then Gal(kE/kE0) and Gal(kE/kC) respectively.

For each σ ∈ Σ, we choose tσ ∈ NG(K×) with image σ under the canonical
isomorphism NG(K×)/GK

∼= Σ. Observe that the subgroup Σt of Σ is the image
of J ∩NG(K×) under this map.

Proposition. We have

NG(K×)J =
⋃

σ∈Σ/Σt

GKtσJ ,

the union being disjoint, and hence a bijection

GK\NG(K×)J/J −→ Σ/Σt,

GKtσJ 7−→ σΣt.
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Proof. The space NG(K×)J surely decomposes as the union of double cosets
GKtσJ , σ ∈ Σ. We have to show that, if σ, τ ∈ Σ, then GKtσJ = GKtτJ if and
only if σ−1τ ∈ Σt.

The elements tσ, tτ normalize GK , whence GKtσJ = GKtτJ if and only if
t−1
σ tτ ∈ GKJ . This, in turn, is equivalent to the automorphism α 7→ ασ−1τ being

realized as conjugation by an element of J . That is, σ−1τ ∈ Σt, as required. ¤

The formula (6.3.1) has become

(6.3.2) trπ(ζu) =
∑

α∈Σ/Σt

∑

y∈GK/JK

trΛ(y−1ζαuαy).

This expression is valid for any K/F -regular root of unity ζ ∈ µK and any
u ∈ u(GK)ellreg. Only finitely many of the terms trΛ(y−1ζαuαy) are non-zero (1.2
Lemma).

6.4. Let ηK be the unique irreducible representation of J1
K = J1(β, AK) which

contains θK . The field extension E = K[β]/K is totally ramified and maximal
in AK . It follows that the group JK = J(β, AK) = J ∩GK is UEJ1

K = µEJ1
K .

We take a prime element $F of F , and use it to define a factorization ξ = ξt ·ξw

of ξ, reversing the procedure of 4.3. Explicitly, ξw agrees with ξ on U1
E , it has

finite p-power order, and ξw($F ) = 1. The character ξt is ξ−1
w ξ.

Since E = E0K, the pair (E/K, ξw) is admissible and totally ramified. The
character ξt is tamely ramified, and the pair (E/E0, ξt) is admissible.

We extend ηK to a representation Kλw of JK = µEJ1
K by deeming that

Kλw | µE be trivial. The pair (JK , Kλw) is then a maximal simple type in
GK . The group J(Kλw) is JK = J ∩ GK = E×J1

K . We extend Kλw to a
representation KΛw of JK so that $F ∈ Ker KΛw and det KΛw has finite, p-
power order. Thus (JK , KΛw) is an extended maximal simple type in GK , with
the property µK ⊂ Ker KΛw. We define

ρw = c-IndGK

JK KΛw.

This is an irreducible, totally ramified, essentially tame, cuspidal representation
of GK , with maximal parametric degree

δ(ρw) = [E:K] = (dimK AK)1/2,
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and attached admissible pair (E/K, ξw).
In the formula (6.3.2), ζα commutes with y and, by 6.3 Lemma, the element

y−1uαy lies in J1
K . We decompose Λ = Λt⊗Λw, as in the definition of 4.3. Since

Λt is trivial on J1, we are reduced to

(6.4.1) trπ(ζu) =
∑

α∈Σ/Σt

trΛt(ζα)
∑

y∈GK/JK

trΛw(ζαy−1uαy).

The definitions of Λw, KΛw yield

trΛw(ζαy−1uαy) = εA tr KΛw(y−1uαy)

= εA tr ηK(y−1uαy),

where
εA = t〈ζ〉(V) = t0µE

(V) t1µE
(V; ζα) = t0µE

(V) t1µE
(V; ζ),

and V = V(β, A) (cf. [14] (3.4.3), (5.6.2)). The inner sum in (6.4.1) is therefore
reduced to ∑

y∈GK/JK

trΛw(ζαy−1uαy) = εA tr ρα−1

w (u).

Overall, we have

(6.4.2) trπ(ζu) = εA

∑

α∈Σ/Σt

trΛt(ζα) tr ρα−1

w (u).

This relation is valid for all Σ-regular roots of unity ζ ∈ µK = µE and all
pro-unipotent, elliptic regular elements u of GK .

6.5. We examine the representations ρα
w = ρw ◦ α, α ∈ Σ, of the group GK .

Lemma. Let α ∈ Σ. The following conditions are equivalent.

(1) ρα
w
∼= ρw;

(2) there is an unramified character χ of K× such that ρα
w
∼= χρw;

(3) α ∈ Σ0.

Proof. The representation ρw is, by construction, attached to the admissible pair
(E/K, ξw) and E/K is totally ramified. If α ∈ Σ0, then ρα

w is attached to the
admissible pair (E/K, ξα

w), while ξα
w = ξw. By 5.3 Corollary, we have ρα

w
∼= ρw.
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Thus (3) ⇒ (1) and surely (1) ⇒ (2). We assume, therefore, that (2) holds.
Let (E′/K, ξ′) be the admissible pair attached to ρα

w: since ρα
w is totally ramified,

the pair (E′/K, ξ′) is uniquely determined up to K-isomorphism (5.3 Corollary).
It satisfies the following condition: there is a field isomorphism α′ : E → E′, such
that α′ | K = α, which carries ξw to ξ′. However, the hypothesis χρw

∼= ρα
w im-

plies that the admissible 1-pairs (E/K, ξw

∣∣U1
E), (E′/K, ξ′

∣∣U1
E) are K-isomorphic.

If this isomorphism is realized by a K-isomorphism α′′ : E → E′, then α′′−1
α′

is an automorphism of E, extending the automorphism α of K, which fixes
ξw | U1

E = ξ | U1
E . It follows that α′′−1

α′ ∈ Σ0. We may therefore take E′ = E

and the same argument gives α ∈ Σ0, as required. ¤

6.6. In order to apply 6.5 Lemma, we need a general result on linear indepen-
dence of cuspidal characters.

Linear Independence Lemma. Let π1, π2, . . . , πr be irreducible, totally ram-
ified, cuspidal representations of G, all of parametric degree n. Suppose

(a) the central characters of the πi all agree on some prime element of F and
on µF ;

(b) the representation πi is not equivalent to an unramified twist of πj when-
ever i 6= j.

The characters trπi, 1 6 i 6 r, then form a linearly independent set of functions
on uGell

reg.

Proof. The Jacquet-Langlands correspondence commutes with twisting by char-
acters of F× (1.4.3), and preserves central characters (1.4.2). It also preserves
parametric degree 2.8 Corollary 1. It is therefore enough to treat the case
G = GL1(D), for some central F -division algebra D of dimension n2.

We use the classification theory of [4] for representations of G. Since πj

is totally ramified, there is a simple stratum [oD, lj , 0, βj ] in D, and a simple
character θj ∈ C(oD, βj , ψ) which occurs in πj . Since πj is totally ramified of
parametric degree n, the field extension F [βj ]/F is totally ramified of degree n.
The hypotheses on the representations πj are equivalent to θi not intertwining
with θj when i 6= j. The proof now follows the same course as that of 5.7 Lemma
(3) in [14]. ¤
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6.7. In (6.4.2), the definition of Λt gives

trΛt(ζα) = (−1)l−1
∑

γ∈Σt

ξt(ζαγ),

where, we recall, B ∼= Ml(C) and UB/U1
B
∼= GLl(kC). We therefore re-write

(6.4.2) in the form

(6.7.1) trπ(ζu) = (−1)l−1 εA

∑

α∈Σ/Σ0

tr ρα
w(u)

∑

γ∈Σ0

ξt(ζαγ).

We turn to the corresponding situation in GLn(F ). We take τ ∈ Aet
n (F ) to

satisfy jτ = π. The representation τ is of the form F Πφ, for an admissible pair
(E′/F, φ), uniquely determined up to isomorphism. The relation t(τ) = t(π)
implies f(E|F ) = f(E′|F ), so we may identify the maximal unramified sub-
extension of E′/F with K/F and continue to use the notation Σ = Gal(K/F ) on
either side. Let E′

0/F be the minimal sub-extension of E′/F such that φ | U1
E′

factors through NE′/E′0 and set Σ′
0 = Gal(E′/E′

0). We use the same prime
element $F of F to achieve a factorization φ = φt · φw, as was applied to ξ in
6.4.

Applying (6.7.1) to this case, we get an expression

(6.7.2) tr τ(ζv) = (−1)k−1εM

∑

α∈Σ/Σ′0

trσα
w(v)

∑

γ∈Σ′0

φt(ζαγ).

Here, k = [E′:E′
0]. The simple stratum in M = Mn(F ) attached to (E′/F, φ) is

[M, `M , 0, δ], say, and

εM = t〈ζ〉(V(δ,M)) = ε0M (µE) ε1M (µE ; ζ).

The representation σw is KΠφw . The equation (6.7.2) is valid for all K/F -regular
roots of unity ζ ∈ µK and all pro-unipotent, elliptic regular elements v of the
GLn(F )-centralizer of K×.

We now use the lemmas of 6.5, 6.6 to conclude that, for a suitable choice of
(E′/F, φ), we get

ρw = jK(χσw),

for an unramified character χ of K×, where jK is a Jacquet-Langlands correspon-
dence with base field K. Therefore (5.3 Corollary) (E′/K, φw) is K-isomorphic
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to an unramified twist of (E/K, ξw). We may henceforth take E′ = E, E′
0 = E0,

and Σ = Σ′. In particular, k = lc, c2 = dimE0 C.

We use 6.6 Lemma again to compare coefficients and obtain

(−1)m(d−1)+(lc−1)+mK(dK−1)εM

∑

γ∈Σ0

φt(ζγ) = (−1)l−1εA

∑

γ∈Σ0

ξt(ζγ).

Re-writing in terms of the finer symplectic invariants εj
M = εj

M (µE) etc., this
equation becomes

(−1)m(d−1)+(lc−1)+mK(dK−1)ε0M
∑

γ∈Σ0

ε1Mφt(ζγ) = (−1)l−1ε0A
∑

γ∈Σ0

ε1Aξt(ζγ).

We can vary the character ξt over all the tamely ramified characters of E×,
subject to the pair (E/E0, ξt) being admissible (cf. 4.3 Remark 2). There will
always exist a tamely ramified admissible pair (E/E0, φt) for which this last
relation holds, with ζ ranging over all Σ-regular elements of µK . We deduce
from 2.3 Corollary of [14] that:

Lemma. The characters ε1Mφt, ε1Aξt of k×E lie in the same Σ0-orbit, and

(6.7.3) (−1)m(d−1)+(lc−1)+mK(dK−1)ε0M = (−1)l−1ε0A.

The formula (6.7.3) can be re-written as

(6.7.4) ε0M (µE) ε0A(µE) = (−1)m(d−1)+mK(dK−1)+l(c−1).

We have

(6.7.5) mKdK = n/[K:F ], lc = n/[E0:F ],

while (as in 2.1)

(6.7.6) dK = d/(d, [K:F ]), c = d/(d, [E0:F ]).
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6.8. Adjusting our choices within Galois orbits, we can assume that the character
φ satisfies

(6.8.1) φ | UE = ε1M ε1Aξ | UE .

Let (E′/F, ξ′) be an admissible pair attached to π. The F -isomorphism class of
(E/F, φ) is uniquely determined by τ [11] 2.3, and hence also by π. In other
words, (E′/F, ξ′) must give rise to the same pair (E/F, φ) as (E/F, ξ). Thus E′

is F -isomorphic to E, and we may as well take E = E′. The relation (6.8.1)
implies that the 1-pairs (E/F, ξ

∣∣U1
E), (E/F, φ

∣∣U1
E) and (E/F, ξ′

∣∣U1
E) are all F -

isomorphic. We may assume that they are the same. It is the restriction ξ
∣∣U1

E

which determines the symplectic sign character ε1A, so (6.8.1) now implies that the
pair (E/F, ξ′

∣∣UE) is F -isomorphic to (E/F, ξ
∣∣UE) in the obvious sense. Again,

we may assume they are the same. It follows that ξ′ = χξ, for some unramified
character of E×. This implies τ = F Πχφ = F Πφ, whence (E/F, χφ) is isomor-
phic to (E/F, φ). The admissibility of (E/F, φ) implies χ = 1, and we have
proved part (1) of the Parametrization Theorem.

We prove part (2) of the Parametrization Theorem. We have bijections

Pn(F ) −→ Aet
n (F ),

(E/F, ξ) 7−→ F Πξ,

Aet
n (F ) −→ Aet

m(D),

π 7−→ jπ,

given by 2.3 Theorem of [11] and Corollary 2 of 2.8 respectively. We also have
an injective map Aet

m(D) → Pn(F ) given by mapping π ∈ Aet
m(D) to its attached

admissible pair. Composing, we get a map

Pn(F ) −→ Aet
n (F ) −→ Aet

m(D) −→ Pn(F ),

which preserves restrictions to 1-units and to F×. It is injective, by part (1)
of the Parametrization Theorem. There are only finitely many admissible pairs
(E/F, ξ) with specified values for ξ | F×, ξ | U1

E . Consequently the map is
bijective, and the result follows.

The preceding calculations also yield the First Comparison Theorem, although
we have so far excluded representations of level zero. There, the result follows
from 4.2 Proposition since, in this case, the symplectic sign characters are trivial.
Comparing central characters, we see that the character ν is trivial as well. ¤
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6.9. We comment further on the formula (6.7.4) and the character ε1M ε1A of k×E .
It is shown in [14] 8.4 that the constant ε0M (µE) and the character ε1M (µE)
determine each other. The same applies in general.

Theorem. The following conditions are equivalent:

(1) p 6= 2 and ε0A(µE) = −1;
(2) the character ε1A(µE) is non-trivial.

If f(E|F ) is odd, then ε0A(µE) = +1 and ε1A(µE) is trivial.

Proof. The case p = 2 is uninteresting, since k×E has no character of order 2. We
henceforward exclude it.

We write ` = kE and Ω = Gal(`/kF ). The space V = V(β, A) in our standard
notation is a `-vector space on which the group `× acts via the natural conjuga-
tion action of µE . It is therefore a direct sum of spaces of the form Λω, ω ∈ Ω,
where Λω is a one-dimensional `-vector space on which `× acts by

x : λ 7−→ xωx−1λ, x ∈ `×, λ ∈ Λω.

Let us write
V =

⊕

ω∈Ω

Λv(ω)
ω =

⊕

ω∈Ω

Vω,

for various integers v(ω) > 0. Since V is symplectic, we have v(ω−1) = v(ω) and
v(1) ≡ 0 (mod 2).

The component V1 is hyperbolic and `× acts trivially. Therefore t0`×(V1) = +1
and the character t1`×(V1) is trivial. If ω2 6= 1, the hyperbolic space Vω ⊕Vω−1

has trivial t-invariants [14] 7.3. If Ω has odd order, there is nothing more to be
said. We therefore assume the contrary.

If ω2 = 1 6= ω, the space Λω is anisotropic symplectic and the same result
gives

t0`×(Λω) = −1, t1`×(Λω) 6= 1.

Therefore
ε0A = t0`×(V) = (−1)v(ω2), ε1A = t1`×(V) = ψ

v(ω2)
2 ,

where ω2 is the element of Ω of order 2 and ψ2 is the character of `× of order 2.
All assertions have now been proved. ¤

The theorem applies equally with M in place of A. Therefore:
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Corollary. The character ε1A(µE)ε1M (µE) of µE is non-trivial if and only if
p 6= 2 and ε0A(µE)ε0M (µE) = −1.

We recall that the value of ε0A(µE)ε0M (µE) is given explicitly by the relations
(6.7.4–6).

We recall also that the invariants εj
M (µE) are calculated, in terms of the admis-

sible pair (E/F, ξ), in the Ramification Theorem of [14] 8.3. These calculations
and the corollary together yield explicit formulæ for εj

A(µE).

7. Completion of the comparison

We continue with the admissible pair (E/F, ξ) and the central simple F -
algebra A ∼= Mm(D), where D is of dimension d2 and [E:F ] = n = md. We
complete our determination of the tamely ramified character ν = Dνξ encoun-
tered in the Comparison Theorem of 6.1. To do this, we have to calculate its
value at one prime element $ of E. We observe that there is nothing to do in the
case where E/F is unramified: if $F is a prime element of F , then ν($F ) = 1
because the Jacquet-Langlands correspondence preserves central characters.

7.1. We continue with the notation of §6. In particular, we use the symplectic
ΨE/F -modules V = V(β, A) and VM = V(δ,M) of 6.7. As before, E0/F is the
minimal sub-extension of E/F such that ξ | U1

E factors through NE/E0 . We
prove:

Second Comparison Theorem. Let $ be any prime element of E0 such that
$r ∈ F , for some integer r not divisible by p. Let L = F [$], let AL denote the
A-centralizer of L, and write AL

∼= MmL
(DL), for a central L-division algebra

DL of dimension d2
L.

The character ν = Dνξ of E× then satisfies

(−1)m(d−1) ν($) = (−1)mL(dL−1) εM ($) εA($),

where
εM ($) = t〈$〉(VM ), εA($) = t〈$〉(V).

The proof will occupy the remainder of the section.
Observe that the condition on $ can be rephrased as follows: the group

〈$, µE〉, generated by $ and µE , contains a prime element $F of F .
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7.2. Before proceeding to the proof, we point out a couple of consequences. By
definition, the ε-invariants appearing in our formulæ for Dνξ depend only on the
simple stratum [A, `, 0, β] determined by the admissible pair (E/F, ξ). This, in
turn, is constructed from the restriction ξ | U1

E . Consequently:

Corollary 1. For i = 1, 2, let (E/F, ξi) be an admissible pair with [E:F ] = n.
If ξ−1

1 ξ2 is tamely ramified, then Dνξ1 = Dνξ2 .

We remark that the quantities εA($), εM ($) are amenable to calculation, in
terms of the structure of the admissible pair (E/F, ξ), using the methods of [14]
§7, §8. We shall not pursue the matter here beyond pointing out that, using a
more elaborate version of the argument of 5.6 along with the analysis in [14] §7
and 8.5 , one obtains:

Corollary 2. Let m > 1 be an integer. Let D, D′ be central F -division algebras
such that dimF D = dimF D′ = d2, d > 1. If (E/F, ξ) is an admissible pair in
which [E:F ] = md, then

(1) Dνξ = D′νξ, and
(2) if j : Aet

m(D) → Aet
m(D′) is the Jacquet-Langlands correspondence, then

j(DΠξ) = D′Πξ.

7.3. We start the proof of the Second Comparison Theorem of 7.1.

We take π = DΠξ and τ = F Πνξ as before, so that π = jA(τ). In particular,
π contains the extended maximal simple type (J , Λ), giving rise to the admissi-
ble pair (E/F, ξ). We compare the character values tr π($u), tr τ($u), for an
element u of u(GL)ellreg.

Proposition. Let x ∈ G and suppose that trΛ(x−1$ux) 6= 0. There then exists
y ∈ xJ such that y−1$y ∈ E×. For any such y, we have y−1uy ∈ J0.

Proof. The proof is exactly parallel to that of 6.1 Proposition of [14], so we omit
the details. ¤

Let L = F [$], let ΣL = Gal(E/L) and let GL be the G-centralizer of L.
The extension E/L is unramified, so any F -embedding L → E extends to
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an F -automorphism of E. The element y of the proposition therefore lies in
GLNG(E×) and we have

(7.3.1) trπ($u) =
∑

x∈GLNG(E×)J/J

trΛ(x−1$ux).

We need to clarify the nature of the coset space GLNG(E×)J/J . We set Υ =
NG(E×)/E× = Aut(E|F ). Take the subgroup Σt of Σ0 as in 6.3. We choose
representatives tα ∈ NG(E×), α ∈ Υ , as in 6.3.

Lemma. There is a canonical bijection

(7.3.2)
ΣL\Υ/Σt −→ GL\GLNG(E×)J/J ,

ΣLαΣt 7−→ GLtαJ .

Proof. We remarked in the proof of 6.3 Lemma that the image of J ∩NG(K×)
in Σ = Gal(K/F ) is the subgroup Σt. It follows that the image of J ∩NG(E×)
in Υ is the subgroup Σt again, viewed as a subgroup of Σ0 = Gal(E/E0). Thus
we have a bijection Υ/Σt → NG(E×)J/J given by αΣt 7→ tαJ , α ∈ Υ .

For α ∈ Υ , the double coset ΣLαΣt is the disjoint union of the cosets σαΣt,
where σ ranges over a set of representatives for ΣL/(αΣtα

−1 ∩ΣL). Under the
map γ 7→ tγ , all of these cosets have image contained in GLtαJ . The map (7.3.2)
is therefore well-defined and surjective.

Let α, β ∈ Υ , and suppose that tα = gtβj, with g ∈ GL, and j ∈ J . Since
J = E×J0, we may as well assume j ∈ J0. The element j conjugates $β to
$α. We write $α = ζα$, $β = ζβ$, for roots of unity ζα, ζβ ∈ µK . We
have j−1$j ≡ $ (mod J1), so j−1ζαj ≡ ζβ (mod J1). Any such conjugation,
realized by an element of J0, is given by an element σ of Σt. Therefore ασβ−1

fixes $, so ασβ−1 ∈ ΣL. In other words, α ∈ ΣLβΣt; this implies that the map
(7.3.2) is injective and completes the proof. ¤

We therefore decompose the character formula (7.3.1) as

(7.3.3) trπ($u) =
∑

α∈ΣL\Υ/Σt

trπ($u;α),
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where

(7.3.4)

trπ($u;α) =
∑

y∈GLtαJ/J

trΛ(y−1$uy)

=
∑

y∈Gα
LJ/J

trΛ(y−1$αuαy).

7.4. We examine the function trπ($u;α) of (7.3.4). Write Z = Lα, so that
Gα

L = GZ = A×Z is the G-centralizer of Z×.
Set AZ = A∩AZ . We recall from 3.2 Proposition that the stratum [AZ , `, 0, β]

is simple, H1(β, AZ) = H1(β, A)∩GZ and Jk(β, AZ) = Jk(β, A)∩GZ , k = 0, 1.
We use the obvious abbreviations

H1
Z = H1(β, AZ), Jk

Z = Jk(β, AZ),

for k = 0, 1.
The character θZ = θ | H1(β, AZ) lies in C(AZ , β, ψZ). We consider a maximal

simple type (J0
Z , λZ) in GZ containing θZ . We recall (2.6) that J(λZ) denotes

the GZ-normalizer of λZ and that, in the same notation, the group we have been
calling J is J(λ).

Lemma. Using the preceding notation, we have J(λZ) ⊃ J(λ)∩GZ . Moreover,
J(λZ) = J(λ) ∩GZ if and only if δ0(λZ) = [E:Z].

Proof. Since, by hypothesis, δ0(λ) = [E:F ] = n, we have J(λ) = E×J0, giving
J(λ) ∩GZ = E×J0

Z . The lemma thus follows from (2.6.1). ¤

7.5. Bearing 7.4 Lemma in mind, we write JZ = J ∩ GZ . Thus GZJ/J =
GZ/JZ and we obtain

trπ($u;α) =
∑

y∈GZ/JZ

trΛ($αy−1uαy).

The element y−1uαy lies in J0, it commutes with $α, and it is pro-unipotent
(7.3 Proposition).

We factorize Λ in the form Λ = Λt⊗Λw, relative to a prime element $F of F

lying in 〈µE , $〉 (cf. 7.1). We so obtain

trΛ($αy−1uαy) = trΛt($αy−1uαy) · trΛw($αy−1uαy).
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We first control the contribution from the “wild” factor trΛw. The element
y−1uαy lies in a subgroup J of J0, containing J1 and normalized by $α, such
that J/J1 is unipotent. In particular, J is a pro-p group. Using the Glauberman
correspondence directly, we conclude that there is a unique irreducible represen-
tation ϑ of JZ = J ∩ J0

Z and a sign ε such that

(7.5.1) trΛw($αt) = ε trϑ(t),

for all t ∈ JZ . The relation (7.5.1) holds, in particular, for t ∈ J1
Z . Therefore

ϑ | J1
Z
∼= Zηξ, and so

(7.5.2) ε = εA($α) = t〈$α〉(V), V = V(β, A).

Wide Extension Lemma. There is a wide extension κZ of Zηξ such that
ϑ ∼= κZ | JZ .

The proof is given in Appendix 2.

7.6. We first apply the Wide Extension Lemma of 7.5 to the case α = 1. We
obtain

(7.6.1) trΛ($y−1uy) = εA($) ξ($) tr Λt(y−1uy) · trκL(y−1uy),

where κL is a wide extension of Lηξ: the choice of κL is immaterial (2.5.5).

Proposition. The pair (E/L, ξ) is admissible. Write AL
∼= MmL

(DL), for a
central L-division algebra DL, and set πL = DL

Πξ. We then have

(7.6.2) trπ($u; 1) = εA($) ξ($) tr πL(u).

Proof. The first assertion is clear. There is an extended maximal simple type
(J(L), ΛL) in GL, containing the simple character θL and with attached admis-
sible pair (E/L, ξ). The group J(L) is JL = J ∩GL by 7.4 Lemma. The result
then follows from (7.6.1). ¤

7.7. We consider the general term

trπ($u;α) =
∑

y∈GZ/JZ

trΛ($αy−1uαy),

where α ∈ Υ and Z = Lα = F [$α]. We have

trΛ(($αy−1uαy) = εA($α) tr κZ(y−1uαy) tr Λt($αy−1uαy).
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Lemma 1. There is a collection Λt,i, 1 6 i 6 r, of extended maximal simple
types of level zero in GZ such that

trΛt($αj) = (−1)m−mL

r∑

i=1

trΛt,i($αj),

for every pro-unipotent element j of J0
Z . Moreover, if λt,i = Λt,i | J0

Z , then
δ0(λt,i) = [E:E0Z], for all i.

Proof. The result can be read off from the discussion in paragraph 6.10 of
[14]. ¤

The type Λt,i is thus determined by a tamely ramified admissible pair of the
form (E/ZE0, ψi). We set χi = ψi · ξw; this gives a family of admissible pairs
(E/Z, χi), 1 6 i 6 r. Applying Lemma 1 and 7.4 Lemma, we may argue as in
7.6 Proposition to get

trπ($u;α) = (−1)m−mLεA($α)
r∑

i=1

tr DZ
Πχi

($αuα).

It is more convenient to re-write this relation in the form

trπ($u;α−1) = (−1)m−mLεA($α−1
)

r∑

i=1

tr DL
Πχα

i
($u)

= (−1)m−mLεA($α−1
) ξα($)

r∑

i=1

tr DL
Πχα

i
(u),

for α ∈ Σt\Υ/ΣL.

Consider the admissible pair (E/L, χα
i ). We recall that ξ | U1

E = ξ0 ◦ NE/E0 ,
the 1-pair (E0/F, ξ0) being admissible.

Lemma 2.

(1) The character χα
i | U1

E factors through NE/LEα
0
, and LEα

0 /L is the min-
imal sub-extension of E/L with this property.

(2) The restriction χα
i | U1

E is of the form ξα
0 ◦NLEα

0 /Eα
0
.

(3) The 1-pair (LEα
0 /L, ξα

0 ◦NLEα
0 /Eα

0
) is L-isomorphic to (E0/L, ξ0) if and

only if α ∈ ΣL.
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Proof. By definition, χi | U1
E = ξ | U1

E , so we need only treat the character ξ.
Looking back at the proof of [11] A.1 Lemma (stated above as 3.3 Lemma), the
field E0 arises as follows. We choose a finite extension Ẽ/E such that Ẽ/F is
Galois and set Γ = Gal(Ẽ/F ). If ∆ is the subgroup of Γ which fixes ξ | U1

E , the
field E0 is Ẽ∆. The character ξ0 is then uniquely determined by ξ | U1

E .

Parts (1) and (2) of the lemma follow immediately. In part (3), one implication
is obvious. In the opposite direction, the extension E/L is unramified, so if LEα

0

is L-isomorphic to E0 then LEα
0 = E0 and the isomorphism is realized by an

L-automorphism of E0, that is, by an element σ of ΣL. If the pairs are to be
isomorphic, this automorphism must carry ξα

0 to ξ0. This implies that σ−1α fixes
ξ0, whence σ−1α ∈ Σ0 and α ∈ ΣL, as required. ¤

Remark. There is the following more precise version of part (3) of the lemma.
If α, β ∈ Υ , the pairs

(LEα
0 /L, ξα

0 ◦NLEα
0 /Eα

0
), (LEβ

0 /L, ξβ
0 ◦NLEβ

0 /Eβ
0
),

are L-isomorphic if and only if Σ0αΣL = Σ0βΣL. We do not need this fact, so
we omit the proof.

7.8. We return, for the moment, to a general situation. If Φ ∈ Aet
m(D), we

may write Φ = DΠϑ, for an admissible pair (H/F, ϑ). This pair determines an
admissible 1-pair (H0/F, ϑ0), the F -isomorphism class of which is determined by
Φ. We extend our terminology and say that (H0/F, ϑ0) is the 1-pair attached to
Φ.

Linear Independence Lemma. Let π1, π2, . . . , πr ∈ Aet
m(D). Let (Ei/F, γi)

be an admissible 1-pair attached to πi, 1 6 i 6 r. Suppose that (Ei/F, γi) is not
F -isomorphic to (Ej/F, γj) when i 6= j. The functions u 7→ trπi(u), 1 6 i 6 r,
on uGell

reg then form a linearly independent set.

Proof. Let H be a central F -division algebra of dimension n2 and let jH de-
note the Jacquet-Langlands correspondence Aet

m(D) → Aet
1 (H). The admissible

1-pair attached to jH(πi) is (Ei/F, γi), 1 6 i 6 r, by the First Comparison The-
orem of 6.1. We may therefore assume we are in the case m = 1. So, until the
end of the proof of the Linear Independence Lemma, A is a division algebra.
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Lemma. Suppose A is a division algebra, and let θi be a simple character oc-
curring in πi, 1 6 i 6 r. If the characters θi, θj intertwine in G, then i = j.

Proof. If θi intertwines with θj , then θi is G-conjugate to θj [4] (11.2.9). The 1-
pairs (Ei/F, γi), (Ej/F, γj) are then F -isomorphic, as follows from the Paramet-
rization Theorem 6.1 and the construction of the attached pair. ¤

Let H(G) be the space of locally constant, compactly supported functions
G → C, viewed as convolution algebra relative to a choice of Haar measure on
G. Let ei ∈ H(G) be the idempotent corresponding to the simple character
θi. Thus ei has support contained in U1

A = U1
oA

and, if (π, V ) is an admissible
representation of G, we have

∫

G

trπ(g) ei(g) dg = dim V θi ,

where V θi is the θi-isotypic subspace of V .
Since A is a division algebra, the set uGell

reg is open dense in U1
A. Consequently,

if we have a linear dependence relation

r∑

i=1

ai trπi(u) = 0, u ∈ uGell
reg,

we may integrate it against ej to get

0 =
r∑

i=1

ai

∫

U1
A

trπi(u) ej(u) du

=
r∑

i=1

ai

∫

G

trπi(g) ej(g) dg = cjaj ,

where cj > 0 is the dimension of the θj-isotypic subspace of πj . Thus aj = 0, as
required. ¤

7.9. We return to the context of 7.7 and consider the representation τ = F Πνξ.
As a special case of (7.6.1), we have

tr τ($u; 1) = εM ($) νξ($) tr τL(u),

where τL = LΠνξ and u ranges over the pro-unipotent, elliptic regular elements of
the GLn(F )-centralizer GLn(F )L of some copy of L embedded in Mn(F ). From
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7.7 Lemma, the Linear Independence Lemma of 7.8 and the defining relation
π = jAτ , we obtain

trπ($u; 1) = (−1)m(d−1) tr τ($u; 1),

and hence

(7.9.1) (−1)m(d−1)εM ($) νξ($) tr τL(u) = εA($) ξ($) tr πL(u),

this relation being valid for all u ∈ u(GL)ellreg. (Note that, in the left hand side, u

denotes an element of GLn(F )L associate to u.)
We recall that AL

∼= MmL
(DL), for an L-division algebra DL of dimension

d2
L. We let u → 1 in the right hand side of (7.9.1). The associate element u in

the left hand side then also tends to 1 (1.6 Proposition). From 1.5 Theorem (1),
we get

(−1)m(d−1) εM ($) νξ($) (−1)mLdL−1cτL
= εA($) ξ($) (−1)mL−1cπL

,

for certain positive constants cτL
, cπL

. These cancel, since every other factor is
a root of unity. Therefore

(−1)m(d−1) ν($) = (−1)mL(dL−1) εM ($) εA($),

as required to prove the theorem. ¤

Appendix 1.

Parametric degree and formal degree

Here we prove Theorem 2.8, which connects the normalized formal degree
deg π and the parametric degree δ(π) of a representation π ∈ A¤

m(D). This is an
exercise, parallel to [9] and generalizing §7.7 of [17]. The novelty derives from
the Hecke algebra calculations of [41], [24].

A1.1. Let G = GLm(D), A = Mm(D), where D is a central F -division algebra
of dimension d2, d > 1. We set n = md. We recall a well-known property
of the essentially square-integrable representations of G — see for instance [21]
Théorème B.2.b — but we give a rather different proof.
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Proposition. Let π ∈ A¤
m(D). There is then a positive divisor r of m and an

irreducible cuspidal representation π0 of GLm/r(D) such that the cuspidal support
of π consists of unramified twists of π0.

Proof. Replacing π by χπ, where χ is a character of F×, changes nothing. We
may therefore assume π to be square-integrable. It follows, from an argument
identical to the proof Proposition 8.5.10 of [17], that π cannot be of the form
IndG

P τ , where P is a proper parabolic subgroup of G and τ is an irreducible
representation of P trivial on the unipotent radical of P . However, if the cuspidal
support of π is not of the stated form, then Theorem 3.1 of [36] asserts that π is
an irreducible, parabolically induced representation of just this kind. ¤

A1.2. It follows from Théorème 5.23 of [41] that any π ∈ A¤
m(D) contains a

simple type, in the sense of [40].
In order to review the definition of a simple type, it will be simpler to introduce

a new scheme of notation. Let π be an irreducible cuspidal representation of
GLm(D). Thus π contains a maximal simple type (J, λ). We assume initially
that this type is of positive level, and use the notational scheme of 2.6 above.
Thus there is a simple stratum [A, `, 0, β] in A = Mm(D) so that J = J0(β, A).
The hereditary order A is maximal among E0-pure hereditary orders in A, where
E0 denotes the field F [β]. We denote by B the A-centralizer of E0, so that
B ∼= Ml(C), where C is a central E0-division algebra of dimension c2, and lc =
n/[E0:F ]. The order B = A ∩B is a maximal oE0-order in B.

The restriction of λ to H1(β, A) is a multiple of a simple character θ ∈
C(A, β, ψF ). Let η be the unique irreducible representation of J1(β, A) contain-
ing θ, and let κ be some wide extension of η. The representation λ is then of the
form λ = σ⊗κ, for an irreducible representation σ of J(β, A) trivial on J1(β, A).
The restriction σB of σ to UB = J(β, A) ∩ B is trivial on U1

B = J1(β, A) ∩ B.
The pair (UB, σB) is a maximal simple type of level zero in the group B×. The
representation σB is the inflation of an irreducible cuspidal representation σ̃ of
UB/U1

B
∼= GLl(kC).

In this scheme, we have

(A1.2.1) δ(π) = δ0(σB) [E0:F ], t(π) = δ(π)/e(E0|F ).

We add a further datum to this list. We fix an unramified field extension
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E/E0, inside B, so that [E:F ] = n and B is E-pure. Thus A is E-pure. These
conditions determine A and B uniquely in terms of E.

The modifications required for the level zero case are both clear and straight-
forward.

A1.3. Continuing with the notation of A1.2, let r > 1 be an integer and let
Ā = Mmr(D), Ḡ = GLmr(D). We embed the field E in Ā, in some way, as an F -
subalgebra. We choose an E-pure hereditary oF -order Ā in Ā, which is minimal
relative to this property. The F -period of Ā is thus r times the F -period of A,
and we get a simple stratum [Ā, r`, 0, β] in Ā.

Let B̄ denote the centralizer of E0 in Ā: thus B̄ ∼= Mlr(C). We set B̄ = Ā∩B̄.
The transfer process of [38] Théorème 3.53 determines, from θ and β, a sim-

ple character θ̄ ∈ C(Ā, β, ψF ). Let η̄ be the unique irreducible representation
of J1(β, Ā) which contains θ̄. Following the procedures of [39], starting from
Théorème 2.18, we obtain from κ a wide extension κ̄ of η̄.

We have J(β, Ā) = UB̄ J1(β, Ā) and UB̄∩J1(β, Ā) = U1
B̄

. The group UB̄/U1
B̄

is the direct product of r copies of GLl(kC). We let σ̄B be the inflation to UB̄

of σ̃ ⊗ σ̃ ⊗ · · · ⊗ σ̃ (r factors). We extend σ̄B to a representation σ̄ of J(β, Ā)
trivial on J1(β, Ā). We set

λ̄ = σ̄ ⊗ κ̄, J̄ = J(β, Ā).

The representation λ̄ is irreducible. The pair (J̄ , λ̄) is an instance of a simple
type in Ḡ, in the sense of [40]. The property we require is [41] Théorème 5.23:

(A1.3.1) Let Π be an irreducible smooth representation of Ḡ. The following
conditions are equivalent:

(1) Π contains the simple type (J̄ , λ̄);
(2) the cuspidal support of Π consists of unramified twists of π.

A1.4. We recall and extend some standard material from, for example, [17]
7.7 and [18] §8. We fix an integer r > 1, and consider those representations
τ ∈ A¤

r (F ) which have, as cuspidal support, unramified characters of F×. Among
these is the Steinberg representation, which we denote StF

r . Indeed, any other
representation of this kind is an unramified twist of StF

r , and has the same formal
degree. A calculation originating in [3] yields:
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(A1.4.1) Let µ̇F
r denote a Haar measure on GLr(F )/F×, and let Ir(F ) be an

Iwahori subgroup of GLr(F ). The formal degree of the Steinberg representation
StF

r satisfies

µ̇F
r (Ir(F )F×) d(StF

r , µ̇F
r ) =

1
r

(q − 1)r

qr − 1
,

where q = qF = |kF |.
We recall that an Iwahori subgroup of GLr(F ) is the same as the unit group

of a minimal hereditary oF -order in Mr(F ).
We extend this notation by letting Ir(D) denote the unit group of some mini-

mal hereditary order in Mr(D), when D is a central F -division algebra of dimen-
sion d2. Again we consider the elements of A¤

r (D) having unramified characters
of D× = GL1(D) as cuspidal support. Among these is the Steinberg representa-
tion StD

r .

Proposition. Let µ̇D
r be a Haar measure on GLr(D)/F×. The formal degree of

the Steinberg representation StD
r satisfies

µ̇D
r (Ir(D)F×) d(StD

r , µ̇D
r ) =

1
dr

(qd − 1)r

qdr − 1
.

Proof. Set G = GLr(D) and let H(G, Ir(D)) be the convolution algebra of com-
pactly supported functions G → C which are left- and right-invariant under
translation by Ir(D). As a normalized Hilbert algebra (in the sense of [15] §3
or [22]), this is isomorphic to the affine Hecke algebra H(r, qD) (in the nota-
tion of [17] (5.4.6)). This, in turn, is the same as H(GLr(K), Ir(K)), where
K/F is an unramified field extension of degree d. Under the composite isomor-
phism H(G, Ir(D)) ∼= H(GLr(K), Ir(K)), functions with support contained in
F×Ir(D) are mapped to the functions with support contained in (K×)dIr(K),
where (K×)d denotes the group of d-th powers in K×. As in [17] 7.7 (or following
the more general analysis in [15]), we get the relation

µ̇D
r (Ir(D)F×) d(StD

r , µ̇D
r ) = d−1 µ̇K

r (Ir(K)K×) d(StK
r , µ̇K

r )

=
1
dr

(qd − 1)r

qdr − 1
,

as required. ¤
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A1.5. We return to the situation of A1.2–3. Let Π ∈ A¤
mr(D) have cuspidal

support consisting of unramified twists of π ∈ A¤
m(D). By (A1.3.1), the repre-

sentation Π contains the simple type (J̄ , λ̄).

We consider the Hecke algebra H(Ḡ, λ̄). Appealing to [40] Théorème 4.6,
H(Ḡ, λ̄) is isomorphic, as Hilbert algebra, to the affine Hecke algebra

H(r, qE) = H(GLr(E), Ir(E)).

However, under the isomorphism H(Ḡ, λ̄) → H(GLr(E), Ir(E)), functions sup-
ported in F×J̄ become functions supported in (E×)kIr(E), where k is the integer
e(E0|F )lc/δ0(σB). This gives us the relation

µ̇D
mr(J̄F×) d(Π, µ̇D

mr) =
δ0(σB)

e(E0|F )lc
µ̇E

r (Ir(E)E×) d(StE
r , µ̇E

r ) dim λ̄.

From the definitions, δ(π) = δ(Π) = [E0:F ] δ0(σB), so (2.1.1)

δ0(σB)
e(E0|F )lc

= t(Π)/n.

Since (A1.4.1)

µ̇E
r (Ir(E)E×) d(StE

r , µ̇E
r ) = r−1 (qE − 1)r

qr
E − 1

,

we have

µ̇D
mr(J̄F×) d(Π, µ̇D

mr) =
t(Π)
nr

(qE − 1)r

qr
E − 1

dim λ̄.

We now choose µ̇D
mr so that d(StD

mr, µ̇
D
mr) = 1. That is,

µ̇D
mr(Imr(D)F×) =

1
dmr

(qd − 1)mr

qdmr − 1
.

This yields

(A1.5.1) deg Π =
(Imr(D)F× : J̄F×

)
t(Π)

qdmr − 1
(qd − 1)mr

(qE − 1)r

qr
E − 1

dim λ̄.

A1.6. We now prove 2.8 Theorem. In our present scheme of notation A1.2,
A1.3, it reads:
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Theorem. Let Π ∈ A¤
mr(D) have cuspidal support consisting of unramified

twists of a cuspidal representation π of GLm(D). We then have

(A1.6.1) deg Π ≡ t(Π)
(qnr − 1)

(qt(Π)nr/δ(Π) − 1)
(mod pZ).

Proof. We recall that t(Π) = t(π) and δ(Π) = δ(π) in our present scheme.
We proceed by simplifying the expression (A1.5.1). The generalized group

index term there contributes

(Imr(D)F× : J̄F×
) ≡ (qd − 1)mr |GLl(kC)|−r (mod pZ).

On the other hand,

dim λ̄ ≡ |GLl(kC)|r (ql
C − 1)−r (mod pZ),

so

deg Π ≡ t(Π) (qnr − 1) (qE − 1)r (qr
E − 1)−1 (ql

C − 1)−r (mod pZ).

Now we recall that qE = ql
C = qlc

E0
= qn/e(E0|F ), resulting in

deg Π ≡ t(Π) (qnr − 1) (qr
E − 1)−1 (mod pZ).

In the final term (qr
E − 1)−1, we have qr

E = qnr/e(E0|F ). However,

t(Π) = t(π) = δ(π)/e(E0|F ) = δ(Π)/e(E0|F ),

yielding nr/e(E0|F ) = nrt(Π)/δ(Π). The relation (A1.6.1) has been proved. ¤

Remark. Using (A1.3.1) and the Hecke algebra isomorphisms cited in the pre-
ceding proof, it is a straightforward matter to refine A1.1 Proposition to give a
complete description of the non-cuspidal elements of A¤

m(D): the argument is
identical to that of Theorem 8.3 of [18].

Appendix 2.

Wide extensions and the
Glauberman correspondence

We prove the Wide Extension Lemma of 7.5.



532 C.J. BUSHNELL AND G. HENNIART

A2.1. We start in an abstract setting, recalling a fundamental result from [23].
We are given a finite group T and a cyclic group of automorphisms Z of T , such

that |Z| is relatively prime to |T |. We think of Z as acting on T by conjugation,
so that we may form the semi-direct product group Z n T = ZT . The group Z

acts on the set Irr T of equivalence classes of irreducible representations of T by
ζ : ρ 7→ ρζ , ζ ∈ Z, ρ ∈ IrrT , where ρζ denotes the representation t 7→ ρ(ζtζ−1),
t ∈ T .

We denote by TZ the group of Z-fixed points in T , and by Irr(TZ) the set of
equivalence classes of irreducible representations of TZ . We summarize the main
points needed from [23].

(A2.1.1) Let ζ generate the group Z.

(1) If τ is an irreducible representation of ZT such that τ | T is not irre-
ducible, then

tr τ(ζt) = 0, t ∈ T.

(2) Let ρ ∈ (IrrT )Z .
(a) There exists a unique irreducible representation ρ̃ of ZT such that

ρ̃ | T ∼= ρ and det ρ̃ | Z = 1.
(b) There is a unique irreducible representation ρZ of TZ , and a con-

stant ε = εζ(ρ) = ±1 such that

tr ρ̃(ζt) = ε tr ρZ(t), t ∈ TZ .

(c) The map ρ 7→ ρZ is a bijection (IrrT )Z → Irr(TZ), independent of
the choice of ζ.

The sign εζ(ρ) may indeed vary with both ζ and ρ. The bijection (IrrT )Z →
Irr(TZ) is what we call the Glauberman correspondence.

There is a more general version of (b).

(A2.1.2) Let ρ ∈ (IrrT )Z , and let ρ be a representation of ZT such that ρ | T ∼=
ρ. There is a constant root of unity α, of order dividing 2|Z|, such that

trρ(ζt) = α tr ρZ(t), t ∈ TZ .

We denote by 〈 , 〉 the standard inner product of class functions on a finite
group. We call the elements of IrrT r (IrrT )Z Z-irrelevant.
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Proposition. Let θ be a finite-dimensional representation of T such that θζ ∼=
θ. Let θ be a representation of ZT such that θ | T ∼= θ, let trζ(θ) denote the
class function j 7→ trθ(ζj) on TZ , and let ρ ∈ (IrrT )Z .

(1) If 〈tr(ρZ), trζ(θ)〉 = a ∈ C, then ρ occurs in θ with multiplicity > |a|.
(2) If ρ occurs in θ with multiplicity one, then 〈tr(ρZ), trζ(θ)〉 6= 0.

Proof. Let ρi, 1 6 i 6 r, be the Z-stable irreducible components of θ, repeated
according to multiplicity. Thus

θ =
r⊕

i=1

ρi ⊕ ϑ,

where ϑ is a sum of Z-irrelevant irreducible representations of T . It follows that

θ = ϑ⊕
r⊕

i=1

ρi,

for representations ϑ, ρi of ZT such that ρi | T ∼= ρi and ϑ | T ∼= ϑ. By (A2.1.1),
(A2.1.2),

trζ(θ) =
∑

i

αi tr(ρi,Z),

for various roots of unity αi. The class functions tr(ρi,Z), for distinct ρi, are
linearly independent and both assertions follow. ¤

We will not actually use part (1) of the proposition; it is included to add
perspective.

We observe that all of the foregoing applies equally to the case where T is a
pro p-group and Z is a cyclic group of continuous automorphisms of T of finite
order relatively prime to p. Of course, in this more general context, we have to
consider only smooth representations of T and TZ .

A2.2. We translate to a broader context. We are given a locally profinite group
G and a compact open subgroup T of G which is a pro p-group. We are also given
a finite cyclic group Z = 〈ζ〉 of continuous automorphisms of G, which has order
relatively prime to p and which stabilizes T . The group TZ of Z-fixed points in
T is then closed in G and is a pro p-group. We can form the semi-direct product
Z nG, topologized so that the obvious map G → Z nG is a homeomorphism of
G with an open subgroup of Z nG.

We prove the main technical result of this appendix.
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Proposition. Let ρ be an irreducible smooth representation of T and g ∈ G.
Suppose that

(a) ρζ ∼= ρ,
(b) g commutes with ζ, and
(c) dimHomT∩T g (ρ, ρg) = 1.

The element g then intertwines the representation ρZ .

Proof. Let τ be the unique irreducible representation of T ∩ T g occurring in
both ρ | T ∩ T g and ρg | T ∩ T g. The group T g is normalized by Z and the
representations ρ, ρg are both Z-stable, whence it follows that τ is Z-stable.

Let ρ∗ = IndZT
T ρ =

⊕
χ χ⊗ ρ̃, where χ runs over the characters of Z, viewed

by inflation as one-dimensional representations of ZT . The representations χ⊗ ρ̃

are pairwise distinct, being distinguished by their determinant characters. Surely
(ρg)∗ ∼= (ρ∗)g. Frobenius Reciprocity, in the guise of [17] 4.1.5, gives

dimHomZ(T∩T g)(ρ∗, ρg
∗) = |Z|,

since |Z| is the number of T, T -double cosets contained in ZTgZT . Consequently:

Lemma. Let ρ̃ be some representation of ZT extending ρ. There is a unique
representation ρ̃1 of ZT , extending ρ, such that g intertwines ρ̃ with ρ̃1. More-
over,

(A2.2.1) dim HomZ(T∩T g)(ρ̃, ρ̃g
1) = 1.

That is, there is a unique irreducible representation τ̂ of Z(T ∩ T g) occurring
in both ρ̃ | Z(T ∩ T g) and ρ̃g

1 | Z(T ∩ T g). It occurs in both with multiplicity
one. On the other hand, ρ̃ | Z(T ∩ T g) contains some irreducible representation
τ̃ extending τ . We may choose an extension ρ̃2 of ρ so that τ̃ occurs in ρ̃g

2 |
Z(T ∩ T g): thus HomZ(T∩T g)(ρ̃, ρ̃2) 6= 0, implying ρ̃2 = ρ̃1 and τ̂ = τ̃ . Put
another way, τ̂ | T ∩ T g = τ .

We apply A2.1 Proposition (2) to the representation τ of T ∩ T g, the rôle of
θ being taken by ρ̃g

1 | Z(T ∩ T g). We deduce that 〈τZ , trζ(ρ̃
g
1)〉 6= 0, where the

inner product is that on class functions on the group TZ ∩ (TZ)g.
By (A2.1.2), the function trζ(ρ̃

g
1) is a linear combination of the characters

trϕZ , where ϕ ranges over the Z-stable irreducible components of ρ̃g
1 | T ∩
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T g. However, the function trζ(ρ̃
g
1) on TZ ∩ (TZ)g is the restriction of tr (ρg)Z ,

multiplied by a root of unity. Thus τZ occurs in (ρg)Z | TZ ∩ (TZ)g with
multiplicity one. Surely (ρg)Z = (ρZ)g, so g intertwines ρZ , as required. ¤

A2.3. We apply A2.2 Proposition to proving the Wide Extension Lemma of 7.5.
We return to the notation of that paragraph.

We work in the group G = GLm(D); the automorphism ζ is conjugation by
the element $α of 7.5. The place of the group T is taken by the group J. It will
be convenient to take J as large as possible. This is achieved as follows. The
group J/J1 is of the form GLl(kC). The element $α acts here, its group of fixed
points being of the form JZ/J1

Z
∼= GLr(k′), for an integer r and a finite extension

k′/kC . We may take for J the inverse image in J of the unipotent radical of a
Borel subgroup of JZ/J1

Z .

The restriction of Λw to J is a wide extension κ of η. Because of (2.5.1)(4),
we may apply A2.2 Proposition to κ to show that the representation ϑ of (7.5.1)
is intertwined by every element of the GZ-centralizer of β. The desired result
is then given by the following general property of wide extensions, for which we
revert to the base field F and the notation of §2.

Lemma. Let [A, `, 0, β] be a simple stratum in A = Mm(D), and let B denote
the A-centralizer of β. Let X be a subgroup of J = J(β, A), containing J1 =
J1(β, A), such that X/J1 is the unipotent radical of the finite reductive group
J/J1.

Let ρ be an irreducible representation of X such that ρ | J1 is equivalent
to the unique irreducible representation ηθ of J1 containing a simple character
θ ∈ C(A, β, ψF ). Suppose that ρ is intertwined by every element of B×. We then
have ρ ∼= κ | X, for any wide extension κ of η.

Proof. Let κ be some wide extension of η, and write κX = κ | X. By (2.5.5), the
representation κX does not depend on the choice of κ. Since ρ | J1 ∼= η ∼= κX | J1,
there is a character φ of X, trivial on J1, such that ρ ∼= φ⊗κX . The intertwining
property of ρ implies that φ is intertwined by every element of B×. This implies
that φ is trivial, as required. ¤

Remark. This argument applies in considerably greater generality, but we only
need the restricted case treated above.
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