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Abstract: Let F be a non-Archimedean local field, let n > 1 be an
integer and G = GL,(F). Let G’ be an inner form of G, so that G’ is
isomorphic to GL., (D), for a central F-division algebra of dimension
d?, md = n. Using the structure theory of Sécherre and Stevens, we
define a concept of parametric degree for irreducible cuspidal represen-
tations of G’. We show that the image, under the Jacquet-Langlands
correspondence, of the set of equivalence classes of irreducible cuspi-
dal representations of G is the set of equivalence classes of irreducible
cuspidal representations of G’ of parametric degree n. In earlier pa-
pers, we defined a notion of essential tameness for irreducible cuspidal
representations of G. We generalize this to representations of G’, and
show that it is preserved by the Jacquet-Langlands correspondence.
As in the earlier papers, the irreducible, essentially tame, cuspidal
representations of G admit an explicit parametrization in terms of ad-
missible pairs, which can be explicitly related to the local Langlands
correspondence. Here, we generalize this construction to the case of
irreducible, essentially tame, cuspidal representations of G’ of para-
metric degree n. We determine completely the behaviour of the two
parametrizations relative to the Jacquet-Langlands correspondence.
As a consequence, we prove a conjecture of Bushnell and Frohlich of
1983.
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470 C.J. BUSHNELL AND G. HENNIART

Let F' be a non-Archimedean local field with finite residue field of characteristic
p. In a series of papers [11], [12], [14], we gave an explicit description of the
local Langlands correspondence in the essentially tame case. In this paper, we
give a parallel description of the Jacquet-Langlands correspondence. The results
illuminate those of the earlier papers. They finally answer the most interesting
of the questions left open in [6].

We emphasize that, in this paper, the characteristic of F' is arbitrary. The
technical issues which forced us to restrict, in [14] in particular, to the charac-
teristic zero case do not intervene here. The parts of [14] to which we appeal in

this paper are valid in all characteristics.

1. Let n > 1 be an integer and let G be an inner form of GL,,(F'). Thus there is
a central F-division algebra D, of dimension d?, d > 1, such that G = GL,,,(D),
md = n. Let Al (D) denote the set of equivalence classes of irreducible smooth
representations of G which are essentially square-integrable, modulo the centre
F* of G. Thus, in particular, AY(F) denotes the set of equivalence classes
of irreducible smooth representations of GL, (F') which are essentially square-
integrable modulo centre.

The Jacquet-Langlands correspondence gives a canonical bijection

(1.1) J AL (F) —— A (D),
specified by a character relation on elliptic regular elements.

The idea of the correspondence, and the basic method for proving it, both
originate with Jacquet, Langlands [27] which treats the case n = 2 when F' has
characteristic zero. For the general case with F' of characteristic zero, see Deligne,
Kazhdan, Vignéras [21], also Rogawski [37]. The positive characteristic case is

treated by Badulescu [2], with a supplement in [16] required for this paper.

2. The set AL (D) contains the set A2 (D) of equivalence classes of irreducible
cuspidal representations of GL,,(D). An early step in this paper identifies the
image of A%(F) in AY (D) under the map (1.1).

This relies on a notion of parametric degree for representations = € AY (D),
generalizing the cases of A(F), AT(D) treated in [9]. The definition in [9]
uses the classification theory for cuspidal representations of GL,, (F') in [17] and

the analogous results of Broussous [4] or Zink [43] for GL; (D). The necessary
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elements of the classification are now available for GL,, (D) in the paper [41] of
Sécherre and Stevens, the culmination of Sécherre’s programme [38], [39], [40].
For m € A7 (D), the parametric degree §() is a positive integer dividing n. If
d(m) = n, then = is cuspidal. The converse holds for GL,,(F') but not in general.
Just as in [9], the parametric degree is determined by the normalized formal
degree. Since the Jacquet-Langlands correspondence preserves the normalized

formal degree [21], [37], [16], it must also preserve the parametric degree. Thus
(2.1) §(AY(F)) ={m € A,(D) : 6(x) =n} C A}, (D).

For m € A (D), let t(m) denote the number of unramified characters x of F*
such that y7m = 7. (Here we use the customary notation: xw is the representation
g — x(Nrd g)7(g), where Nrd denotes the reduced norm map GL,,(D) — F*.)
The integer ¢(m) divides §(m). One says that 7 is essentially tame if p does not
divide §(m)/t(w). In particular, if p does not divide n, every m € A% (D) is
essentially tame.

We denote by A (D) the set of classes of representations m € AL (D) which
have §(7) = n and are essentially tame. This generalizes the definition of A (F)
in [11].

Because it preserves both the parametric degree and the t-invariant, the

Jacquet-Langlands correspondence (1.1) induces a canonical bijection

(2.2) §ASF) == AY(D).

The aim of the paper is to make this map explicit, in a manner parallel to that
of [11], [12], [14].

3. Such an aim, of course, requires an explicit description of both sets A (F),
At (D). For the first of them, we have the “naive correspondence” of [11]. This

is a canonical bijection

Py(F) — AZ(F),

(3.1)

where P, (F') is the set of F-isomorphism classes of admissible pairs (E/F,¢)
of degree n (the definition is recalled in 4.1 below). The map (3.1) generalizes
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the constructions of Howe’s early paper [26]. Our first task is to produce an

analogous bijection

Py(F) — A5 (D),

(3.2)
(E/F,f) I Dng-

4. Here, and indeed throughout the paper, we rely on [38-41]. These papers
contain all the necessary elements of a complete theory of types [19] for the
groups GL,, (D), directly generalizing [17] and [4]. In particular, the cuspidal
representations of GL,,(D) are explicitly presented as induced representations.
The description extends in essence to all of A (D). However, the theory exhibits
some novel technical difficulties, as compared with the “split” case of GL, (F),
and it has not yet reached the same level of completeness. Consequently, we
cannot simply follow [11] to construct the bijection (3.2): our approach must be
more indirect.

We start in §§3,4 by attaching to 7 € A (D) an admissible pair, using the
classification in [41]. The process involves many choices, and there is no guaran-
tee, at first, that it has any intrinsic meaning. (However, in the case of GL; (D)
with p not dividing dimp D, it is easy to see that it gives the bijection of [20],
[28], on which [6] is based.)

Let m € A% (D) be totally ramified, in the sense that t(7) = 1. An admis-
sible pair (FE/F,§) attached to 7 then has FE/F totally ramified. Some simple
calculations show that (E/F,&) can be recovered from the values of the charac-
ter function trm of 7w at certain elliptic regular elements. The pair is therefore
uniquely determined by 7, up to F-isomorphism. Further calculation shows that
7 is matched, via the Jacquet-Langlands correspondence (2.2), with the repre-
sentation pIl,¢ € AS(F), where v is an unramified quadratic character of F'*
depending only on the integers m, d. This step is to be found in §5, the formula

for v being given in 5.3.

5. The core of the paper is §6. We take a general representation 7 € A (D),
with an attached admissible pair (E/F,§) (possibly one of many). We calculate
the character value trm(Cu) at suitable elements (u near a root of unity ¢ €
E, that generates the maximal unramified sub-extension K/F of E/F. The

outcome is an expression for tr7(Cu) in terms of (E/F,¢) and character values
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tr p(u), for various essentially tame, totally ramified, cuspidal representations p
of the G-centralizer of K. We know, from §5, how such representations relate to
representations of split groups and to admissible pairs. We are able to deduce
that the process, of attaching an admissible pair to 7 € A% (D), yields the inverse
of a canonical bijection (3.2). This is the Parametrization Theorem of 6.1.

We further show that, if (E/F,§) € P, (F), then pIl is of the form j(rII,¢),
for a canonically determined, tame, quadratic character v of £ : this is the First
Comparison Theorem 6.1.

We calculate the character pvg = v¢ in terms of the “symplectic signs” ubiq-
uitous in [14]. We interpret these signs in terms of m, D and (E/F,¢) to give an
explicit formula for the restriction pvg | Ug: see 6.9 Corollary and (6.7.4).

It remains only to calculate the value of the tamely ramified character pr, at
one prime element of F. This is the subject of the Second Comparison Theorem
of 7.1. We leave the answer in terms of symplectic signs: a calculation along the
lines of the proof of 8.4 Theorem of [14] is necessary to reduce it to numerical
form.

Together, the two Comparison Theorems show:

Theorem A. Let D be a central F-division algebra of dimension d?, d > 1, let
m > 1 be an integer and set n = md. If (E/F,§) is an admissible pair with
[E:F] = n, there is a canonically determined, tamely ramified character v = puy
such that (E/F,v€) is admissible, v? =1, and

DH£ = j(FHu.f)v
where j : ASY(F) — A (D) is the Jacquet-Langlands correspondence.
The determination of pv, in the theorems of 6.1, 7.1 implies immediately:

Theorem B. Fori = 1,2, let (E/F.,§;) be an admissible pair with [E:F] = n.
If 51_152 is tamely ramified, then pve, = pug,.

A closer examination of the form of the character pv,, which we omit here,
yields:
Theorem C. For i = 1,2, let D; be a central F-division algebra and suppose
that dimp Dy = dimp Dy = d?, d > 1. If (E/F,§) is an admissible pair with
[E:F] divisible by d, then p,v = p,v,.
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6. We put these results in the context of the Langlands correspondence: since
we now appeal to essential features of [14], we have to assume that F' has charac-
teristic zero. Let Wr denote the Weil group of F, and let G2 (F) denote the set
of equivalence classes of irreducible smooth representations of Wy of dimension
n. If (E/F,¢§) is an admissible pair with [E:F| = n, we may view £ as a character

of Wg via class field theory and form the induced representation
FSe = Indjjré
of Wg. This representation is irreducible, and we so obtain a bijection

of P,(F) with the subset G¢(F') of classes of representations o € G%(F) which
are essentially tame, in an obvious sense [11]. The Langlands correspondence

then induces a canonical bijection
rL: GSN(F) — ASHF).

This is of the form g — plI
character = ppg of EX.

u¢» for a canonically determined, tamely ramified

Composing with the Jacquet-Langlands correspondence
j A (F) — AL(D),
we obtain the Langlands correspondence
DL GEE(F) — A (D).

This is bijective. Combining the results of this paper with those of [12], [14], we
get:
Theorem D.

(1) Let (E/F,&) be an admissible pair in which [E:F| = n. There is a canon-

ically determined, tamely ramified character X = pA¢ of E* such that
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Indeed, D)\f = F,ug . DV§-
(2) If (E/F,&), i = 1,2, are admissible pairs such that £ '&; is tamely

ramified, then

DAg, = DAg,-

(3) The character X = pX¢ satisfies \* =1 and \? | Ug = 1.

This result was conjectured, for the case m = 1, in [6]. However, the values
for A proposed there (and in [34]) are no closer to reality than those proposed by
Moy [33] for the character rj: see the discussion in [12] 2.2.

7. A number of discrete technical issues, of possibly wider interest, arise in
the course of the paper. The first of these, already mentioned, is the relation
between the (algebraic) parametric degree and the (analytic) formal degree. This
is general in nature, independent of any consideration of characteristic and of our
underlying tameness hypotheses. We have therefore given it separate treatment
in Appendix 1.

At a critical point in the character calculations of §7, we have to evaluate
the character of a “wide extension” (aka “(-extension”) of the Heisenberg rep-
resentation containing a simple character. The same problem arose at the corre-
sponding point of [14], where we returned to the original definition in [17]. The
extra complexity of the general case in [39] makes that a daunting prospect here.
We have substituted a general argument, based on the interaction between the
Glauberman correspondence and intertwining of representations. This simplifies
a parallel result of Stevens (the Principal Lemma 2.4 of [42]), so we have included

a proof in Appendix 2.

Notation

Throughout, F' denotes a non-Archimedean local field. The discrete valuation
ring in F is denoted op, and the maximal ideal of op is pp. We write kp =
or/pr, ¢ = qr = |kp|, and we let p denote the characteristic of krp. We set
Up = UY = 0, and U}? = 1+p’}, k > 1. We write vr for the canonical
(surjective) valuation map F* — Z. We denote by pp the group of roots of

unity in F' of order relatively prime to p.
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We use the obvious analogues of these conventions for a finite field extension
E/F. Additionally, we denote by Ng,r and Trg/p the relative norm and trace
maps E — F respectively.

If D is a central F-division algebra of finite dimension, then op is the discrete
valuation ring in D and pp is the unique maximal ideal of o p. We denote by kp
the field op/pp: this is finite, with gp = ¢ elements, where d> = dimz D. We
set Up = 0y and Uy, = 1+ph), k > 1.

If A is a finite-dimensional, central simple F-algebra, then Nrds : A* — F'*
is the reduced norm map.

Most notation concerning the internal structure of representations is intro-

duced as it arises, but is kept closely parallel to the standard usage of [17].

1. Classical character relations

We fix an integer n > 1. We are concerned with locally profinite groups of the
form G = GL,,(D), where D is a central F-division algebra of finite dimension
d? d>1,and n = md. We set A = M,,(D), so that G = A*.

To reach the effective starting point of the paper, we have to gather threads
from several sources and weave them together. In this section, we concentrate on
ideas from harmonic analysis, some elementary, some deriving ultimately from
the trace formula. The main point is to recall the Jacquet-Langlands correspon-
dence and its main properties. In characteristic zero, we can largely rely on
the original sources [21], [37]. In positive characteristic, the situation is more
involved. The principal result is given in [2], relying on [1], [29], [30]. A crucial
point for us comes from the recent [16].

One proof has been deferred to the end of the next section, as it will be easier

to treat with the machinery of hereditary orders to hand.

1.1. We recall some basic results from the Appendix to [8]. Those pages were
written for the split case G = GL,(F), but no attention was paid to the charac-
teristic of F'. The proofs apply unchanged to the present situation.

Let g € G and denote by f;‘(t) € F[t] the reduced characteristic polynomial
of g. For us, g is regular if f;‘ (t) has no repeated root in an algebraic closure of
F. Tt is elliptic reqular if it is regular and ng (t) is irreducible over F'. We denote

by Greg, Gfgg the sets of regular or elliptic regular elements of G respectively.
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Remark. In [8], we introduced the notion of a quasi-reqular element of G: an
element g € G is quasi-regular if f;‘ (t) has no repeated irreducible factor over F'.
An element is elliptic quasi-reqular if it is quasi-regular and ng (t) is irreducible
over F. Everything we do applies equally, on replacing “regular” by “quasi-
regular” and “elliptic regular” by “elliptic quasi-regular”.

We fix a Haar measure ug on G and use it to define the structure of a con-
volution algebra on the space H(G) of locally constant, compactly supported
functions G — C. If (m, V) is an irreducible smooth representation of G, we
extend 7 to an algebra homomorphism 7 : H(G) — Endc(V) in the standard
way [13] §4. Since (m,V) is admissible, each operator 7(y), ¢ € H(G), has
finite-dimensional range and so its trace trm(y) is defined. As in [8] A.11, we

have:

Proposition. There is a locally constant function trm : Greg — C such that

ter(e) = [ (o) olo) duca),
for all ¢ € H(G) with support contained in Greg.

One refers to the function tr m as the character of .

1.2. We need more detail in one particular case. We take an irreducible cuspidal

representation 7w of G and assume it is given as an induced representation
= c—IndS; A,

where J is an open subgroup of GG, compact modulo the centre F* of GG, and A
is an irreducible smooth representation of J. In particular, dim A is finite. If K
is a compact open subgroup of G, A.14 of [8] gives the expression
(1.2.1) trm(g) = Z Z tr A(y~1gy), g € Greg.
teK\G/J yeKaJ/J
Here, we regard tr A as a function on G, vanishing outside of J. If we confine g
to a fixed compact subset C' of G, only finitely many of the inner terms
> Ay gy)
yeKad/J

can be non-zero loc. cit.

This uniform convergence property of (1.2.1) is stronger than we need for the
purely algebraic manipulations in this paper. The following non-uniform version

is easier to use here.
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Lemma. Let g € Gfgg. There exist only finitely many cosets xJ € G/J such

that x=1gx € J. In particular, only finitely many terms tr A(x~1gx), v € G/J,

are non-zero.

Proof. The F-subalgebra Flg] of A is a field, and any two F-embeddings of
F[g] in A are G-conjugate, by the Skolem-Noether Theorem. It follows that
the G-conjugacy class C(g) = {z71gx : # € G} of g is the set of zeros of the
polynomial function h — fZ(h), h € G. That is, C(g) is closed in G and hence
locally compact. Consider the intersection J N C(g). The reduced norm map
Nrd 4 is constant on C'(g). On the other hand, J has a unique maximal compact
subgroup J = {x € J : ||[Nrd4 z|| = 1} and J/J is cyclic. It follows that JNC'(g)
is compact.

The G-centralizer of g is the group Flg]*, and F[g]*/F* is compact. The set
S of x € G for which z71gx € J satisfies JSF[g]* = S. The local compactness of
C(g) implies, via Arens’ Theorem [32] 2.13, that the canonical map G/F[g]* —
C(g) is a homeomorphism. Consequently, the image S/F[g]* of S in G/F[g]*
is homeomorphic to J N C(g) and is compact. Hence S is compact modulo F*.

The quotient space J\S is therefore finite, as required. O

The lemma allows us to use the Mackey Formula (1.2.1) in the form

(1.2.2) tra(g) = Y. trA(z"lgx), ge G,
ze€G/J

without having to be concerned about convergence issues.

1.3. The group G acts on the set G¢!L by conjugation. The map g — f;‘(t)

reg

induces a bijection between G\Gfgg and the set of monic, irreducible, separable

polynomials over F' of degree n (cf. 2.1 below).

The same applies if we replace A by another n?-dimensional, central simple
F-algebra A’ and set G’ = A’*. Thus we have a canonical bijection G\Gfgg &
G’\G’ell We say that elements g € G, ¢ € G'"

reg reg reg are associate if their

conjugacy classes correspond under this bijection, that is, if f;}/ = f;‘.
Ifge Gregg, it is in practice safe to use the same notation g for an element of

1 o :
G’feg which is associate to g.
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1.4. Let A= M,,(D) and G = A* = GL,,(D). If 7 is a smooth representation

of G and Y is a character of F'’*, we denote by x7 the representation

xm:g+— x(Nrdag)7(g), g€G.

Let AY (D) denote the set of equivalence classes of irreducible smooth repre-

sentations of G which are essentially square-integrable modulo the centre F'* of

G.

Jacquet-Langlands Correspondence. Let D, D' be central F-division alge-

bras of dimension d?, d' 2 respectively. Let m, m' be positive integers such that

md =m'd =n. Set G = GL,,,(D), G’ = GL,,,(D"). There is a unique bijection
j AL (D) — AL (D),

(1.4.1)

/
T,

ell

veg and if g’ € G s associate to g, then

reg

with the following property. If g € G
(=)™ trm(g) = (~1)™ trr'(g).

We refer to the map j as the Jacquet-Langlands correspondence between G
and G’.

We note some obvious properties, using the same notation.

(1.4.2) If € AY (D) and «" = jgr, then the central characters wy, wy of 7, @'

are equal.

(1.4.3) If 7 € AY (D) and «" = jm, then j(xw) = x7', for any character x of
Fx.
For an irreducible smooth representation 7 of (say) G, we let t(7) denote the

number of unramified characters y of F'* such that xm = 7. From (1.4.3) we
deduce that:

(1.4.4) If r € AY (D) and ©" = g, then t(w) = t(n').

We shall also need the following fact, which is bound up in the proof of the
existence and uniqueness of the Jacquet-Langlands correspondence in all cases.
We treat it as a consequence from which we shall derive stronger results of the

same kind.
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(1.4.5) Let w1, ma,...,m be distinct elements of A (D), and set G = GL,, (D).
The set of functions on GS., defined by

reg’

{trm | GO 21 <i < r),

reg *

18 linearly independent.

2

Proof. Let C be a central F-division algebra of dimension n? = m?2d?, and write

G’ = GL1(C). The set G’filg is dense in G’ and, for m € A7 (C), the function trm
is locally constant on G’. The result is therefore elementary for G’ and holds in

general as a consequence of (1.4.1). O

1.5. Write G = GL,,,(D) and let (7, V) € A}, (D) be square-integrable modulo

centre. Let (7, V) be the contragredient of (7, V) and let jig be a Haar measure
on G/F*. For v; € V and #; € V, we have the first Schur orthogonality relation

/ (7(g)01,v1) (U2, w(g)v2) dfic(g) = d(m, fug) " (1, v2) (U2, 01),
G P

where d(7, fic) is a positive real constant called the formal degree of 7 relative
to fig. (See, for instance, [13] 10a.2 for an exposition of this topic.)

Clearly, if y is a character of F'* which is unitary, in that |x| = 1, then x=
is square-integrable mod. centre and d(xm,ic) = d(m,fig). For an arbitrary
m € AL (D), there is an unramified character x of F* such that mg = x7 is
square-integrable mod. centre. We define d(7, i) = d(mo, fic)-

We discuss ways in which the Haar measure ji; may be conveniently normal-
ized. In the case m = 1, the group D* /F* is compact, so one may choose fipx
to give D* /F* mass 1. For this choice of Haar measure, every m € AY (D) has
formal degree equal to dim .

In general, let 7 € A} (D). The cuspidal support of m then consists of un-
ramified twists of a cuspidal representation o € AL, (D), for some divisor m’ of
m. In the case where m’ = 1 and o is of dimension 1, the representation 7 is of
the form y - Stg, where y is a unitary character of F'* and St is the Steinberg
representation of G. (We recall more of this matter in Appendix 1 below.)

There is a unique Haar measure jig on G/F* such that

(1.5.1) d(Ste, jic) = 1.
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We set
(1.5.2) degm = d(m, jig), w¢€ AL (D),

and call deg 7 the normalized formal degree of .
The following result may be found in [21] when F' has characteristic zero, in
[16] when F' has characteristic p (but the scheme of proof in [16] applies equally

in characteristic zero).

Theorem.

(1) Let m € AL (D); there is an open neighbourhood N of 1 in G such that

trm(g) = (=1)™ "t degm, geNNG

reg
(2) Using the notation of (1.4), we have
degm = deg 7,
for every m € AL (D) and ' = gm € AL, (D).

1.6. If G is any of the groups GL,,(D), an element g € G is called pro-unipotent

if g»" — 1 as r — o0o. Let G°! denote the set of pro-unipotent, elliptic regular

reg
elements of G.

Let N be an open neighbourhood of 1 in G = GL,,(D). We say that N is u-
small if NN Gfgg C qugg. Such neighbourhoods exist. For example, the group of
elements x € GL,,(0p) such that x =1 (mod pp) is open in G and is a u-small

neighbourhood of 1.

Lemma. Let G = GL,,(D), G' = GL,,/(D’), for central F-division algebras D,
D' such that m®>dim D = m/> dim D’. Let N be a u-small open neighbourhood of

1 in G. There exists a u-small open neighbourhood N’ of 1 in G’ such that every
element of N' N G'Y

reg 18 associate to an element of N.

Proof. See 2.9 below. [J

We use the lemma to prove the following result, needed in 7.9 at the end of

the proof of the Second Comparison Theorem (7.1).
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ell

Proposition. Let (u;);>1 be a sequence of elements of wGre,

ell
reg

such that uj — 1

as j — oo. There is a sequence of elements u; € 4wG'\o, such that uj is associate

to uj, for each j, and u}; — 1.

Proof. We have to show that, if N’ is an open neighbourhood of 1 in G/, then we
/
J
of 7. We may assume that N’ is u-small. By the lemma, there is a u-small open

may choose u’; associate to u; such that u; € N’ for all but finitely many values

neighbourhood N of 1 in G such that every element of N N ,G¢! is associate to

reg

an element of N’. However, N contains u; for all but finitely many j. O

2. Types and cuspidal representations

We recall material of a more algebraic nature. We work with a central simple
F-algebra A of dimension n?, n > 1, and the group G = A*X. We review
the structure theory for the irreducible cuspidal representations of the locally
profinite group G, as it is worked out in [38—41]. We give no detail at all, beyond
establishing the vocabulary and standardizing the notation.

This analysis leads to a notion of parametric degree generalizing that of [9].
We connect it with the normalized formal degree of 1.5, to reach the starting

point of the paper.

2.1. We recall standard facts concerning the algebra A. Most of this material
can be found in, for example, [35].

Let V' be a simple left A-module. As such, V is uniquely determined up to
A-isomorphism. We define End 4(V') so that V' is a right End 4 (V')-module. The
F-algebra D = End4 (V) is a division algebra. The given action of A on V
induces an isomorphism A 2 Endp (V) of F-algebras!.

Let V have dimension m as D-vector space. The choice of a D-basis of V'
induces an isomorphism A = M,,(D). It follows that dimz D = d?, where
md = n, and dimg V = nd. The choice of a basis, and hence of an isomorphism
A = M,, (D), enables us to view D as embedded in A as the algebra of “scalar
matrices” diag(x,z,...,z), x € D. This embedding does, of course, vary with

the choice of basis.

! The authors of [38—41] prefer to have End 4 (V) acting on the left, so D here corresponds
to the opposite of D in those papers.
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We mention some basic facts concerning subfields of A. Let E D F be a
subfield of A. The degree [E:F] thus divides n. Conversely, any field extension
E/F, of degree dividing n, is isomorphic to an F-subalgebra of A. Any two
F-embeddings F — A are G-conjugate.

(2.1.1) Let E/F be a subfield of A, of degree r, and let B denote the A-centralizer
of .

(1) The algebra B is a central simple E-algebra of E-dimension n?/r?.
(2) There is an E-isomorphism B = M,;(C'), where C' is a central E-division
algebra of dimension ¢, such that ¢ = d/gcd(d,r) and lc = n/r.

The assertion concerning the value of ¢ follows from [35] Theorem 31.9 (or see
[44]).

2.2. We make summary remarks (see [35] or [7]) concerning the class of heredi-
tary op-orders in A.

We view V' as a right D-vector space. An op-lattice in V' is a finitely generated
op-submodule of V' which spans V over D (or F).

Let £ be an op-lattice chain in V. Thus L is a non-empty set of right op-
lattices in V, linearly ordered by inclusion and stable under translation by D*.

It admits an enumeration L = {L; : i € Z}, with the following properties.

(2.2.1)

(1) L; 2 Li+1, 1 € Z, and
(2) there exists an integer e > 1 such that Liw. = Lipp, i € Z.

The integer e = ep(L) is the D-period of L.
For j € Z, put

W;(L)={xeA:aL; C Liyj,i € Z}.

The set A = Ao(L) is a ring, and an op-order in A. It is indeed a hereditary
op-order, in the sense of [35]. All such orders arise, in this way, from lattice
chains in V.

The set P = A; (L) is the Jacobson radical of 2 (we use the notation P =
rad ) and A;(L) = P? (with a suitable interpretation in the case j < 0).
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The lattice chain L is the set of all 2A-lattices in V. We use the alternative
notation e(Ajop) = ep(L). We will also use the notation e(U|op) for F-period
of L, defined by pp2 = Pe@°r) As prop = pb, we have e(U|or) = e(Alop)d.

We set Uy = Uj = A* and Ug[ = 1+97, j > 1. These groups U, j > 0, are
compact open subgroups of G. We shall also need the group

Ko ={g€G:gAg~ ' =2A.

This is an open subgroup of G, compact modulo the centre F'* of G. It normalizes
all of the groups U}, k > 0. Writing 21 = 2(y(L) as above, we can also view Ky
as the group of g € G for which gL = L.

The group Xg comes with a canonical homomorphism vg : Ko — Z defined
by the equivalent conditions g2 = Ag = Pv2) or gL; = Litog(q), for g € Ky
and ¢ € Z. The homomorphism vy : Ko — Z is surjective if and only if there
exists x € Ky such that P = 2 = Ax. Hereditary orders with this property are

called principal orders [7].

Remark. Since we give no proofs in this area, we have no need of the notion
of a “lattice sequence” in V, or the associated non-standard filtration of Ug,
which plays such an important réle in [38-41]. Indeed, we only ever deal with
the standard filtration (U%() of Uy, and the hereditary order 2 will almost always

be principal.

2.3. We combine the considerations of the preceding two paragraphs. Let 2 be
a hereditary op-order in A and E/F a subfield of A. We say that 2 is E-pure if
E* C Ky.

We recall [41] 1.7:

(2.3.1) Let E/F be a subfield of A and let B denote the A-centralizer of E.

(1) Let A be an E-pure hereditary op-order in A. The set B =ANB is a
hereditary og-order in B and Q =B N B is the Jacobson radical of *B.

(2) Let B be a hereditary og-order in B and put Q = radB. There is a
unique pair (p,A), consisting of an integer p = 1 and an E-pure hered-
itary op-order in A, such that B* N B = QF | k € Z, where P = rad A
and k' is the least integer > k/p. Moreover, KXo = Ko N B.
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If 2 is any E-pure hereditary order in A, it has become common to refer to
B = AN B as the “trace” of A, and to A as a “continuation” of B to A. If
we start from B, we refer to the order 2, given by (2.3.1)(2), as the canonical
continuation of B to A.

A special case is worthy of overt mention: see [5] for details.

(2.3.2) Suppose, in the situation of (2.3.1)(2), that the og-order B is mazximal.
The canonical continuation A of B is then the unique E-pure hereditary op-order
in A intersecting B in B. The order 2 is, moreover, mazximal among E-pure

hereditary orders in A.
In the situation of (2.3.2), the orders B, 2, are both principal.

2.4. We examine the irreducible cuspidal representations of G, starting with an
extreme case. Let 2 be a mazimal op-order in A. The order 2 is therefore given
by an op-lattice chain of the form £ = {Lp?%, : i € Z}, for a fixed op-lattice L in
V. Any two maximal orders in A are GG-conjugate.

We may identify A with M,, (D) via a basis of V, as in 2.1, chosen to be an
op-basis of L. The order 2 then becomes identified with M,,(0p). Taking the
case A = M,,(op) and viewing D as the algebra of scalar matrices in A (as in

2.1), we get

rad2 = ppA =App = M, (pp),
Kot = D* Uy

We conclude that Uy /Uy = GL,,(kp). If wp is a prime element of D, viewed
as an element of Kg, then wp acts (by conjugation) on this group. The action

is that of a generator of Gal(kp/kr) acting on matrix coefficients.

Definition 1. A maximal simple type of level zero in G is a pair (U, \), where

(1) U = Uy, for a mazimal op-order A in A, and
(2) X is an irreducible representation of Uy, trivial on Uy and inflated from

an irreducible cuspidal representation of the finite group Us /Uy = GL,, (kp).

Let (U, \), U = Uy, be a maximal simple type of level zero in G. The following
lemma is a straightforward instance of the more general considerations of [24].
However, it can equally be proved by a direct calculation, essentially identical to
that in the split case G = GL,,(F).
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Lemma.

(1) Let T be an irreducible representation of U = Uy, trivial on Ugll. If r
intertwines with \ in G, there exists x € Ko such that 7% = .

(2) Let J(\) denote the set of elements of G which intertwine the repre-
sentation A, let wy be the number of distinct Ko -conjugates of A. The
set J(N) is then the unique subgroup of Ko of index wy and containing
F*Ugy. The group J(X) normalizes the pair (U, \).

The integer wy may also be described as follows. The representation A is
inflated from an irreducible cuspidal representation \ of GL,,(kp), via an iso-
morphism Uy /Uy = GL,,(kp). The number of distinct conjugates of A, under
the natural action of Gal(kp/kr), is then wy.

The group Ky /F*Ug is cyclic of order d, so wy divides d. In this situation,
we define the parametric degree do(\) of X by

(2.4.1) do(A) = mwy.

Remark 1. In practice, it is usually more convenient to think of \ as being
given, via the Green parametrization, by a character x of I, where I /kp is a field
extension of degree m contained in M,,, (kp). Since ) is cuspidal, the character

is I /kp-regular, in that its conjugates x?, o € Gal(l/kp) are distinct. Moreover,

(2.4.2) trA(z) = (D" > X(),

o€Gal(l/kp)

for every l/kp-regular element x of 1*. The number of distinct conjugates of
x under Gal(l/kp) is then dg(\) = mwy. (For the Green parametrization, see
[25] or [31], although the authors find the character tables in [34] particularly
convenient. The summary in [14] §2 will be adequate for the purposes of this
paper.)

We note the following straightforward consequence of the lemma.

Proposition. Let (U, \) be a mazimal simple type in G of level zero.

(1) The representation X\ admits extension to a representation A of the group

J(N).
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(2) The representation A is uniquely determined up to twisting with a char-
acter of the form xa = x o Nrda, where x is an unramified character of
F*.

(3) Let x be an unramified character of F*. The representations A and
xa ® A intertwine in G if and only if they are equivalent. Moreover,
A2 x4 @ Aif and only if x5 =1,

(4) The representation

= c—Indg(/\)/l

of G is irreducible and cuspidal.

Representations (J (), A), of this form, constitute the class of extended max-
imal simple types of level zero in G.

Let w be an irreducible cuspidal representation of G. One says that 7 has level
zero if it admits a non-zero vector fixed by Uy, for some maximal op-order 2 in

A. The main result in this area is:

Theorem. Let m be an irreducible cuspidal representation of G, of level zero.

(1) The representation m contains a mazimal simple type (U, \) of level zero.

(2) There ezists an extended maximal simple type (J(N), A) such that A |
UZXand m =2 my.

(3) The representation m determines both (U, \) and (J(X), A) uniquely, up
to G-conjugacy.

(4) The number t(m) of unramified characters x of F* satisfying xm = 7 is
given by t(m) = do(N).

The proof is comparatively straightforward, mimicking the corresponding re-

sult in the split case. It can again be regarded as a simple instance of [24].

Definition 2. Let m be an irreducible cuspidal representation of G = GL,,(D),
of level zero. The parametric degree §(m) of 7 is do(N), where (U, \) is a mazimal

stmple type contained in .

Part (4) of the theorem implies that the definition of §(7) is independent of
the choice of type A.

Remark 2. In the split case G = GL, (F'), an irreducible cuspidal representation

of G (of level zero) always satisfies () = n. This, however, fails for general



488 C.J. BUSHNELL AND G. HENNIART

groups GL,, (D). If m is an irreducible cuspidal representation of GL,,(D) of
level zero, then m divides 0(7) and §(7) divides n, but §(7) is subject to some
further combinatorial constraints. For, let I/kp be a field extension of degree m
as above, and write I' = Gal(l/kp), A = Gal(l/kp). Let x be a character of
1*, and let @ be the subgroup of I" which fixes x. The character y gives rise
to a maximal simple type if and only if ® N A is trivial. In other words, if we
fix a positive integer §, divisible by m and dividing n, there exists an irreducible
cuspidal representation 7 of G, of level zero and with §(7) = 4, if and only if n/d

is relatively prime to m.

2.5. We proceed to the general case. We follow [38—40] and, particularly, the
summary in [41]. We abbreviate the treatment as much as possible, while keeping
the terminology and notation strictly parallel to those of [17].

Let E/F be a finite field extension, and let § € E*. We assume throughout
that vg(6) < 0 and that £ = F[5]. Let A be a central simple F-algebra as
before and let ¢ : E — A be an F-embedding. Let 21 be an ¢FE-pure hereditary
op-order in A. The period ey = e(A|op) = de(™U|op) is divisible by e(E|F) and
vy (L) = equg(fB)/e(E|F). Any quadruple [, ly, 7, L[], with oy = —vg(¢[) and
r < ly, is then a pure stratum in A.

Attached to the pure stratum [, ly, 7, ¢3] is the critical exponent ko(¢3,) €
Z U {—oc}. By definition, [, by, r, (3] is simple if —ko(¢3,2A) > r. The critical
exponent satisfies

e(E|F) ko(13,2) = ea ko(B,A(E)),

where 2(E) is the unique E-pure hereditary op-order in the algebra Endp(E).

We henceforward assume that [2, lg,0,¢0] is a simple stratum. We identify
FE with its image in A and suppress the notation ¢. The stratum gives rise to a
pair

H(B,2A) CIB,A) cA

of op-orders in A. We take the standard filtration subgroups of unit groups

H*(8,2%) = 9(8,9) NUy = H(3,2A)* NUY,
JF(B,) = J(B,0) NUK = I(B,A)* NUY,

forkeZ, k> 0.
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We choose, once for all, a character ¥ of F' which is “of level one”. That
is to say, pr C Ker¢p but g | op # 1. We use ¢p to construct the finite set
C(2A, B,vF) of so-called simple characters of the group H(3,2).

Comment. The definitions in [38] of the orders §), J, and the simple charac-
ter set C are necessarily indirect. However, as pointed out in [38] Propositions
3.42 and 3.45, one may see ex post facto that the obvious generalization of the
approach of [17], via simple approximations to pure strata, applies without sig-
nificant change. When we need to enter into more detail, this is the method we
shall adopt. We therefore say no more at this stage concerning the constructions
in [38].
We summarize some of the main points.
(2.5.1) Let B denote the A-centralizer of E, let B = AN B, and let § €
C(A, B,¢r). Abbreviate J* = J*(3,2), and so on.
(1) We have J° = UgJ' and Ug N J' = Uy.
(2) There exists a unique irreducible representation ng of J* such thatng | H!
contains 6.
(3) For g € G, the following are equivalent:
(a) g intertwines 0;
(b) g intertwines ng;
(c) g€ JIB*JL.
(4) If g € J*B*JY, the coset J'gJ' supports a one-dimensional space of

intertwining operators for the representation ng.

We need to delineate more carefully a phenomenon underlying parts of (2.5.1).

The quotient
(25.2) B(B.A) =3'(6,0)/9(8,2%) =T /H

is a vector space over kg and hence an elementary abelian p-group. It has a

sequence of subspaces
vF(B,A) = JF/HF, k> 1.

For x,y € J*(B,2), the commutator [z,y] = zyz~'y~! lies in H?* and we
consider the pairing hy : (z,y) — 60[zr,y]. The values of this pairing are p-th
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roots of unity, and hy defines an alternating bilinear form
(2.5.3) ho - 0F(8,A) x V*(3,2%) — F,, k=1,

over F,. We then have [38] Théoreme 3.52:

(2.5.4) The alternating form (2.5.3) is nondegenerate, for every k > 1. As
alternating space, B(3,2) is the orthogonal sum of nondegenerate alternating
spaces isometric to Bk (3, 2A) /T3, A) = Jk/JFH1HF |k > 1.

For the next step, we need a simplified version of the main result of [39]. As
before, [, 4,0, 5] is a simple stratum in A and 6 € C(A, 5,9 r). Again, B is the
A-centralizer of E = F[(] and B =2N B.

(2.5.5) There erists an irreducible representation r of J = J°(3,2) such that
(1) x| J' 2ng, and
(2) K is intertwined by every element of B*.
These conditions determine k uniquely, up to temsoring with a character of
Ug/Ugy = J/J' of the form x o Nrdp, where x is a character of Ug trivial

1
on Ug.

We call k a wide extension® of ny. Since dim k has p-power dimension, two
wide extensions k; of g are equivalent if and only if the p-regular parts of the

characters det k; are the same.
2.6. We use a special case of the foregoing to make a fundamental definition.

Definition. A maximal simple type of positive level in G is a pair (J,\) con-

structed as follows.

(1) There is a simple stratum [, £,0, 3] in A, such that J = J°(B3,21), satisfy-
ing the following condition: if B is the A-centralizer of the field E = F[f]
and B =2AN B, then B is a maximal og-order in B.

(2) There is a simple character § € C(A, 5,vr) and a mazimal simple type
(U, 0m) of level zero in B* such that X is a representation of J of the
form

A=0 QR K,

2This term is intended to replace the arcane expression “g-extension” surviving from [17].
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where
(a) K is a wide extension of ng, and
(b) o is the representation of J, trivial on J*, deduced from o via the
isomorphism Us [Ugy = J/J* .

Using the same notation, we note a particular property given by [40] Propo-

sition 4.3.

(2.6.1) Let g € G. The following conditions are equivalent:

(1) g intertwines \;
(2) g normalizes J and N9 = \;
(3) g € Jp(om)Jt, where Jp(owm) is the normalizer of the simple type (Us, o3

i B*.

We write J(A\) = Jp(ox)J?.
We define the parametric degree do(A) of the maximal simple type (J, A) by

do(A) = bo(om) [E:F].

One may show directly that dp(A) does indeed depend only on the isomorphism
class of the pair (J,A), and not on the simple stratum and simple character
we chose to describe it. There is no need to enter into the detail, since it is a
consequence of 2.7 Proposition below.

When speaking of a mazimal simple type in G, we mean either a maximal
simple type of level zero or a maximal simple type of positive level.

We now extend the definition as before. We recall that, if y is a character of

F>*, then x4 denotes the character x o Nrd4 of G.

(2.6.2) Let (J,\) be a mazximal simple type in G, as in the Definition.

(1) The representation \ admits extension to a representation A of J(N).

(2) The set of such extensions consists of the representations x4 @ A, where
X ranges over the unramified characters of F*.

(3) The representation x a® A intertwines with A if and only if it is equivalent
to A. The group of unramified characters x satisfying x4 ® A = A has
order 6o(o) f(E|F).
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(4) The representation of G defined by
™A = C-Inds;()\)/l

1s irreducible and cuspidal. Moreover,

(a) if x is an unramified character of F*, then my ,o4 = x7a, and

(b) t(mwa) = do(oss) f(E|F).

A pair of the form (J(\), A), obtained from a maximal simple type (J,\) as in
(2.6.2), is called an extended mazximal simple type of positive level in G. We can

now complete the picture with the following, which is the main result of [41].

Theorem. Let w be an irreducible cuspidal representation of G, not of level zero.
There is a mazimal simple type (J,\) in G, of positive level, such that w contains
A. Consequently, there exists an extended maximal simple type (J, A) in G such
that m = c—Ind?/l.

2.7. Let 7 be an irreducible cuspidal representation of G = A* = GL,,(D).
Attached to m we have the numerical invariant ¢(7) (as in 1.4). Comparing
central characters, we see that ¢(m) divides n. The representation 7 contains a

maximal simple type (J,\), the parametric degree dy(A) of which also divides n,
and t(7) divides dg(\).

Proposition. Let m be an irreducible cuspidal representation of G = GL,, (D).
If (Ji,Ni), @ = 1,2, are mazximal simple types occurring in m, then do(A1) =
do(A2).

Proof. We need an auxiliary result. To state it, we need another notation. If
a,b are positive rational numbers, we write @ = b (mod p”) to mean that ab™!
is a power (positive or negative) of p. We choose a Haar measure 1 on G/F*,
with the property that g(PF*/F*) is an integral power of p, for any open pro-p
subgroup P of G.

Lemma. Let (J,\) be a mazimal simple type in G. If it has positive level and
is based on a simple stratum [, £,0, 5] (as in 2.6 Definition, ), set E = F[3]. If
it has level zero, set E = F..

If T is an irreducible representation of G containing A, then T is cuspidal and

t(7) g—1

Z
Py (mod p”).

(2.7.1) d(r, )
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Proof. If T is an irreducible representation of G' containing A, then
T C-Indg()\)@,

for an irreducible representation © of J(\) extending A. Indeed, (J()),©) is
an extended maximal simple type. Theorem A.14 of [8] shows that the formal
degree d(r, 1) of 7 is given by

dim © dim A

W0 = 50~ BT

(As remarked in §1, the proof of this result in [8] applies unchanged to our present
situation.) We evaluate this expression to sufficient accuracy.

Suppose, for the moment, that we are in the positive level case and use the
notation of the definition in 2.6. We have dim©® = dim A = dimoy - dim &,
and dimk is a power of p. If B = M;(C), where C is a central E-division
algebra such that dimp C' = ¢?, then o is the inflation of an irreducible cuspidal
representation of GL;(kc). Therefore

_ |GLi(ko)|

dimog = — (mod p?),
dc — 1

where go = |k¢|. The group J(A) contains F*J, J = J°(3,2), with index
e(E|F)lc/dp(oss). Thus

TN/ F) = % (T /Ur)
= FEF)oalo) M 7UF)
= % A(J/UF).

The measure factor satisfies i(J/Ur) = |GLi(kc)|/(g—1) (mod p?), giving

d(r,p) = ~2 (mod p%),

while gc = ¢%, so

E.F
Gb = gl = g/ P = gr/e®I),
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Thus the lemma is proved when (J, ) has positive level. When (J, \) has level
zero, one uses the same argument with £ = F' and GL;(k¢) = GL,,,(kp). O

We return to the statement of the proposition. If 7 contains the two maximal
simple types (J;, A;), (2.7.1) implies (in the obvious notation) that e(F1|F) =
e(E2|F). However, t(m) = f(E;|F)do(oss,), and dg(\;) = [F:F]0¢(0ss,), whence
the result follows. [

We may now make a formal definition.

Definition. Let w be an irreducible cuspidal representation of G = GL,,(D).
The parametric degree §(m) of m is 6(w) = do(A), for any mazimal simple type

(J,\) contained in .
We have already remarked, at the beginning of the paragraph:

(2.7.3) Let w be an irreducible cuspidal representation of G. The integer ()
divides n and is divisible by t().

2.8. We now state a result connecting the preceding material with that of §1.
The proof, however, requires a distinctive family of ideas, so we have given it
separate treatment in Appendix 1.

Let G = GL,,(D) as before, with dim D = d? and n = md. Take = € A (D).
If 7 is cuspidal, its parametric degree 6() has just been defined in 2.7. Otherwise,
there is a positive divisor r of m and an irreducible cuspidal representation o of
GL, (D) such that the cuspidal support of 7 consists of unramified twists of o
(1.5). We set

(2.8.1) d(m) = (o).

In this situation, we also have the relation

(2.8.2) t(m) = t(o).

Theorem. Let m € AL (D). The normalized formal degree degm satisfies

degm = t(m) (¢" — 1)/(¢"™"/°™) — 1) (mod p¥).

Proof. See Appendix 1 below. [
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Corollary 1. Let j : AJ(F) — A (D) denote the Jacquet-Langlands corre-
spondence. If m € AY)(F), then §(jm) = 6(m).

Proof. Write 7 = jm. We have ¢(7) = t(m) (1.4.4) and degm = degjm (1.5

Theorem). Consequently,
(qt(ﬂ)n/é(ﬂ) o 1) = (qt(ﬂ)n/5(7—) - 1) (mod pZ)’

whence the assertion follows. [

Let 7 € AL (D). The integer t(m) divides d(m) (2.7.3). We say that 7 is
essentially tame if p does not divide d(m)/t(m).

Lemma. Let m € AL (D) be cuspidal. The representation T is essentially tame

if and only if either

(a) 7 has level zero, or
(b) 7 has positive level and contains a mazimal simple type based on a simple
stratum [, £,0, 3] such that the field extension F[B]/F is tamely ramified.

A general element m € AL (D) is essentially tame if and only if some element of

its cuspidal support is essentially tame.

Proof. If m has level zero, then ¢(7) = 6(7) (2.4 Theorem), and so 7 is essentially
tame. If 7 has positive level, it contains a maximal simple type based on a simple
stratum [, ¢,0, 5], and 0(7)/t(m) = e(F[B]|F). The final assertion follows from
(2.8.1), (2.8.2). O

The proof of (b) shows that, if 7 is essentially tame, then F[y]/F is tamely
ramified for any simple stratum [2',¢',0,~] underlying a maximal simple type

occurring in 7.

Notation. Let ASE(D) denote the set of m € AL (D) which are essentially tame
and satisfy §(m) = n.

All elements of ASt (D) are cuspidal and, in particular, A (F') is the set of
equivalence classes of irreducible, essentially tame, cuspidal representations of
GL,,(F'). (This notation agrees with that of [11].) From Corollary 1 and (1.4.4),

we obtain:



496 C.J. BUSHNELL AND G. HENNIART

Corollary 2. The Jacquet-Langlands correspondence j : A (F) — AL (D) in-
duces a bijection A (F) — A (D).

Corollary 2 provides the true starting point of the paper. It is our task to
render the map A (F) — A (D) explicit.

2.9. We prove 1.6 Lemma. For the first step, let C' be a central F-division
algebra of dimension n? = m2?d?, d*> = dim D, and suppose that G’ = GL;(C).
In the algebra A = M,,,(D), we choose a maximal order 9. Shrinking the given
neighbourhood N, we may assume that it takes the form Ué’“ﬁ, for some integer
k>1. Set N' = UZ* = 1+p2*, and let x € N’ be elliptic regular. Let E = F[x],
let ¢/ = e(F[z]|F) and let e be the least common multiple of ¢’ and d. Since d
divides e and e divides n, the order 9 contains a principal order 2 of F-period
e. There is an F-embedding ¢ : E — A such that 2 is ¢(F)-pure. We write

x = 14y and compare valuations:

va(gy) = evp(y)/e = evc(y)/n > emk/n = ek/d.

However, U;k/ 4 Ué}t, so x is associate to an element of N, as required.

We next treat the case where G = GL1(C) and G’ = GL,,,(D). We take N of
the form Ug““, for some k > 1. We fix a maximal order 9 in M,,, (D) as before,
and set N’ = UY,. If z = 1+y € N is elliptic regular, we put £ = F[z] and
define ¢’ = e(E|F) in the same way. We have

vE(y) = e'vam(y)/d > e'k/d.

If we choose an F-embedding ¢ : E — C', we get

ve(oy) = nve(y)/e = kn/d = mk.

It follows that z is associate to an element of N, as required.
The general case of the proposition now follows from a simple transitivity

argument. [J

3. Tame ramification

Let A be a central simple F-algebra, exactly as in §2. We set out, in an explicit
form, some special properties of simple strata [2, ¢, r, 3] in A for which the field

extension F[G]/F is tamely ramified.
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3.1. We start by recalling a fundamental property of tamely ramified simple
strata.

Let E/F be a finite, tamely ramified field extension, let § € E* satisfy
E = F[#] and vg(B) < 0. Let A(E) denote the split central simple F-algebra
Endr(E) and let A(E) denote the unique E-pure hereditary op-order in A(E).
Thus 2U(E) is associated to the lattice chain {p% : k € Z} in the F-vector space
E. Write kp(83) = ko(8,2U(E)). We recall that kp(3) < vg(f) if and only if 3 is

minimal over F'.

Proposition. Suppose that krp(8) > vg(B). There exists a simple stratum

[U(E), —ve(B), —kr(B),7], equivalent to [A(E), —vg(B), —kr(5), 8] and with v €
E.

Proof. See 8.5 Lemma of [14]. O

Let A be a central simple F-algebra of dimension n2. Suppose that E has been

embedded in A as an F-subalgebra. Let 2 be an E-pure hereditary op-order in
A.

Corollary. Let ¢ = —vy(f) and r = —ko(5,2). The stratum [, £, r,~] is then
simple and equivalent to [, £, r, 3].

Proof. We have { = —vg(B)e(U|op)e(E|F)™ and r = —k(B)e(U|op)e(E|F)~1
(2.5). Applying these identities to -, in place of 3, the result follows. [

3.2. We take a simple stratum [, ¢,0, 5] in A, such that E = F[5]/F is tamely
ramified. We define the orders H(3,2(), J(5,2) and the simple character set
C(A, B,vr) following the recipes in Propositions 3.42, 3.45 of [38]: these are
strictly parallel to the treatment of the split case in [17]. It is convenient, in the

present general discussion to impose the following simplifying assumption.

Hypothesis. There is a subfield EDE of A such that 2 is E—pure, E/E 18
unramified and [E:F] = n.

The field E is its own centralizer in A and o 5 1s the unique og-order in
E. Tt follows from (2.3.2) that 2 is the unique E—pure hereditary order in A. In
particular, the hypothesis holds when the stratum [, ¢, 0, 5] underlies a maximal
simple type (as in 2.6 Definition). From the start of §4, we will always be in that

situation.
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Let K/F be a subfield of E: in particular, K /F is tamely ramified. We let
Ak denote the A-centralizer of K and i = AN Ag. Thus (2.3.2) Ag is the

unique E—pure hereditary ox-order in Ag. Let Gx = Aj.

Proposition.

(1) The quadruple [Ak,¢,0, 0] is a simple stratum in Ax and

Hl(ﬁ791K):Hl(ﬁ72l)ﬂGK, Jl(ﬁamK):‘]l(ﬂam)mGK

(2) Let Y = p o Trg p and let 6 € C(A, B,7r). The restriction O = 0 |
HY(3,2k) then lies in C(A, B,%K).

Proof. Regarding the simplicity of [, ¢, 0, 3]: this reduces to an assertion con-
cerning the relation between kr(8) and kx(8). In other words, we need only
consider the split case, where the result is given by [8] 2.4.

For the other assertions, we proceed by “induction along 4” in the manner
familiar from [17]. Suppose first that § is minimal over F'. Thus either g € K
or ( is minimal over K (cf. [8] 2.9). Let B denote the A-centralizer of 3 and set
B = AN B. We have H(5,2) = B+PI/2A+! where P = rad A. Define an integer
' by Bk = Pr-, where P = rad Ax. We then have PlE/3+10 A, > plf/2+1
whence $H(3,2A) N Ax D H(F,Ak). Similarly for J and, in multiplicative terms,

Hl(ﬁamK)CHl(ﬁan)mGKv Jl(ﬂvglK)CJl(ﬂan)mGK

Take 0 € C(2A, 3,79 r) and consider the character ¥ = 6 | H'(3,2) N Gk. Cer-
tainly, ¥ is normalized by J* (3, %) NG . Using the explicit form for simple char-
acters, one sees that the restriction 5 =9 | H' (3, %k ) lies in C(™Ux, 3, ¥k). In
particular, O is intertwined by the subgroup J!(3,2) N Gx of UQIIK and stable
under conjugation by J(3,2x). It follows that J'(3,2) N G is contained in,
and hence equal to, J!(3,2 ). The nondegeneracy property (2.5.4) implies that
the character 0 cannot be extended to a J!(f3,Ax)-stable character of a sub-
group of J(3,2k) containing H'(3,A) strictly. All assertions follow in this
case.

For the general step of the induction, let r = —ko(3,2) < ¢, and choose v € E
so that [, ¢, 7,v] is simple and equivalent to [, ¢,0, 5]. Define the integer r’ by
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(B—y)Ax = ‘B[}T/. This gives H(8,2) = B+H/2+1(4,2A), where B is the UA-
centralizer of 3. We have BIr/2+1 0 Ay = ‘,]3[12 / 2]+1, so by inductive hypothesis
we get H(F,A) N Ax D 9(6,Ak). Similarly for J. The argument concludes

exactly as before. [

We remark that some of the hypotheses can be weakened here, but we are not

currently concerned with achieving generality.

3.3. By the term 1-pair we mean a pair (E/F, ) in which E/F is a finite, tamely
ramified field extension and £ is a character of UL. Two such pairs (E;/F,¢&;),
1 = 1,2, are said to be F-isomorphic if there is an F-isomorphism « : Fy — F»
such that & = & o a.

The 1-pair (E/F,§) is called admissible if { does not factor through Ng/x,
for any field K satisfying F' C K ¢ E.

We return to the central simple algebra A as above, and the simple stratum
[2(,¢,0,8] in A, with E = F[]/F tamely ramified and satisfying 3.2 Hypothesis.
Let B denote the A-centralizer of  and set B = ANB. Let 6 € C(A, 8,¢r). The
restriction of 6 to H'(3,2) N B = Uy, factors through Nrdg, [38] Proposition
3.47. That is, there exists a unique character & of Uy = Nrdp(Ug) such that
0| Uy = & o Nrdp.

Proposition. The 1-pair (E/F, &) is admissible: if ro = —kp(5) then & | U’
does not factor through Ng, when F C K ¢ E.

Proof. We first recall [11] A.1 Lemma:

Lemma. Let E/F be a finite, tamely ramified field extension, and let 1 be a
character of UL, for some i > 1. There exists a unique sub-extension E'/F of

E/F, such that v factors through N, g, and which is minimal for this property.

We return to the proposition. If £ = F'| there is nothing to say, so we assume
the contrary. We set £p = —vg () and proceed by induction along (3.

Assume first that £ is minimal over F. In this case, ro = 3. The character
§o has level fo, and {y(14+2) = Yp(Trg/r Br), x € pEEO. Therefore &y | Uéo does
not factor through any non-trivial norm map over F'.

In general, we choose a simple stratum [A(E), £y, 70, 7] equivalent to [A(E), lo,
o, 3], with v € E (3.1). The element f—v € E is then minimal over F[y]. The
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character &y is of the form &£, for factors & as follows. First, & has level r
and &1 (14y) = Yr(Trg/p(B—Y)y), ¥y € pj. As in the first step, & | U’ does
not factor through Ng, i if F[y] C K & E. The other factor is of the form
§2 = §ooNpg/ppy, for a character §y of Ul%ﬁ[w]' By inductive hypothesis, & | U+
does not factor through Ng, g if ¥ C K & F[y]. Consider the set of fields L,
with F' C L C E, such that & | UR™ factors through Ng/r. By the lemma,
this set has a unique minimal element, which is clearly F[y]. We conclude that if
o | Uy factors through Nk, then K D Fly]. It follows that if {y | Uy’ factors
through Ng /g, then K = E, as required. [

Comment. Théoreme 3.53 of [38] gives a bijection

CAE), B,vr) = C(A, B,¢r)
that is canonical, for a fixed choice of 3. Characters corresponding under this
bijection give rise to the same admissible 1-pair. In the split case, elements of
C(A(E), B,1r) give rise to isomorphic 1-pairs if and only if they are conjugate
in A(E)* = Autp(F). This level of precision is not presently available in the

general case.

4. Attached pairs

In this section, we give an approximate description of the elements of At (D),
in terms of admissible pairs. Initially, this process involves arbitrary choices
and has no particular invariance properties. The main results of later sections
will show that it provides a canonical parametrization of the representations in
A2t (D), generalizing that for A% (F) in [11].

4.1. We recall a standard definition, cf. [11], [26].
Definition. Let E/F be a finite, tamely ramified field extension and let  be a
character of E*. The pair (E/F,§) is admissible if

(1) & does not factor through Nk, for any field K such that F' C K ¢ E,

and

(2) if & | Uy, does factor through N, i, F C K C E, then E/K is unramified.

We define F-isomorphism of admissible pairs in the same way as for 1-pairs
(3.3). The degree of (E/F,§) is [E:F].

From 3.3 Lemma, we have:
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Lemma. Let (E/F,§) be an admissible pair. There is a unique sub-extension
Eo/F of E/F such that & | Uy, factors through Ng g, , and which is minimal for
this property.

The extension E/Ej is, by definition, unramified. Putting the lemma another
way, there is a unique admissible 1-pair (Eo/F, &) with Eg C E and £ | U}, =
SooNg/g,-

4.2. Let m € A (D) have level zero. By 2.4 Theorem (1), m contains a repre-
sentation A of GL,,(0p), inflated from an irreducible cuspidal representation A
of GL,,(kp). The representation )\ is given, via the Green parametrization, by a
character € of I, where I /kp is a field extension of degree m (cf. (2.4.2)). Since
(by definition) §(7) = n, the character ¢ is I /kp-regular.

Let E/F be unramified of degree n. We identify kp with . We define a
tamely ramified character £ of E* by deeming that £ | Ug shall be the inflation
of é and that & | F* shall be the central character of 7.

Proposition. The pair (E/F,§) is admissible. The process 7 — (E/F,§) in-
duces a canonical bijection between the set of m € ASL(D) of level zero and the
set of F-isomorphism classes of admissible pairs (E/F,€), of degree n, in which

& is tamely ramified.

Proof. The conjugates 7 | Ug, o € Gal(E/F), are distinct, so (E/F,¢) is ad-

missible. The second assertion restates 2.4 Theorem (3). O

4.3. Let m € A% (D) be of positive level. Thus 7 contains an extended maximal
simple type (J,A), as in 2.6 Theorem. The extended type (J, A) is based on
a simple stratum [, ¢,0, 5] in A = M,,(D) such that the field extension Ey =
F[B])/F is tamely ramified (2.8 Lemma). The order 2 is a maximal among
Ey-pure hereditary orders in A. We let B denote the A-centralizer of Ey and
B =2AN B. Thus B is a maximal o, -order in B. As in the general discussion
of 2.5, there exists an unramified field extension E/Ey inside B, such that 9B is
E-pure and [E:F| = n. In particular, 3.2 Hypothesis applies.

The restriction A | H!(3,2) is a multiple of some 6 € C(2, 3,1 r). There is a
unique character & of U, satisfying 6 | Ug = & o Nrdp [38] Proposition 3.47.
The 1-pair (Ey/F, &) is admissible (3.3 Proposition).
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For the next step of the construction, we need to temporarily fix a prime

element wg of F.

Lemma 1. There exists a unique character &, of E* such that
(a) &w | Ugp =& °Ng/g,,

(b) &w(wr) =1, and
(c) €P" =1, for some integer a.

The proof is immediate. For the next step, let  be the unique irreducible
representation of J! = J!(3,2l) containing #. Abbreviate also J = J(3, ).

Lemma 2. There exists a unique irreducible representation Ay of J such that

(a) Ay | J is a wide extension of n,
(b) wr € Ker Ay, and
(c) (det Aw)pb =1, for some integer b.

Proof. Conditions (a) and (c) determine Ay, | J uniquely (cf. (2.5.5)), and are
certainly achievable. Taken together with (b), they determine the restriction of
A to F*J. The hypothesis §(m) = n implies that the group J is E*J = EJ J,
which contains F'*J with index e(Ey|F). Since p does not divide e(Ep|F’) and

dim Ay, = dimn is a power of p, the lemma follows. [J

As in the discussion of 2.6, we have a decomposition A = Ay ® A, for a
uniquely determined representation A; of J, trivial on J!. Writing Jg = J N B,
we have J = JgJ! and the pair (Jp, A; | Jg) is an extended maximal simple
type in B* of level zero. Following 2.4 and 4.2, it gives rise to an admissible pair
(E/Ep, &) in which & is tamely ramified. We define & = & - & -

Proposition. The pair (E/F,§) is admissible of degree n, and satisfies t(mw) =
f(E|F). The definition of £ is independent of the choice of wp in its construc-

tion.

The proof is immediate. An admissible pair obtained from 7, in this manner,
will be said to be attached to .

Remark. Take E, Ey and &, as above. Let (E/Ey,v) be an admissible pair
with ¥ tamely ramified. The pair (E/F,0¢) is then admissible and, following
through the constructions of 2.6, there exists a representation ©’ € A (D) to

which this admissible pair is attached.
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4.4. Let P,(F) denote the set of F-isomorphism classes of admissible pairs over

F, of degree n. In [11] 2.3, we produced a canonical bijection
Po(F) — AG(F),

(4.4.1)

In this case, the construction of 4.3 is the inverse map pll; — (E/F,§). In
the split case therefore, the construction is canonical, and yields a bijection
ASH(F) = Po(F).

5. Totally ramified representations

In this section, we prove a special case of our main result. Throughout, D
denotes a central F-division algebra of dimension d?, d > 1, and A = M,, (D),
G = GL,, (D), where md = n.

5.1. We establish the notation and hypotheses for the rest of the section. We
take T € AS (D) and assume it is totally ramified, that is, t(7) = 1. If we exclude
the trivial case n = 1, the representation 7 then cannot be of level zero (cf. 2.4
Theorem (4)).

We attach to m an admissible pair (E/F,§) as in 4.3, using an extended max-
imal simple type (J, A) in 7, which contains a simple character 6 € C(, 5,9 ),
for some simple stratum [2(,¢,0, 5] in A. In this case, the field F[3] is E. By
4.3 Proposition, the extension E/F is totally ramified of degree n (and Hypoth-
esis 3.2 is trivially verified). It follows that the hereditary order 2 is minimal,
and rad 2 = @, for any prime element w of E. The group J is EXJ', where
Jt = JY(B,2). Therefore A | J! is equivalent to the unique irreducible represen-

tation 7 of J' which contains 6.
5.2. We need a property of the character of the representation A.

Lemma 1. There is a constant e4 = £1 such that
(5.2.1) tr A(z) = ea &(x),

for every x € E with vg(x) relatively prime to n.

Proof. This is a standard application of the Glauberman correspondence, strictly

parallel to the corresponding result 4.1 Lemma in [11]. O
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As recalled in 2.5, the space U = (3, 2) carries a nondegenerate alternating
form hg. The group E* acts on U via its natural conjugation action on J*(3,2l),
and this action fixes the form hy (as follows from (2.5.1)(3)). The pair (U, hy)
thus provides a symplectic representation over I, of the cyclic group ¥ = ¥g /p =
EX/F*U}L. The symplectic sign ty(B(3,20)) is thus defined, as in [14] 3.4.

Lemma 2. The sign €4 of (5.2.1) is given by

(5.2.2) ea = tu(T(B,A)).

Proof. This is an instance of [6] (8.6.1). O

5.3. We state the main result of the section. Let j4 : AS(F) — A (D) de-
note the bijection induced by the Jacquet-Langlands correspondence AL (F) —
Al (D). We use the notation pll¢, (E/F,£) € P,(F), as in 4.4.

Theorem. Letm € A% (D) be totally ramified, and let (E/F, ) be an admissible

pair attached to 7. If v denotes the unramified character of E* given by
v(z) = (-1 EDvel) g e BX

then
7 =ja(rIl,¢).

Before proving the theorem, we note some consequences.

Corollary. Let m € A% (D) be totally ramified.

(1) Any two admissible pairs attached to m are F-isomorphic.

(2) The attachment process induces a canonical bijection between the set of
totally ramified elements of AL (D) and the set of F-isomorphism classes
of admissible pairs (E/F, &) in which E/F is totally ramified of degree n.

Proof. The assertions are valid in the case 7 € A (F), by [11] 2.3 Theorem.

The general case follows from the theorem. [

5.4. We start the proof of the theorem. We use the Mackey formula (1.2.2) to

follow the corresponding passage of [11].
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Proposition 1.

(1) There exists g € Ge, such that ged (vp(Nrda g),n) =1 and trw(g) # 0.

(2) Let g € G\ satisfy ged (vp(Nrda g),n) = 1. If trm(g) # 0, then g is

reg

G-conjugate to an element of E*.

Proof. Let X,, denote the group of unramified characters x of F* satisfying
x" = 1. Since 7 is totally ramified, the representations ym, x € X,,, are distinct,
whence the character functions tr xm : g — x(Nrda g) tr7(g) are linearly inde-
pendent on Gfgg (1.4.5). The first assertion follows directly. The proof of the

second is identical to that of part (1) of 4.1 Proposition of [11]. O

Let Aut(E|F') denote the group of F-automorphisms of the field E. Following
the proof of part (2) of 4.1 Proposition of [11], we get:

Proposition 2. If g € E* satisfies ged (vg(g),n) = 1 then

tre(g) =ea Y, &9

acAut(E|F)
where €4 = %1 is given by (5.2.2).

5.5. Define 7 € AS'(F) by the condition m = j4(7). There exists an admissible
pair (K/F,(), uniquely determined up to F-isomorphism, such that 7 = pII,
[11] 2.3. We have t(7) = t(m) = 1 (1.4.4), so T is totally ramified. It follows that
K/F is totally ramified of degree n.

Applying 5.4 Proposition 1 to 7, the character relation trm = (—1)m(d_1)tr7
implies that K is F-isomorphic to 2. We henceforth take K = F.

We apply 5.4 Proposition 2 to the representations 7, 7. If w is a prime element

of E, we get

(5.5.1) ea > C@uw) ="y Y (@),

a€Aut(E|F) a€Aut(E|F)

for u € Ug, any integer a relatively prime to n, and a constant ep; = £1 obtained
as follows. The representation 7 contains a simple character 6y, € C(IN, v, Y r),
for some simple stratum [9N, ¢57,0,7] in M = M,,(F), with F[y] = E and 0 |
UL = (| UL. The sign ey is then ty (B(y,9M)), in the notation of (5.2).
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We fix a and view the two sides of (5.5.1) as functions of u. Since E/F is totally
ramified and (E/F,§) is admissible, the characters £ | Ug, a € Aut(E|F), are
distinct and hence linearly independent as functions on Ug. The same applies
with ¢ in place of £&. We deduce that, for some a € Aut(E|F), we have £ |
Ug = (“ | Ug. Replacing (E/F,() by the isomorphic pair (E/F, (%) leaves T
unchanged, so we can assume that ¢ agrees with £ on Ug.

Comparing coefficients of £ | Ug in (5.5.1), we obtain
C(wu) = (=)™ eqens §(wu).
To complete the proof, it remains only to show that
(5.5.2) €A = €.

5.6. We prove (5.5.2). As before, let 2, 9 be the unique E-pure hereditary
ordersin A = M, (D), M = M,,(F) respectively. Each of these has F-period n =
e(E|F) and so is a minimal hereditary order. We have simple strata [2,[,0, 5],
M, 1,0,7] in A, M, with E = F[3] = F[y]. The e-invariants are given by

€A = tg,(QT(Ql, /8))7 €M = t¥47<m(m7 7))7

where ¥ = Vg, . This group is cyclic, generated by the image of @. The desired

relation (5.5.2) thus follows from:
Proposition. The symplectic F,¥-modules B(A, B), B(M, ) are isometric.

Proof. Indeed, it is enough to show that U (A, 3), V(M, ) are isomorphic as
F,¥-modules [14] 3.3.

Let P = rad®l. If w is a prime element of E, we have 8 = w?, so all
the quotients 7 /P7+1, j € Z, are W-isomorphic to A/P. Similarly for M and
PBon = rad M.

Lemma. FEach of the F,¥-modules A/B, I /Pon is isomorphic to the reqular

representation kpW.

Proof. In the case of M, the quotient M /Poy is a sum of n copies of kr, permuted

cyclically by w, with @™ acting trivially: it is therefore of the desired form.
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In the case of 2, the quotient A/P is the direct sum of m copies of kp.
The element w permutes these cyclically, and @w™ acts on each factor kp as a
generator of Gal(kp/kr). By the Normal Basis Theorem, the k¥ -module kp

is free of rank one, so A/P is kpW-free of rank one, as required. O

It is now convenient to choose the prime element w, as we may, so that
w" € F. Thus, if E' is a field, F C E' C E, then E' = F[w!FF),

Let i > 0 be an integer, and let E;/F be the least sub-extension of E/F such
that & | Ui factors through Ng/g, (¢f. 3.3 Lemma). We recall that 4 > 1 is
a jump of & if E; # E;_1. Denote by 205, the ¥-module 9t/Poy, and let Qﬂg\?
denote the submodule of E fixed points: these are the same as the w™i-fixed
points, n; = [E:E;].

Exactly asin [14] 8.5 (see also (2.5.4) above), the semisimple ¥-module L(IM, 3)
is the direct sum of the modules QUS\ZI) / ‘lﬂg\];rl), where 2j ranges over the even
jumps of £. The same observation applies with 2, 20 = 2/ in place of M, W ;.

The proposition now follows from the lemma. [

This completes the proof of 5.3 Theorem. [

6. Comparison and parametrization

In this section, we extend the scope of 5.3 Corollary to obtain a canonical
parametrization of the representations = € AL (D) in terms of admissible pairs.
Simultaneously, we give the first step to describing the relation between this

parametrization and the Jacquet-Langlands correspondence.

6.1. Let m € A% (D) have attached simple pair (E/F,¢). We use all the associ-
ated notations from the definition of (E/F,§) in §4. In particular, 7 contains an
extended maximal simple type (J, A). If 7 has positive level, (J, A) is based on a
simple stratum [2, £,0, 5] in A, satisfying Hypothesis 3.2. The representation A
contains a simple character 6 € C(2, 3,vr). We set Ey = F[] and let B denote
the A-centralizer of Ey. We also set B =AN B, Q =P N B =radB.

We prove:

Parametrization Theorem.
(1) Let m € AS(D) have attached simple pair (E/F,§). If (E'/F,£') is
another simple pair attached to w, then (E'/F,{') is F-isomorphic to
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(E/F,§).

(2) Let (E/F,€) be an admissible pair of degree n. There exists a unique
element pIl; € AS(D) with attached admissible pair F-isomorphic to
(E/F,§). The map

Py(F) — A5(D),
(E/F,§) — pll¢,

s a bijection.

Remark. For representations 7 of level zero and admissible pairs (E/F, ) with
¢ tamely ramified, the theorem reduces to 4.2 Proposition.

The simple stratum [2, 4,0, 5] gives rise to the group ¥ = L(F,2A), which
furnishes a symplectic representation of the finite abelian group ¥ = E* /ULF*
over [F,. In particular, it gives a symplectic representation of the cyclic group
pE, so the fine symplectic signs tl’jE (), k = 0,1, are defined as in [14] §3. We
recall that ), (U) = +1 is a constant, while ¢;, (%) is a character of pp with
values in {£1}.

The symplectic representation of ¥ over I, afforded by U(3,2) depends, up
to isometry, only on the algebra A and the restriction of ¢ to UL. Indeed, as
in [14], it depends only on the sequence of “jump fields” E;/F defined by this

character. We therefore use a notation parallel to that of [14],

(6.1.1) A€l pey(pE) =t (0), k=01,

or, more commonly, the abbreviated version

(6.1.2) 6’2(NE) = AEIFE/F,g)(NE)-

We remark that, in the case where 7 has level zero, the e-invariants are all trivial.

We shall also prove:

First Comparison Theorem. Let (E/F,&) be an admissible pair of degree n.
There exists a unique tamely ramified character v = pve of E* with the following

properties.

(1) The restriction of v to pg is the character

ea(pp) ey (pe) = AE%E/F,&)(“E) ) ME(IE/F,g)(“E)-
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(2) The pair (E/F,v€) is admissible and

plle = ja(rll,¢),
where ja : ASH(F) — ASL(D) is the Jacquet-Langlands correspondence.

The proofs of the two theorems are entwined, and occupy the rest of the

section.

6.2. We take 7 € A (D) with attached simple pair (E/F,¢), and use the nota-
tion of 6.1. Until declared otherwise (at the end of 6.8), we assume that 7 does
not have level zero or, equivalently, that £ is not tamely ramified.

As in 2.1, the Ep-algebra B takes the form B = M;(C), for an integer [ and a
central Eo-division algebra C' of dimension ¢?, lc = n/[Eg:F].

Let K/F be the maximal unramified sub-extension of E/F. Set

If Ky = K N Ejy, restriction of operators identifies Xy with Gal(K/Kj).
Let Ak denote the A-centralizer of K, Gx = Ay. Thus Ax = M,,, (Dg), for
a central K-division algebra Dy of K-dimension d2, say, and mdyx = n/[K:F].
Set A = AN Ax. Thus Ag is a hereditary ogx-order in Ag. It is E-pure,
and is the unique E-pure hereditary order in Ax (cf. 2.3). From 3.2 Proposition,

we have:

(6.2.1)

(1) The stratum [™Ag,¥,0, ] is simple.
(2) We have the relations

Hl(ﬁ,QLK):Hl(ﬁ,Ql)ﬂGK, Jl(B,QLK):Jl(ﬁ,Ql)ﬁGK.

(3) The restriction 0 | H'(3,Ax) = 0k lies in C(™Ax, B,%x), where Y =
YroTrg/p.

The discussion in 3.2 likewise gives the relation
(6.2.2) H'B,A)NE=U,, and 0|Up=¢|U.

The same holds with (g, 0x) replacing (2, 6).
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6.3. We fix a root of unity ( € ux = pp such that K = F[¢]. We let u
ell
reg
(Regularity and ellipticity are measured relative to the base field K in this set.)

range over the set ,(Gk).., of pro-unipotent, elliptic regular elements of Gg.

The element h = (u then lies in Gﬁgg, so we may use (1.2.2) to evaluate the

character of 7 at h,

(6.3.1) trr(h) = > trA(z"'ha).
zeG/J

A coset xJ can only contribute to the sum if x*ha € J or, equivalently, z~'hz €
JO.

Lemma. Let x € G and suppose x~ hx € J°. There then exists y € Ng(K*)

1 1

such that xJ = yJ. For any such y, we have y~tuy € J* (and hence y~

J'NGk).

uy €

Proof. This is identical to the proof of 5.4 Lemma 1 in [14]: as noted there, the

argument applies to pro-unipotent, elliptic regular elements u of Gx. U

The sum in (6.3.1) is therefore effectively taken over the space Ng(K*)J/J,
which we now describe more conveniently.

Let X; denote the unique subgroup of ¥y = Gal(E/Ep) of index c¢. The
residue field kg is a maximal subfield of the algebra % /9Q = M; (k). The group
X is canonically identified with Gal(kg/kp) via its actions on roots of unity.
The subgroups Xy, Xy are then Gal(kg/kg,) and Gal(kg/kc) respectively.

For each 0 € ¥, we choose t, € Ng(K*) with image ¢ under the canonical
isomorphism Ng (K *)/Gx = Y. Observe that the subgroup X of X' is the image
of J N Ng(K*) under this map.

Proposition. We have

No(K*)J = |J Gktod,
ceX /Xy

the union being disjoint, and hence a bijection

Gg\Ng(K*")J/J — X /X,
Grted — oX.
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Proof. The space Ng(K*)J surely decomposes as the union of double cosets
Gktysd, o € X. We have to show that, if o,7 € X, then Ggt,J = Gkt J if and
only if 0= 17 € X.

The elements t,, t; normalize Gx, whence Git,J = Git,J if and only if
t-1t. € GxJ. This, in turn, is equivalent to the automorphism « — o T being

realized as conjugation by an element of J. That is, 0~ '7 € X, as required. [

The formula (6.3.1) has become

(6.3.2) trm(Cu) = Z Z tr A(y 1 ¢%uy).

aceX /Xy yeGi /K

This expression is valid for any K/F-regular root of unity ( € px and any
u € u(GK)ilg- Only finitely many of the terms tr A(y~1(*u®y) are non-zero (1.2
Lemma).

6.4. Let nx be the unique irreducible representation of J% = J1(3,2 k) which
contains O . The field extension £ = K|[3]/K is totally ramified and maximal
in Ag. It follows that the group Jx = J(8,%k) = J NGk is UpJk = ppJi.

We take a prime element wg of F'; and use it to define a factorization £ = &;-&y
of &, reversing the procedure of 4.3. Explicitly, &, agrees with £ on UL, it has
finite p-power order, and &, (wr) = 1. The character & is £, 1€,

Since E = EyK, the pair (E/K, &) is admissible and totally ramified. The
character & is tamely ramified, and the pair (E/Ey, &) is admissible.

We extend ngx to a representation g, of Jx = prJk by deeming that
KAw | pp be trivial. The pair (Jg, kA ) is then a maximal simple type in
Gr. The group J(gAy) is Jxk = J NGk = EXJL. We extend g, to a
representation g A, of Jx so that wp € Ker gA,, and det g A,, has finite, p-
power order. Thus (Jk, xA,,) is an extended maximal simple type in G, with

the property pr C Ker g A,,. We define
Pw = c—Ind%{‘ KA.

This is an irreducible, totally ramified, essentially tame, cuspidal representation

of G, with maximal parametric degree

5(pw) = [E:K] = (dimg Ag)/?,
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and attached admissible pair (E/K, &y).
In the formula (6.3.2), (¢ commutes with y and, by 6.3 Lemma, the element

1

y~tu®y lies in Ji. We decompose A = Ay ® Ay, as in the definition of 4.3. Since

Ay is trivial on J', we are reduced to

(6.4.1) trm(Cu) = Z tr A4 (¢Y) Z tr Ay (C%y~ tuy).

aEX /3y yeGKk /JK

The definitions of Ay, kA, yield

tr Ay (C*y~'uy) = eatr g Ay, (v uy)

= eatrng(y " uy),
where

€a =1 (D) = 1, (

V), (T;¢*) =1, (D), (T: (),
and U = V(8,2A) (c¢f. [14] (3.4.3), (5.6.2)). The inner sum in (6.4.1) is therefore

reduced to

Z tr Ay (C%y uy) = eq trp\?‘vil(u).
yEGK/JK

Overall, we have

(6.4.2) trr(Cu) =ea Y trA(CN)trpl (u).

acX /X,

This relation is valid for all X-regular roots of unity ( € ux = pug and all

pro-unipotent, elliptic regular elements u of G .
6.5. We examine the representations p$ = py o o, a € X, of the group G.

Lemma. Let a € X. The following conditions are equivalent.
(1) Py = pw;
(2) there is an unramified character x of K* such that pS = Xpw;
(3) (S Zg.

Proof. The representation py, is, by construction, attached to the admissible pair
(E/K,&) and E/K is totally ramified. If a € Xy, then p& is attached to the
admissible pair (E/K,£2), while £& = &,. By 5.3 Corollary, we have p 2 py,.

w
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Thus (3) = (1) and surely (1) = (2). We assume, therefore, that (2) holds.
Let (E'/K, ") be the admissible pair attached to p%: since p is totally ramified,
the pair (E’/K,¢’) is uniquely determined up to K-isomorphism (5.3 Corollary).
It satisfies the following condition: there is a field isomorphism o’ : E — E’, such
that o’ | K = a, which carries &, to &’. However, the hypothesis ypy = p% im-
plies that the admissible 1-pairs (E/K, & |UL), (E'/K, ¢ |UL) are K-isomorphic.
If this isomorphism is realized by a K-isomorphism o : E — E', then o/ ‘o/
is an automorphism of F, extending the automorphism « of K, which fixes
&w | UL = €| Us. Tt follows that o’ ‘o’ € Xy. We may therefore take E' = E

and the same argument gives a € Yy, as required. [J

6.6. In order to apply 6.5 Lemma, we need a general result on linear indepen-

dence of cuspidal characters.

Linear Independence Lemma. Let w1, 7s,..., 7, be irreducible, totally ram-

ified, cuspidal representations of G, all of parametric degree n. Suppose

(a) the central characters of the m; all agree on some prime element of F' and

on fp;

(b) the representation ; is not equivalent to an unramified twist of w; when-
everi % j.

The characters trm;, 1 < i < r, then form a linearly independent set of functions

ell

on uGieg-

Proof. The Jacquet-Langlands correspondence commutes with twisting by char-
acters of F'* (1.4.3), and preserves central characters (1.4.2). It also preserves
parametric degree 2.8 Corollary 1. It is therefore enough to treat the case
G = GL(D), for some central F-division algebra D of dimension n?.

We use the classification theory of [4] for representations of G. Since 7;
is totally ramified, there is a simple stratum [op,l;,0,5;] in D, and a simple
character 0; € C(op, 3;,v) which occurs in 7;. Since 7; is totally ramified of
parametric degree n, the field extension F[3;]/F is totally ramified of degree n.
The hypotheses on the representations 7; are equivalent to 6; not intertwining

with 6; when ¢ # j. The proof now follows the same course as that of 5.7 Lemma
(3)in [14]. O



514 C.J. BUSHNELL AND G. HENNIART

6.7. In (6.4.2), the definition of A; gives

tr A (¢*) = (=)' > &),
vEXY
where, we recall, B = M,;(C) and Uy /Uy = GL;(kc). We therefore re-write
(6.4.2) in the form

(6.7.1) tra(Cu) = (=1)""lea D trplu) Y &(CM).
aeX/5, €0

We turn to the corresponding situation in GL,(F). We take 7 € AS(F) to
satisfy j7 = m. The representation 7 is of the form gIl4, for an admissible pair
(E'/F, ¢), uniquely determined up to isomorphism. The relation t(7) = t(r)
implies f(E|F) = f(E'|F), so we may identify the maximal unramified sub-
extension of E’'/F with K/F and continue to use the notation X' = Gal(K/F’) on
either side. Let E(/F be the minimal sub-extension of E’/F such that ¢ | U,
factors through Np/ p; and set X, = Gal(E'/E;). We use the same prime
element wr of F' to achieve a factorization ¢ = ¢y - ¢y, as was applied to £ in
6.4.

Applying (6.7.1) to this case, we get an expression

(6.7.2) trr(Co) = (D) e Y trodv) Y 6u(CM).

acX /X veX]
Here, k = [E":E{]. The simple stratum in M = M,,(F) attached to (E'/F, ¢) is
[mza €M7 07 5]7 say, and

enr =ty (BV(8,M)) = ey () exr (s €).

The representation oy, is g I1,, . The equation (6.7.2) is valid for all K /F-regular
roots of unity ¢ € pux and all pro-unipotent, elliptic regular elements v of the
GL,, (F)-centralizer of K*.
We now use the lemmas of 6.5, 6.6 to conclude that, for a suitable choice of
(E'/F,¢), we get
Pw = Jr(XOw),

for an unramified character y of K*, where jk is a Jacquet-Langlands correspon-
dence with base field K. Therefore (5.3 Corollary) (E'/K, ¢,) is K-isomorphic
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to an unramified twist of (E/K, &, ). We may henceforth take £’ = E, E{} = Ey,
and ¥ = X’. In particular, k = l¢, ¢? = dimpg, C.

We use 6.6 Lemma again to compare coefficients and obtain

(—1)mld=D+le—Dtmu(dc—1)¢, Z o (C) = (1) teq Z &(¢).

vE€Xo yE€Xoy

Re-writing in terms of the finer symplectic invariants 63\4 = eg\/[(uE) etc., this

equation becomes

(-l Dtlemamectdi=D QN " e i (¢7) = (—1)! e €a&i(¢).
YEXD Y€Xo

We can vary the character & over all the tamely ramified characters of E*,
subject to the pair (E/Ey,&;) being admissible (¢f. 4.3 Remark 2). There will
always exist a tamely ramified admissible pair (E/Ey, ¢;) for which this last
relation holds, with ¢ ranging over all Y-regular elements of pr. We deduce
from 2.3 Corollary of [14] that:

Lemma. The characters e}, ¢, €4& of ki lie in the same Xo-orbit, and

(6.7.3) (_1)m(d—1)+(lc—1)+mK(dK—1)6(])W = (-1)1.

The formula (6.7.3) can be re-written as

(6.7.4 (1) ) = (—1)md-D (D),
We have
(6.7.5) mrdg =n/[K:F|, lc=n/[Ey:F],

while (as in 2.1)

(6.7.6) di = d/(d,[K:F)), c=d/(d,[Ey:F]).
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6.8. Adjusting our choices within Galois orbits, we can assume that the character
¢ satisfies

(6.8.1) ¢ | Ug = eyent | Up.

Let (E'/F, ") be an admissible pair attached to w. The F-isomorphism class of
(E/F,¢) is uniquely determined by 7 [11] 2.3, and hence also by 7. In other
words, (E'/F,¢") must give rise to the same pair (E/F, ¢) as (E/F,§). Thus E’
is F-isomorphic to E, and we may as well take £ = E’. The relation (6.8.1)
implies that the 1-pairs (E/F,¢|UL), (E/F,¢|U%) and (E/F,¢'|U}) are all F-
isomorphic. We may assume that they are the same. It is the restriction & ’U 5
which determines the symplectic sign character €}, so (6.8.1) now implies that the
pair (E/F, 5"UE) is F-isomorphic to (E/F,S‘UE) in the obvious sense. Again,
we may assume they are the same. It follows that £’ = x&, for some unramified
character of £*. This implies 7 = pII, 4 = Il ,, whence (E/F, x¢) is isomor-
phic to (E/F,¢). The admissibility of (E/F,¢) implies x = 1, and we have
proved part (1) of the Parametrization Theorem.

We prove part (2) of the Parametrization Theorem. We have bijections

Po(F) — AG(F),  AS(F) — A5(D),
(E/F,§) — pllg, T — j7,

given by 2.3 Theorem of [11] and Corollary 2 of 2.8 respectively. We also have
an injective map A (D) — P, (F) given by mapping 7 € A (D) to its attached

admissible pair. Composing, we get a map
Po(F) — A(F) — A5 (D) — Py(F),

which preserves restrictions to 1-units and to F'*. It is injective, by part (1)
of the Parametrization Theorem. There are only finitely many admissible pairs
(E/F,¢) with specified values for £ | F*, £ | Ux. Consequently the map is
bijective, and the result follows.

The preceding calculations also yield the First Comparison Theorem, although
we have so far excluded representations of level zero. There, the result follows
from 4.2 Proposition since, in this case, the symplectic sign characters are trivial.

Comparing central characters, we see that the character v is trivial as well. [
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6.9. We comment further on the formula (6.7.4) and the character €},e| of k.
It is shown in [14] 8.4 that the constant €},(up) and the character €!;(ur)

determine each other. The same applies in general.

Theorem. The following conditions are equivalent:

(1) p#2 and & (pgp) = —1;
(2) the character €4 (pug) is non-trivial.

If f(E|F) is odd, then € (pg) = +1 and €' (pg) is trivial.

Proof. The case p = 2 is uninteresting, since k5 has no character of order 2. We
henceforward exclude it.

We write £ = kg and {2 = Gal(¢/kr). The space U = (4, 2) in our standard
notation is a f-vector space on which the group £* acts via the natural conjuga-
tion action of pg. It is therefore a direct sum of spaces of the form A, w € (2,

where A, is a one-dimensional ¢-vector space on which £* acts by
T A— ¥z I\ el NeA,.

Let us write

v =P A =P v,

wen wen
for various integers v(w) > 0. Since U is symplectic, we have v(w™!) = v(w) and
v(1) =0 (mod 2).

The component 9 is hyperbolic and £* acts trivially. Therefore t9, (U1) = +1
and the character ¢}, (1) is trivial. If w? # 1, the hyperbolic space U, & U,
has trivial ¢-invariants [14] 7.3. If £2 has odd order, there is nothing more to be
said. We therefore assume the contrary.

If w? = 1 # w, the space A, is anisotropic symplectic and the same result
gives

9. (Ay) = =1, th(Ay) #1.

Therefore
€ = 19, (V) = (1)), ey = th (T) = gy,

where ws is the element of {2 of order 2 and 15 is the character of £* of order 2.

All assertions have now been proved. [J

The theorem applies equally with M in place of A. Therefore:
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Corollary. The character ¢'y(pg)el,(nE) of pe is non-trivial if and only if
p#2 and & (pp)ed; (pe) = —1.

We recall that the value of € (ug)el, (pg) is given explicitly by the relations
(6.7.4-6).

We recall also that the invariants 5?\4 (png) are calculated, in terms of the admis-
sible pair (E/F,£), in the Ramification Theorem of [14] 8.3. These calculations
and the corollary together yield explicit formulee for ef;l(u E)-

7. Completion of the comparison

We continue with the admissible pair (E/F,{) and the central simple F-
algebra A = M,, (D), where D is of dimension d? and [E:F] = n = md. We
complete our determination of the tamely ramified character v = pv, encoun-
tered in the Comparison Theorem of 6.1. To do this, we have to calculate its
value at one prime element w of E. We observe that there is nothing to do in the
case where F/F' is unramified: if wp is a prime element of F, then v(wp) = 1

because the Jacquet-Langlands correspondence preserves central characters.

7.1. We continue with the notation of §6. In particular, we use the symplectic
Vg, p-modules U = U(B,2A) and YUy = V(§,9M) of 6.7. As before, Ey/F is the
minimal sub-extension of E/F such that £ | U} factors through Ng JE,- We

prove:

Second Comparison Theorem. Let w be any prime element of Ey such that
w” € F, for some integer r not divisible by p. Let L = F[w]|, let A, denote the
A-centralizer of L, and write A;, = M,,, (Dy), for a central L-division algebra
Dy, of dimension d .

The character v = pve of E* then satisfies
(=)™ (@) = (~1)" 7Y ey (@) ea(w),

where

(@) =ty (Bnr), ea(w) =tz (V).

The proof will occupy the remainder of the section.
Observe that the condition on @ can be rephrased as follows: the group

(w, pg), generated by w and ppg, contains a prime element wp of F.
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7.2. Before proceeding to the proof, we point out a couple of consequences. By
definition, the e-invariants appearing in our formula for pv, depend only on the
simple stratum [2(, ¢, 0, 3] determined by the admissible pair (E/F,&). This, in

turn, is constructed from the restriction ¢ | UL. Consequently:

Corollary 1. Fori = 1,2, let (E/F,&;) be an admissible pair with [E:F| = n.
If fl_lfg is tamely ramified, then pve, = pug,.

We remark that the quantities €4 (w), epr(w) are amenable to calculation, in
terms of the structure of the admissible pair (E/F,¢), using the methods of [14]
87, §8. We shall not pursue the matter here beyond pointing out that, using a
more elaborate version of the argument of 5.6 along with the analysis in [14] §7

and 8.5 , one obtains:

Corollary 2. Let m > 1 be an integer. Let D, D’ be central F-division algebras
such that dimp D = dimp D' = d?, d > 1. If (E/F,€) is an admissible pair in
which [E:F] = md, then

(1) DI/£ == D’V§; and
(2) if 3 : AS(D) — AS(D'") is the Jacquet-Langlands correspondence, then

J(pll¢) = pIl.

7.3. We start the proof of the Second Comparison Theorem of 7.1.
We take m = pIl; and 7 = gl as before, so that m = j4(7). In particular,
7 contains the extended maximal simple type (J, A), giving rise to the admissi-

ble pair (E/F,¢). We compare the character values tr7(wu), tr7(wu), for an

ell

element u of U(GL)reg'

Proposition. Let x € G and suppose that tr A(z " wuz) # 0. There then exists

y € xJ such that y~twy € EX. For any such y, we have y~tuy € J°.

Proof. The proof is exactly parallel to that of 6.1 Proposition of [14], so we omit
the details. O

Let L = Flw], let X, = Gal(E/L) and let G, be the G-centralizer of L.
The extension E/L is unramified, so any F-embedding L — FE extends to
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an F-automorphism of E. The element y of the proposition therefore lies in
G Ng(E*) and we have

(7.3.1) trm(wu) = Z tr A(z™  oux).
2€GLNG(EX)J|J

We need to clarify the nature of the coset space GLNg(E*)J/J. We set T =
Ng(E*)/E* = Aut(E|F). Take the subgroup X} of Xy as in 6.3. We choose
representatives t, € Ng(E*), « € 7, as in 6.3.

Lemma. There is a canonical bijection

S\Y/E — GL\GLNG(E*)J/J,

(7.3.2)
ELQEt — GLtaJ.

Proof. We remarked in the proof of 6.3 Lemma that the image of J N Ng(K™*)
in ¥ = Gal(K/F) is the subgroup X}. It follows that the image of J N Ng(E™)
in 7 is the subgroup Y} again, viewed as a subgroup of Xy = Gal(E/Ep). Thus
we have a bijection /Xy — Ng(E*)J/J given by aXy — toJ, a € 1.

For a € T, the double coset XX is the disjoint union of the cosets ca Xy,
where o ranges over a set of representatives for X, /(aXa™! N XL). Under the
map 7y — t., all of these cosets have image contained in Grt,J. The map (7.3.2)
is therefore well-defined and surjective.

Let o, 8 € T, and suppose that t, = gtgj, with g € G, and j € J. Since
J = E*J° we may as well assume j € J°. The element j conjugates @” to

«

w®. o

We write @® = (,w, @’ = (gw, for roots of unity (,,(s € pr. We
have j~'wj = w (mod J'), so j71¢j = (s (mod J'). Any such conjugation,
realized by an element of J, is given by an element o of X;. Therefore aoc3~!
fixes w, so ac S~ € X1. In other words, o € X1, 3X;; this implies that the map

(7.3.2) is injective and completes the proof. [

We therefore decompose the character formula (7.3.1) as

(7.3.3) tr(wu) = Z tr m(wu; a),
QEEL\T/Et
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where
tr(wu; ) = Z tr Ay~ L oouy)
yeGLtad/J
(7.3.4) S o
= tr Ay~ @ “u®y).
yeGeJ/J

7.4. We examine the function tr7(wu;a) of (7.3.4). Write Z = L®, so that
G¢ = Gz = A} is the G-centralizer of Z*.

Set Az = AN Az. We recall from 3.2 Proposition that the stratum [z, ¢, 0, J]
is simple, H*(3,2z) = H'(3,4) NGz and J*(3,2Az) = J*(3,A) NGz, k=0, 1.

We use the obvious abbreviations
H%:Hl(ﬁamZ% Jéz‘]k(ﬁva)a

for k=0,1.

The character 67 = 0 | H'(3,2) lies in C(2Az, 3,1 7). We consider a maximal
simple type (J2,\z) in Gz containing 8. We recall (2.6) that J(\z) denotes
the G z-normalizer of Az and that, in the same notation, the group we have been
calling J is J ().

Lemma. Using the preceding notation, we have J(Az) D J(A\)NGz. Moreover,
J(Az) =JN) NGz if and only if 6o(Nz) = [E:Z].

Proof. Since, by hypothesis, do(\) = [E:F] = n, we have J(\) = EXJY, giving
J(\) NGz = EXJY. The lemma thus follows from (2.6.1). O

7.5. Bearing 7.4 Lemma in mind, we write Jz; = J N Gyz. Thus GzJ/J =
Gz/Jz and we obtain

trm(wu; a) = Z tr A(w®y tu®y).
yEGz/JZ
Luvy lies in J°, it commutes with ©®, and it is pro-unipotent
(7.3 Proposition).

We factorize A in the form A = Ay ® Ay, relative to a prime element wg of F

The element y~

lying in (pg,w) (cf. 7.1). We so obtain

tr A(w®y tu®y) = tr A (@Y tuy) - tr Ay (@Y uy).
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We first control the contribution from the “wild” factor tr A,,. The element
-1

Y

that J/J! is unipotent. In particular, J is a pro-p group. Using the Glauberman

u®y lies in a subgroup J of J°, containing J' and normalized by w®, such

correspondence directly, we conclude that there is a unique irreducible represen-
tation 3 of Jz =9 N Jg and a sign € such that

(7.5.1) tr Ay (w®t) = etri(t),
for all t € Jz. The relation (7.5.1) holds, in particular, for ¢ € JL. Therefore
V| Jy = zne, and so
(7.5.2) € = ea(@w”) =ty (V), UV =T(B,2A).
Wide Extension Lemma. There is a wide extension kyz of ZM¢ such that
V= Ky ’ Jz.

The proof is given in Appendix 2.

7.6. We first apply the Wide Extension Lemma of 7.5 to the case a = 1. We

obtain

(7.6.1) tr A(wwy tuy) = ea(w) E(w) tr Ag(y tuy) - trwp (v uy),
where 7, is a wide extension of 17.: the choice of £z, is immaterial (2.5.5).

Proposition. The pair (E/L,£) is admissible. Write A, = M,,, (Dr), for a

central L-division algebra Dy, and set 7, = p, Hé. We then have

(7.6.2) tr m(wu; 1) = ea(w) {(w) trrp (u).

Proof. The first assertion is clear. There is an extended maximal simple type
(J(L),AL) in G, containing the simple character §;, and with attached admis-
sible pair (E//L,£). The group J(L) is J, = J NG by 7.4 Lemma. The result
then follows from (7.6.1). O

7.7. We consider the general term

trm(wu; a) = Z tr A(w®y tu®y),
ye€Gz/Jz

where a € T and Z = L* = F[w®]. We have

tr A((wo‘y_luo‘y) =ea(w)trry (y_luay) tr At(wo‘y_luay).
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Lemma 1. There is a collection A¢;, 1 < @ < r, of extended mazimal simple

types of level zero in Gz such that

b A™) = (1) S b Ay (),

i=1

for every pro-unipotent element j of J%. Moreover, if Ay = Avq | JS, then
(50()%71') = [E:E()Z], fO’f’ all 1.

Proof. The result can be read off from the discussion in paragraph 6.10 of
[14]. O

The type A¢; is thus determined by a tamely ramified admissible pair of the
form (E/ZEy, ;). We set x; = 1; - &; this gives a family of admissible pairs
(E/Z,xi), 1 <i < r. Applying Lemma 1 and 7.4 Lemma, we may argue as in
7.6 Proposition to get

.
trm(owu;a) = (1) " eq(w®) Z trp, I, (w®u®).
i=1
It is more convenient to re-write this relation in the form

trr(wusat) = (~1)" " ea(@® ) D trp, I (wu)
=1
= ()" e (@) €M (@) Y trp, [T o (u),
=1

for a € X \Y/XL.
Consider the admissible pair (E/L, x&). We recall that ¢ | UL = & o Ng/ g,
the 1-pair (Eg/F,&y) being admissible.

Lemma 2.

(1) The character x§* | Uy, factors through Ng;pge, and LES /L is the min-
imal sub-extension of E /L with this property.

(2) The restriction x§ | Ug, is of the form & oNpge g

(3) The 1-pair (LES/L,&5 o Npgs ge) is L-isomorphic to (Eo/L, &) if and
only if o € Y.
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Proof. By definition, x; | Uy = £ | UL, so we need only treat the character &.
Looking back at the proof of [11] A.1 Lemma (stated above as 3.3 Lemma), the
field Ey arises as follows. We choose a finite extension E /E such that E JF is
Galois and set I' = Gal(E/F). If A is the subgroup of I" which fixes ¢ | UL, the
field Ey is EA. The character £o is then uniquely determined by & | UL.

Parts (1) and (2) of the lemma follow immediately. In part (3), one implication
is obvious. In the opposite direction, the extension E/L is unramified, so if LE§
is L-isomorphic to Ey then LE§ = Ey and the isomorphism is realized by an
L-automorphism of Ey, that is, by an element o of X'y. If the pairs are to be
isomorphic, this automorphism must carry £§ to £. This implies that o'« fixes

&, whence 0 'a € Xy and o € ¥y, as required. [J

Remark. There is the following more precise version of part (3) of the lemma.
If a, 8 € T, the pairs

(LE§/L,& o Nppgmg),  (LEG/L,&6 0Ny s o),

are L-isomorphic if and only if YyaX'; = XyBX . We do not need this fact, so

we omit the proof.

7.8. We return, for the moment, to a general situation. If & € A (D), we
may write @ = plIly, for an admissible pair (H/F,). This pair determines an
admissible 1-pair (Hy/F,Yy), the F-isomorphism class of which is determined by
&. We extend our terminology and say that (Hy/F,¥g) is the 1-pair attached to
Pd.

Linear Independence Lemma. Let m1,7,...,m € AS(D). Let (E;/F,~;)
be an admissible 1-pair attached to m;, 1 < i < r. Suppose that (E;/F,~;) is not
F-isomorphic to (E;/F,~;) when i # j. The functions u — trm;(u), 1 <i<r,

on uGell

reg then form a linearly independent set.

Proof. Let H be a central F-division algebra of dimension n? and let jy de-
note the Jacquet-Langlands correspondence A (D) — AS*(H). The admissible
1-pair attached to jg(m;) is (Ei/F,v:), 1 < i <, by the First Comparison The-
orem of 6.1. We may therefore assume we are in the case m = 1. So, until the

end of the proof of the Linear Independence Lemma, A is a division algebra.
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Lemma. Suppose A is a division algebra, and let 0; be a simple character oc-

curring in m;, 1 <14 < r. If the characters 8;, 0; intertwine in G, then i = j.

Proof. 1f ; intertwines with 6, then 6; is G-conjugate to 6; [4] (11.2.9). The 1-
pairs (E;/F,v;), (E;/F,~;) are then F-isomorphic, as follows from the Paramet-

rization Theorem 6.1 and the construction of the attached pair. O

Let H(G) be the space of locally constant, compactly supported functions
G — C, viewed as convolution algebra relative to a choice of Haar measure on
G. Let e; € H(G) be the idempotent corresponding to the simple character
0;. Thus e; has support contained in U} = U} , and, if (m,V) is an admissible

representation of G, we have
/ trw(g) ei(g) dg = dim V%
G

where V% is the 6;-isotypic subspace of V.

ell

reg 18 open dense in U}. Consequently,

Since A is a division algebra, the set G

if we have a linear dependence relation
I
Zai trmi(u) =0, wu€ qugg,
i=1

we may integrate it against e; to get

0= Zai /Ul trm;(u) ej(u) du
i=1 A

~Ya / trmi(g) e;(g) dg = cja;,
i=1 G

where ¢; > 0 is the dimension of the 6;-isotypic subspace of ;. Thus a; = 0, as

required. [

7.9. We return to the context of 7.7 and consider the representation 7 = pII,¢.

As a special case of (7.6.1), we have
tr7(wu; 1) = ep(w) v€(w) trrp (u),

where 77, = 11, and u ranges over the pro-unipotent, elliptic regular elements of
the GL,, (F)-centralizer GL,,(F')1, of some copy of L embedded in M,,(F'). From
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7.7 Lemma, the Linear Independence Lemma of 7.8 and the defining relation

T = jAT, we obtain
trw(wu; 1) = (=1)™ @D tr 7 (wu; 1),
and hence

(7.9.1) (=)™ Ve (@) vé(w) trrr (u) = ea(w) &(w) trmp (u),

ell
reg"

this relation being valid for all u € (Gp) (Note that, in the left hand side, u
denotes an element of GL,,(F')r, associate to u.)

We recall that A;, = M,,, (Dr), for an L-division algebra Dy, of dimension
d2. We let u — 1 in the right hand side of (7.9.1). The associate element u in
the left hand side then also tends to 1 (1.6 Proposition). From 1.5 Theorem (1),

we get
(=)™ ey () vE (@) (—1)" 4 ey, = ea(@) E(@) (—1)™ ey,

for certain positive constants c;,, ¢, . These cancel, since every other factor is

a root of unity. Therefore
(D)™ (@) = (~1)" 7V ey (@) ea(w),
as required to prove the theorem. [

APPENDIX 1.
Parametric degree and formal degree

Here we prove Theorem 2.8, which connects the normalized formal degree
deg m and the parametric degree () of a representation 7 € AL, (D). This is an
exercise, parallel to [9] and generalizing §7.7 of [17]. The novelty derives from
the Hecke algebra calculations of [41], [24].

Al.1. Let G = GL,,,(D), A =M,,(D), where D is a central F-division algebra
of dimension d?, d > 1. We set n = md. We recall a well-known property
of the essentially square-integrable representations of G — see for instance [21]

Théoreme B.2.b — but we give a rather different proof.
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Proposition. Let 7 € AL, (D). There is then a positive divisor r of m and an
irreducible cuspidal representation 7o of GLy, /(D) such that the cuspidal support

of ™ consists of unramified twists of mg.

Proof. Replacing m by ym, where x is a character of F'*, changes nothing. We
may therefore assume 7 to be square-integrable. It follows, from an argument
identical to the proof Proposition 8.5.10 of [17], that = cannot be of the form
Indg 7, where P is a proper parabolic subgroup of G and 7 is an irreducible
representation of P trivial on the unipotent radical of P. However, if the cuspidal
support of 7 is not of the stated form, then Theorem 3.1 of [36] asserts that 7 is

an irreducible, parabolically induced representation of just this kind. [

A1.2. Tt follows from Théoréme 5.23 of [41] that any m € AL, (D) contains a
simple type, in the sense of [40].

In order to review the definition of a simple type, it will be simpler to introduce
a new scheme of notation. Let m be an irreducible cuspidal representation of
GL,,(D). Thus 7 contains a maximal simple type (J, ). We assume initially
that this type is of positive level, and use the notational scheme of 2.6 above.
Thus there is a simple stratum [2, £,0, 3] in A = M,,(D) so that J = J°(3,).
The hereditary order 2 is maximal among Ep-pure hereditary orders in A, where
Ey denotes the field F[3]. We denote by B the A-centralizer of Ey, so that
B = M;(C), where C is a central Fy-division algebra of dimension ¢?, and lc =
n/[Eo:F]. The order B = 2AN B is a maximal og,-order in B.

The restriction of A to H(3,2) is a multiple of a simple character 6§ €
C(A, 3,9 F). Let n be the unique irreducible representation of J(3,2) contain-
ing 0, and let x be some wide extension of 1. The representation A is then of the
form A\ = 0 @k, for an irreducible representation o of J(3,%A) trivial on J*(3,2L).
The restriction oy of o to Uy = J(B,2) N B is trivial on Uy = J*(5,2) N B.
The pair (Ug, 0m) is a maximal simple type of level zero in the group B*. The
representation og is the inflation of an irreducible cuspidal representation & of
U /Uk = GLi(ko).

In this scheme, we have
(A1.2.1) 0(m) = do(om) [Eo:F), t(m)=0d(n)/e(Eo|F).

We add a further datum to this list. We fix an unramified field extension
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E/Ey, inside B, so that [E:F] = n and B is E-pure. Thus 2 is E-pure. These
conditions determine 2 and B uniquely in terms of F.
The modifications required for the level zero case are both clear and straight-

forward.

A1.3. Continuing with the notation of A1.2, let » > 1 be an integer and let
A = M,,,(D), G = GLy,, (D). We embed the field E in A, in some way, as an F-
subalgebra. We choose an E-pure hereditary op-order 2 in A, which is minimal
relative to this property. The F-period of 2 is thus 7 times the F-period of A,
and we get a simple stratum [, r¢,0, 3] in A.

Let B denote the centralizer of Ey in A: thus B = M. (C). We set B =ANB.

The transfer process of [38] Théoreme 3.53 determines, from 6 and 3, a sim-
ple character 6 € G(Q_l, B,vr). Let i be the unique irreducible representation
of JY(3,) which contains §. Following the procedures of [39], starting from
Théoreme 2.18, we obtain from x a wide extension & of 7.

We have J(3,) = Ug J'(8,2) and Ug N J*(8,2) = Ug. The group Ug /Uy
is the direct product of r copies of GL;(kc). We let o9 be the inflation to Ug
of 6 ®5®---®& (r factors). We extend G to a representation & of J(3,2l)
trivial on J!(3,2A). We set

A=c®F J=J(G,2A).

The representation \ is irreducible. The pair (J, 5\) is an instance of a simple

type in G, in the sense of [40]. The property we require is [41] Théoréme 5.23:

(A1.3.1) Let IT be an irreducible smooth representation of G. The following
conditions are equivalent:

(1) II contains the simple type (J,\);

(2) the cuspidal support of II consists of unramified twists of .

A1.4. We recall and extend some standard material from, for example, [17]
7.7 and [18] §8. We fix an integer » > 1, and consider those representations
7 € AY(F) which have, as cuspidal support, unramified characters of F'*. Among
these is the Steinberg representation, which we denote Stf . Indeed, any other
representation of this kind is an unramified twist of St', and has the same formal

degree. A calculation originating in [3] yields:
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(A1.4.1) Let o' denote a Haar measure on GL,.(F)/F*, and let T.(F) be an
Twahori subgroup of GL,.(F'). The formal degree of the Steinberg representation
StX satisfies

1
LT (FYF)d(StE, oy = =
for (Zr(F)F™) d(St,., f. ) r 1

where ¢ = qr = |kp|.

We recall that an Iwahori subgroup of GL,(F) is the same as the unit group
of a minimal hereditary op-order in M, (F').

We extend this notation by letting Z,.(D) denote the unit group of some mini-
mal hereditary order in M,.(D), when D is a central F-division algebra of dimen-
sion d?. Again we consider the elements of LAY (D) having unramified characters
of D* = GL;(D) as cuspidal support. Among these is the Steinberg representa-

tion St”.

Proposition. Let i be a Haar measure on GL,.(D)/F*. The formal degree of
the Steinberg representation Stf) satisfies
d r

i@ (D)) d(sel i) = 1
Proof. Set G = GL, (D) and let H(G,Z,(D)) be the convolution algebra of com-
pactly supported functions G — C which are left- and right-invariant under
translation by Z,(D). As a normalized Hilbert algebra (in the sense of [15] §3

r [22]), this is isomorphic to the affine Hecke algebra H(r,¢p) (in the nota-
tion of [17] (5.4.6)). This, in turn, is the same as H(GL,(K),Z.(K)), where
K/F is an unramified field extension of degree d. Under the composite isomor-
phism H(G,Z,(D)) = H(GL,(K),Z,(K)), functions with support contained in
F*T,.(D) are mapped to the functions with support contained in (K*)?Z,.(K),
where (K*)? denotes the group of d-th powers in K*. As in [17] 7.7 (or following

the more general analysis in [15]), we get the relation

i (Z.(D)F*) d(St?, 1f) = d™ pf (T (K)K*) d(St)S, i)
1 (¢4 =1

~dr gir—1 "

as required. [
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A1.5. We return to the situation of A1.2-3. Let IT € A% (D) have cuspidal
support consisting of unramified twists of 7 € A% (D). By (A1.3.1), the repre-
sentation IT contains the simple type (J, \).

We consider the Hecke algebra (G, )). Appealing to [40] Théoreme 4.6,
H(G, \) is isomorphic, as Hilbert algebra, to the affine Hecke algebra

j‘C(T” QE) = J—C(GLT‘(E)’IT(E))

However, under the isomorphism H(G,\) — H(GL,(E),Z.(E)), functions sup-
ported in F'*.J become functions supported in (E*)*Z.(E), where k is the integer
e(Eo|F)lc/dp(om). This gives us the relation

%008)_ B (7, (B)EX) d(StF, i) dim .

- D T X - D _
:u’mT(JF )d(H7Mmr)_€(E0|F)lC T

From the definitions, d(7) = §(II) = [Ep:F] do(os), so (2.1.1)

50(0 ) o
B~ D/

Since (A1.4.1)
—1 (g — 1)

(E (I (E)EX)d(StE, i) =r -
dg — 1

I

we have
. t(11 -1 <
A2 (TE)d(i B,y = D (22 =07 gy
nr  qp—1

We now choose 12, so that d(St2 .2 ) =1. That is,

) 1 (qd _ l)mr
D _
Mmr(Imr(D)FX) - dmr qdmr -1 -

This yields

g™ -1 (qg—1)"

dim M.
(¢*=1)™ qp—1

(A15.1)  degll = (Zyn,(D)F* : JF*) t(II)

A1.6. We now prove 2.8 Theorem. In our present scheme of notation A1.2,
A1.3, it reads:
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Theorem. Let I1 € A. (D) have cuspidal support consisting of unramified
twists of a cuspidal representation © of GL,,(D). We then have

(¢"" —1)
(qt(H)nr/5(H) _ 1)

(A1.6.1) deg IT = t(II) (mod p%).

Proof. We recall that ¢(II) = t(w) and 6(II) = §(m) in our present scheme.
We proceed by simplifying the expression (A1.5.1). The generalized group

index term there contributes
(Znr(D)E* : JF*) = (¢% — 1)™" |GLi(ke)|™"  (mod p%).
On the other hand,
dim A = |GLy(ke)|" (g& — 1) (mod p°),
SO

deg IT = t(IT) (¢"" — 1) (qg — 1)" (¢% — 1) (¢ —1)™"  (mod p?).

n/e(Ey

Now we recall that ¢ = qlc = quCO =q IF) | resulting in

deg IT = t(II) (¢"" — 1) (¢ —1)~"  (mod p”).

nr/e(E0|F)‘

In the final term (g5 — 1)~!, we have ¢}, = ¢ However,

t(IT) = t(m) = 6(m)/e(Eo|F) = 0(II)/e(Eo| F'),

yielding nr/e(Ep|F) = nrt(II)/d(II). The relation (A1.6.1) has been proved. [J

Remark. Using (A1.3.1) and the Hecke algebra isomorphisms cited in the pre-
ceding proof, it is a straightforward matter to refine Al.1 Proposition to give a
complete description of the non-cuspidal elements of AL (D): the argument is
identical to that of Theorem 8.3 of [18].

APPENDIX 2.
Wide extensions and the
Glauberman correspondence

We prove the Wide Extension Lemma of 7.5.
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A2.1. We start in an abstract setting, recalling a fundamental result from [23].

We are given a finite group 1" and a cyclic group of automorphisms Z of T', such
that |Z| is relatively prime to |T'|. We think of Z as acting on T by conjugation,
so that we may form the semi-direct product group Z x T'= ZT. The group Z
acts on the set Irr T of equivalence classes of irreducible representations of T by
C:prpS, ¢ € Z, pelirT, where p¢ denotes the representation ¢ +— p(Ct¢ 1),
tefT.

We denote by TZ the group of Z-fixed points in T, and by Irr(T%) the set of
equivalence classes of irreducible representations of 7%. We summarize the main

points needed from [23].

(A2.1.1) Let ¢ generate the group Z.

(1) If 7 is an irreducible representation of ZT such that T | T is not irre-
ducible, then
trr(¢t) =0, teT.
(2) Let p e (IrT)%.
(a) There exists a unique irreducible representation p of ZT such that
plT=panddetp|Z =1.
(b) There is a unique irreducible representation pz of T, and a con-
stant € = e¢(p) = £1 such that

trp(Ct) = etrpz(t), teT?.

(c) The map p — pz is a bijection (Irr T)? — Irr(T?), independent of
the choice of .

The sign €;(p) may indeed vary with both ¢ and p. The bijection (Irr T)% —
Irr(T#) is what we call the Glauberman correspondence.

There is a more general version of (b).

(A2.1.2) Let p € (Irr T)?, and let p be a representation of ZT such that p | T =

p. There is a constant root of unity «, of order dividing 2|Z|, such that

trp(Ct) = atrpz(t), teT?.

We denote by (,) the standard inner product of class functions on a finite

group. We call the elements of Irr T\ (Irr T)Z Z-irrelevant.
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Proposition. Let 6 be a finite-dimensional representation of T such that 6¢ =
6. Let 0 be a representation of ZT such that @ | T = 6, let trs(0) denote the
class function j — tr@((j) on TZ, and let p € (Irr T)Z.
(1) If (tr(pz),tre(0)) = a € C, then p occurs in 6 with multiplicity > |al.
(2) If p occurs in 6 with multiplicity one, then (tr(pz),tre(0)) # 0.

Proof. Let p;, 1 < i < r, be the Z-stable irreducible components of 8, repeated
according to multiplicity. Thus

i=1

where ¢ is a sum of Z-irrelevant irreducible representations of T'. It follows that

0 =93P p:
i=1

for representations 9, p; of ZT such that p; | "= p; and ¥ | T' = ¢. By (A2.1.1),
(A2.1.2),

tre(0) = Z o tr(piz),

for various roots of unity «;. The class functions tr(p; z), for distinct p;, are

linearly independent and both assertions follow. [

We will not actually use part (1) of the proposition; it is included to add
perspective.

We observe that all of the foregoing applies equally to the case where T is a
pro p-group and Z is a cyclic group of continuous automorphisms of 7" of finite
order relatively prime to p. Of course, in this more general context, we have to

consider only smooth representations of 7" and T%.

A2.2. We translate to a broader context. We are given a locally profinite group
G and a compact open subgroup 7" of G which is a pro p-group. We are also given
a finite cyclic group Z = (() of continuous automorphisms of GG, which has order
relatively prime to p and which stabilizes 7. The group TZ of Z-fixed points in
T is then closed in G and is a pro p-group. We can form the semi-direct product
Z x (G, topologized so that the obvious map G — Z X (G is a homeomorphism of
G with an open subgroup of Z x G.

We prove the main technical result of this appendix.
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Proposition. Let p be an irreducible smooth representation of T and g € G.
Suppose that

(a) p° =p,

(b) g commutes with ¢, and

(¢) dimHompnrs(p, p?) = 1.

The element g then intertwines the representation pz.

Proof. Let 7 be the unique irreducible representation of T'N TY occurring in
both p | TNTY and p? | T NTY9. The group 7Y is normalized by Z and the
representations p, pY are both Z-stable, whence it follows that 7 is Z-stable.
Let p, = Ind47 p = EDX X ® p, where x runs over the characters of Z, viewed
by inflation as one-dimensional representations of ZT. The representations y ® p
are pairwise distinct, being distinguished by their determinant characters. Surely

(p9)« = (p«)9. Frobenius Reciprocity, in the guise of [17] 4.1.5, gives
dimHomZ(Tng)(p*,pi) = |Z|,

since | Z| is the number of T', T-double cosets contained in ZT'gZT. Consequently:

Lemma. Let p be some representation of ZT extending p. There is a unique
representation p1 of ZT, extending p, such that g intertwines p with p1. More-

over,

(A2.2.1) dim Homy(rrra) (5, 57) = 1.

That is, there is a unique irreducible representation 7 of Z(T'NTY) occurring
in both p | Z(I'NTY) and pi | Z(T'NTY). It occurs in both with multiplicity
one. On the other hand, g | Z(T N TY) contains some irreducible representation
7 extending 7. We may choose an extension ps of p so that 7 occurs in pJ |
Z(T NT9): thus Homzrare)(p, p2) # 0, implying p2 = p1 and 7 = 7. Put
another way, 7 | T'NTY9 = 7.

We apply A2.1 Proposition (2) to the representation 7 of T'NTY, the role of
0 being taken by pf | Z(T'NTY9). We deduce that (rz,tr¢(p])) # 0, where the
inner product is that on class functions on the group 7% N (T%)9.

By (A2.1.2), the function tr¢(p]) is a linear combination of the characters

trpz, where ¢ ranges over the Z-stable irreducible components of 5 | T' N
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T9. However, the function tr¢(p9) on TZ N (T#)9 is the restriction of tr (p?)z,
multiplied by a root of unity. Thus 77 occurs in (p?)z | TZ N (T#)9 with

multiplicity one. Surely (p?)z = (pz)?, so g intertwines pz, as required. [

A2.3. We apply A2.2 Proposition to proving the Wide Extension Lemma of 7.5.
We return to the notation of that paragraph.

We work in the group G = GL,,(D); the automorphism ¢ is conjugation by
the element w® of 7.5. The place of the group T is taken by the group J. It will
be convenient to take J as large as possible. This is achieved as follows. The
group J/J' is of the form GL;(k¢c). The element w® acts here, its group of fixed
points being of the form Jz/JL = GL,(k'), for an integer r and a finite extension
k' /kc. We may take for J the inverse image in J of the unipotent radical of a
Borel subgroup of Jz/J%.

The restriction of Ay, to J is a wide extension s of 7. Because of (2.5.1)(4),
we may apply A2.2 Proposition to x to show that the representation 9 of (7.5.1)
is intertwined by every element of the Gz-centralizer of 3. The desired result
is then given by the following general property of wide extensions, for which we
revert to the base field F' and the notation of §2.

Lemma. Let [, ¢,0,03] be a simple stratum in A = M,, (D), and let B denote
the A-centralizer of 3. Let X be a subgroup of J = J(B3,2), containing J' =
JYB,2A), such that X/J' is the unipotent radical of the finite reductive group
J/JL.

Let p be an irreducible representation of X such that p | J' is equivalent
to the unique irreducible representation ng of J* containing a simple character
0 € C(A, B,vF). Suppose that p is intertwined by every element of B*. We then

have p = k| X, for any wide extension K of 1.

Proof. Let k be some wide extension of 7, and write kx = k | X. By (2.5.5), the
representation kx does not depend on the choice of k. Since p | J! 2 n = kxy | JY,
there is a character ¢ of X, trivial on J*!, such that p = ¢ ® kx. The intertwining
property of p implies that ¢ is intertwined by every element of B*. This implies

that ¢ is trivial, as required. [

Remark. This argument applies in considerably greater generality, but we only

need the restricted case treated above.
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