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Abstract: We show that there exists a universal constant Kc so that every
K-strongly quasiconformally homogeneous hyperbolic surface X (not equal
to H2) has the property that K > Kc > 1. The constant Kc is the best
possible, and is computed in terms of the diameter of the (2, 3, 7)-hyperbolic
orbifold (which is the hyperbolic orbifold of smallest area.) We further show
that the minimum strong homogeneity constant of a hyperbolic surface with-
out conformal automorphisms decreases if one passes to a non-amenable reg-
ular cover.
Keywords: Quasiconformal homogeneity, Riemann surface, hyperbolic orb-
ifold.

1. Introduction and Statement of Results

Recall that an orientable hyperbolic n-manifold N is uniformly quasiconfor-
mally homogeneous if there exists a constant K ≥ 1 so that for any two points
x, y ∈ N there exists a K-quasiconformal automorphism of N that pairs x and

Received March 27, 2007.

The first and fourth authors were supported in part by NSF grant DMS-0305704.

The second author was supported in part by the Marsden Fund, NZ.

The third author was supported in part by NSF grant DMS-0503753. This author would also

like to thank Wesleyan University for its hospitality during this work.
∗Two of the authors met and married while being postdoctoral students at the University of

Michigan. Fred Gehring was instrumental in the events that made their meeting possible.



456 P. Bonfert-Taylor, G. Martin, A. Reid and E. Taylor

y. The concept of quasiconformal homogeneity was introduced and developed by
Gehring and Palka in [7]; for other work on quasiconformally homogeneous struc-
tures see [8], [9], [4], and [5]. In dimensions three and above, owing to well-known
quasiconformal rigidity phenomena, the property of being uniformally quasicon-
formally homogeneous is a topologically restrictive one, we recall Theorem 1.3 of
[4].

Theorem 1.1. Let N be an orientable hyperbolic n-manifold, with n ≥ 3. Then
N is uniformly quasiconformally homogeneous if and only if N is the regular
cover of a closed hyperbolic orbifold.

Because quasiconformal rigidity phenomena fail in dimension two such a strong
topological classification is unlikely to be true for surfaces. However by strength-
ening the definition of quasiconformal homogeneity, one can construct a setting
from which interesting questions can be posed concerning the analytic properties
of quasiconformal automorphisms of surfaces. A hyperbolic surface (equivalently
a Riemann surface) X is strongly quasiconformally homogeneous ([5]) if there
exists a constant K ≥ 1 so that for any two points x, y ∈ X there is a K-
quasiconformal automorphism f : X → X so that y = f(x) and so that f is
homotopic to a conformal automorphism c : X → X; we also say that X is K-
strongly quasiconformally homogeneous. Using results of Gehring and Palka, it
is elementary to see that every closed hyperbolic surface is strongly quasiconfor-
mally homogeneous, and thus this definition applies to a broad class of hyperbolic
surfaces.

We can provide a complete classification of strongly quasiconformally homo-
geneous surfaces, and in fact this is what motivates our interest in them. Using
the argument used to prove Theorem 1.1, we observe:

Theorem 1.2. Let X be an orientable hyperbolic surface. Then X is strongly
quasiconformally homogeneous if and only if X is a regular cover of a closed
hyperbolic orbifold.

See the proof of Theorem 1.3 in [4]. Of course, there are many covers of a closed
hyperbolic surface which are not regular covers and it is thus easy to construct
an example of a hyperbolic surface X on which the injectivity radius function
is bounded between two constants, and yet X is not uniformly quasiconformally
homogeneous.
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Suppose that X is strongly quasiconformally homogeneous, and let

Kaut(X) = inf{K |X is K-strongly quasiconformally homogeneous}.
Using a normal family argument it is not hard to show that a strongly quasi-
conformally homogeneous hyperbolic surface X is in fact Kaut(X)-strongly qua-
siconformally homogeneous. We define

Kc = inf{Kaut(X) |X 6= H2 is strongly quasiconformally homogeneous}.

One of the main results in this note is:

Theorem 1.3. The constant Kc is strictly greater than one, and can be calculated
in terms of the diameter of the quotient of H2 by the (2, 3, 7)-group. Furthermore
no strongly quasiconformally homogeneous hyperbolic surface X 6= H2 is Kc-
strongly quasiconformally homogeneous, that is, Kaut(X) is strictly greater than
Kc.

Remarks:

(1) Each uniformly quasiconformally homogeneous hyperbolic surface X that
is not H2 has the property that K(X) > 1. (See Proposition 2.2 of
[4].) This follows from the fact that a 1-quasiconformal mapping is con-
formal, and from the fact that the conformal automorphism group of a
non-elementary hyperbolic surface acts discontinuously on the surface.

(2) Theorem 1.3 is in fact a refinement of a result of Bonfert-Taylor, Bridge-
man, Canary and Taylor; see Theorem 6.5 of [5]. The refinement here is
that we provide a sharp lower bound on the strong homogeneity constant
Kc.

In the proof of the following lemma we will need to localize our analysis. For
a strongly quasiconformally homogeneous hyperbolic surface X we define the
function

Kaut(x, y) = min
f
{K(f)},

where the minimum is found over all quasiconformal mappings f : X → X which
are homotopic to a conformal automorphism and for which y = f(x). That the
infimum is achieved is an elementary consequence of compactness properties of
quasiconformal mappings.
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Now let X be a closed hyperbolic surface having trivial conformal automor-
phism group, and let Y be a regular cover of X. Though X has trivial auto-
morphism group it remains strongly quasiconformally homogeneous since it is
compact. We now establish the following useful lemma.

Lemma 1.4. Let X be a closed hyperbolic surface having trivial automorphism
group, and let Y be any regular cover of X. Then Kaut(Y ) ≤ Kaut(X).

Proof. Because the surface X has trivial automorphism group, for each pair
of points x1, x2 ∈ X a best mapping realizing Kaut(x1, x2) is homotopic to the
identity and thus lifts to a family of Kaut(x1, x2)-quasiconformal automorphisms
of Y , each homotopic to a conformal automorphism of Y , and so that for each such
mapping there exist a pair of points y1, y2 (respectively) in the fibers π−1(x1) ∈
Y and π−1(x2) ∈ Y that is paired by the mapping. Thus one observes that
Kaut(y1, y2) ≤ Kaut(x1, x2) for all y1 ∈ π−1(x1) and y2 ∈ π−1(x2). Because Y

covers X regularly the result follows. ¤

Remark. It is well known (e.g. see [6], section 3.2) that for genus g ≥ 3 the set
of closed surfaces in Teichmüller space having only trivial automorphism group
is of full measure.

We show in [4] that if Mn is a uniformly quasiconformally homogeneous hy-
perbolic manifold of any dimension n ≥ 2, then K(Mn) > 1 if and only if
Mn 6= Hn; note that Hn is a non-amenable cover of any hyperbolic manifold with
non-elementary fundamental group. In the setting of closed hyperbolic surfaces
having trivial automorphism group we show that passing to any non-amenable
regular cover strictly decreases Kaut:

Theorem 1.5. Let X be a closed hyperbolic surface having trivial automor-
phism group, and let Y be a non-amenable regular cover of X. Then Kaut(Y ) <

Kaut(X).

2. The Proof of Theorem 1.3

In this section we will prove Theorem 1.3. Before doing so, we will need to
recall some basic definitions and facts. First, in the definition of strong qua-
siconformal homogeneity we are assuming that each allowable quasiconformal
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mapping is homotopic to a conformal mapping. Thus we can convert each al-
lowable quasiconformal mapping, via post-composition with the inverse of the
conformal automorphism, into one which is homotopic to the identity having the
same dilatation. Since we wish to measure the size of the dilation the following
function will be of use. Let ψ : [0,∞) → [1,∞) be the function which gives the
best dilatation over all quasiconformal homeomorphisms of D2 that are homo-
topic to the identity and move the origin 0 a prescribed distance d ∈ [0,∞),
i.e.

ψ(d) = min{K ≥ 1 | there exists h : D2 → D2, K−qc, h|∂D2 = id, ρ(0, h(0)) = d}.
(Here, of course, (D2, ρ) denotes the ball model of 2-dimensional hyperbolic space
of constant curvature −1.) We record the following explicit formula for ψ, due
originally to Teichmüller [13].

Proposition 2.1. Let f : D2 → D2 be a quasiconformal map which extends to the
identity on the unit circle. Then K(f) ≥ ψ(ρ(0, f(0))), where ψ : [0,∞) → [1,∞)
is the increasing homeomorphism given by the function

ψ(d) = coth2

(
π2

4µ(e−d)

)
= coth2 µ

(√
1− e−2d

)
,

and µ(r) is the modulus of the Grötsch ring whose complementary components
are D2 and [1/r,∞] for 0 < r < 1. In particular,

ψ(d) ∼ 16d2

π4
as d →∞ and ψ(d) ∼ 1 +

d

2
as d → 0.

The critical value of d, for our analysis, is the minimum diameter of a hyper-
bolic orbifold (surface). In fact, the minimum diameter hyperbolic orbifold in
dimension two is the minimum volume hyperbolic orbifold, that is, the orbifold
built by the (2, 3, 7)-triangle group. The following fact is known, however we
include a proof for convenience.

Proposition 2.2. The minimum diameter hyperbolic orbifold Omin is the (2, 3, 7)-
hyperbolic orbifold.

Proof. Recall the isodiametric inequality in hyperbolic 2-space: If a planar set
has diameter d (d > 0) then the area of the planar set is less than or equal to
4π sinh2(d

4) (e.g. see [12], also recall that 4π sinh2(d
4) is the area of a hyperbolic

disk of radius d
2 .) Using the convex polyhedron (say a Dirichlet polyhedron) of a
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closed orbifold O2 of diameter d < ∞, we easily see that the hyperbolic area of
O2 is thus less than or equal to 4π sinh2(d

4).

We now consider the (2, 3, 7)-triangle group. It is an easy exercise in hyperbolic
trigonometry (e.g. see [2]) that the diameter of the orbifold quotient of H2 by the
(2,3,7)-triangle group is approximately 0.62067. Using this value for d, we observe
from the isodiametric inequality that any orbifold having diameter less than the
diameter of the (2, 3, 7)-triangle orbifold must have area less than 0.305.

Using this area bound we can now systematically rule out the possibility that
whole classes of Fuchsian groups have quotient orbifolds of diameter less than
0.62067. First note that it is clear that any Fuchsian group that contains a
parabolic, or is of the second kind, or has infinitely generated fundamental group,
has a quotient surface of infinite diameter and thus is not a candidate. From the
area signature formula (see Theorem 10.4.3 in [2]), we immediately observe that
if the genus of any such orbifold is greater than or equal to 1 then its area
is greater than or equal to π and thus is too large to have diameter less than
0.62067. In fact, any admissable Fuchsian group of genus 0 and with signature
(0 : m1, . . . , mr) with r ≥ 4 will have area that is strictly greater than 0.305, and
so these groups are ruled out as well.

Thus we are left to consider groups of signature (0 : m1,m2,m3), where without
loss of generality we can assume m1 ≤ m2 ≤ m3. The basic idea is to observe
that there is a monotonicity in the size of diameter in terms of the values of
m1,m2 and m3. Using hyperbolic trigonometry one can first explicitly show that
if m1 = 2, then the diameter of the quotient of any admissable Fuchsian group
of that signature is strictly greater than 0.62067. Now one considers admissible
signatures for which m1 ≥ 3. Once again, by explicit calculation using this
monotonicity, we need only check a finite number of signatures and so we are
able to rule these out as well. ¤

Remark. We conjecture that a minimum diameter hyperbolic 3-orbifold is the
orientation-preserving half of the Z2-extension of the Coxeter 3-5-3 reflection
group.

We restate Theorem 1.3 in terms of the discussion above.

Theorem 2.3. We have that Kc = ψ(diam Omin) ≈ 1.36138. Furthermore, any
strongly quasiconformally homogeneous surfaces R 6= H2 satisfies Kaut(R) > Kc.
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Proof. We will first construct a sequence {Sn} of surfaces such that the infimum
over the sequence has the property that inf Kaut(Sn) ≤ ψ(diam Omin). Then we
will show that Kaut(S) > ψ(diam Omin) for each surface S, and this will complete
the proof of the theorem.

By a standard geometric application of residual finiteness of surface groups
(see [11]) we can construct a sequence of regular closed hyperbolic surface covers
{Sn} of Omin, such that their minimal injectivity radii `(Sn) go to infinity as
n →∞.

Let x, y ∈ Sn, then there exists g ∈ Aut(Sn) such that ρ(g(x), y) ≤ diam Omin.
By construction the injectivity radius at the point g(x) is necessarily large for
all large index n independent of the choice of x and y. Thus we have that there
exists a quasiconformal homeomorphism f : Sn → Sn satisfying the following
conditions: first, f = id outside of B(g(x), injg(x)) and f(g(x)) = y, and secondly

K(f) ≤ ψ(diam Omin) + εn,

where εn is independent of x and y and gets smaller as the injectivity radius
gets larger and thus in the limit εn → 0 as n → ∞. To verify this, observe that
the hyperbolic distance between g(x) and y in the hyperbolic metric of the disk
B(g(x), injg(x)) is only slightly larger than it is in Sn if injg(x) is large enough.
We can thus transport Teichmüller’s extremal map into this disk and use the
identity map outside of the disk to map g(x) to y. Thus

inf{Kaut(Sn) |n ∈ N} ≤ ψ(diam Omin).

Next we show that any strongly quasiconformally homogeneous surface S 6= H2

satisfies that Kaut(S) > Kc.

Let S 6= H2 be an arbitrary strongly quasiconformally homogeneous surface,
and choose x, y ∈ S such that

min{ρ(x, g(y)) | g ∈ Aut(S)} ≥ diam Omin.

By composing with conformal automorphisms we can furthermore assume that a
least dilatation mapping f that maps x to y while being homotopic to a conformal
automorphism is in fact homotopic to the identity. We will show that K(f) > Kc

and this shows that Kaut(S) > Kc.

Let p : D2 → S be a universal covering map such that p(0) = x and p(−σ) = y,
where ρ(0,−σ) = ρ(x, y) (and σ ∈ (0, 1). Let f̃ be a lift of f to the unit disk such
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that f̃(0) = −σ. Then the extension of f̃ to the unit circle is the identity map of
the unit circle. Hence, using Proposition 2.1, we have that K(f̃) ≥ ψ(ρ(0,−σ)) ≥
ψ(diam(Omin)). We will show that the first of these two inequalities is strict.

First note that f̃ cannot be Teichmüller’s unique minimal map (i.e. the unique
minimum dilatation quasiconformal mapping Φ of the unit disk to itself that ex-
tends to the identity on the boundary and maps the origin to the point −σ). The
key idea here is that Teichmüller’s extremal map cannot be compatible with any
Fuchsian group of the first kind, and thus cannot live on any strongly quasicon-
formally homogeneous surface (compare Theorem 1.2).

A general argument can be made using the fact that the unit disk is a non-
amenable cover of the surface S (see Lemma 3.2), but we can give an explicit
argument which only requires a geometric understanding of Teichmüller’s minimal
map Φ ([13]).

Let O be the double cover of the unit disk, branched at the origin. Let φ1 :
O → D2 be the function φ1(z) =

√
z which maps O \ {0} conformally onto the

unit disk minus the origin. The two slits from 0 to −σ on the two leafs of O

get mapped onto the line segment [−i
√

σ, i
√

σ]. The unit disk minus this slit
can be mapped conformally by a mapping φ2 (via elliptic integrals) onto a round
annulus A with inner radius 1 and outer radius R, here R depends only on σ.
Furthermore, we can choose φ2 such that φ2([−i

√
σ, i
√

σ]) = ∂D2, and φ2 is
symmetric with respect to both the x and y-axis, in particular, φ2(i

√
σ) = i.

Finally, let φ3(z) = z − 1/z. This mapping maps A conformally onto the ellipse
E1 with semi-axes R − 1/R and R + 1/R and foci ±i, with a slit along the
imaginary axis from −2i to 2i.

Define three more maps τ1, τ2, τ3, where τ1 = φ1, τ2 = φ2, but τ3 is given by
τ3(z) = z + 1/z. This mapping maps the annulus A onto a different ellipse: its
semi axes are R + 1/R and R− 1/R and its foci are the points ±2.

The composition φ = φ3◦φ2◦φ1 is a conformal mapping from O\[−σ, 0] onto the
ellipse E1 \ [−2i, 2i], and extends to the slits from 0 to −σ in O so that φ(0) = 0,
φ
(
(−1, 0)

)
= (−i(R+1/R), i(R+1/R)), and φ

(
(0, 1)

)
= (−(R−1/R), R−1/R).

Here, φ
(
(−1, 0)

)
stands for the image under φ of the two lines on the double cover

O of the unit disk above the negative real axis in D2 (and similarly interpreted
for φ

(
(0, 1)

)
).
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Similarly, the composition τ = τ3◦τ2◦τ1 is a conformal mapping from O\[−σ, 0]
onto the ellipse E2 \ [−2, 2]. Note that τ can be extended to the slits, and the
extension has a branch point at −σ, i.e. τ extends to the double cover Õ of the
unit disk, branched at −σ.

The mapping Φ is finally obtained by mapping E1 onto E2 with the affine map

T (u + iv) = u
R + 1

R

R− 1
R

+ iv
R− 1

R

R + 1
R

.

Then τ−1
1 τ−1

2 τ−1
3 Tφ3φ2φ1 is a quasiconformal mapping from O (branched at 0)

onto Õ (branched at −σ) that agrees on both sheets and thus descends to a
quasiconformal mapping Φ : D2 → D2 that maps 0 to −σ. The only place where
Φ picks up quasiconformal dilatation is the mapping T that sends the ellipse E1

onto the ellipse E2.

We will now analyze the direction of maximal distortion for points z ∈ (−1, 0)
and points w ∈ (0, 1). The points z ∈ (−1, 0) in the unit disk correspond to
points on the imaginary axis in E1, and points w ∈ (0, 1) correspond to points on
the real axis in E1. Thus infinitesimal circles centered at points z ∈ (−1, 0) get
mapped under Φ onto infinitesimal ellipses centered at points on (−1,−σ) with
major axis orthogonal to R. On the other hand, infinitesimal circles centered
at points w ∈ (0, 1) get mapped under Φ onto infinitesimal ellipses centered at
points on (−σ, 1) with major axis along R.

Let now Γ be a Fuchsian group of the first kind. Then Γ contains a hyperbolic
element γ whose axis Aγ is arbitrarily close to (−1, 1). Since Φ is a smooth
mapping on D2 \ {0}, the line field of Φ varies continuously in D2 \ {0}. Hence,
on a segment of the axis Aγ the line field of Φ is almost vertical, whereas on
another segment of Aγ the line field of Φ is almost horizontal. But some power
of γ (or γ−1) maps points from the vertical segment into the horizontal segment,
but the image of the vertical line field under Dγ is not the horizontal line field,
and thus Φ ◦ γ 6= γ ◦Φ. Since Φ is the identity on ∂D2, the only possibility for Φ
to be compatible with Γ would be to satisfy Φ ◦ γ = γ ◦Φ for all γ ∈ Γ. Thus no
Fuchsian group of the first kind is compatible with Φ, and so Φ is not the lift of
any quasiconformal mapping on any surface whose underlying Fuchsian group is
of the first kind.
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In particular, we have shown that our original mapping f̃ (the lift of f : S → S

to the unit disk) cannot agree with the mapping Φ. Since Φ is unique with
minimal distortion via Teichmüller’s result, we conclude that K(f̃) > K(Φ) and
this proves the theorem. ¤

Remark. A fully general n-dimensional analogue (n ≥ 3) to the Teichmüller
extremal result is not known. However, under certain restrictive assumptions a
solution has been developed ([1]); it is shown that an extremal map is a rotation
of the 2-dimensional extremal mapping.

3. Amenability and passage of Kaut to a cover

Let X be a closed hyperbolic surface, and Y be a regular cover of X. Since
a homeomorphism of X may not lift equivariantly to a homeomorphism of Y ,
it is hard to relate the quasiconformal homogeneities of X and Y . However, if
we assume that X has trivial conformal automorphism group, then we can cite
Lemma 1.4, and thus we quickly observe that K(Y ) ≤ K(X). If Y is a non-
amenable regular cover then we can promote this inequality to a strict inequality.

In order to introduce amenability we first must fix some notation. Let G be
a graph and V be any set of vertices in G. The boundary ∂V of V is the set of
vertices in G− V that are a distance one from V (that is, there is an edge in G

that connects a vertex in ∂V to a vertex in V .) Define the expansion γ of G to
be the infimum of |∂V |

|V | as V varies over all finite vertex subsets of G. The group
G is said to be amenable if γ = 0, and if G is not amenable it is non-amenable.
Let Y be a regular cover of X, which we will denote by π : Y → X. We say that
Y is an amenable regular cover if the covering group is amenable (here the graph
in question is a graph of the group; the property of being amenable persists to
every graph of a group.) If the covering group is non-amenable we say that Y is
a non-amenable cover of X. See McMullen [10] for a more general presentation
of amenable and non-amenable covers of Riemann surfaces.

The following is our second primary result in this note.

Theorem 3.1. Let X be a closed Riemann surface with Aut(X) = {id}. Let Y

be a regular, non-amenable cover of X. Then

Kaut(Y ) < Kaut(X).
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In order to prove this theorem we first show a local version:

Lemma 3.2. Suppose that X is a closed Riemann surface having trivial auto-
morphism group, and Y be a regular non-amenable cover of X. Let x1, x2 be two
distinct points in X and let y1 ∈ π−1(x1), y2 ∈ π−1(x2) be preimages of x1, x2

under the covering map π. Then

Kaut(y1, y2) < Kaut(x1, x2).

Proof. Let x1, x2 ∈ X be two distinct points. Let f be a quasiconformal map-
ping of X that is homotopic to the identity, that maps x1 to x2 and that satisfies
K(f) = Kaut(x1, x2). Let X1 be the punctured surface X \ {x1}, and let X2 the
surface X \ {x2}. Then f|X1

: X1 → X2 is extremal in its homotopy class since
otherwise there would be a mapping homotopic to f|X1

on X1 with smaller di-
latation. But filling in the punctures would then yield a quasiconformal mapping
of X that maps x1 to x2, which is homotopic to the identity and has dilatation
smaller than Kaut(x1, x2) which is a contradiction.

Now let Y1 = Y \π−1(x1) and Y2 = Y \π−1(x2). Then f|X1
lifts to a mapping f̃

from Y1 to Y2 (since f itself is homotopic to the identity it lifts to a quasiconformal
homeomorphism of Y to itself; the lift can be chosen to be homotopic to the
identity on Y ). Since by assumption Y is a non-amenable regular cover of X

we can conclude that Y1 is a non-amenable regular cover of X1 (in fact, the
covering groups Π1(X)/Π1(Y ) and Π1(X1)/Π1(Y1) are identical). Hence because
X1 is of finite type and Y1 is a non-amenable cover of X1, McMullen’s result
[10, Corollary 1.2] implies that f̃ : Y1 → Y2 is not extremal in its homotopy
class. Hence there exists a quasiconformal homeomorphism g : Y1 → Y2 which
is homotopic (in Y1) to f̃ such that K(g) < K(f̃). Now g can be extended to
a quasiconformal mapping (again denoted g) of Y to itself which maps the set
of punctures π−1(x1) to the set of punctures π−1(y1) in the same way that f̃

did. Since f̃ (when extended to all of Y ) is homotopic to the identity by choice
of the lift, we see that the extended g is homotopic to the identity on Y as
well and K(g) < K(f̃). Furthermore, g maps y1 to some point α(y2) for some
α ∈ Π1(X)/Π1(Y ) = Aut(Y ). Then α−1 ◦g maps y1 to y2, and thus we have that

Kaut(y1, y2) ≤ K(α−1 ◦ g) < K(f̃) = Kaut(x1, x2),

which completes the proof. ¤
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Proof of Theorem 3.1. We will show more generally that if X is an arbitrary
compact hyperbolic surface and Y is a regular cover of X with covering map
π : Y → X such that KY

aut(y1, y2) < KX
aut(x1, x2) for any two distinct x1, x2 ∈ X

and any preimages y1 ∈ π−1(x1), y2 ∈ π−1(x2), then Kaut(Y ) < Kaut(X).

To do so, pick a, b ∈ Y such that KY
aut(a, b) = Kaut(Y ). Such two points ex-

ist (i.e. Kaut(Y ) is attained) since Y is a regular cover of the compact surface
X, and hence there exists a compact fundamental domain for the action of Y ’s
automorphism group on Y . The existence of a and b now follows from a sim-
ple compactness / normal family argument. But by assumption we have that
KY

aut(a, b) < KX
aut(π(a), π(b)), and this implies that

Kaut(Y ) = KY
aut(a, b) < KX

aut(π(a), π(b)) ≤ Kaut(X),

completing the proof. ¤

We finish this note with an immediate application of Theorem 3.1; recall that
a free group having two or more generators is non-amenable. Recall also that the
Retrosection theorem provides for the existence of (necessarily non-amenable)
planar covers of any closed hyperbolic surface (see [3] for a discussion of the
Retrosection theorem.)

Corollary 3.3. Let X be a closed hyperbolic surface with trivial automorphism
group. Then any planar hyperbolic domain Ω that is obtained from X by the
Retrosection Theorem has the property that Kaut(Ω) < Kaut(X).

It would be interesting to know if, for any fixed genus g ≥ 3, there is a uniform
bound cg < 1 (over all closed conformal surfaces X of genus g having trivial
automorphism groups) so that Kaut(Ω)/Kaut(X) ≤ cg for any domain Ω obtained
from a retrosection of X.
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