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1 Basic notions

Let us begin with a brief review of some aspects of analysis on metric spaces. Let
(M, d(x, y)) and (N, ρ(u, v)) be metric spaces, let α be a positive real number,
and let C be a nonnegative real number. A mapping f : M → N is said to be
C-Lipschitz of order α if

ρ(f(x), f(y)) ≤ C d(x, y)α (1.1)

for every x, y ∈ M . For example, constant functions are 0-Lipschitz of every
order and are the only 0-Lipschitz functions, and the identity mapping f(x) = x

is 1-Lipschitz of order 1 as a mapping from M to M . If f(x) is a continuously-
differentiable real or complex-valued function on the real line, then f(x) is C-
Lipschitz of order 1 if and only if |f ′(x)| ≤ C for every x ∈ R.

If f1, f2 are complex-valued functions on a metric space M which are C1,
C2-Lipschitz of order α for some α > 0 and C1, C2 ≥ 0, then it is easy to see that
f1 + f2 is (C1 + C2)-Lipschitz of order α. If f is a complex-valued C-Lipschitz
function of order α on M and a is a complex number, then a f is (|a|C)-Lipschitz
function of order α. If f1, f2 are also bounded, then the product f1 f2 is Lipschitz
of order α too. The composition of a Lipschitz mapping of order α and a Lipschitz
mapping of order β is Lipschitz of order α β. Lipschitz mappings of any order
are uniformly continuous.

For each p ∈ M , d(x, p) ≤ d(y, p) + d(x, y) for every x, y ∈ M by the triangle
inequality, and similarly with x and y interchanged. This implies that fp(x) =
d(x, p) is a real-valued 1-Lipschitz function of order 1. If 0 < α ≤ 1 and r, t are
nonnegative real numbers, then max(r, t) ≤ (rα + tα)1/α, which implies that

r + t ≤ max(r, t)1−α (rα + tα) ≤ (rα + tα)1/α, (1.2)

or (r + t)α ≤ rα + tα. It follows that fp,α = d(x, p)α is a 1-Lipschitz function of
order α for every p ∈ M when α ≤ 1, for the same reasons as for α = 1.

By contrast, if f is a real or complex-valued Lipschitz function of order α > 1
on the real line, then f ′(x) = 0 for every x ∈ R, and f is constant. The same
argument works on Euclidean spaces of any dimension, but there are metric spaces
with nonconstant Lipschitz functions of order > 1. On the Cantor set there are
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nontrivial locally constant functions, for instance. There are also connected and
locally connected snowflake sets with nonconstant Lipschitz functions of order
> 1.

Let (M, d(x, y)) be a metric space, and suppose that a, b are real numbers
with a ≤ b and that p : [a, b] → M is a continuous curve in M . If P = {t`}n

`=1 is
a partition of [a, b], which means that

a = t0 < t1 < · · · < tn = b, (1.3)

then put

λ(P) =
n∑

`=1

d(p(t`−1), p(t`)). (1.4)

We say that p has finite length in M if there is an upper bound for λ(P) over all
partitions P of [a, b], in which case the length λ of p is defined to be the supremum
of λ(P). This is the same as saying that p has bounded variation when M is R
or C. If p : [a, b] → M is a continuous curve of length λ, then d(p(a), p(b)) ≤ λ.
The restriction of p to any subinterval of [a, b] is a continuous curve with length
≤ λ, and hence the diameter of p([a, b]) is ≤ λ. Note that a continuous curve has
length equal to 0 if and only if it is constant.

Suppose that P, P ′ are partitions of [a, b] and that P ′ is a refinement of P,
which is to say that each term in P is also in P ′. Using the triangle inequality,
one can check that λ(P) ≤ λ(P ′). As a consequence, it suffices to use partitions
of [a, b] that contain a fixed element r ∈ [a, b] in order to determine the length of
p. This implies that the length of p on [a, b] is equal to the sum of the lengths
of p on [a, r] and on [r, b] for each r ∈ [a, b]. If p : [a, b] → M is C-Lipschitz of
order 1, then p has finite length ≤ C (b − a). Conversely, a continuous path of
finite length λ can be reparameterized to get a 1-Lipschitz curve on an interval
of length equal to λ. This basically uses the arc-length parameterization of p.

If p : [a, b] → M is a continuous path of length λ and f is a C-Lipschitz
complex-valued function of order 1 on M , then f ◦ p is a function of bounded
variation on [a, b] of total variation ≤ C λ. If f is locally C-Lipschitz of order 1,
then f ◦p is still a function of bounded variation on [a, b] of total variation ≤ C λ,
since one can use partitions of [a, b] with small mesh size by passing to suitable
refinements. If f is locally ε-Lipschitz of order 1 for each ε > 0, then f ◦ p has
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total variation equal to 0, and f ◦ p is constant on [a, b]. If f is Lipschitz of order
> 1, then f is locally ε-Lipschitz of order 1 for each ε > 0.

If there is a k ≥ 1 such that every x, y ∈ M can be connected by a continu-
ous path of length ≤ k d(x, y), and if f is a locally C-Lipschitz complex-valued
function of order 1 on M , then f is (k C)-Lipschitz of order 1. This property
holds with k = 1 when M is a convex set in Euclidean space or a normed vector
space more generally, since every pair of elements of M can be connected by a
line segment of length equal to the distance between x and y. This property also
holds for some fractals like the Sierpinski gasket and carpet, for suitable k > 1.
A connected open set U in a normed vector space satisfies this property locally
with k = 1, and every x, y ∈ U can be connected by a curve of finite length, but
the relationship between the lengths of the paths and the distances between x

and y may be complicated. Similarly, a connected embedded smooth submanifold
of Rn has this property locally with k arbitrarily close to 1, but otherwise the
ambient Euclidean distance may be much smaller than the intrinsic distance on
the submanifold, depending on the situation.

2 Complex-analytic metric spaces

What might one mean by a “complex-analytic metric space”? Certainly Cn with
the standard Euclidean metric ought to be an example, as well as domains in Cn

and smooth complex manifolds equipped with suitable geometries, etc.

For a nonstandard example, fix an integer n ≥ 2, and let Σn be the unit
sphere in Cn. Thus

Σn = {z ∈ Cn : |z| = 1}, (2.1)

where |z| =
( ∑n

j=1 |zj |2
)1/2

for z = (z1, . . . , zn) ∈ Cn, as usual. We can think of
Σn as a real smooth hypersurface in Cn, whose tangent space at z ∈ Σn is

Tz Σn =
{
v ∈ Cn : Re

n∑

j=1

vj zj = 0
}
. (2.2)

Here Re a denotes the real part of a complex number a, and a is its complex
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conjugate. Put

CTz Σn =
{
v ∈ Cn :

n∑

j=1

vj zj = 0
}
, (2.3)

which is a complex-linear subspace of Cn contained in Tz Σn. If Im a is the
imaginary part of a complex number a, then CTz Σn consists of the v ∈ Tz Σn

such that Im
∑n

j=1 vj zj = 0. This shows that CTz Σn has real codimension 1 in
Tz Σn, which has real codimension 1 in Cn. It is well known that every pair of
elements of Σn can be connected by a smooth path p(t) in Σn whose derivative
ṗ(t) is contained in CTp(t) Σn for every t in the interval on which p(t) is defined. A
metric on Σn can be defined using the infimum of the lengths of these paths with
a fixed pair of endpoints in Σn. With respect to this sub-Riemannian geometry on
Σn, CTz Σn is the appropriate tangent space for Σn at z ∈ Σn. By construction,
CTz Σn is also a complex vector space in a natural way.

This sub-Riemannian geometry on Σn is compatible with the usual topology,
but the corresponding Hausdorff dimension is 2n.

On a complex manifold M , there is a decomposition of exterior differentiation
d into the sum of ∂ and ∂. By definition, a complex-valued function f on an open
set U ⊆ M is holomorphic if ∂f = 0 on U . On Σn, there is an analogous operator
∂b based on the complex subspaces of the tangent spaces. The ∂b operator is the
appropriate ∂ operator on Σn with respect to the sub-Riemannian geometry.

Similar remarks can be applied to other Cauchy–Riemann manifolds with
compatible sub-Riemannian geometries. In order to get a complex-analytic met-
ric space, one ought to have complex structures on the subspaces of the tangent
spaces that determine the sub-Riemannian structure. Otherwise, one might have
“Cauchy–Riemann sub-Riemannian spaces”, with complex structures on sub-
spaces of the subspaces of the tangent spaces that determine the sub-Riemannian
structure.

In general, one might ask that a complex-analytic metric space have some
sort of tangent spaces, perhaps almost everywhere, and complex structures on
these tangent spaces. Some nontrivial holomorphic functions would be nice too.

Of course, there has been a lot of work over the years concerning abstract
versions of holomorphic functions on complex spaces, often in terms of algebras
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of continuous functions on topological spaces. An advantage of metric spaces is
that there are special classes of functions, like Lipschitz functions and Sobolev
spaces when the metric space is equipped with a metric, which are relevant for
differentiation and other aspects of analysis. The definition of the tangent spaces
of the metric space would normally involve some sort of regular functions and
their derivatives.

Geometric measure theory deals extensively with differentiation and tangent
spaces for sets that may not be smooth. See [2, 3, 62, 63, 64, 65, 87, 103, 104,
140, 141, 142], for instance, concerning holomorphic chains as currents.

For a metric space equipped with a doubling measure and for which there are
suitable versions of Poincaré inequalities, Cheeger [26] has shown that there are
versions of classical results on differentiability almost everywhere. This is a very
interesting setting in which to consider ∂ operators.

In particular, one might do this for a space X which is a Cartesian product of
an even number of spaces like those described by Laakso [98] and intervals. If L

is a Laakso space, then there is a natural projection from the product of a Cantor
set C and the unit interval I onto L, and another projection from L onto I. The
composition of these two mappings is the usual coordinate projection from C× I

onto I. If a complex structure is defined on X in a compatible way, then one
can use these projections onto intervals to get nontrivial holomorphic functions
on X. One can jazz this up a bit using branching.

One can also look at holomorphic mappings between complex-analytic metric
spaces, e.g., nontrivial analytic disks. It is well known that any holomorphic
mapping from a disc into the unit sphere Σn in Cn is constant. There are plenty
of analytic disks in a product of Laakso spaces and intervals when the complex
structure on the product satisfies suitable compatibility conditions.

For that matter, one could view the product of a Cantor set and Cn as
a complex-analytic metric space, in which only the complex structure in the
Cn directions is employed in the product. Thus a holomorphic function on the
product would be holomorphic on each copy of Cn, and an analytic disk in the
product would be an analytic disk in one of the copies of Cn. More precisely,
the Cantor set would be treated as not contributing to the tangent space of
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the product or the complex structure. This is consistent with the failure of
differentiability theorems for Lipschitz functions on Cantor sets, although one
might say instead that the derivative is equal to 0.

Alternatively, let E be a closed set in Cn, and suppose that f : E → C is
continuously differentiable in the sense of Whitney. This means that for each
p ∈ E there is a real-linear mapping dfp : Cn → C which is continuous as a
function of p and satisfies

f(z) = f(p) + dfp(z − p) + o(1) (2.4)

uniformly on compact subsets of E. The restriction to E of a continuously-
differentiable function on Cn automatically has this feature, using the ordinary
differential of f at p ∈ E. Conversely, a function f on E with this property has
an extension to a continuously differentiable function on Cn whose differential at
p ∈ E is equal to dfp, by Whitney’s extension theorem. If f is a continuously-
differentiable function on E in the sense of Whitney, then ∂fp can be defined
using dfp in the usual way, and ∂fp = 0 for every p ∈ E when f is the restriction
to E of a holomorphic function on an open set U ⊆ Cn containing E.

If E is a Cantor set or a snowflake, then there are nontrivial functions f on E

which are continuously-differentiable in Whitney’s sense with dfp = 0 for every
p ∈ E. At the opposite extreme, suppose that E = Rn ⊆ Cn and f : Rn → C is
continuously-differentiable as a function on Rn. The differential of f at p ∈ Rn

is therefore defined as a real-linear mapping from Rn to C, which has a unique
extension to a complex-linear mapping from Cn to C. If we use this extension
as dfp, then ∂fp = 0.

A basic issue about complex-analytic metric spaces is the strength of the ∂

operator, starting with the question of whether |∂f | is roughly like |df | when f

is real-valued. This is an elementary feature of the classical case, and there is an
analogous statement for Cauchy–Riemann spaces in terms of the tangential part
of the differential. However, this does not say much about the strength of the
∂ operator applied to complex-valued functions, since there are standard local
regularity results for holomorphic functions on Cn while the boundary values
of holomorphic functions on the unit ball automatically satisfy the tangential
Cauchy–Riemann equations on the unit sphere but do not have to be smooth.
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If f is a nice complex-valued function with compact support on Cn and 1 <

p < ∞, then ∫

Cn
|∂f(z)|p dz ≤ A(p, n)

∫

Cn
|∂f(z)|p dz, (2.5)

where A(p, n) > 0 depends only on p and n. This follows from well-known results
in harmonic analysis, and there are similar estimates for other norms and spaces
of functions. These matters have also been studied extensively for domains in
Cn, their boundaries, and other complex manifolds and Cauchy–Riemann spaces,
with additional terms or boundary conditions, etc., according to the situation.
Properties like these are of interest for complex-analytic metric spaces in general,
as well as the relationship with a suitable Laplace operator and subharmonicity.

The classical theory of quasiconformal mappings in the plane deals exactly
with the Beltrami operators ∂µ = ∂ − µ∂ associated to a perturbation of the
standard complex structure. The quasiconformality condition ‖µ‖∞ < 1 ensures
that |∂µf | is comparable to |df | when f is real-valued. Moreover, it leads to L2

estimates for the gradient, and Lp estimates when p is sufficiently close to 2. If
a function is holomorphic with respect to ∂µ, then it can be expressed as the
composition of an ordinary holomorphic function with a quasiconformal mapping
with dilatation µ.

It can be easier to make sense of the size |df | of the differential of a function f

on a metric space than the differential df , and it may be easier in some situations
to make sense of something like |∂f | than ∂f . There could also be a decomposition
of |df |2 into a sum of parts corresponding to |∂f |2 and |∂f |2, analogous to the
usual decomposition of d into the sum of ∂ and ∂. One might look at this on
the Sierpinski gasket in connection with “analysis on fractals” in the sense of
[86, 149, 150], for instance. The underlying local model for this is the fact that
a real-affine function on the plane is uniquely determined by its values on the
vertices of a triangle, and the decomposition of a real-linear function into parts
that are complex-linear and conjugate-linear. By contrast, this may not work as
well for squares and Sierpinski carpets.

Let (M, d(x, y)) and (N, ρ(u, v)) be metric spaces. A mapping f : M → N is
said to be Lipschitz if it is Lipschitz of order 1, and it is a bilipschitz embedding of
M into N if ρ(f(x), f(y)) is bounded from above and below by constant multiples
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of d(x, y) for every x, y ∈ M . For example, the standard embedding of the unit
sphere Σn into Cn is bilipschitz with respect to the ordinary Euclidean metric
on Cn and the induced Riemannian metric on Σn. However, this mapping is
Lipschitz and not bilipschitz when one uses the sub-Riemannian geometry on Σn

associated to the complex subspaces of the tangent spaces. There are probably
a lot of subtleties involved with embeddings of complex-analytic metric spaces.

Note that the boundary values of a holomorphic function on the unit ball
in C2 could be considered as a quasiregular mapping from Σ2 with the usual
sub-Riemmanian structure into the complex numbers. Similarly, the standard
projection from the product of a Laakso space and an interval or another Laakso
space to the complex numbers could also be considered quasiregular. In these
examples, the tangent spaces of the domain and range have the same dimension,
and quasiregularity can be formulated in terms of the differentials of the map-
pings as linear transformations between the corresponding tangent spaces. In
the first example, the Hausdorff dimension of the domain is strictly larger than
the topological dimension, which is strictly larger than the dimension of the tan-
gent spaces. In the second example, the Hausdorff dimension of the domain is
strictly larger than the topological dimension, which is equal to the dimension of
the tangent spaces. Even for variants of Laakso’s construction using Cantor sets
with Hausdorff dimension 0 so that the Hausdorff and topological dimensions of
the resulting spaces would be the same, the Hausdorff measure would not be σ-
finite in the topological dimension. The fibers of the mapping are at least totally
disconnected in the second example, if not discrete. Compare with [71].

3 Clifford holomorphic functions

Let n be a positive integer, and let C(n) be the Clifford algebra over the real
numbers R with n generators e1, . . . , en. By definition, C(n) is an associative
algebra with a nonzero multiplicative identity element. Thus C(n) contains a
copy of R, and the real number 1 can be identified with the multiplicative identity
element of C(n). The generators e1, . . . , en of C(n) satisfy the relations e2

l = −1 for
l = 1, . . . , n, and eq ep = −ep eq when 1 ≤ p, q ≤ n and p 6= q. For I = {l1, . . . , lr},
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1 ≤ l1 < l2 < · · · < lr ≤ n, let eI be the element of C(n) defined by

eI = el1el2 · · · elr . (3.1)

We can include I = ∅ by putting e∅ = 1. The 2n elements eI of C(n), where I

runs through all subsets of {1, . . . , n}, forms a basis for C(n) as a vector space
over R.

Actually, one can think of C(n) as being equal to R when n = 0. When
n = 1, C(n) is equivalent to the complex numbers C, with the one generator e1

corresponding to the complex number i. When n = 2, C(n) is equivalent to the
quaternions H. Normally one might represent x ∈ H as

x = x1 + x2 i + x3 j + x4 k, (3.2)

where i2 = j2 = k2 = −1, k = i j, and j i = −k, which yield i k = −j = −k i and
j k = i = −k j. For the identification with C(2), i, j ∈ H correspond to the two
generators e1, e2 ∈ C(2), and k ∈ H corresponds to their product e1 e2.

If v = (v1, . . . , vn) ∈ Rn, then we can associate to v the element

v̂ = v1 e1 + · · ·+ vn en (3.3)

of C(n). This defines a linear embedding of Rn into C(n) such that

v̂2 = −(v2
1 + · · ·+ v2

n). (3.4)

More generally, if v = (v0, v1, . . . , vn) ∈ Rn+1,

ṽ = v0 + v1 e1 + · · ·+ vn en, (3.5)

and
ṽ∗ = v0 − v1 e1 − · · · − vn en, (3.6)

then
ṽ ṽ∗ = ṽ∗ ṽ = v2

0 + v2
1 + · · ·+ v2

n. (3.7)

Similarly, if x = x1 +x2 i+x3 j +x4 k ∈ H, where x1, x2, x3, x4 are real numbers,
and we put

x∗ = x1 − x2 i− x3 j − x4 k, (3.8)
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then

xx∗ = x∗ x = x2
1 + x2

2 + x2
3 + x2

4. (3.9)

If f is a continuously-differentiable function on an open set U ⊆ Rn with
values in the Clifford algebra C(n), then we say that f is left or right Clifford
holomorphic if

n∑

l=1

el
∂f

∂xl
= 0 or

n∑

l=1

∂f

∂xl
el = 0 (3.10)

on U , respectively. Alternatively, let f be a continuously-differentiable function
on an open set in Rn+1, where x ∈ Rn+1 has components x0, x1, . . . , xn. In
this case, we get slightly different versions of Clifford holomorphicity with the
equations

n∑

l=0

el
∂f

∂xl
= 0,

n∑

l=0

∂f

∂xl
el = 0, (3.11)

where e0 = 1. There are also variants of these for the quaternions using i, j, and
k. These are all Generalized Cauchy–Riemann Systems as in [146].

Suppose that f is a continuously-differentiable function on an open set U in
Rn with values in Rp for some p ≥ 1, and that x is an element of U and v is
a unit vector in Rn. If f satisfies an equation at x like those described in the
previous paragraph, then the directional derivative of f at x in the direction of
v can be expressed as a linear combination of the directional derivatives of f at
x in the directions orthogonal to v. For example, if f is a left or right Clifford
holomorphic function, then one can check this by multiplying the corresponding
differential equation on the left or right by v̂, respectively. Let us say that f is
k-restricted for some k ≥ 1 if for every x ∈ U and every hyperplane H ⊆ Rn, the
norm of the differential of f at x is less than or equal to k times the norm of the
restriction of the differential of f at x to H. In each of the cases discussed in the
previous paragraph, it follows that f is k-restricted for a fixed k.

The differential of a real-valued function automatically vanishes on a hyper-
plane at each point. Hence a real-valued k-restricted function on a connected
open set is constant. When p = n = 2, the property of being k-restricted is
very close to quasiregularity. A key difference is that quasiregularity includes a
condition of nonnegative orientation.
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Let us say that a linear mapping A : Rn → Rp is k-restricted if the norm of A

is less than or equal to k times the norm of the restriction of A to any hyperplane
in Rn. Equivalently, A is k-restricted if the norm of A is less than or equal to
k times the norm of A + B for every linear mapping B : Rn → Rp with rank
one. This is also the same as saying that the first singular value of A is less than
or equal to k times the second singular value. Thus a continuously-differentiable
mapping is k-restricted if and only if its differential is k-restricted at each point,
which is exactly the condition required for the arguments in [146] for improved
subharmonicity properties of norms of vector-valued harmonic functions. It fol-
lows that f : U → Rp is k-restricted if and only if the norm of the differential
of f at any x ∈ U is less than or equal to k times the norm of the differential of
f + aφ for every a ∈ Rp and continuously-differentiable real-valued function φ

on U .

As an extension of quaternionic and Clifford analysis, one could replace the
usual partial derivatives in the coordinate directions with vector fields with
smooth coefficients. The number of vector fields could even be less than the
dimension of the space, in which event one might ask that the vector fields sat-
isfy the Hörmander condition that they and their commutators span the tangent
space at each point. This would imply that functions with vanishing derivatives
in the directions of the vector fields are locally constant in particular. Note that
solutions of tangential Cauchy–Riemann equations correspond to special classes
of quaternionic and Clifford holomorphic functions associated to suitable vector
fields, at least locally, just as for holomorphic functions and quaternionic and
Clifford analysis in the classical case.

One can also consider versions of quaternionic and Clifford analysis on metric
spaces. Since products of quaternionic or Clifford holomorphic functions are not
normally holomorphic even on Euclidean spaces, abstract approaches based on
algebras of functions do not work as in the complex case. One might look at
k-restrictedness of a function f on a metric space in terms of comparing local
Lipschitz or Sobolev constants for f with their counterparts for f + aφ when a

is a constant vector and and φ is real-valued.
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4 Spaces with Poincaré inequalities

If B is a ball of radius R > 0 in Rn, 1 ≤ p < ∞, and f is a real-valued function
on B, then

( 1
|B|

∫

B
|f(x)− fB| dx

)1/p ≤ C(n) R
( 1
|B|

∫

B
|∇f(x)|p dx

)1/p
, (4.1)

where |B| denotes the volume of B and fB is the average of f on B. One might as
well suppose that f is continuously differentiable on B, although the inequality
also works when f is a locally integrable function on B with distributional first
derivatives in Lp(B). The limiting case p = ∞ corresponds to the statement that
a Lipschitz condition is implied by a bound for the gradient.

Juha Heinonen and I posed some questions in [76] about whether suitable ver-
sions of these classical Poincaré inequalities on other spaces would imply that the
spaces enjoy some sort of approximately Euclidean or sub-Riemannian structure.
These questions were answered negatively by remarkable examples of Bourdon
and Pajot [20] and Laakso [98]. Perhaps it is better to say that they answered
positively the question of whether there could be a lot of spaces of this type. In
particular, there are spaces of this type with any Hausdorff dimension greater
than or equal to 1, and every such space with at least two elements has Hausdorff
dimension greater than or equal to 1 because of connectedness.

I would like to suggest that there are positive results along the lines of
the previous questions with additional hypotheses. There is a nice theorem
of Berestovskii and Vershik [14] concerning sub-Riemannian geometry of met-
ric spaces under somewhat different conditions, and one may be able to build
on their approach. Cheeger’s work [26] on differentiability of Lipschitz functions
almost everywhere on spaces with Poincaré inequalities ought to be an impor-
tant step in this direction as well. It may be relatively easy to deal with spaces
on which there is sufficient “calculus”, and there can be different amounts of
structure corresponding to different degrees of calculus.

It can be helpful to look at nilpotent Lie groups and sub-Riemannian spaces
more closely in order to understand the general situation better. One can also
simply start with a connected smooth manifold M and some smooth vector fields
X1, . . . , Xn on M which satisfy the Hörmander condition that the tangent space
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of M at every point is spanned by the X`’s and their successive Lie brackets. The
smooth functions on M as a smooth manifold would be the same as the smooth
functions on M with respect to X1, . . . , Xn, but the two structures can measure
smoothness in very different ways. A vector field on M is a first-order differential
operator in the usual sense but may be considered as an operator of higher order
with respect to the X`’s. A vector field which can be expressed as the bracket of
r of the X`’s in some way would typically be considered a differential operator
of order r with respect to the X`’s. In particular, one might start with a smooth
distribution L of linear subspaces of the tangent spaces of M , which contain
the X`’s and are spanned by them at every point. The Hörmander condition is
then a maximal non-integrability condition for L, at least if L consists of proper
subspaces of the tangent spaces of M .

However, that brackets of the X`’s can be defined at all can be considered as
an important integrability condition for the corresponding sub-Riemannian space.
To have any nontrivial vector fields on a metric space at all is already quite
significant, in the sense of first-order differential operators acting on Lipschitz
functions as in [158], for instance. Even if there are a lot of vector fields on
metric spaces with Poincaré inequalities by [26], it may not be clear how to deal
with their brackets. In the context of complex-analytic metric spaces, it would be
interesting to know whether brackets of complex vector fields of ∂/∂z type are of
the same type. This is the classical integrability condition for an almost-complex
structure on a smooth manifold.

There are classical results about integrating vector fields to get nice mappings
on manifolds. Extra compatibility conditions are required on sub-Riemannian
spaces to get mappings which respect the geometry in appropriate ways. Even for
nilpotent Lie groups with sub-Riemannian structures that are invariant under left
or right translations by definition, there may only be finite-dimensional families
of mappings with suitable regularity. In some cases there may be no reason for a
metric space with Poincaré inequalities to have any nontrivial continuous families
of mappings which respect the geometry or the topology. On complex-analytic
metric spaces, it would be interesting to consider holomorphic vector fields and
the possibility of integrating them to get holomorphic mappings.

As another basis for comparison, suppose that M is a smooth manifold and
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that V is a continuous vector field on M which may not be smooth. There are
still results about existence of integral curves for V in M , but uniqueness might
not hold without more information about the regularity of V . Uniqueness can
also fail for smooth vector fields on singular spaces. Similarly, let L be a Laakso
space, with a projection from the Cartesian product of a Cantor set C and the
unit interval I onto L. One can follow the standard vector field on I and move
in the positive direction at unit speed, and do the same on each parallel copy
of I in C × I. Because of the identifications between the copies of I in L, one
loses uniqueness of the trajectories in L. It seems interesting to consider metric
spaces with vector fields more broadly, including constructions like Laakso’s with
different patterns of identifications. One might wish to use probability theory to
treat this type of branching, i.e., to follow a vector field with a stochastic process.

On Laakso’s and related spaces, there are nice classes of regular functions
which are locally equivalent to smooth functions on the unit interval and constant
in the direction of the Cantor set. A regular vector field can be defined as a regular
function times ordinary differentiation in the direction of the unit interval. A
regular vector field applied to a regular function is a regular function, and the
bracket of two regular vector fields makes sense and is a regular vector field. Even
for regular functions, many of the usual problems are still present. The branching
can take place on larger regions.

Suppose now that M is a smooth manifold equipped with some sort of sub-
Riemannian structure. If V is a vector field on M which is smooth with respect
to the ordinary smooth structure on M , then one can integrate V to get smooth
mappings on M which are at least continuous with respect to the sub-Riemannian
geometry. If V is admissible for the sub-Riemannian structure, then the integral
curves for V are automatically admissible. If V is admissible and [V, X] is ad-
missible when X is, then the mappings on M associated to V are compatible
with the sub-Riemannian structure. This is basically a regularity condition for
V relative to the sub-Riemannian structure, analogous to the classical Lipschitz
condition for the coefficients of a vector field.

Sometimes a vector field is obtained from the gradient of a function. This
could be derived from a pairing between functions which includes a pointwise
pairing between their gradients, at least implicitly. Such a pairing might be
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positive and symmetric, like a Riemannian metric, or antisymmetric, as for a
symplectic structure.

On a Cantor set represented as the Cartesian product of a sequence of fi-
nite sets, there are a lot of transformations obtained from permutations in the
individual coordinates, including small displacements from permutations in coor-
dinates with large indices. It is not so easy to have nontrivial small displacements
on some locally connected spaces, because of intricate topological structure. On
spaces with Poincaré inequalities, one can also try to study small displacements
in terms of vector fields, perhaps on associated tangent objects. At any rate,
it seems interesting to look at group actions on spaces with Poincaré or related
inequalities.

I would like to think of a metric space with Poincaré, Sobolev, or similar
inequalities as a kind of generalized manifold. One can look at this as a variant
of Cantor manifolds [81], which are spaces that are not disconnected by subsets of
topological codimension ≥ 2. This is especially close to isoperimetric inequalities
and other estimates of the measure of a set in terms of the size of its boundary.

A lot of analysis related to singular integral operators and classical spaces of
functions is available in the vast setting of spaces of homogeneous type [29, 30].
This includes Cantor sets and snowflake spaces, which are important examples
with many applications, and which also have nonconstant functions with vanish-
ing gradient. As a next step, one can try to integrate local Lipschitz conditions
to estimate the behavior of a function. With Poincaré or Sobolev inequalities,
one has stronger forms of calculus involving integrals of derivatives.

Notions of generalized manifolds have been studied extensively in algebraic
topology. After all, homology and cohomology are also ways of doing “calcu-
lus” on broad classes of spaces. One of the simplest of these notions is that of
polyhedral pseudomanifolds. More sophisticated theories deal with intermediate
dimensions in the space.

Even for topological manifolds, there can be different types of structures with
different versions of calculus. A manifold may be equipped with a smooth struc-
ture, for instance, or a piecewise-linear, Lipschitz, or quasiconformal structure
more generally. It may be represented as a polyhedron, which might or might
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not have piecewise-linear local coordinates, or coordinates of moderate complex-
ity. Using sub-Riemannian geometry, a manifold can be a fractal and still have
Poincaré and Sobolev inequalities.

The apparent irregularities of some spaces with Poincaré or Sobolev inequali-
ties could be attributed to using classical geometry instead of something like non-
commutative geometry. With noncommutative geometry, one can try to avoid
complicated patchworks of interconnections and gain local or infinitesimal sym-
metries. Spaces with some version of calculus are basically extensions of smooth
manifolds whether they are based on classical or noncommutative geometry, and
one might as well try to work with both.

In Connes’ theory [32], commutators between singular integral operators and
multiplication operators are like derivatives and the Dixmier trace corresponds to
integration. The Dixmier trace is an asymptotic version of the trace that applies
to slightly more than the usual trace class operators and vanishes on trace class
operators. These asymptotic properties are important for localization in the
theory. One-dimensional spaces are somewhat exceptional because of unusual
regularity of commutator operators.

Of course, one-dimensional sets are exceptional in more classical ways as well.
Connectedness plays a large role in this. A nice historical survey related to
curvature can be found in the introduction to [123]. Some amazing discoveries
about singular integral operators and complex analysis are explained in [112].

At any rate, the general area of analysis on metric spaces has seen a lot of
activity, and it seems to me that there is plenty of room for more.
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[69] J. Heinonen, Lectures on Lipschitz analysis, Rep. Dept. Math. Stat. 100,
University of Jyväskylä, 2005.
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