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Abstract: We prove that a quasilight mapping of finite distortion with
locally n-integrable weak partials and locally integrable inner distortion is
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1. Introduction

We call f : Ω → Rn, n ≥ 2, a mapping of finite distortion if f ∈ W 1,1
loc (Ω,Rn),

Jf ∈ L1
loc(Ω), and if there exists a measurable function K : Ω → [1,∞) such that

|Df(x)|n ≤ K(x)Jf (x) a.e. x ∈ Ω.

Here |Df(x)| and Jf (x) are the operator norm and the Jacobian determinant of
Df(x), respectively. If K ∈ L∞(Ω), f is called quasiregular, or a mapping of
bounded distortion.

For a mapping of finite distortion f , the outer and inner distortion functions
KO and KI are defined as

KO(x) =
|Df(x)|n

Jf (x)
and KI(x) =

|D]f(x)|n
Jf (x)n−1

,
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respectively, when 0 < |Df(x)|, Jf (x) < ∞, and KO(x) = KI(x) = 1 otherwise.
Here D]f(x) is the adjoint matrix of Df(x). Then we have

K
1/(n−1)
I (x) ≤ KO(x) ≤ Kn−1

I (x) a.e. x ∈ Ω.

In the late 1960s, Reshetnyak proved that a non-constant mapping of bounded
distortion is always continuous, open and discrete. This theorem initiated the by
now well-established theory of mappings of bounded distortion, see [13], [14], [6].

Recently, a lot of research has been done in order to find the sharp assumptions
of Reshetnyak’s theorem in the class of mappings of finite distortion, cf. [3], [4],
[5], [7], [8], [11]. In this note we continue this line of research by giving a new
partial result towards a conjecture of Iwaniec and Šverák [7].

Theorem 1.1. Suppose that f : Ω → Rn, n ≥ 2, is a quasilight mapping of finite
distortion satisfying f ∈ W 1,n

loc (Ω,Rn) and KI ∈ L1
loc(Ω). Then f is discrete and

open.

By definition, a mapping f is called quasilight if the components of every
point-inverse f−1(y) are compact. The Iwaniec-Šverák conjecture is Theorem 1.1
without the quasilightness assumption. In [7] the conjecture is proved for n = 2.
An example of Ball [2] shows that the integrability assumption on KI cannot be
relaxed in Theorem 1.1.

There are other partial results concerning the Iwaniec-Šverák conjecture, see
[3], [4], [5] and [11]. The novelty in Theorem 1.1 lies in the fact that it only deals
with the inner distortion; the previous results are proved under assumptions on
the outer distortion function. In particular, Hencl and Malý [5] proved Theo-
rem 1.1 assuming KO ∈ Ln−1

loc (Ω), and Manfredi and Villamor [11] without the
quasilightness assumption when KO ∈ Lp

loc(Ω) for some p > n − 1. It is clear
that, when working with the inner distortion, one has to find methods different
from those used in the above-mentioned works. We prove Theorem 1.1 by us-
ing the conformal modulus of (n− 1) -dimensional sets, the coarea formula, and
elementary topological considerations. Also, we use several results concerning
the theory of mappings of finite distortion. Another natural intermediate step
towards the Iwaniec-Šverák conjecture would be the theorem of Manfredi and
Villamor under the assumption KI ∈ Lp

loc(Ω) for some p > 1 (instead of the
assumption on KO), which we cannot prove. For closely related results on the
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global invertibility properties of Sobolev mappings, see [2, Theorem 2] and [15,
Corollary 2].

2. Preliminaries

In this section we recall some known properties of mappings satisfying the
assumptions of Theorem 1.1. First, let f : Ω → Rn be a continuous map, and
U ⊂⊂ Ω open. Then the (local) topological degree µ(y, f, U) is well-defined for
every y ∈ Rn \ f(∂U), see [14, I.4]. We will use the following facts:

(2.1) µ(y, f, U) = 0 if y /∈ f(U),

(2.2) µ(y, f, U) = µ(v, f, U)

whenever y and v lie in the same component of Rn \ f(∂U), and

(2.3) µ(y, f, U) =
k∑

i=1

µ(y, f, Ui)

if both sides are well-defined, and if U1, . . . , Uk are disjoint open sets satisfying

U ∩ f−1(y) ⊂
k⋃

i=1

Ui ⊂ U.

We call f sense-preserving if µ(y, f, U) > 0 whenever y ∈ f(U) \ f(∂U). Notice
that if f is sense-preserving, then

µ(y, f, U) ≤ µ(y, f, V )

whenever both sides are well-defined and U ⊂ V .

We say that f satisfies condition N if the n-measure |f(E)| = 0 whenever
|E| = 0. For mappings of finite distortion with locally n-integrable partials, we
have

Theorem 2.1 ([3, Theorem 1.3]). Suppose that f ∈ W 1,n
loc (Ω,Rn) is a mapping

of finite distortion. Then

(1) f has a continuous representative,
(2) f is sense-preserving,
(3) f satisfies condition N ,
(4) f is differentiable almost everywhere in Ω.
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Part 3. implies that the change of variables formula holds for f . In fact, if
U ⊂⊂ Ω is open, we have

(2.4) N(y, f, U) = µ(y, f, U)

for almost every y ∈ Rn \ f(∂U), see [5, Proposition 2]. Here

N(y, f, U) = card{f−1(y) ∩ U}.
Since K

1/(n−1)
O ≤ KI almost everywhere, [9, Theorem 1.2] implies

Theorem 2.2. Suppose that f is as in Theorem 1.1. Then Jf (x) > 0 for almost
every x ∈ Ω. In particular, if (Ai), Ai ⊂ Ω, is a decreasing sequence of measurable
sets so that |A1| < ∞ and ∩iAi ⊂ f−1(y) for some y ∈ Rn, then

∫

Ai

KI → 0 as i →∞.

The following characterization of quasilightness will be useful in the sequel.

Theorem 2.3 ([16, Theorem 3.1]). A mapping f : Ω → Rn is quasilight if and
only if every point x ∈ Ω has a neighborhood U ⊂⊂ Ω such that f(x) /∈ f(∂U).

We call a mapping f light if every point-inverse f−1(y) is totally disconnected.
Hence a light mapping is quasilight in particular.

Lemma 2.4 ([14, VI Lemma 5.6]). If f : Ω → Rn is continuous, light and
sense-preserving, then f is discrete and open.

By combining Theorem 2.1 and Lemma 2.4, we see that in order to prove
Theorem 1.1 it suffices to show that f is light. We conclude this section with a
topological lemma.

Lemma 2.5. Let f be as in Theorem 1.1. Suppose that V ⊂ Rn is homeomorphic
to B(0, 1) and V to B(0, 1), and that ∅ 6= U ⊂⊂ Ω is a component of f−1(V ).
Then f(∂U) = ∂V , and f(U) = V .

Proof. First, f(∂U) ⊂ ∂V by the continuity of f . Hence, for every a ∈ f(U),
µ(a, f, U) is well-defined, and strictly positive by Theorem 2.1. By (2.1), there
exists b ∈ Rn such that µ(b, f, U) = 0. Hence, by (2.2), f(∂U) separates f(U)
and b, and so f(∂U) = ∂V . Also, if there exists a point p ∈ V \ f(U), then
µ(p, f, U) = 0. But p and f(U) lie in the same component of Rn\f(∂U) = Rn\∂V .
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Hence, by (2.2), µ(p, f, U) = µ(a, f, U) > 0 whenever a ∈ f(U). We conclude
that f(U) = V . ¤

3. Preimages of radial segments

From now on we assume that f is as in Theorem 1.1. Recall from Section 2
that in order to prove Theorem 1.1 it suffices to show that f is light. We assume,
in contrary, that there exists a point a ∈ Rn such that some component of f−1(a)
has positive H1-measure. Without loss of generality, a = 0 ∈ f(Ω), and E is a
component of f−1(0) so that H1(E) > 0. Then Theorem 1.1 is proved if we can
show that H1(E) has to be zero.

We denote the projection (x1, . . . , xn) 7→ x1 by pr. By scaling and rotating, if
necessary, we may assume that H1(pr(E)) = 1. By Theorem 2.3, there exists a
domain G ⊂⊂ Ω so that E ⊂ G, and a number M > 0 so that |f(x)| ≥ M for
every x ∈ ∂G. Moreover, by Theorem 2.1, there exists m ∈ N so that

(3.1) µ(y, f, G) = m for every y ∈ B(0,M).

For 0 < R < M , we denote the E-component of f−1(B(0, R)) by ER. Then
ER ⊂ G. We define radial segments

I(R, φ) = {(t, φ) : t ∈ (R/2, R)}

in polar coordinates, and denote AR = B(0, R) \ B(0, R/2), and UR = ER ∩
f−1(AR). The first main ingredient in the proof of Theorem 1.1 is the following.

Proposition 3.1. There exists 0 < M0 < M , so that for each R < M0 there
exist φR ∈ S(0, 1) and aR ∈ R, so that if we denote

LR =
(
aR − (4m)−1, aR + (4m)−1

)
,

then

LR ⊂ pr(E) and pr−1(LR) ∩ ER ∩ f−1(I(R, φR)) = ∅.

Proof. For R < M , define

hR : UR → S(0, 1), hR(x) =
f(x)
|f(x)| .
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Then h−1
R (φ) = f−1(I(R, φ)) ∩ ER for every φ ∈ S(0, 1). Also, we have

|Jn−1hR(x)| ≤ |D]f(x)|
|f(x)|n−1

a.e. x ∈ UR,

for the (n− 1)-dimensional Jacobian of hR. Then, the coarea formula (cf. [10]),
and Hölder’s inequality yield

∫

S(0,1)
H1(h−1

R (φ)) dHn−1(φ) =
∫

UR

|Jn−1hR| ≤
∫

UR

|D]f |
|f |n−1

=
∫

UR

K
1/n
I J

(n−1)/n
f

|f |n−1
(3.2)

≤
( ∫

UR

KI

)1/n( ∫

UR

Jf

|f |n
)(n−1)/n

.

Since µ(y, f, ER) ≤ m for every y ∈ B(0, R), and UR ⊂ ER, the change of
variables formula gives

(3.3)
∫

UR

Jf

|f |n ≤
∫

AR

µ(y, f, ER)
|y|n dy ≤ mωn−1 log 2.

Moreover, by Theorem 2.2,

(3.4)
∫

UR

KI → 0 as R → 0.

Now, by combining (3.2), (3.3) and (3.4), we have: for every ε > 0 there exists
k < M so that

(3.5)
∫

S(0,1)
H1(ER ∩ f−1(I(R, φ))) dHn−1(φ) < ε

for every R ≤ k. Moreover, by slightly changing the set AR, we see that (3.5)
also holds for WR,φ = ER ∩ f−1(I(R, φ)).

Let R be as above. Next, we claim that, for each φ ∈ S(0, 1), WR,φ consists
of at most m components. Fix φ and let {Ji}, i = 1, . . . , N be a finite set of
preimage components of I(R, φ) in ER. Denote by Iδ the closed δ-neighborhood
of I(R, φ). Then Iδ has Nδ different preimage components Ĩj

δ containing some Ji.
When δ is small enough, Ĩj

δ ⊂ G for every j = 1, . . . , Nδ. Then, by Lemma 2.5,
f(Ĩj

δ ) = Iδ for δ small enough. Moreover, for δ < δ0 we have Nδ = N . Then, if
y ∈ I(R, φ), Theorem 2.1 and (2.3) yield

N ≤
∑

µ(y, f, int Ĩj
δ ) ≤ µ(y, f, G) = m.
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This proves the claim.

Suppose that M0 < M is small enough, so that (3.5) holds with
ε = ωn−1(100m)−1. Then, in particular, for every R ≤ M0 there exists φR ∈
S(0, 1) such that

H1(pr(WR,φR
)) < (100m)−1.

Moreover, we showed that WR,φR
consists of at most m components. Now the

proposition follows from our assumption H1(pr(E)) = 1. ¤

4. Modulus estimates and the proof of Theorem 1.1

In this section we prove Theorem 1.1, except for an upper bound for the con-
formal modulus of certain (n− 1)-dimensional sets (Proposition 4.2). For a mea-
surable function ω ∈ L1

loc(Ω), Ω ⊂ Rn, and a family Λ = {Vi : i ∈ I} of Borel
sets, set

MωΛ = inf
ρ∈X(Λ)

∫

Ω
ωρn/(n−1),

where X(Λ) is the set of all Borel functions ρ : Ω → [0,∞] satisfying
∫

Vi

ρ dHn−1 ≥ 1

for every Vi ∈ Λ with Hn−1(Vi) > 0. If ω = 1 almost everywhere in Ω, we denote
Mω by M .

Now fix R and aR as in Proposition 3.1. Denote l = ((8m)−1, (4m)−1),

V +
t = ER ∩ pr−1({aR + t}), V −

t = ER ∩ pr−1({aR − t}),
Vt = V +

t ∪ V −
t , Q+

R = {x ∈ V +
t : t ∈ l}, Q−

R = {x ∈ V −
t : t ∈ l},

and
ΛR = {Vt : t ∈ l}.

Lemma 4.1. We have

(16m)−n/(n−1)
( ∫

ER

KI

)−1/(n−1)
≤ M

K
−1/(n−1)
I

ΛR ≤ mMf(ΛR).

Proof. Since f ∈ W 1,n(ER,Rn), the restrictions of f to the components Gj
t of

Vt belong to W 1,n(Gj
t ,Rn) for almost every t ∈ l. In particular, for those t the

change of variables formula holds in Vt, see [12]. Also, Theorems 2.1 and 2.2 show
that Hn−1(f(Vt)) > 0 for almost every t ∈ l.
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Now fix ρ ∈ X(f(ΛR)). Then, for almost every t ∈ l, the change of variables
formula yields

(4.1)
∫

Vt

(ρ ◦ f)|D]f | dHn−1 ≥
∫

fVt

ρ dHn−1 ≥ 1,

i.e. the function ρ′ : ER → [0,∞], defined as ρ′(x) = (ρ ◦ f)(x)|D]f(x)| for
x ∈ Vt, t ∈ l, when (4.1) holds, ρ′(x) = ∞ when x ∈ Vt, t ∈ l, and (4.1) does not
hold, and ρ′(x) = 0 otherwise, belongs to X(ΛR). Now, by using the change of
variables formula in ER, with the fact that µ(y, f, ER) ≤ m for every y ∈ B(0, R),
we have∫

ER

(ρ′)n/(n−1)K
−1/(n−1)
I =

∫

ER

(ρ ◦ f)n/(n−1)|D]f |n/(n−1)K
−1/(n−1)
I

=
∫

ER

(ρ ◦ f)n/(n−1)Jf

≤
∫

Rn

ρ(y)n/(n−1)µ(y, f, ER) dy ≤ m

∫

Rn

ρn/(n−1).

Since ρ ∈ X(f(ΛR)) is arbitrary, the second inequality in the lemma follows.

To prove the first inequality, fix g ∈ X(ΛR). Then, for every t ∈ l,

1 ≤
∫

V +
t

g dHn−1 +
∫

V −t
g dHn−1.

By Fubini’s theorem,

(8m)−1 ≤
∫

Q+
R

g +
∫

Q−R
g,

so that one of the integrals, say the one over Q+
R, is greater than (16m)−1. Then,

Hölder’s inequality yields
(4.2)

(16m)−1 ≤
∫

Q+
R

gK
−1/n
I K

1/n
I ≤

( ∫

Q+
R

gn/(n−1)K
−1/(n−1)
I

)(n−1)/n( ∫

Q+
R

KI

)1/n
.

Since g is arbitrary, (4.2) proves the first inequality in the lemma. ¤

In order to complete the proof of Theorem 1.1, we need an upper bound for
Mf(ΛR).

Proposition 4.2.

Mf(ΛR) ≤ C,

where C > 0 only depends on n.
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We will prove Proposition 4.2 in Section 5. Assuming the proposition, Theorem
1.1 now follows: combining Lemma 4.1 with the proposition yields

(16m)−n/(n−1)
( ∫

ER

KI

)−1/(n−1)
≤ mC,

where C does not depend on R. Thus,
∫

ER

KI ≥ T > 0,

with T independent of R. This contradicts Theorem 2.2, since
⋂

R>0

ER = E.

We conclude that H1(E) = 0, as desired.

5. Proof of Proposition 4.2

We assume that n ≥ 3. For n = 2 the proposition is trivial. The idea for the
proof is to show, using Proposition 3.1, that the sets f(Vt) separate I(R, φR) and
another “large” set in AR. There are some technicalities, though, that slightly
complicate matters.

Fix a point ξ ∈ pr−1(aR) ∩ E, and denote by W the ξ-component of Rn \
(V(8m)−1 ∪ ∂ER). Notice that, by the definition of Vt,

(5.1) pr(W ) ⊂ (aR − (8m)−1, aR + (8m)−1).

Lemma 5.1. For almost every r ∈ (R/2, R) there exist qr ∈ W and a neighbor-
hood Ur ⊂ W of qr so that |pr| = |f(qr)| = r and

(5.2) f−1(pr) ∩ Ur = {qr}.

Proof. First, by Proposition 3.1, there exists a segment α joining ∂ER and ξ

in W ∩ pr−1(aR). Fix a small ε > 0. Then, for any x ∈ Bn−1(0, ε), we can
choose a segment αx as follows: if α̃ is the line spanned by α, then α̃x = α̃ + x,
x ∈ Bn−1(0, ε) ⊂ H, where H 3 0 is the hyperplane orthogonal to α̃. Moreover,
αx is a segment in α̃x joining ∂ER and B(ξ, ε) in W . Choose ε to be small enough,
so that f(αx) connects S(0, R) and S(0, R/2) for every x ∈ Bn−1(0, ε).

By the definition of a mapping of finite distortion, and Theorems 2.1 and 2.2,
there exists x0 ∈ Bn−1(0, ε) so that
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(1) f is absolutely continuous on αx0 ,
(2) f is differentiable H1-almost everywhere on αx0 ,
(3) Jf > 0 H1-almost everywhere on αx0 .

If f is differentiable at z ∈ αx0 , and Jf (z) > 0, then, for every ν > 0 small
enough,

f(z) /∈ f(S(z, ν)).

Because this is true for almost every z ∈ αx0 , the absolute continuity of f on αx0

completes the proof. ¤

Denote by D the exceptional set in Lemma 5.1. For a radius r ∈ (R/2, R) \D,
denote {βr} = S(0, r) ∩ I(R, φR). By (5.1), Lemma 5.1 and (5.3) below, βr 6= pr

for every r.

Lemma 5.2. Let κ : [0, 1] → S(0, r) be a one-to-one C∞-path such that κ(0) = pr

and κ(1) = βr. Then, for every t ∈ ((8m)−1, (4m)−1),

κ((0, 1)) ∩ f(Vt) 6= ∅.

Proof. Recall that

(5.3) pr−1((aR − (4m)−1, aR + (4m)−1)) ∩ ER ∩ f−1(βr) = ∅
by Proposition 3.1. For qr and Ur as in Lemma 5.1, denote by κ̃ the qr-component
of f−1(κ([0, 1])). By using Lemma 2.5 as below, we see that κ̃ 6= {qr}. Then, by
(5.2), we find s ∈ (0, 1), and a component κ′ of f−1(κ([s, 1])) so that κ′ ∩ Ur 6= ∅
and κ′ ⊂ κ̃.

We assume that κ′ ∩ Vt = ∅. Since f(∂ER) = S(0, R), we conclude that κ′

is compact. On the other hand, βr = κ(1) /∈ f(κ′) by (5.3). Thus there exists
t ∈ (s, 1) so that

(5.4) t = max{τ : κ(τ) ∈ f(κ′)}.
Choose a point xt ∈ f−1(κ(t)) ∩ κ′. By our assumption on κ′, the xt-component
of f−1(κ(t)) does not intersect Vt. Then there exists a ball B = B(κ(t), ε) so that
the xt-component Ut of f−1(B) does not intersect Vt. By Lemma 2.5 f(Ut) = B,
and since κ is C∞, applying Lemma 2.5 to the ε-neighborhoods of κ((t− δ, t+ δ))
for small enough δ, and the xt-components of their preimages, shows that actually
κ([t, t + δ)) ⊂ f(κ′), contradicting (5.4). The proof is complete. ¤



Reshetnyak’s Theorem and The Inner Distortion 421

Lemma 5.3. For every r ∈ (R/2, R) \ D, there exists a Borel function ρr :
S(0, r) → [0,∞] so that, whenever t ∈ ((8m)−1, (4m)−1),

(5.5)
∫

S(0,r)∩f(Vt)
ρr dHn−2 ≥ C1/r,

and

(5.6)
∫

S(0,r)
ρn/(n−1)

r dHn−1 ≤ C2/r,

where the constants C1, C2 > 0 only depend on n.

Proof. We first map S(0, r) onto S(en/2, 1/2) by a map T which is a com-
position of scaling, translation and rotation, so that T (βr) = en. Then, if
ρ : S(en/2, 1/2) → [0,∞] satisfies

(5.7)
∫

(T◦f)(Vt)
ρ dHn−2 ≥ C1(n)

for all t ∈ ((8m)−1, (4m)−1), and

(5.8)
∫

S(en/2,1/2)
ρn/(n−1) dHn−1 ≤ C2(n),

then the function ρr = r1−n(ρ ◦ T ) satisfies (5.5) and (5.6). Hence it suffices to
show (5.7) and (5.8).

If we map S(en/2, 1/2) onto Rn−1 by the stereographic projection h,

h(x) = en + (x− en)/|x− en|2,
then en = T (βr) gets mapped to ∞. We denote

a = (h ◦ T )(pr) ∈ Rn−1.

We define ρ : Rn−1 → [0,∞],

ρ(x) = |x− a|2−n(1 + |x|2)n−2,

and denote Yt = (h ◦ T ◦ f)(Vt). Then we have to show that

(5.9)
∫

Yt

ρ(x)
(1 + |x|2)n−2

dHn−2(x) =
∫

Yt

|x− a|2−n dHn−2(x) ≥ C1(n)

for all t ∈ ((8m)−1, (4m)−1), and
∫

Rn−1

ρn/(n−1)(x)
(1 + |x|2)n−1

dHn−1(x) =
∫

Rn−1

|x− a|1−n+1/(n−1)

(1 + |x|2)1/(n−1)
dHn−1(x)

≤C2(n).(5.10)
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By Lemma 5.2, for every α ∈ Sn−2(0, 1), the half-line

Iα = {a + αt : t > 0}

intersects Yt. For i ∈ Z, denote Ai = B(a, 2i) \B(a, 2i−1), and

Φi = {α ∈ Sn−2(0, 1) : Iα ∩Ai ∩ Yt 6= ∅}.

Then a projection argument shows that

(5.11)
∫

Yt∩Ai

|x− a|2−n dHn−2(x) ≥ C(n)Hn−2(Φi).

Since
∑

iHn−2(Φi) = ωn−2, (5.9) follows by summing over i.

In order to prove (5.10), we first consider the case |a| > 1. We divide Rn−1 to
N1 = Bn−1(a, |a|/2), N2 = Bn−1(0, |a|/2) and N3 = Rn−1 \ (N1 ∪N2). Then

∫

N1

|x− a|1−n+1/(n−1)

(1 + |x|2)1/(n−1)
dHn−1(x)≤C|a| −2

n−1

∫

N1

|x− a|1−n+1/(n−1) dHn−1(x)

≤C|a| −1
n−1 ,

∫

N2

|x− a|1−n+1/(n−1)

(1 + |x|2)1/(n−1)
dHn−1(x)≤C|a|−2+ 1

n−1

∫ |a|/2

0

r

(1 + r2)1/(n−1)
dr

≤C|a| −1
n−1 ,

and, since 10|x| ≥ |x− a| for x ∈ N3,
∫

N3

|x− a|1−n+1/(n−1)

(1 + |x|2)1/(n−1)
dHn−1(x)≤C

∫

N3

|x− a|1−n−1/(n−1) dHn−1(x)

≤C|a| −1
n−1 .

Combining the integrals proves (5.10) in the case |a| > 1. The case |a| ≤ 1
is similar, but now it suffices to consider the division Ñ1 = Bn−1(a, 3), Ñ2 =
Rn−1 \ Ñ1.

¤

Define ρ : AR → [0,∞], ρ(x) = ρ|x|(x), where ρr is as in Lemma 5.3 for r /∈ D,
and ρr = 0 otherwise. Since the restrictions of f to the components Gj

t of Vt

belong to W 1,n(Gj
t ,Rn) for almost every t, f(Vt) is countably (n− 1) -rectifiable
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for t ∈ ((8m)−1, (4m)−1) \ Q, where H1(Q) = 0. Then, Lemma 5.3, and the
coarea formula for rectifiable sets, cf. [1, Theorem 2.93 and Remark 2.94], yield

∫

f(Vt)
ρ dHn−1 ≥ C(n)

∫ R

R/2

∫

f(Vt)∩S(0,r)
ρ dHn−2 dr ≥ C(n)

for every t ∈ ((8m)−1, (4m)−1) \Q. Also, by Lemma 5.3,
∫

AR

ρn/(n−1) =
∫ R

R/2

∫

S(0,r)
ρn/(n−1) dHn−1 dr ≤ C(n)

∫ R

R/2

dr

r
≤ C(n).

By Theorem 2.1, M{f(Vt) : t ∈ Q} = 0. The proof of Proposition 4.2 is complete.

Acknowledgements. We thank Jani Onninen and Xiao Zhong for useful dis-
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Finland
E-mail: kirajala@maths.jyu.fi


