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The View from Above

Albert Marden

Abstract: We will consider plane regions Ω ⊂ C, Ω 6= C. This article is an
exposition of the theory, initiated by Sullivan and Thurston, governing the geo-
metric relationship of Ω to a particular surface in upper half of euclidean 3-space
that will be explicitly constructed below. It lies over Ω as the dome in a domed
stadium lies over the playing field. The fact of the geometric relationship opens
a new direction for viewing Ω itself. It is astonishing that in the case Ω is simply
connected, there is a universal relationship independent of the particular shape
of Ω. There are important applications to complex analysis and to the study of
hyperbolic 3-manifolds.
Keywords: quasiconformal, uniformly perfect, floor-to-dome map, Sullivan The-
orem

1. Uniformly perfect regions

We begin by addressing a topic in complex analysis that is required later. Sup-
pose Ω ⊂ C, Ω 6= C, is simply connected. A Riemann map from the unit disk
D carries the hyperbolic metric ds = 2|dz|

1−|z|2 in D to what is called the hyperbolic
metric ds = ρ(z)|dz| in Ω. It is a classical result that the density ρ(z) is compa-
rable to the inverse of the shortest euclidean distance from z to the boundary:

1
2dist(z, ∂Ω)

≤ ρ(z) ≤ 2
dist(z, ∂Ω)

.

The validity of the left inequality is a consequence of the Koebe-1/4 Theorem.
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The obvious question is whether, perhaps for a constant 6= 2, the inequality
also holds for multiply connected regions. However a simple counterexample is
provided by the once-punctured disk, for which the density can be explicitly
computed.

The answer is provided by the following statement, which consolidates results
of [1] and [15] ((i) and (ii)), and of [13] ((iii) and (iv)).

Theorem 1.1. Given a multiply connected region Ω ⊂ C with a hyperbolic metric
ds = ρ(z)|dz|, the following statements are equivalent:

(i). There exists 0 < C < ∞ for which

1
Cdist(z, ∂Ω)

≤ ρ(z) ≤ C

dist(z, ∂Ω)
.

(ii). There exists 0 < C1 < ∞ such that any annular region A ⊂ C \ ∂Ω
separating ∂Ω satisfies Modulus(A)< C1.

(iii). Ω has bounded geometry: There is a uniform positive lower bound for the
hyperbolic injectivity radii in Ω.

(iv). There does not exist a blow-up of Ω resulting in a region Ω∗ with an
isolated boundary point.

Remarks.

(i). It is the left side that is at issue. The right side is always true, in fact with
C = 2.

(ii). The larger the modulus, the more A looks like a once punctured disk.

(iii). Bounded injectivity radius means there exists δ > 0 such that the hyper-
bolic disk of radius δ about each z ∈ Ω is embedded. In particular there are no
arbitrarily short closed geodesics.

(iv). There does not exist a sequence of Möbius transformations {Tn} such
that the sequence {Ωn = Tn(Ω)} converges (in the sense of Carathéodory kernel
convergence) to a region Ω∗ with an isolated boundary point.

A region Ω satisfying the properties of the Theorem is called uniformly perfect.
Although this notion was really designed for multiply, especially infinitely con-
nected, regions we will include simply connected regions 6= C under its umbrella.
The terminology is also used for a closed set Λ ⊂ C ∪ {∞} ≡ S2, typically with
infinitely many components like a Cantor set. In our case Λ = S2 \ Ω.
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In short, the boundary of a uniformly perfect region can contain no isolated
points; in fact the boundary points must be bunched together sufficiently densely
to prevent separating annuli of large modulus.

The constant C = C(Ω) appearing in (i) will be called the uniformly perfect
constant for Ω. One could use the constant C1 in (ii) just as well. What is
important is that the constant be bounded, and C is so if and only if C1 is. We
know of no formula precisely relating C to C1—or to other constants that could
be used as well.

The papers [1], [15], [14] include additional equivalent conditions. One of these
leads to the following conclusion.

Theorem 1.2 ([15]). If Ω is a component of the region of discontinuity of a
nonelementary, finitely generated kleinian group, then Ω is uniformly perfect.

While the limit sets of such groups have strictly positive Hausdorff dimensions,
a positive Hausdorff dimension cannot in itself insure uniform perfectness.

2. Hyperbolic convex hulls

We will work with the upper halfspace model {(z, t) : z ∈ S2, t > 0} of
hyperbolic 3-space H3. The geodesics are semicircles and vertical halflines or-
thogonal to C, and the hyperbolic planes are hemispheres and vertical halfplanes
also orthogonal to C. The hyperbolic metric is ds = |d~x|

t .

With respect to H3 we consider ∂H3 ≡ S2 as the “sphere at ∞” or the “con-
formal boundary”. Although H3 itself is complete in its metric, a geodesic line
or plane is bounded by a pair of points or a circle on ∂H3. In fact the group of
orientation preserving isometries of H3 extends to ∂H3 = S2 where it becomes
the group of all orientation preserving Möbius transformations.

Let Λ ⊂ S2 be a closed set with nonempty complement Ω. The hyperbolic
convex hull C(Λ) ⊂ H3 of Λ is defined as follows. Set Ω = S2 \ Λ.

Consider a maximal open disk D ⊂ Ω, a disk not contained in a larger disk
in Ω. Then the circle CD = ∂D ⊂ Ω meets Λ in at least two points. Denote
by C∗

D the hemisphere—the hyperbolic plane in H3—rising from CD. It divides
upper halfspace H3 into two parts. Denote by H(C∗

D) the part—the hyperbolic
halfspace— that is bounded by S2 \D. The convex hull is defined to be

C(Λ) = ∩DH(C∗
D) ⊂ H3.
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From now on, we will assume that Ω ⊂ C is a connected open set and Λ is its
complement with respect to S2.

Examples.

(i.) Λ = {0} ∪ {∞} then C(Λ) is the vertical halfline between 0 and ∞. It is
as degenerate as the convex hull can become.

(ii.) The following example is not quite as degenerate. Let Λ be the nonneg-
ative real axis {x : 0 ≤ x ≤ ∞}. The convex hull is the vertical quarterplane
rising from Λ. Again it has no interior, but it has two faces, the two sides of the
wall. This example is an extreme case of the following.

(iii.) Λ is the closed interior of the wedge W = {z ∈ C : 0 < Arg(z) < π}.
Then C(Λ) is the closed chimney rising from W bounded by the quarterplanes
rising from the edges of W .

(iv.) If instead Λ is taken to be the closed exterior of W , then C(Λ) is the solid
halfcone resting on W whose relative boundary in H3 is the halfcone which is the
envelope of the hemispheres swept out by maximal disks.

(v.) Suppose Λ is the closed exterior of an equilateral triangle so that C(Λ) lies
over the interior. Its relative boundary consists of three conical pieces rising from
the three vertices which smoothly merge into the hemisphere over the inscribed
circle.

In fact, as the Examples (iv), (v) illustrate, we have

Theorem 2.1 ([12]). Suppose Ω ⊂ C is euclidean convex and Λ is the closed
exterior of Ω. Then the relative boundary ∂C(Λ) ⊂ H3 lying over Ω is a C1

surface.

2.1. The dome. We use the terminology Dome(Ω) for the relative boundary
∂C(Λ) in H3; in this context, Ω is referred to as the floor.

It was Thurston who brought us the tools to analyze the dome. The dome is
the union of bending lines and flat pieces. Here are some properties;

• ∂Dome(Ω) = ∂Ω.
• A bending line ` ⊂ Dome(Ω) is a (hyperbolic) geodesic with endpoints in

Λ. The bending lines form a closed set Λ of mutually disjoint lines in H3,
called the bending lamination. Two or more bending lines may share an
endpoint. Possibly the dome is itself the union of bending lines.
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• A flat piece is a hyperbolic polygon lying the dome which also lies in
some maximal C∗

D. It will have a finite or infinite number of edges, each
of which is a bending line.

2.2. The bending measure. In Examples (ii) and (iii), the dome has one bend-
ing line. For these cases we see that the dome results by bending a copy of the
hyperbolic plane by an angle 0 < θ < π. We will measure the angle so that the
extreme case θ = 0 corresponds to no bending at all while θ = π corresponds to
the plane being folded over itself. This choice of θ is referred to as the exterior
bending angle. When working in upper halfspace, the most convenient model of
H2 to start with is the vertical halfplane rising from R.

If C1, C2 are two intersecting circles, the exterior bending angle is the angle
which lies outside one of the circles and inside the other. It is also the exterior
bending angle between the two intersecting hyperbolic planes rising from the
circles.

If the dome has a finite number of bending lines {`i} we put an atomic measure
along each of the lines whose value is the corresponding exterior bending angle
θi. We can then introduce the corresponding transverse, nonnegative, bending
measure µ: If σ is any simple arc in the dome whose endpoints lie in flat pieces
which crosses each bending line at most once, define

µ(σ) =
∑

`k∩σ 6=∅
θk.

In general however there is an uncountable set of bending lines. In this case the
transverse measure µ must be defined by a process akin to Riemann integration
on transverse segments σ. The transversals can be taken as geodesic segments in
the dome (see Theorem 2.2 below). Complete details are in [8]. The conclusion
is that there exists a measure µ on transverse segments σ with the properties

• The support of µ is contained in the bending lamination Λ.
• If σ ∩Λ has a finite number of points, them µ(σ) =

∑
θk where the {θk}

are the exterior bending angles at the crossing points.
• µ(σ) ∈ [0,∞] is a countably additive Borel measure.
• µ(σ1) = µ(σ2) if the two segments have endpoints in the same flat pieces,

and are isotopic through such transversals.

2.3. The Riemann mapping theorem for domes. The following theorem is
due to Thurston. A complete proof appears in [8].
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Theorem 2.2.

• The ambient hyperbolic metric in H3 restricts to a path metric on Dome(Ω),
called its hyperbolic metric.

• (Riemann Mapping Theorem) If Ω is simply connected, there is an isom-
etry (“unbending”)

ι : Dome(Ω) → D = {z ∈ C : |z| < 1}.
• (Uniformization theorem) If Ω is not simply connected, there is a local

isometry from the universal cover:

πDome(Ω) : D→ Dome(Ω).

The image of the bending lines becomes a geodesic lamination Λ in D. The bend-
ing measure becomes a transverse measure µ in D; (Λ, µ) ⊂ D is a measured
lamination.

Conversely, given a geodesic lamination Λ ⊂ D, and a transverse measure µ,
by a process of successively bending D there results a “pleated surface” in H3,
uniquely determined up to isometry. In general, it is unlikely to be embedded
and may even be dense in H3. However the following facts are known.

Introduce a norm on bending measures by:

‖µ‖ = supLen(σ)≤1 µ(σ).

In typical cases under consideration the norm is or is assumed to be finite.

Theorem 2.3.

• Suppose µ is the bending measure for the dome over a simply connected
region. Then ‖µ‖ < 4.88 [5].

• In the opposite direction, there exists a constant 0 < C ≤ 2 arcsin(tanh(1/2)) ∼
.96 such that if (Λ, µ) is a measured lamination in D that satisfies ‖µ‖ ≤
C, then (Λ, µ) comes from the bending measure of the dome over a qua-
sidisk [10].

It is conjectured that C is equal to the indicated numerical upper bound.

3. The Nearest Point Retraction

The basic tool in relating the dome to the floor is the nearest point retraction.
It is defined as follows. For z ∈ Ω, the family of horospheres in H3 at z consists
of the family of euclidean spheres in upper halfspace which are tangent to C at z.
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If z = ∞ they form the family of horizontal euclidean planes in upper halfspace.
(Horospheres are not geodesic spheres in the hyperbolic metric.) At each z ∈ Ω
there is a smallest horosphere that meets Dome(Ω), necessarily at a single point
r(z).

The map r : z 7→ r(z) ∈ Dome(Ω) is continuous and surjective but not nec-
essarily a local homeomorphism. It has a continuous extension to the common
boundary ∂Ω = ∂Dome(Ω) where it is the identity. (There are some subtleties
here—see [11].)

If r(z) is in (the interior of) a flat piece f , then the geodesic ray from z to r(z)
is orthogonal to f at r(z). In fact r is a conformal map of r−1(f) ∈ S2 onto f .

The failure of r to be a homeomorphism occurs in the presence of an isolated
bending line ` ⊂ Dome(Ω). In this case r−1(`) ⊂ Ω is a crescent: the intersection
of two maximal disks in Ω. Its interior vertex angles are π − θ where θ is the
exterior bending angle along the bending line. The crescent is bounded by an arc
of each maximal circle. It is foliated by the circular arcs which are preimages of
the points along `.

Thus if there are no isolated bending lines, then r : Ω → Dome(Ω) is a home-
omorphism.

One might ask, does r have stronger continuity properties? For example, is r

Lipschitz: Does there exist L > 0 such that in the respective hyperbolic metrics,
and for all z, w ∈ Ω,

dDome(Ω)(r(z), r(w)) ≤ LdΩ(z, w)?

If Ω is simply connected the answer is given by

Theorem 3.1 ([10]). When Ω 6= C is simply connected, r : Ω → Dome(Ω) is
2-Lipschitz. The constant is sharp.

On the other hand if Ω is not uniformally perfect, r cannot be Lipschitz.

Conversely, in many cases of uniformly perfect regions, it is known ([6], [10])
that r is Lipschitz.

It is conjectured [13] that r is Lipschitz if and only if Ω is uniformly perfect,
with the Lipschitz constant depending only on the uniformly perfect constant.

3.1. The fundamental theorem for nearest point retractions.
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Theorem 3.2 ([13]). Necessary and sufficient for

r : Ω → Dome(Ω)

to be a quasiisometry is that Ω be uniformly perfect.

Specifically, there exists L ≥ 1, depending only on the uniformly perfect con-
stant for Ω, such that for all z, w ∈ Ω and the respective hyperbolic metrics,

(1)
dΩ(z, w)

L
− 1 < dDome(Ω)(r(z), r(w)) < LdΩ(z, w) + 1.

In short, r is referred to as being “long range bilipschitz”.

There is a lot of topological flexibility in constructing quasiisometries as they do
not need to be continuous. Quasiisometries are of fundamental importance in hy-
perbolic geometry because of the following fact. A quasiisometry of the unit disk
F : D → D extends to become a homeomorphism F ∗ : ∂D → ∂D. Moreover the
extension has the much stronger property of quasisymmetry (1-quasiconformal).
The class of quasisymmetric mappings of ∂D is in turn precisely the class of
homeomorphisms that have quasiconformal extensions to D. A corresponding
property holds for all real hyperbolic spaces.

4. Teichmüller distance between regions and their domes

The goal of this note is the present the following rather amazing fact discovered
in the simply connected case by Sullivan and Thurston, and first recorded by
Sullivan [16]. The first complete proof for the simply connected case appears in
[8] with an alternate, much shorter proof in [11]. The shortest proof is the one
presented here, which strengthens the original theorem while equally covering the
multiply connected case.

Theorem 4.1 ([16], [8], [11], [13]). Given 0 < C∗ < ∞ there exists 1 < K∗ =
K∗(C∗) < ∞ with the following property. Corresponding to any Ω ⊂ C with uni-
formly perfect constant C(Ω) ≤ C∗, there exists a K-quasiconformal, bilipschitz
mapping Ψ with K ≤ K∗,

Ψ : Ω −→ Dome(Ω),

that satisfies

(i) Ψ has a continuous extension to ∂Ω = ∂Dome(Ω) that fixes every point.
(ii) For some M = M(C∗) < ∞ and all z ∈ Ω,

dDome(Ω)(Ψ(z), r(z)) ≤ M.
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(iii) limC∗→∞K∗(C∗) = ∞.

Remarks.

• If Ω is not uniformly perfect, (i) can hold while (ii) does not. An example
is the once punctured disk.

• If Ω is simply connected, C∗ = 2 is independent of Ω.

Proof outline. Denote a Riemann mapping or projection from the universal
covering surface as the case may be by πΩ or πDome(Ω) respectively.

F = π−1
Dome(Ω) ◦ r ◦ πΩ : D → D is (L, 1)-quasiisometric in the hyperbolic

metric on D. It is equivariant in that it induces an isomorphism between
the two groups of deck transformations.

=⇒ F extends to an equivariant quasisymmetry F ∗ : ∂D→ ∂D.
=⇒ There exists a quasiconformal, bilipschitz, equivariant extension of F ∗

back to D. The Douady-Earle extension E : D → D [7] is made to order
for this purpose.

=⇒ Since F and necessarily also E are quasiisometries with the same bound-
ary values, in the hyperbolic metric on D,

dD(E(z), F (z)) < M < ∞,

for some M and all z ∈ D.
=⇒ The quasiconformal, bilipschitz map

Ψ = πDome(Ω) ◦ E ◦ π−1
Ω : Ω → Dome(Ω)

is just what we are looking for. ¤

4.1. Equivariance. The original applications of Theorem (4.1) were to the proof
of the hyperbolization theorem for 3-manifolds fiber over the circle (see [17]). For
these cases, Ω is a simply connected region of discontinuity for a nonelementary
kleinian group Γ. For the application we need to know that the function Ψ
constructed in Theorem (4.1) is equivariant under Γ.

First of all the nearest point retraction is so equivariant. The construction of
Ψ is then equivariant as well.

We will not go further into a discussion of applications to hyperbolic 3-manifolds.
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5. Numerical estimates for K

In the case of simply connected regions it is natural to ask, what exactly is
the optimal number K∗ whose existence is demonstrated in Theorem (4.1)? It
was suggested by Thurston in the equivariant context [17] that K∗ = 2. That
this may be true is suggested by the simple Example (ii) of the convex hull of
the nonnegative real axis. In this case K∗ can be computed explicitly and it is
exactly two. Could this represent the extreme case?

The problem can be separated into two parts.

• Equivariant conjecture. K∗ = 2 for all Ψ : Ω → Dome(Ω) which are
equivariant if Ω is the region of discontinuity of a nonelementary kleinian
group.

• Nonequivariant conjecture. K∗ = 2 without any requirement that the
map Ψ be equivariant.

The state of current knowledge is as follows. The theorems presented below
are actually amalgams of hard-to-prove individual theorems due to the mathe-
maticians indicated.

Theorem 5.1. For all simply connected regions Ω ⊂ C, Ω 6= C the following
estimates for K∗ hold:

• ([8], 1986.) For both equivariant and nonequivariant cases, K∗ ≤ 82.8.
• ([11], 2006.) For both equivariant and nonequivariant cases, K∗ ≤ 13.88.
• ([3], 2002.) For the nonequivariant case, K∗ ≤ 7.82.

Theorem 5.2. The universal constant K∗ for simply connected regions {Ω} sat-
isfies the following estimates,

• Equivariant counterexample. ([10], 2004.) For the equivariant case, K∗

is greater than two. This is true in particular for certain regions close to
the boundary of the once-punctured torus quasifuchsian space.

• Nonequivariant counterexample. ([9], 2005.) When equivariance is not
required, K∗ is also greater than two—specifically, for a certain logarith-
mic spiral, K∗ must be greater than 2.1.

Thus the value of the best K∗ and the extremal regions remain mysterious. Its
discovery may have application to analysis on plane regions Ω especially those
with bad boundaries, see [2], [4].

In the opposite direction we have
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Theorem 5.3 ([12], 2006.). For euclidean convex regions {Ω}, K∗ ≤ 2.
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