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Abstract: We prove there are exactly 56 arithmetic Nielsen inequivalent
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1 Introduction

There are infinitely many lattices in the group Isom+H3 ∼= PSL(2,C), of orientation-
preserving isometries of hyperbolic 3-space (equivalently Kleinian groups of finite
covolume) which can be generated by two elements of finite orders p and q. For
instance, all but finitely many (p, 0)−(q, 0) Dehn surgeries on any of the infinitely
many hyperbolic two-bridge links (or knots if p = q) will have (orbifold) funda-
mental groups which are such uniform (co-compact) lattices. In [6], we showed
that, up to conjugacy, there are only finitely many arithmetic lattices which can
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be generated by two elements of finite order. This paper forms part of a pro-
gramme to identify all these lattices. The genesis of this was a joint work with
Gehring [3], where we identified the four arithmetic lattices which can be gener-
ated by a pair of parabolic elements, all of which were two-bridge knots or links.
Subsequently, we identified the 20 non-uniform arithmetic lattices which can be
generated by two elements of finite order [7]. More recently, we have established
that there are only 17 arithmetic lattices with two generators of orders p and q

where p, q ≥ 6 [9]. It should be pointed out that Takeuchi [14] dealt with the
two-dimensional case, showing that there were exactly 82 such lattices of which
33 had two generators of orders ≥ 6.

In this paper we determine all arithmetic lattices in PSL(2,C) generated by a
pair of elements of finite order, one of which has order 6; we call these the (6, p)-
arithmetic lattices. For p ≥ 6, then from [9], we deduce that p = 6 and we list
these groups obtained in [9] here for completeness. Furthermore, each such (6, 6)-
lattice gives rise to one or two (6, 2)-lattices and all (6, 2)-lattices arise in this way
[4]. Thus the main thrust here is to determine the (6, p) arithmetic lattices for
p = 3, 4, 5. The techniques used in [6] and further developed in [9] can be applied
to these cases to show that the degree of the defining field over Q cannot be any
greater than 6. To further pinpoint the defining fields and parameters for these
groups, the results of [9] are again employed but some new techniques have to
be developed to handle the more complex computational problems that arise in
these cases of small values of p. It should be noted that, in the most difficult case
of (3, 2) arithmetic lattices, the first stage of determining candidate defining fields
has also used new techniques dictated by the complexity of the computational
number theory problems that arise [2].

2 The Results

For a two-generator group 〈f, g〉 ⊂ PSL(2,C), the three complex numbers

(γ(f, g), β(f), β(g)) (1)

where γ(f, g) = tr [f, g]−2, β(f) = tr 2f−4, β(g) = tr 2g−4, are well-defined (for
any lift to SL(2,C)) by f, g and form the parameters of the group 〈f, g〉. They
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define 〈f, g〉 uniquely up to conjugacy provided 〈f, g〉 is irreducible [4]. Recall
that 〈f, g〉 is reducible if all elements have a common fixed point in their action on
Ĉ and this occurs precisely when γ(f, g) = 0. Thus for our results we determine
the parameters of all (6, p) arithmetic lattices, 〈f, g〉 where o(f) = 6, o(g) = p.
When the orders are fixed, we abbreviate γ(f, g) to γ. We further note that γ is
determined by the Nielsen equivalence class of a pair of generators of the group.
Thus a (6, p) arithmetic lattice may have Nielsen inequivalent pairs of generators
of the same order.

No p γ p(z) ∆k Ramf (A) Covol. Min.

1 3 −1 z2 + z + 1 −3 ∅ 0.0846 0.0846

2 3 −1 +
√−3 z2 + 2z + 4 −3 ∅ 1.692 0.0846

3 3 2 +
√−3 z2 − 4z + 7 −3 ∅ 2.707 0.0846

4 3 1.190 + 2.547i z3 − 2z2 + 7z + 3 −231 P3 = zRk 6.211 1.552

5 3 −1.696 + 1.436i z3 + 4z2 + 7z + 3 −87 P3 = zRk 1.418 0.354

6 3 −2.630 + 1.091i z3 + 6z2 + 12z + 6 −108 P2 2.308 0.289

7 3 −0.5 + 2.131i z4 + 2z3 + 6z2 + 5z + 1 −1323 ∅ 1.946 0.243

8 4 −1 z2 + z + 1 −3 ∅ 0.211 0.0846

9 4
√−6 z2 + 6 −24 P2,P3 2.591 0.648

10 4 −1.289 + 1.807i z3 + 3z2 + 6z + 2 −216 P2,P ′2,P3 2.086 0.522

11 4 −2.287 + 1.350i z3 + 5z2 + 9z + 3 −204 P3 = (z + 2)Rk 3.277 1.639

12 4 0.362 + 2.876i z4 + 8z2 + 6z + 1 −2412 P2,P ′2 5.287 0.441

13 6 −1 z2 + z + 1 −3 ∅ 0.507 0.0846

14 6
√−3 z2 + z + 1 −3 ∅ 1.016 0.0846

15 6 −1 + i z2 + 2z + 2 −4 P2,P3 1.221 0.305

16 6 1 + 3i z2 − 2z + 10 −4 P2,P5 = 1/3(5 + z)Rk 6.106 0.153

17 6 −1 +
√−7 z2 + 2z + 8 −7 P2 = (z/2 + 1)Rk,P3 7.111 0.889

18 6 −2 +
√−2 z2 + 4z + 6 −8 P3,P ′3 4.015 0.502

19 6 4.110 + 2.432i z3 − 8z2 + 21z + 5 −23 P5 = zRk 8.799 0.0786

20 6 3.067 + 2.328i * z3 − 6z2 + 14z + 2 −44 P2 3.707 0.0662

21 6 2.124 + 2.747i z3 − 4z2 + 11z + 3 −31 P ′3 = (z2 − 4z + 11)Rk 4.222 0.264

22 6 1.092 + 2.052i * z3 − 2z2 + 5z + 1 −23 P3 2.043 0.511

23 6 0.124 + 2.837i ** z3 + 8z + 2 −44 P2 3.707 0.0662

24 6 −0.892 + 1.954i z3 + 2z2 + 5z + 1 −31 P3 = (z + 1)Rk 2.639 0.0660

25 6 −1.877 + 0.745i ** z3 + 4z2 + 5z + 1 −23 P3 2.043 0.511

26 6 −2.884 + 0.590i z3 + 6z2 + 10z + 2 −76 P2,P3,P ′3 5.293 0.662

27 6 −1.876 + 2.133i z3 + 4z2 + 9z + 2 −59 P2 = zRk 11.989 0.107

Table 1. The cases p = 3, 4 and 6.

The defining field of the arithmetic lattice is obtained from γ and the com-
mensurability class of the lattice is given by a quaternion algebra over the defining
field. The isomorphism class of a quaternion algebra is determined by its ramifi-
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cation set which is also obtainable from γ (see [10] and §3) so that the arithmetic
data surrounding these groups is deducible and is given in Table 1.

Notes on Table 1.

• If γ 6∈ R, then p(z) is the minimum polynomial of γ and it determines the
defining field k. For γ ∈ R, p(z) determines the defining field.

• If a prime ideal Pp or P ′p in Ramf (A) is not uniquely determined by the
rational prime p, we give an explicit description.

• ”Min.” is the covolume of the smallest orbifold in the commensurability
class determined by γ.

• The asterixed pairs (20,23) and (22,25) define two groups, each member of
the pair having a distinct Nielsen equivalence class of generators.

Theorem 2.1 Let Γ = 〈f, g〉 be an arithmetic lattice in Isom+(H3) with o(f) =
6, o(g) = p. Then p = 2, 3, 4 or 6. There are 53 conjugacy classes of such
groups and 56 Nielsen equivalence classes of pairs of generators. These groups
are described in Tables 1 to 3. The geometric descriptions in Tables 2 and 3 are
clarified in the remarks preceding these tables.

We also give a geometric description of these groups. Since this relates to
the final process of determining which candidate values γ actually give rise to
arithmetic lattices, we describe that now. The methods to be described in §3, 4
and 5 produce a list of polynomials with integer coefficients with a root γ which
defines a group 〈f, g〉 with o(f) = 6, o(g) = p which is a subgroup of an arithmetic
Kleinian group. It remains to decide if this group has finite covolume and so is a
(6, p) lattice.

A computer program has been developed, initially by J. McKenzie and named
JSnap to study subgroups Γ of PSL(2,C) which have two generators of finite
order. This is effectively an implementation of the Dirichlet routine in the J.
Week’s program Snappea [15]. This program aims to find a Dirichlet region for
Γ. It is important to note that in our cases we know a priori that our candidates
Γ are discrete. JSnap runs and either produces a fundamental domain - either of



The (6, p)-arithmetic Hyperbolic Lattices in Dimension 3. 369

finite or infinite volume - or produces an error message if it cannot put together a
fundamental domain after looking at words in the generators of a given bounded
length. For all the groups obtained from the values of γ on our candidate list,
JSnap always produces a fundamental domain which is either compact or meets
the sphere at infinity in an open set. These latter cases can be eliminated and in
the former cases, JSnap also produces an approximate volume.

On the other hand, many examples of (6, p) lattices are obtained via (6, 0)−
(p, 0) surgery on hyperbolic link complements. Implementing this on Snappea
yields an approximate volume for the resulting orbifold. Comparing these with
the volumes produced by JSnap yields likely candidates. The matrix represen-
tation then given by Snappea is used to verify that the commutator traces and
hence γ agree. As both come as the roots of a monic polynomial with integer
coefficients, this comparison is exact. In this way we can attempt to identify the
orbit space corresponding to each γ.

The (6, 6) arithmetic lattices which have Nielsen inequivalent pairs of genera-
tors were identified as follows. Each is an index two subgroup of a group obtained
by (2, 0) surgery on one component C1 and (6, 0) surgery on the other component
C2 of a two-bridge link complement, in particular 72

1 and 92
1. If this yields 〈f, g〉

with o(f) = 6, o(g) = 2 then 〈f, gfg〉 is a (6, 6) arithmetic lattice. However,
carrying out (6, 0) − (2, 0) surgery on components C1, C2 respectively, to obtain
〈f ′, g′〉, the subgroup 〈f ′, g′f ′g′〉 is the same (6, 6) lattice since these links admit
automorphisms which interchange the components but the generators are not in
the same Nielsen equivalence class ( as the γ parameters are different). This can
be verified starting from a (6, 6) lattice and using the retriangulation procedure
of Snappea.

A presentation can be obtained for those groups for which a surgery de-
scription has been identified. This is true in particular for all (6, 6) cocompact
arithmetic lattices. The non-cocompact (6, p) arithmetic lattices were obtained
in [7].

Group No. 4 on Table 2 We were unable to identify this group beyond the matrix
representation (see (7)). In particular, this group does not arise as (6, 0)− (4, 0)
surgery on any of the two-bridge links which appear in Rolfsen’s tables [12]. We
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also tried a number of other two component links to match volumes, without
success. On the arithmetic side, this field does not appear in any examples that
we know so we were unable to get a handle on any group in the commensurability
class. In principle, we could obtain a presentation of this group from the face
pairing of the Dirichlet domain, but our present implementation of JSnap does
not yield enough information to allow this.

No p γ Description

1 3 −1 Non-cocompact 3− 3− 6 Coxeter group

〈a, b|a3 = b6 = [a, b]3 = ([a, b]a)2 = (b−1[a, b])2 = 1〉
2 3 −1 +

√−3 Non-cocompact generalised triangle group

〈a, b|a3 = b6 = (aba−1bab−1)2 = 1〉
3 3 2 +

√−3 Non-cocompact generalised triangle group

〈a, b|a3 = b6 = ((ab)2ab−1(a−1b−1)2)2 = 1〉
4 3 1.190 + 2.547i ?

5 3 −1.696 + 1.436i (6, 0)− (3, 0) surgery on (8/3)

6 3 −2.630 + 1.901i (6, 0)− (3, 0) surgery on (12/5)

7 3 −0.5 + 2.131i (6, 0)− (3, 0) surgery on (10/3)

8 4 −1 Non-cocompact 4− 3− 6 Coxeter group

〈a, b|a4 = b6 = [a, b]3 = ([a, b]a)2 = (b−1[a, b])2 = 1〉
9 4

√−6 (6, 0)− (4, 0) surgery on (10/3)

10 4 −1.298 + 1.807i (6, 0)− (4, 0) surgery on (8/3)

11 4 −2.287 + 1.350i (6, 0)− (4, 0) surgery on (12/5)

12 4 0.362 + 2.876i (6, 0)− (4, 0) surgery on 82
4

13 6 −1 Non-cocompact 6− 3− 6 Coxeter group

〈a, b, |a6 = b6 = [a, b]3 = ([a, b]a)2 = (b−1[a, b])2 = 1〉
14 6

√−3 Non-cocompact group

〈a, b|a6 = b6 = (b−1a)2b[a−1, b][a, b][a, b−1]a−1 = ([b−1, a]ba2)2 = 1〉
15 6 −1 + i (6, 0) surgery on (5/3)

16 6 1 + 3i (6, 0)− (6, 0) surgery on (24/7)

17 6 −1 +
√−7 (6, 0)− (6, 0) surgery on (30/11)

18 6 −2 +
√−2 (6, 0)− (6, 0 surgery on (12/5)

19 6 4.110 + 2.432i (6, 0) surgery on (65/11)

20 6 3.067 + 2.328i * (6, 0) surgery on (13/3)

21 6 2.124 + 2.747i (6, 0) surgery on (15/11)

22 6 1.092 + 2.052i * (6, 0) surgery on (7/3)

23 6 0.124 + 2.837i ** (6, 0) surgery on (13/3)

24 6 −0.892 + 1.954i (6, 0)− (6, 0) surgery on (8/3)

25 6 −1.877 + 0.745i ** (6, 0) surgery on (7/3)

26 6 −2.884 + 0.590i (6, 0)− (6, 0) surgery on (20/9)

27 6 −1.876 + 2.133i (6, 0)− (6, 0) surgery on (130/51)

Table 2. Geometric Description of Groups on Table 1.

In Table 3 below we describe all (6, 2) arithmetic lattices. In all cases except
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No. 1 on Table 3, each (6, 2) lattice is an extension of order 2 of a (6, 6) lattice,
and, for No. 1, the (6, 2) lattice is also (6, 6) lattice [4, 7]. We indicate the
related (6, 6) lattice from Tables 1 and 2. As commensurable groups have the
same defining field and quaternion algebra, that arithmetic data is not repeated
on Table 3.

No p γ Description

1. 2 (−3 +
√−3)/2 Coincides with group No. 14 on Tables 1 and 2.

〈a, b|a2 = b6 = (aba−1bab−1)3 = 1〉
2. 2 (1 +

√−3)/2 Doubly-covered by No. 14

〈a, b|a2 = b6 = (b−1a)4b[aba, b][ab−1a, b][ab−1a, b−1]aba

= ([b−1, ab−1a]bab−2b)2 = 1〉
3. 2 i Doubly-covered by No. 15

4. 2 −1 + i Doubly-covered by No. 15, (2, 0)− (6, 0) on (10/3)

5. 2 (−1 +
√−3)/2 Doubly-covered by No. 13

〈a, b|a2 = b6 = [aba, b]3 = ([aba, b]aba)2 = (b−1[aba, b])2

= (b−1[aba, b]aba)2 = 1〉
6. 2 −2 + i Doubly-covered by No. 16, (2, 0)− (6, 0) on (48/17)

7. 2 1 + i Doubly-covered by No. 16.

8. 2 (−3 +
√−7)/2 Doubly-covered by No. 17, (2, 0)− (6, 0) on (60/19)

9. 2 (1 +
√−7)/2 Doubly-covered by No. 17.

10. 2
√−2 Doubly-covered by No. 18.

11. 2 −1 +
√−2 Doubly-covered by No. 18.

12. 2 −2.662 + 0.562i Doubly-covered by No.19.

13. 2 1.662 + 0.562i Doubly-coverd by No. 19.

14. 2 −2.420 + 0.606i Doubly-covered by No. 20.

15. 2 1.420 + 0.606i Doubly-covered by No. 20.

16. 2 −2.233 + 0.793i Doubly-covered by No. 21.

17. 2 1.233 + 0.793i Doubly-covered by No. 21.

18. 2 −1.877 + 0.745i Doubly-covered by No. 22.

19. 2 0.877 + 0.745i Doubly-covered by No. 22.

20. 2 0.772 + 1.115i Doubly-covered by No. 23.

21. 2 −1.772 + 1.115i Doubly-covered by No. 23.

22. 2 0.341 + 1.161i Doubly-covered by No.24.

23. 2 −1.341 + 1.161i Doubly-covered by No.24.

24. 2 −0.215 + 1.307i Doubly-covered by No. 25.

25. 2 −0.785 + 1.307i Doubly-covered by No. 25.

26. 2 −0.319 + 1.633i Doubly-covered by No. 26.

27. 2 −0.681 + 1.633i Doubly-covered by No. 26.

28. 2 0.227 + 1.468i Doubly-covered by No. 27.

29. 2 −1.227 + 1.468i Doubly-covered by No. 27.

Table 3. The cases where p = 2.



372 C. Maclachlan and G.J. Martin

Up to complex conjugation, the γ values are related by the equation

γ(6, 2)(γ(6, 2) + 1) = γ(6, 6).

We now discuss how one can determine the geometric data, orbifold graph and
presentation from the cases above of groups generated by two elements of order
6. If 〈f, g〉 is generated by an element f of order 6 and g of order 2, then
〈f, gfg〉 is generated by two elements of order 6 and has index at most two in
〈f, g〉. These groups are therefore simultaneously lattices - or otherwise. This
process can be reversed. If 〈f, h〉 is a group generated by f and h of order 6,
then there are two elements of order two, say g1 and g2, whose axes bisect the
common perpendicular between the axes of f and h such that h±1 = gifgi. Again
〈f, gi〉 and 〈f, h〉 are simultaneously lattices or not. Should the group arise from
surgery on a knot or link, these two elements of order 2 can often be identified as
symmetries of the underlying knot or link. As an index two subgroup, one can
find a presentation for 〈f, gi〉 from that of 〈f, h〉 by adding in the generator gi

and the relator f−1 = gihgi. Let us work through the example of the figure eight
knot illustrated below with these two symmetries.

The orbifold fundamental group of (6, 0) surgery on the figure eight knot
complement is 〈a, b : a6 = b6 = ba−1b−1ab−1a−1bab−1a〉(which is No. 15 on
Tables 1 and 2). If we put c2 = 1 and cac = b or cac = b−1 we arrive at the two
groups

〈a, c : a6 = c2 = (caca−1ca−1)2cacaca−1ca = 1〉

〈a, c : a6 = c2 = ((ca−1)2(ca)3)2 = 1〉.

The first is a presentation for (2, 0)− (6, 0) Dehn surgery on the two bridge link
with slope (10/3) (No. 4 on Table 3) and the second is a generalised triangle
group of the type discussed in [5] (No. 3 on Table 3). It is typical that with the
addition of these two symmetries the number of crossings of the quotient link (if
it is a link) is quite large - outside of any common tables.
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Figure 8 knot and symmetries.

3 Two-generator Arithmetic Lattices

As noted in §1, we wish to find all parameters as described at (1) for a group
Γ = 〈f, g〉 where o(f) = 6, o(g) = p and Γ is an arithmetic Kleinian group. We
can assume that f, g are primitive so that tr 2f = 3, tr 2g = 4 cos2 π/p and β(f) =
−1, β(g) = −4 sin2 π/p. Thus, for each fixed p, we will determine γ = γ(6, p) ∈ C.
When γ is real, all such groups have been obtained in [8]. These are given by
the parameters (−1,−1,−3), (−1,−1,−2), (−1,−1,−1) and have corresponding
values of p = 3, 4 and 6 respectively. We assume henceforth that γ ∈ C \ R and,
as remarked in §1, we need only consider p = 3, 4 and 5.

Let Γ = 〈f, g〉 be a non-elementary subgroup of PSL(2,C). There is an
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associated invariant trace field kΓ and an invariant quaternion algebra AΓ over
kΓ which are invariants of the commensurability class of Γ [10, §3.3]. For a
two-generator group as above

kΓ = Q(tr 2f, tr 2g, tr ftr gtr fg) (2)

([10, Lemma 3.5.7]) and AΓ has the Hilbert symbol ([10, Theorem 3.6.2])

AΓ =
(

tr 2f(tr 2f − 4), tr 2ftr 2g(tr [f, g]− 2)
kΓ

)
. (3)

Furthermore, if Γ is a finite covolume Kleinian group, then Γ is arithmetic if and
only if the following three conditions hold:

(A) kΓ is a number field with exactly one complex place,

(B) tr h is an algebraic integer for each h ∈ Γ,

(C) AΓ is ramified at all real places of kΓ.

([10, Theorem 8.3.2]). From this, extending similar results in [6, 9], we obtain
the following theorem on which our identification of the (6, p) arithmetic lattices
will be based.

Theorem 3.1 Let Γ = 〈f, g〉 be a non-elementary subgroup of PSL(2,C) with
f of order 6 and g of order p, p ≥ 3. Let γ(f, g) = γ ∈ C \ R. Then Γ is an
arithmetic Kleinian group if and only if

1. γ is an algebraic integer,

2. Q(γ) ⊃ L = Q(cos 2π/p) and Q(γ) is a number field with exactly one
complex place,

3. if τ : Q(γ) → R is a real embedding such that τ |L = σ, then

−σ(sin2 π/p) < τ(γ) < 0, (4)

4. Q(λ) = Q(γ) where

12 cos2 π/p γ = λ2 − 12 cos2 π/p λ + 12 cos2 π/p (4 cos2 π/p− 1) (5)
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5. Γ has finite co-volume.

Sketch of proof: The traces of all elements in Γ are integer polynomials in
tr f, tr g, tr fg and Fricke’s identity shows that

tr [f, g] = tr 2f + tr 2g + tr 2fg − tr ftr gtr fg − 2. (6)

In this case, tr 2f = 3, tr 2g = 4 cos2 π/p, so that tr f, tr g are algebraic integers.
Thus from (6) traces of all elements of Γ will be algebraic integers if γ(= tr 2[f, g]−
2) is an algebraic integer.

Let λ = tr ftr gtr fg so that kΓ = Q(cos 2π/p, λ). Multiplying (6) by tr 2ftr 2g

yields the equation (5), so that, since γ ∈ C \ R, then λ ∈ C \ R. Recall that
every proper subfield of a field with one complex place is real. Thus if kΓ =
Q(cos 2π/p, λ) has exactly one complex place, then kΓ = Q(γ) = Q(λ) and
Q(γ) ⊃ Q(cos 2π/p). Conversely, if Q(γ) is a field with one complex place with
Q(γ) ⊃ Q(cos 2π/p) and Q(γ) = Q(λ) where λ is defined by (5), then kΓ =
Q(4 cos2 π/p, λ) has exactly one complex place.

Let τ : Q(γ) → R be a real embedding such that τ |L= σ. Since Q(γ) = Q(λ)
has just one complex place, the discriminant of the quadratic in λ at (5) must be
positive at real embeddings. This forces −σ(sin2 π/p) < τ(γ).

Finally, AΓ is ramified at all real embeddings of kΓ if and only if the Hilbert
symbol entries are negative at all such τ . Thus substituting in (3),

AΓ =
(−3, 12 cos2 π/p γ

kΓ

)
and so τ(γ) < 0. ¤

The theorem is stated in the above form, as we first use conditions 1., 2. and 3.
together with a geometric condition ( see Theorem 3.2 below) which is a neces-
sary consequence of condition 5, to obtain restrictions on the parameter γ. This
is carried out in §4. Further refinements are carried out in §5 before we invoke
condition 4 and the resulting groups Γ are then subgroups of arithmetic Kleinian
groups [10, Corollary 8.3.7]. Finally these are tested using JSnap as described in
§2 to determine which have finite covolume.

If Γ = 〈f, g〉 has finite covolume, then it cannot be isomorphic to the free
product 〈f〉∗〈g〉. Let Γ be normalised so that f, g are represented by the matrices
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(√
3/2 i/2

i/2
√

3/2

)
,

(
cos π/p iw sinπ/p

iw−1 sinπ/p cos π/p

)
(7)

for w which can be chosen to have |w| ≤ 1 and <(w) ≥ 0 [6]. If the isometric
circles of g lie inside the intersection of the isometric circles of f , then Γ is a
free product. This manifests itself as bounds on w which can be translated into
bounds on γ since γ = 1

4 sin2 π/p (w − 1/w)2. We deduce the following bounds
proved in [9, §3].

Theorem 3.2 Let 〈f, g〉 be a Kleinian group where o(f) = 6, o(g) = p and p =
3, 4 or 5. If Γ is not a free product of 〈f〉 and 〈g〉 then

|=(γ)| ≤ 5
2

√
(25 + 11

√
5)/2. (8)

−11 + 5
√

5
4

≤ R` ≤ <(γ) ≤ Ru = (
√

3 + 2 cos π/p)2. (9)

(For each value of p, a lower bound R` for <(γ) can be computed which satisfies
the above inequality for all values of p).

|γ| ≤ (
√

3 + 2 cos π/p)2 (10)

Furthermore, if x ∈ (− sin2 π/p, 0) then

|γ − x| ≤ (2 +
√

3 cos π/p)2. (11)

4 Degree Bounds

From Theorem 3.1, we note that γ is an algebraic integer, such that Q(γ) has
exactly one complex place and that Q(γ) must contain L = Q(cos 2π/p). Let
[Q(γ) : L] = r. Note that, for p = 3, 4, L = Q and for p = 5, L = Q(

√
5). In this

section we obtain bounds on r.

Let N denote the absolute norm N : Q(γ) → Q. Since γ is a non-zero
algebraic integer, N(γ) ≥ 1. The inequality (10) gives a bound for |γ| and |γ̄|.
For p = 3 and 4, the remaining r − 2 conjugates of γ are bounded in absolute
value by sin2 π/p by (4). For p = 5, r−2 conjugates over Q are likewise bounded
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by sin2 π/5 while the remaining r conjugates over Q are bounded by the L | Q-
conjugate sin2 2π/5 by (4). These yield the following bounds:

p = 3 1 ≤ |N(γ)| ≤ (1 +
√

3)4(sin2 π/3)r−2

p = 4 1 ≤ |N(γ)| ≤ (
√

3 +
√

2)4 (sin2 π/4)r−2

p = 5 1 ≤ |N(γ)| ≤ (
√

3 + 2 cos π/5)4 (sin2 π/5)r−2 (sin2 2π/5)r.

As r increases, the right hand sides of these inequalities decrease to 0 so by direct
calculation we obtain r ≤ 15, 8, 5 respectively. We can improve upon these initial
bounds by considering the relative discriminant δQ(γ)|L (which is the absolute
discriminant for p = 3, 4). Recall Schur’s bound [13] that if −1 ≤ y1 < y2 <

· · · < yn ≤ 1, with n ≥ 3 then

∏

1≤i<j≤n

(yi − yj)2 ≤ Mn =
2233 · · ·nn22 · · · (n− 2)n−2

3355 · · · (2n− 3)2n−3
.

Let x3, x4, . . . , xr denote the real roots of the minimum polynomial of γ over L.
Then, B = {1, γ, γ2, . . . , γr−1} is a power basis of integers of Q(γ) over L. Thus
for p = 3, 4

|∆Q(γ)| ≤ |discr B| = |γ − γ̄|2
[

r∏

i=3

|γ − xi|2|γ̄ − xi|2
] ∏

3≤i<j≤r

(xi − xj)2.

We noted above that xi ∈ (− sin2 π/p, 0). Thus scaling Schur’s bound and using
(8) and (11) we obtain

|∆Q(γ)| ≤ 620(2 +
√

3/2)8(r−2)(3/8)(r−2)(r−3)Mr−2 for p = 3.

|∆Q(γ)| ≤ 620(2 +
√

3/
√

2)8(r−2)(1/4)(r−2)(r−3)Mr−2 for p = 4

For p = 5, let τ : Q(γ) → R be such that τ |L = σ, the non-trivial Galois
automorphism of L. Then {1, τ(γ), τ(γ2), . . . , τ(γr−1)} is a power basis of integers
of τ(Q(γ)) over L, and the roots of the minimum polynomial of τ(γ) over L all
lie in the interval (− sin2 2π/5, 0). Thus

|NL|Q(δQ(γ)|L)| ≤ |discr B||σ(discr B)|

≤ 620(2 +
√

3 cos π/5)8(r−2)

(
sin2 π/5

2

)(r−2)(r−3)

Mr−2

(
sin2 2π/5

2

)r(r−1)

Mr.



378 C. Maclachlan and G.J. Martin

For the small values of r thrown up by the first set of bounds, the right-hand
sides of these inequalities can be evaluated. For a lower bound for the left hand
sides, we note that Q(γ) is a field with exactly one complex place. Let Dn denote
the minimum absolute value of the discriminant of any field of degree n over Q
with exactly one complex place. For p = 3, 4, |∆Q(γ)| ≥ Dr. For p = 5, since
|∆Q(γ)| = |∆r

LNL|Q(δQ(γ)|L)| there will be a lower bound of D2r/5r. For n ≤ 8,
Dn is known explicitly and for n ≥ 9, lower bounds for Dn due to Odlyzko [11]
can be used (see Table 2 in [9]). In this way we obtain further bounds on r. There
are further slight refinements to these methods. Note that the upper bound for
|N(γ)| occurs when the real xi cluster at one end of the interval given by (4).
But in these circumstances, the discriminant will be small. This is quantified as
a “balancing argument” in [9, §4]. All these yield the following bounds:

Theorem 4.1 Let Γ = 〈f, g〉 be an arithmetic Kleinian group generated by f of
order 6 and g of order p ∈ {3, 4, 5}. Let r = [Q(γ) : Q(cos 2π/p)].

• r ≤ 3 if p = 5

• r ≤ 6 if p = 4

• r ≤ 6 if p = 3.

5 The Remaining Cases

We first remark on the case p = 5. Here γ satisfies a quadratic or cubic polynomial
with coefficients ci ∈ RQ(

√
5). Thus ci = (a + b

√
5)/2 where a, b ∈ Z with

a ≡ b(mod 2). From the bounds on |γ|,<(γ) at (9) and (10) and on the conjugates
of γ at (4) we obtain upper and lower bounds u1, `1 for ci and u2, `2 for σ(ci) =
(a− b

√
5)/2. From these we obtain candidate values for the integers a, b for each

ci. This results in a not-too-large collection of polynomials which we can further
examine to determine if their roots, and the roots of the conjugate polynomial,
satisfy the bounds dictated by the inequalities (4), (9) and (10). The resulting
values of γ then satisfy 1,2 and 3 of Theorem 3.1 and we invoke condition 4. In
the polynomial of a candidate γ, we use (5) to obtain a polynomial of double the



The (6, p)-arithmetic Hyperbolic Lattices in Dimension 3. 379

degree for λ which, by Condition 4 of Theorem 3.1, must factorise over Q(γ).
We find that none of the candidate polynomials for γ satisfy this factorisation
condition. This method was employed in [9, §6] and for more on this crucial
factorisation condition, see below.

For the cases where p = 3, 4, γ satisfies a polynomial of degree ≤ 6 with
rational integer coefficients.The bounds on the coefficients obtained from the
inequalities (4), (9) and (10) give, in general, too large a collection of polynomials
to solve and apply the conditions of Theorem 3.1, particularly 4. So we use various
methods to reduce the size of the problem. We illustrate this with one case, which
is neither the most difficult nor the easiest but contains all the ideas necessary to
handle the other cases. This is the case p = 3 and r = 4 which does eventually
produce one example (No 7 on Table 1).

Let γ have minimum polynomial p(z) = z4 + c3z
3 + c2z

2 + c1z + c0, so that it
has roots γ, γ̄, x1, x2 where xi ∈ (−3/4, 0), and the bounds on γ, γ̄ are given at (9)
and (10). Expressing the ci in terms of these roots, e.g. c3 = −2<(γ)− (x1 +x2),
we quickly obtain the bounds −14 ≤ c3 ≤ 12, −22 ≤ c2 ≤ 72, −6 ≤ c1 ≤ 91,
1 ≤ c0 ≤ 31. For implementing and programming our search, particularly for
higher degrees, it is useful to cut down the size of this search space as much as
possible and we give two methods of proceeding from here.

Method 1. First of all, we can bound one coefficient in terms of another. For
instance, we have

−c3 ≤ 2<(γ) ≤ −c3 + 3/2

which can then be used to bound c2 = |γ|2 + 2(x1 + x2)<(γ) + x1x2. This gives

Min(0,
3
2
(c3 − 3

2
)) ≤ c2 ≤ (1 +

√
3)4 +

9
16

+ Max(
3
2
c3, 0).

Also, as was used in [9, §6], c1 = −c0(1/x1 + 1/x2)− 2<(γ)x1x2, yielding

8
3
c0 − 9

8
(1 +

√
3)2 < c1 < c0


0.75(1 +

√
3)2

c0
+

(
(1 +

√
3)4

c0

)1/2

− 9

8
R`,

where R` is defined in Theorem 3.2 Since the quartic p(z) has two real roots in
the interval (−0.75, 0), p′(z) has at least one root in that interval. Since p′(z)
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is a cubic involving only c3, c2, c1 we can use this to limit the possibilities of c1

depending on c3, c2.

Using these sorts of refinements to reduce the search space produces a list of
candidate polynomials with one complex pair of roots satisfying (9) and (10) and
two real roots in the interval (−0.75, 0).

We now implement condition 4 of Theorem 3.1. From (5), γ = (λ2 − 3λ)/3.
Substituting into a candidate polynomial p(z) gives q(λ) = 34p((λ2 − 3λ)/3), a
monic integral polynomial of degree 8, q(λ) = λ8 − 12λ7 + (54 + 3c3)λ6 + · · · .

This must factor as the product (λ4 +a3λ
3 + · · ·+a0)(λ4 + b3λ

3 + · · ·+ b0) where
ai, bi ∈ Z, one factor being the minimum polynomial of λ, the other of 3−λ. This
leads to a non-linear system of eight equations over the integers e.g a3 + b3 =
−12, a2 + b2 + a3b3 = 54 − 3c3 etc. Such a system can be solved numerically
yielding many solutions from which we must select those that are approximately
integral. The implementation of this on a machine becomes impractical if there
are, as in this case, a large number of candidate polynomials to be considered.
To shortcut this, solve each q(λ) = 0 numerically. For each set of 8 roots, select
one root, and test with all possible triples of the other roots, for those for which
the product of all 4 roots and the sum of all 4 roots is approximately integral as
these must correspond to two of the coefficients of the polynomial satisfied by λ

(or 3− λ). This drastically reduces the number of polynomials to be considered
and hence the number of non-linear systems to be solved.

Method 2. In this variation, we use equation (5) at the outset in the following
way.

12γ + 9 = (2λ− 3)2 (12)

so that µ = −(2λ−3) is an algebraic integer such that Q(γ) = Q(µ). If p(z) is the
minimum polynomial of γ, then q(v) := 124p((v−9)/12) = a0+a1v+· · ·+v4, with
ai ∈ Z linear combinations of the ci e.g. a3 = 12(c3−3). Now if b0 +b1x+ · · ·+x4

is the minimum polynomial of µ, then µ and −µ satisfy q(x2) = 0 so that q(x2) =
(b0 + b1x + · · ·+ x4)(b0 − b1x + · · ·+ x4) and we have four non-linear equations
relating the bi to the ai and hence to the ci e.g. 2b2 − b2

3 = a3. The divisibility
of the coefficients ai by powers of 2 and 3 impose necessary conditions on the
coefficients bi. Precisely, b0 = 9(2b′0 + 1), b1 = 18b′1, b2 = 6b′2, b3 = 6b′3 where
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b′i ∈ Z. Just as bounds were obtained for γ, we can in the same way obtain
bounds on µ. Thus, since the quaternion algebra is to be ramified at the real
places, (12) and (3) show that σ(µ) ∈ (−3, 3) for σ a real embedding. Also, from
the matrix representation at (7), we have that µ = −(2λ − 3) = 3(w + w−1)/2
and the isometric circle conditions given in §3, then yield |µ| ≤ 3(4/

√
3 + 1) and

0 ≤ <(µ) < 3(4/
√

3 + 1). Using these we obtain bounds on the b′i. If necessary,
e.g. in the analogous case when r = 6, we can also use the extensions as described
in Method 1 to obtain improved bounds. The divisibility conditions on the bi as
stated above are only necessary conditions and having obtained candidate values
for the bi we can then determine the ai and solve for ci which must also be integers
(and must also satisfy the bounds as described in Method 1). All this produces
a small number of polynomials for µ and hence for γ.

The outcome of either Method 1 or Method 2 ( and the authors independently
used these two methods to cross-check their calculations) is a set of polynomials
which satisfy the first four conditions of Theorem 3.1 and the bounds of Theorem
3.2. Further tests for the related groups to be free products 〈f〉∗〈g〉 using isomet-
ric circles are carried out as in [7] before the final list of candidate polynomials
is handled by JSnap as described in §2.
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