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Abstract: In this paper we first discuss new results of the authors concern-
ing a boundary Harnack inequality and Hölder continuity up to the boundary
for the ratio of two positive p harmonic functions, 1 < p < ∞, which vanish
on a portion of a Lipschitz domain. Second we discuss applications of these
results to the Martin boundary problem for p harmonic functions and to
certain boundary regularity - free boundary problems.
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domain, Martin boundary, free boundary.

1. Introduction. Denote points in Euclidean n space Rn by x = (x1, . . . , xn)
or (x′, xn) where x′ = (x1, . . . , xn−1) ∈ Rn−1. Let Ē, ∂E, diam E, be the closure,
boundary, diameter, of the set E ⊂ Rn and put d(y, E) equal to the distance
from y ∈ Rn to E. Let 〈·, ·〉 denote the standard inner product on Rn and let
|x| = 〈x, x〉1/2 be the Euclidean norm of x. Set B(x, r) = {y ∈ Rn : |x− y| < r}
whenever x ∈ Rn, r > 0, and let dx denote Lebesgue n measure on Rn. If O ⊂ Rn

is open and 1 ≤ q ≤ ∞, we denote by W 1,q(O), the space of equivalence classes
of functions f with distributional gradient ∇f = (fx1 , . . . , fxn), both of which
are q th power integrable on O. Let ‖f‖1,q = ‖f‖q + ‖ |∇f | ‖q be the norm in
W 1,q(O) where ‖ · ‖q denotes the usual Lebesgue q norm in O. Next let C∞

0 (O)
be infinitely differentiable functions with compact support in O and let W 1,q

0 (O)
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be the closure of C∞
0 (O) in the norm of W 1,q(O). Given Ô a bounded domain

(i.e, a connected open set) and 1 < p < ∞, we say that û is p harmonic in Ô

provided û ∈ W 1,p(Ô) and

(1.1)
∫
|∇û|p−2 〈∇û,∇θ〉 dx = 0

whenever θ ∈ W 1,p
0 (Ô) . Observe that if û is smooth and ∇û 6= 0 in Ô, then

(1.2) ∇ · (|∇û|p−2∇û) ≡ 0 in Ô

so û is a classical solution in Ô to the p Laplace partial differential equation.
Here, as in the sequel, ∇· is the divergence operator. We note that φ : E→R is
said to be Lipschitz on E provided there exists b, 0 < b < ∞, such that

(1.3) |φ(z)− φ(w)| ≤ b |z − w|, whenever z, w ∈ E.

The infimum of all b such that (1.3) holds is called the Lipschitz norm of φ on
E, denoted ‖φ‖̂E . It is well known that if E = Rn−1, then φ is differentiable on
Rn−1 and ‖φ‖̂Rn−1 = ‖ |∇φ| ‖∞. Finally let ei, 1 ≤ i ≤ n, denote the point in Rn

with one in the i th coordinate position and zeroes elsewhere.

In [LN] we proved,

Theorem A. Let G = {y = (y′, yn) ∈ Rn : yn > φ(y′)} where φ is Lipschitz
on Rn−1. Given p, 1 < p < ∞, w = (w′, φ(w′)) ∈ ∂G, and r > 0, suppose that
u, v are positive p harmonic functions in B(w, r)∩G, that u, v are continuous in
B̄(w, r) ∩ Ḡ, u(w + r

4en) = v(w + r
4en) = 1 and that u, v = 0 on B(w, r) ∩ ∂G.

Then there exist c1, 1 ≤ c1 < ∞, depending only on p, n, and ‖ |∇φ| ‖∞ such that

u(y)
v(y)

≤ c1 whenever y ∈ B(w, r/c1) ∩G.

In this note we first outline a proof of the following theorem.

Theorem 1. Let p, φ, G, u, v, w, r be as in Theorem A. Under these assumptions
there exists c2, 1 ≤ c2 < ∞, and α, 0 < α < 1, depending only on p, n, and
‖ |∇φ| ‖∞ such that

∣∣∣∣log
u(y1)
v(y1)

− log
u(y2)
v(y2)

∣∣∣∣ ≤ c2

( |y1 − y2|
r

)α

whenever y1, y2 ∈ B(w, r/c2) ∩G.
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We note that Theorem 1 implies Theorem A and Hölder continuity of u/v :

(1.4)
∣∣∣∣
u(y1)
v(y1)

− u(y2)
v(y2)

∣∣∣∣ ≤ c

( |y1 − y2|
r

)α

for y1, y2 ∈ B(w, r/c2) ∩G,

where c has the same dependence as c2. Theorem 1 was proved in [JK] for har-
monic functions in a nontangentially accessible (NTA) domain. However their
proof depends heavily on the fact that the Laplacian is a linear operator, which
is not true for the p Laplace operator when p 6= 2. The proofs of Theorem A
and Theorem 1 overcome this difficulty by considering a certain linear operator
for which linear estimates can be used. More specifically if û(·, τ), τ ∈ [0, 1], is
p harmonic in a domain Ô, ∇û(x, τ) is nonzero for x ∈ Ô, and û is sufficiently
smooth in x, τ, then ζ = ∂û

∂τ (·, τ) satisfies at x the partial differential equation

(1.5) Lζ = ∇ · [(p− 2)|∇û|p−4〈∇û,∇ζ〉∇û + |∇û|p−2∇ζ] = 0,

as follows from differentiating the p Laplace equation in (1.2) with respect to τ.

Here we have written ∇û for ∇û(·, τ). Clearly,

(1.6) L û(x, ·) = (p− 1)∇ · [ |∇û|p−2∇û(x, ·) ]
= 0.

(1.5) can be written in the form

(1.7) Lζ =
n∑

i,j=1

∂

∂xi
[ bij(x)ζxj (x) ] = 0,

where at x ∈ Ô,

(1.8) bij(x) = |∇û|p−4[(p− 2)ûxi ûxj + δij |∇û|2](x), 1 ≤ i, j ≤ n,

and δij is the Kronecker δ. Thus the first key observation in the proofs of Theorem
1 and Theorem A is that û(·, τ) and ∂û

∂τ (·, τ) both satisfy the divergence form
partial differential equation (1.7).

In [LN] we used this observation, to study deformations of p capacitary func-
tions from one starlike Lipschitz ring to another. More specifically, a bounded
domain Ω ⊂ Rn is said to be starlike Lipschitz with respect to x̂ ∈ Ω provided

∂Ω = {x̂ + R(ω)ω : ω ∈ ∂B(0, 1)}
where log R : ∂B(0, 1)→R is Lipschitz on ∂B(0, 1). We say that D is a starlike
Lipschitz ring domain with center x̂ provided D = Ω \ Ω̄′ where Ω,Ω′ are starlike
Lipschitz domains with center x̂ and Ω̄′ ⊂ Ω. Let R, R′ be the graph functions
for ∂Ω, ∂Ω′. As in [LN] we shall refer to ‖ log R‖̂∂B(0,1) + ‖ log R′‖̂∂B(0,1) as the
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Lipschitz constant for D. If p is fixed, 1 < p < ∞, let û = û(·, p) be the p

capacitary function for D. That is û ≡ 1 on ∂Ω′, û ≡ 0 on ∂Ω in the sense of
W 1,p

0 (Ω) and û is p harmonic in D. To simplify the description of our deformations,
suppose ûi, i = 1, 2, are the p capacitary functions for starlike Lipschitz ring
domains, D̂i with D̂i = Ω̂i \ B̄(x̂, ρ), where

(1.9) d(x̂, ∂Ω̂1)/4 ≤ ρ ≤ d(x̂, ∂Ω̂1)/2.

Also suppose Ω̂1 ⊂ Ω̂2, w ∈ ∂Ω̂1 ∩ ∂Ω̂2, and

(1.10) B(w, 2r) ∩ D̂1 = B(w, 2r) ∩ D̂2

for some fixed r, 0 < r < ρ/8. Let R̂i, i = 1, 2, be the corresponding graph
functions for ∂Ω̂i and assume that R̂i, i = 1, 2, are infinitely differentiable on the
manifold ∂B(0, 1). Put R̂(τ) = R̂τ

2R̂1−τ
1 , 0 ≤ τ ≤ 1, and let Ω̂(τ) be the starlike

Lipschitz domain with center x̂, graph function R̂(τ), while D̂(τ) = Ω̂(τ)\B̄(x̂, ρ)
is the corresponding ring domain. Let û(·, τ), τ ∈ [0, 1], be the p capacitary
function for D̂(τ) so that û(·, 0) = û1, û(·, 1) = û2. In [LN] we showed that
û(x, τ) is smooth in x, τ whenever x ∈ D̂1 and that

(1.11) |∇û(x, τ)| ≈ û(x, τ)
d(x, ∂Ω̂(τ))

≈ 〈 x̂−x
|x̂−x| , ∇û(x, τ)〉 whenever x ∈ D̂(τ).

Moreover, û(x, τ), τ ∈ [0, 1], provides a smooth deformation of û1(x) to û2(x) and
so (1.5)-(1.8) are true. It follows from this deduction that,

(1.12) log
(

û2(x)
û1(x)

)
=

∫ 1

0

ûτ (x, τ)
û(x, τ)

dτ.

From (1.10), (1.5)-(1.8), one also sees that uτ ≥ 0 and uτ ≡ 0 on B(w, 2r)∩∂D̂(τ).
In [LN, Theorem 2] we used these observations, (1.5) - (1.11), and some deep
results on elliptic measure to conclude that ûτ (·, τ)/û(·, τ) is Hölder continuous
in B(w, r)∩D̂1 with constants independent of τ ∈ [0, 1]. From this conclusion and
(1.12) it easily follows that Theorem 1 holds with u, v replaced by û1, û2. In fact
in [LN, Theorem 2] we prove (1.4) for û1, û2, but we were not able to prove (1.4)
in general, primarily because we did not see how to define a deformation {u(·, τ)}
of u into v for which (1.11) held (with û(·, τ) replaced by u(·, τ)). Furthermore
without (1.11) we could not prove that uτ/u is Hölder continuous.

In this paper, after some preliminary reductions, we let u(·, τ), τ ∈ [0, 1], be the
p harmonic function in B(w, 2r′)∩G with boundary values u(·, τ) = (1−τ)u+τv

on ∂[B(w, 2r′) ∩ G]. Here r′ = r
4c21

where c1 is as in Theorem A. We then show
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that (1.11) and Theorem 1 hold for this deformation in B(w, r/ĉ)∩G, if ĉ is large
enough. The proof uses a method of continuity - iteration type argument. That
is, we first show (1.11) holds for τ ∈ [0, ε1] whenever x ∈ B(w, r′/c)∩G for some
small ε1 > 0. We then use the techniques from [LN] to get Theorem 1 with v

replaced by u(·, ε1). Second we use Theorem 1 for u(·, ε1) to get (1.11) for u(·, τ)
on B(w, r′/c′) ∩G, c′ > c, when τ ∈ [ε1, 2ε1]. Next we prove Hölder continuity of
u(·, 2ε1) in B(w, r′/c∗) ∩ G, c∗ > c′, and then use this result to show that (1.11)
holds for τ ∈ [2ε1, 3ε1] on B(w, r′/c∗∗) ∩G, c∗∗ > c∗. Continuing by induction we
eventually get Theorem 1. An important part of the proof is to show that ε1 can
be chosen to depend only on p, n, and ‖|∇φ|‖∞.

As for the plan of this paper, in section 2 we give some basic estimates for p

harmonic functions and state some results from [LN] which will be used in the
proof of Theorem 1. In section 3 we prove Theorem 1. In section 4 we discuss
some applications of Theorem 1 to the Martin boundary problem given in [LN1].
In section 5 we outline some applications of Theorem 1 to boundary value prob-
lems given in [LN2]. Finally we remark that for the reader well versed in [LN]
our proof of Theorem 1 is essentially self contained.

2. Basic Estimates and Results from [LN]. Let G,w, r be as in Theo-
rem A and suppose that for some fixed p, 1 < p < ∞, û > 0 is p harmonic in
B(w, r̃)∩G, 0 < r̃ ≤ r, continuous on B̄(w, r̃)∩G and û ≡ 0 on B(w, r̃)∩G. Put
û = 0 on B(w, r̃) \ Ḡ. With û now defined on B(w, r̃) let max

B(z,s)
û, min

B(z,s)
û be the

maximum and minimum of û on B(z, s) whenever B̄(z, s) ⊂ B(w, r̃). We begin
this section by stating some interior and boundary estimates for û.

Lemma 2.1. Let û be as above. If B̄(y, 2s) ⊂ B(w, r̃), then

(2.2) sp−n

∫

B(y,s/2)
|∇û|p dx ≤ c max

B(y,s)
ûp

while if B(y, 2s) ⊂ B(w, r̃) ∩G, then

(2.3) max
B(y,s)

û ≤ c min
B(y,s)

û .

If y ∈ B(w, r̃/2) ∩ ∂G, B(y, 2s) ⊂ B(w, r̃), and s ≤ r̃/c, then

(2.4) max
B(y,s)

û ≤ c û(as(y))
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where as(y) is a point in B̄(y, s) ∩ G with d(as(y), ∂G) = sup{ d(z, ∂G) : z ∈
B̄(y, s) ∩G }. Moreover, there exists α, 0 < α < 1, and c such that if B(y, 2s) ⊂
B(w, r̃), then

(2.5) |û(x)− û(z)| ≤ c
( |x−z|

s

)α
max

B(y,2s)
û whenever x, z ∈ B(y, s).

Proof: (2.2) is a standard subsolution estimate. (2.3) is a well known Harnack
inequality for positive solutions of p Laplacian type. (2.4) is due to Carleson -
Domar. If B(y, 2s) ⊂ B(w, r̃) ∩ G, then (2.5) is a well known interior Hölder
continuity estimate for solutions of p Laplacian type. Otherwise, (2.5) follows
from simple barrier type estimates and interior Hölder continuity (references for
the proofs of (2.2)-(2.5) are given in [LN]). 2

In Lemma 2.1, as well as in the sequel, c denotes a positive constant, not neces-
sarily the same at each occurrence, which may depend only on p, n, and ‖|∇φ|‖∞.

In general c(a1, a2, . . . , am) denotes a positive constant which may only depend
on p, n, ‖|∇φ|‖∞, and a1, . . . , am. We note that α in Lemma 2.1 depends only on
p, n, and ‖|∇φ|‖∞.

Lemma 2.6. û has a representative in W 1,p(B(w, r̃)) that has Hölder continuous
partial derivatives in B(w, r̃) ∩ G. That is, for some σ ∈ (0, 1] (depending only
on p, n) we have

(2.7) c−1 |∇û(x)−∇û(z)| ≤ (|x− z|/s)σ max
B(y,s/2)

|∇û| ≤ c s−1 (|x− z|/s)σ û(y)

whenever x, z ∈ B(y, s/4) and B(y, 2s) ⊂ G. Also, if c |∇û(x)| ≥ û(x)/d(x, ∂G)
for all x ∈ B(y, 2s), then

max
B(y, s

4
)

n∑

i,j=1

|ûxixj | ≤ c


s−n

∫

B(y,s/2)

n∑

i,j=1

|ûxixj |2 dy




1/2

(2.8)

≤ c2 û(y)/d(y, ∂G)2.

Moreover if ∇û(x) 6= 0, then û is C∞ in a neighborhood of x.

Proof: See [LN, Lemmas 2.3, 2.4, 2.5 ]. 2
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Lemma 2.9. If φ ∈ C∞
0 (Rn−1) (i.e ∂G is C∞), then there exists an open

neighborhood N ⊃ B(w, r̃/2)∩ ∂G such that û has a C∞ extension to the closure
of N ∩ G ∩ B(w, r̃/2). Furthermore, there exists b ≥ 1, β, 0 < β < 1, depending
only on p, n, and the C3 norm of φ such that

(2.10)

(a) b−1 û(y)/d(y, ∂G) ≤ |∇û(y)| ≤ b û(y)/d(y, ∂G)
whenever y ∈ N ∩G ∩B(w, r̃/2),

(b) |∇û(x)−∇û(z)| ≤ b (|x− z|/s)β û(y)/d(y, ∂G) if
y ∈ B(w, r̃/2) ∩G, B(y, 2d(y, ∂G)) ⊂ N, and
x, z ∈ B(y, 2d(y, ∂G)).

Proof: See Lemma 2.4 in [LN]. 2

Next suppose for fixed p, 1 < p < ∞, that ũ is the p capacitary for the starlike
Lipschitz ring domain D̃ = Ω̃ \B(x̂, ρ) where c−1d(x̂, ∂D̃) ≤ ρ ≤ 1

4d(x̂, ∂D̃).

Lemma 2.11. Let ũ, D̃, p, be as above. There exists c depending only on p, n,

and the Lipschitz constant such that

(2.12)
(i) 0 < |∇ũ(x)| ≤ c 〈 x̂−x

|x̂−x| , ∇ũ(x)〉 whenever x ∈ D̃.

(ii) c−1 ũ(x)/d(x, ∂D̃) ≤ |∇ũ(x)| ≤ cũ(x)/d(x, ∂D̃) whenever x ∈ D̃.

Proof: See Lemma 2.5 in [LN]. 2

Let ũ be as in Lemma 2.11 and define L, bij as in (1.7), (1.8) with û replaced
by ũ. In [LN] we use Lemmas 2.1, 2.6, 2.9, 2.11, to prove Lemmas 3.13 and 3.27.
Together they are equivalent to the following lemma.

Lemma 2.13. Let y ∈ ∂Ω̃, 0 < s < ρ/8, and suppose that ∂D̃ is C∞. Let h1, h2

be positive solutions to L in B(y, s) ∩ D̃ with hi = 0, i = 1, 2, continuously on
B(y, s) ∩ ∂D̃. There exists ĉ ≥ 1, λ, 0 < λ < 1 (depending only on p, n and the
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Lipschitz constant for D̃) such that if ŝ = s/ĉ, then

(2.14)
∣∣∣∣ log

h1(z1)
h2(z1)

− log
h1(z2)
h2(z2)

∣∣∣∣ ≤ ĉ

( |z1 − z2|
s

)λ

whenever z1, z2 ∈ B(y, ŝ) ∩ D̃.

Proof: We here briefly outline the proof in [LN, Lemma 2.39] of Lemma 2.13.
We first use the above lemmas and some Rellich type inequalities to show, as in
[G], the existence of q > p, depending only on p, n, and the Lipschitz constant
for D̃, such that the following reverse Hölder inequality holds,

∫

B(y,s)∩∂Ω̃
|∇ũ|q dHn−1(2.15)

≤ c s
(n−1)( p−1−q

p−1
)

(∫

B(y,s)∩∂Ω̃
|∇ũ|p−1 dHn−1

)q/(p−1)

.

Here y, s are as in Lemma 2.13 and Hn−1 denotes Hausdorff n − 1 measure on
∂Ω̃. Let ỹ ∈ D̃ be the point on the ray from x̂ to y with |ỹ − y| = s/4. Using
(2.15), we show in [LN, Lemma 2.45] that there exists a starlike Lipschitz domain
Ω∗ ⊂ B(y, s) ∩ Ω̃ with center ỹ satisfying

(2.16)
(a) cHn−1[∂Ω̃ ∩B(y, s) ∩ ∂Ω∗] ≥ sn−1

(b) c−1s−1 ũ(ỹ) ≤ |∇ũ(x)| ≤ cs−1 ũ(ỹ) whenever x ∈ Ω∗.

Next in [LN, Lemma 2.54] we define

dσ̃(x) = d(x, ∂Ω∗) max
B(x, 1

2
d(x,∂Ω∗))

{|∇ũ|2p−6
n∑

i,j=1

ũ2
xixj

} dy

when x ∈ Ω∗, and use (2.16), (2.8) to show that σ̃ is a Carleson measure on Ω∗

in the sense that if z ∈ ∂Ω∗ and 0 < t < s/4, then

(2.17) σ̃(B(z, t) ∩ Ω∗) ≤ c tn−1 (ũ(ỹ)/s)2p−4.

Armed with (2.17) we can apply a theorem in [KP] to deduce that if ω∗ is elliptic
measure defined with respect to L, (bij) in Ω∗, then ω∗ is an A∞ weight with
respect to Hn−1 measure on ∂Ω∗ (see [LN, Theorem 3.11]). Finally in [LN], we
use this result for ω∗ as well as some comparison arguments for elliptic measure
to get Lemma 2.13. 2
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Remark: It is important to note that Lemma 2.13 is valid whenever ũ satisfies
the hypotheses of Lemmas 2.1, 2.6, 2.9, 2.11 and does not depend on the fact
that ũ is a p capacitary function. Moreover, Lemmas 2.1, 2.6, 2.9 are standard
estimates for a positive p harmonic function vanishing on a portion of the bound-
ary of a Lipschitz domain. Thus Lemma 2.11 is the only lemma which requires
proof (for the positive p harmonic functions we consider) in order to use Lemma
2.13.

3. Proof of Theorem 1. To begin the proof of Theorem 1, put u = v = 0 in
B(w, r) \G. Then u, v are continuous in B(w, r). We assume, as we may, that

(3.1) φ ∈ C∞
0 (Rn−1).

Indeed otherwise let Gε be the domain defined as in Theorem A with φ replaced
by φε where φ − ε < φε < φ in {x′ ∈ Rn−1 : |x′ − w′| < 2r}, φε ∈ C∞(Rn),
and ‖|∇φε|‖∞ ≤ ‖|∇φ|‖∞. Existence of φε follows from convoluting φ− ε/2 with
a suitable approximate identity. Let uε, vε, be the unique positive p harmonic
functions in B(w, r/2) ∩ Gε with uε = u, vε = v on ∂[B(w, r/2) ∩ Gε] in the
W 1,p Sobolev sense. Existence and uniqueness of uε, vε follow from well known
arguments in the calculus of variations. From our choice of φε we have uε = vε = 0
on B(w, r/2) ∩ ∂Gε in the W 1,p

0 Sobolev sense. Now from Lemma 2.1 it is easily
seen that uε, vε converge uniformly to u, v on compact subsets of B(w, r/2) ∩ G

as ε→0. Since c2 in Theorem 1 depends only on p, n and the Lipschitz norm of
∇φε, it follows that we can prove Theorem 1 for uε, vε, and then take limits to
get Theorem 1 for u, v. Thus we assume (3.1).

Next let x̂ = w + 1
4ren and observe from basic geometry that if c′ is large

enough (depending on the Lipschitz norm of φ), then the domain Ω̃ ⊂ G ob-
tained from drawing all open line segments from points in B(w, r/c′) ∩ ∂G to
points in B(x̂, r/c′) is starlike Lipschitz with center x̂ and Lipschitz constant
≤ c(‖|∇φ|‖∞ + 1), where c depends only on n. Let ρ = r

16c′ and let ũ be the p

capacitary function for D̃ = Ω̃ \ B̄(x̂, ρ). Then D̃ is a starlike ring domain and
from Lemma 2.11 we see that (2.12) is valid for ũ. To continue note that if c1 in
Theorem A is large, then we can also assume

(3.2) B(w, r/c1) ∩ ∂G = B(w, r/c1) ∩ ∂D̃.
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From (3.2), arbitrariness of v and the triangle inequality, we find that it suffices
to prove Theorem 1 with u replaced by ũ, and r by r/c1 provided c1 is large
enough. Thus we write u for ũ and assume u satisfies (2.12). We also assume for
for technical reasons that

(3.3) u ≤ v/2 ≤ c3u in B̄(w, r/c2
1) ∩G

where c3 has the same dependence as c1. Otherwise, we can multiply v by a
positive constant to get this inequality, thanks to Theorem A with r replaced
by r/c1. Let r′ = r

4c21
and let u(·, τ), 0 ≤ τ ≤ 1, be the p harmonic function in

B(w, 2r′) ∩G with

(3.4) u(·, τ) = τv + (1− τ)u

on ∂[B(w, 2r′) ∩G] for 0 ≤ τ ≤ 1. Next we prove a key lemma.

Lemma 3.5. There exists, ε0 ∈ (0, 1/4), depending only on p, n, and ‖|∇φ|‖∞
such that if for some τ̂ ∈ [0, 1], L̂, 0 < L̂ < ∞, and s, 0 < s ≤ r′ we have

(3.6) (1− ε0)L̂ ≤ u(·, τ̂)
u

≤ (1 + ε0)L̂ in B(w, s),

then for some c4 ≥ 1, having the same dependence as c1,

(3.7) c4〈 x̂−x
|x̂−x| , ∇u(x, τ̂)〉 ≥ u(x, τ̂)/d(x, ∂G) whenever x ∈ B(w, s/4) ∩G.

Proof: Let x ∈ B(w, s/4) ∩G. From (2.7) with û replaced by u we see that

|∇u(z1, τ̂)−∇u(z2, τ̂)| ≤ ctσ max
B(x,2td(x,∂G))

|∇u(·, τ̂)|(3.8)

≤ c2tσ u(x, τ̂)/d(x, ∂G)

whenever z1, z2 ∈ B̄(x, td(x, ∂G)) and 0 < t ≤ 1/4. Here c depends only on p, n.

Now suppose that

(3.9) 〈∇u(x, τ̂), ω〉 ≤ η u(x, τ̂)/d(x, ∂G) for some η > 0 and x ∈ B(w, s/4) ∩G

where ω = x̂−x
|x̂−x| . From (3.8) with z = z1, x = z2 and (3.9) we deduce

(3.10) 〈∇u(z, τ̂), ω〉 ≤ [η + c2tσ] u(x, τ̂)/d(x, ∂G)

for z ∈ B(x, td(x, ∂G)). Integrating, it follows that if y = x + td(x, ∂G)ω, and
t = η1/σ, then

(3.11) u(y, τ̂)− u(x, τ̂) ≤ c′η1+1/σ u(x, τ̂).
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In (3.11) c′ depends only on p, n. Now from (2.12) and the mean value theorem,
we also deduce for z as above and for some c∗ (depending only on p, n, ‖|∇φ|‖∞),
that

(3.12) c∗(u(y)− u(x)) ≥ η1/σu(x)

Note that if ε0, L̂ are as in (3.6), then from (3.11), (3.12) we find that

(3.13)

(1− ε0)L̂ ≤ u(y, τ̂)
u(y)

≤
(

1 + c′η1+1/σ

1 + η1/σ/c∗

)
u(x, τ̂)
u(x)

≤ (1 + ε0)

(
1 + c′η1+1/σ

1 + η1/σ/c∗

)
L̂ < (1− ε0)L̂

provided 1/c̃ ≥ η1/σ ≥ c̃ ε0 for some large c̃ with the same dependence as c1.

With c̃ now fixed we put ε0 = 1/c̃2 and assume that the hypotheses of Lemma
3.5 hold for this ε0. Then in order to avoid the contradiction in (3.13), it must
be true that

〈∇u(x, τ̂), ω〉 ≥ u(x, τ̂)
c̃σ d(x, ∂G)

for x ∈ B(w, s/4) ∩G.

Thus (3.7) holds and Lemma 3.5 is true. 2

To continue the proof of Theorem 1, observe from (3.3) that if τ1, τ2 ∈ [0, 1]
then

(3.14) c−1u(·, τ1) ≤ u(·, τ2)− u(·, τ1)
τ2 − τ1

= v − u ≤ c u(·, τ1)

on ∂(B(w, 2r′)∩G). From the boundary maximum principle for p harmonic func-
tions this inequality also holds in B(w, 2r′)∩G. Thus for ε0 as in Lemma 3.5 there
exists ε′0, 0 < ε′0 ≤ ε0, with the same dependence as ε0, such that if |τ2− τ1| ≤ ε′0,
then

(3.15) 1− ε0/2 ≤ u(·, τ2)
u(·, τ1)

≤ 1 + ε0/2 in B(w, 2r′) ∩G.

Divide [0,1] into closed intervals, disjoint except for endpoints, of length ε′0/2
except possibly for the interval containing 1 which is of length ≤ ε′0/2. Let ξ1 =
0 < ξ2 < ... < ξm = 1 be the endpoints of these intervals. Thus [0,1] is divided
into {[ξk, ξk+1]}, 1 ≤ k ≤ m − 1. Next suppose for some l, 1 ≤ l ≤ m − 1, that
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(3.7) is valid with τ̂ replaced by τ whenever τ ∈ [ξl, ξl+1]. Under this assumption
we claim for some c5, c6, α, having the usual dependence, that

(3.16)
∣∣∣∣log

u(x, ξl+1)
u(x, ξl)

− log
u(y, ξl+1)
u(y, ξl)

∣∣∣∣ ≤ c5

( |x− y|
s

)α

whenever x, y ∈ B(w, s/c6) ∩ G. Indeed from (3.7) and (2.7) we see that (2.12)
holds with ũ replaced by u(·, τ) whenever τ ∈ [ξl, ξl+1] and for a constant having
the same dependence as c1 (hence independent of τ). To prove claim (3.16) we
observe from (3.14), for fixed x ∈ B(w, s/4) ∩ G, that τ→u(x, τ), τ ∈ [0, 1], is
Lipschitz with norm ≤ cu(x). Thus uτ (x, ·) exists almost everywhere in [0,1].
Let (xν) be a dense sequence of B(w, s/4). Let W be the set of all τ ∈ [0, 1] for
which uτ (xm, ·) exists in the difference quotients sense whenever xm ∈ (xν). Then
H1([0, 1] \W ) = 0 where H1 is linear Lebesgue or Hausdorff one measure. Let
s, τ ∈ [ξl, ξl+1]. From Lemma 2.9 and (3.7) applied to u(·, τ) we see as in [LN,
(4.6)-(4.8)] that if

aij(η) = |η|p−4 [(p− 2)ηi ηj + δij |η|2] for η ∈ Rn \ {0}
and

U(x) = U(x, τ, t) =
u(x, t)− u(x, τ)

t− τ

Aij(x) = Aij(x, τ, t) =
∫ 1

0
aij [λ∇u(x, t) + (1− λ)∇u(x, τ)] dλ, 1 ≤ i, j ≤ n,

then, whenever x ∈ B(w, s/4) ∩G,

(3.17) L̃U(x) =
n∑

i,j=1

∂

∂xi
[Aij(x) Uxj ] = 0 on B(w, s/4) ∩G.

Moreover, if x ∈ B(w, s/4) ∩G, then it is easily seen that

(3.18)

(∗) c−1|ξ|2||∇u(x, t)|+ |∇u(x, τ)||p−2 ≤
n∑

i,j=1

Aij(x)ξiξj ,

(∗∗)
n∑

i,j=1

|Aij(x)| ≤ c||∇u(x, t)|+ |∇u(x, τ)||p−2,

whenever ξ ∈ Rn\{0} and where c depends only on p, n. Note that u(x, t)→u(x, τ)
uniformly in the closure of B(x, s/8) ∩ G thanks to Lemma 2.1 and (3.15) with
τ1, τ2 replaced by τ, t. From Lemma 2.9, (3.14), (2.12), (3.17) - (3.18), and
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Schauder type arguments we see that U is a bounded (independent of τ, t)
C∞ solution to a uniformly elliptic PDE in divergence form on B(w, s/8) ∩ G

with U ≡ 0 on B(w, s/8) ∩ ∂G. Put U ≡ 0 in B(w, s/4) \ G. From Schauder
type estimates for this PDE it follows that a subsequence of {U(·, τ, t)}, say
{U(·, τ, tk)} with tk→τ as k→∞, converges uniformly to f = f(·, τ) in B(w, s/8)
with f ∈ C∞[B(w, s/8) ∩G]. Moreover,

(3.19)

(a) f is a solution to (1.7), (1.8) in B(w, s/8) ∩G,

(b) f is continuous in B(w, s/8) with f ≡ 0 on B(w, s/8) \G,

(c) f(xm, τ) = uτ (xm, τ) when xm ∈ B(w, s/8) ∩G, τ ∈ W,

(d) c−1 ≤ f(·, τ)/u(·, τ) ≤ c on B(w, s/8) ∩G.

From (3.19) and (3.7) for u(·, τ), τ ∈ [ξl, ξl+1], we deduce that Lemma 2.13 (see
the remark below the proof of Lemma 2.13) can be applied with h1 = u(·, τ), h2 =
f(·, τ), whenever τ ∈ [ξl, ξl+1]. Doing this and using (3.19) (c) we obtain for
x, y ∈ (xν) and x, y ∈ B(w, s/c) ∩G that

(3.20)

∣∣∣∣log
u(x, ξl+1)
u(x, ξl)

− log
u(y, ξl+1)
u(y, ξl)

∣∣∣∣ =
∣∣∣∣
∫ ξl+1

ξl

(
f(x, τ)
u(x, τ)

− f(y, τ)
u(y, τ)

)
dτ

∣∣∣∣

≤
∫ ξl+1

ξl

∣∣∣∣
f(x, τ)
u(x, τ)

− f(y, τ)
u(y, τ)

∣∣∣∣ dτ ≤ c

( |x− y|
s

)α

.

From continuity of u(·, ξl+1)/u(·, ξl) we conclude that (3.20) holds for all x, y ∈
B(w, s/c) ∩G. Thus claim (3.16) is valid.

We now proceed by induction. Observe from our choice of ε′0 as well as
u(·, ξ1) = u that the hypotheses of Lemma 3.5 are satisfied whenever τ̂ ∈ [ξ1, ξ2].
Thus (3.16) is true for l = 1 with s = r′. Let r2 = r′/c6. Continuing by induction,
suppose for some 2 ≤ k < m that we have shown

(3.21)
∣∣∣∣log

u(x, ξk)
u(x)

− log
u(y, ξk)

u(y)

∣∣∣∣ ≤ (k − 1)c5

( |x− y|
rk

)α

whenever x, y ∈ B(w, rk) ∩ G where α, c5 are the constants in (3.16). Choose
r′k ≤ rk so that ∣∣∣∣

u(x, ξk)
u(x)

− u(y, ξk)
u(y)

∣∣∣∣ ≤ δ
u(x, ξk)

u(x)
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whenever x, y ∈ B(w, r′k) ∩ G. Fix x ∈ B(w, r′k) ∩ G and choose δ > 0 so small
that

(3.22) (1− ε0)
u(x, ξk)

u(x)
≤ u(y, τ)

u(y)
≤ (1 + ε0)

u(x, ξk)
u(x)

whenever y ∈ B(w, r′k) ∩ G and τ ∈ [ξk, ξk+1]. To see the size of δ observe for
τ ∈ [ξk, ξk+1] that

u(y, τ)
u(y)

=
u(y, τ)
u(y, ξk)

· u(y, ξk)
u(y)

≤ (1 + ε0/2)(1 + δ)
u(x, ξk)

u(x)
.

Thus if δ = ε0/4 and if ε0 is small enough then the right hand inequality in (3.22)
is valid. A similar argument gives the left hand inequality in (3.22) when δ = ε0/4
and ε0 is small enough. Also since α is independent of k, k ≤ 2/ε′0, and ε′0 has
the usual dependence, we deduce from (3.21) that one can take r′k = rk/c7 for
c7 large enough, depending only on p, n, ‖|∇φ|‖∞. From (3.22) we find that (3.6)
holds with L̂ = u(x,ξk)

u(x) , s = r′k, and τ̂ replaced by τ. From Lemma 3.5 we now get
that (3.16) is valid with l = k and s = r′k. Let rk+1 = rk

c6c7
. Then using (3.16) and

the induction hypothesis we have

(3.23)

∣∣∣∣log
u(x, ξk+1)

u(x)
− log

u(y, ξk+1)
u(y)

∣∣∣∣ ≤
∣∣∣∣log

u(x, ξk+1)
u(x, ξk)

− log
u(y, ξk+1)
u(y, ξk)

∣∣∣∣

+
∣∣∣∣log

u(x, ξk)
u(x)

− log
u(y, ξk)

u(y)

∣∣∣∣ ≤ kc5

( |x− y|
rk+1

)α

whenever x, y ∈ B(w, rk+1) ∩ G. Thus by induction we get (3.21) with k = m.

Since u(·, ξm) = v and rm ≥ r/c by construction, we conclude that Theorem 1 is
valid. 2

4. Applications of Theorem 1 to the Martin Boundary Problem. Let-
ting r→∞ in Theorem 1 we get the following corollary.

Corollary 1. Let p, φ, G be as in Theorem A and suppose that u, v are positive p

harmonic functions in G with continuous boundary values 0 on ∂G. Then u = λv

for some λ ∈ (0,∞).

We note that Corollary 1 can be rephrased as stating that minimal positive
p harmonic functions relative to ∞ in a Lipschitz graph domain are unique. To
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be more specific we need some definitions. We say that Ω ⊂ Rn is a bounded
Lipschitz domain, provided there exists a finite set of balls {B(xi, ri)}, with
xi ∈ ∂Ω and ri > 0, such that {B(xi, ri)} constitutes a covering of an open
neighbourhood of ∂Ω and such that, for each i,

Ω ∩B(xi, 4ri) = {y = (y′, yn) ∈ Rn : yn > φi(y′)} ∩B(xi, 4ri),
∂Ω ∩B(xi, 4ri) = {y = (y′, yn) ∈ Rn : yn = φi(y′)} ∩B(xi, 4ri),

in an appropriate coordinate system and for a Lipschitz function φi. The Lipschitz
constant of Ω is defined to be M = maxi ‖|∇φi|‖∞. ũ is said to be a minimal
positive p harmonic function in the Lipschitz domain Ω relative to w ∈ ∂Ω,

provided ũ > 0 is p harmonic in Ω and ũ has continuous boundary value 0 on
∂Ω \ {w}. ũ is said to be unique up to constant multiples if ṽ = λũ for some
constant λ, whenever ṽ is a minimal positive p harmonic function relative to
w ∈ ∂Ω. Finally we say that the Martin boundary of Ω can be identified with
∂Ω, provided each w ∈ ∂Ω corresponds to a unique (up to constant multiples)
minimal positive p harmonic function. We note that for p = 2 one can easily use
Theorem A to get that the Martin boundary of a bounded Lipschitz domain Ω
agrees with its topological boundary. Indeed if w ∈ ∂Ω, and u, v are minimal
harmonic functions corresponding to w, one first uses Theorem A for harmonic
functions to show that γ = infΩ u/v > 0. Next one applies this result to u− γv, v

in order to conclude that u = γv. In the p harmonic case though we need to use a
variation of Theorem 1 with B(w, r) replaced by Ω \B(w, r). Moreover currently
our proof is not strong enough to prove that the Martin boundary of a Lipschitz
domain always agrees with its topological boundary when p 6= 2.

To state our results we need to introduce definitions. We call Ω̃ ⊂ Ω a non-
tangential approach region at w ∈ ∂Ω if the intersection of the closure of Ω̃ and
the closure of Ω equals w and if, for some η̃ > 0, d(x, ∂Ω) ≥ η̃|x−w| for all x ∈ Ω̃.
To indicate w and η̃ we write Ω̃(w, η̃). Using Theorem 1 and its proof, it is easily
seen that if u is a minimal positive p harmonic function in Ω relative to w ∈ ∂Ω
and x 6= w ∈ ∂Ω, then there exists, c, δ, δ′ and ξ = ξ(x) with |ξ| = 1, such that

(4.1)
(a) δ2 u(y)/d(y, ∂Ω) ≤ δ|∇u(y)| ≤ u(y)/d(y, ∂Ω),

(b) δ′|∇u(y)| ≤ 〈∇u(y), ξ〉,
when y ∈ Ω∩B(x, |x−w|/c). Here c, δ, δ′ depend only on p, n, M. From (4.1) one
sees that there exists η̃ such that u satisfies (4.1) (a) in Ω \ Ω̃(w, η̃). Moreover,
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for each y ∈ Ω \ Ω̃(w, η̃) there is a x ∈ ∂Ω \ {w} with y ∈ B(x, |x − w|/c) for
which (4.1) (b) holds. Using this observation and a variation of the arguments in
Theorem 1 we in [LN1] prove,

Theorem B. Let Ω ⊂ Rn be a bounded Lipschitz domain with constant M and
let u, Ω̃(w, η̃), be as above. Suppose there exist a sequence of positive numbers
{ρl} with lim

l→∞
ρl = 0, a fixed number b̃ > 1 and δ > 0 such that (4.1) (a) holds

for all x ∈ Ω̂ = ∪l Ω̃(w, η̃) ∩ [B(w, b̃ρl) \ B(w, ρl/b̃)]. If b̃ = b̃(p, n, M) is large
enough, then u is the unique minimal positive p harmonic function relative to w

(up to constant multiples).

From Theorem B we see that the determination of the p Martin boundary at a
boundary point w is reduced, for Lipschitz domains, to proving the existence of
a certain sequence of positive numbers tending to zero and a corresponding min-
imal positive p harmonic function satisfying the nondegeneracy condition (4.1)
(a) in Ω̂, for b̃ suitably large. We are able to verify this condition in a number of
interesting cases. In particular in [LN1] we prove the following theorem.

Theorem C. Let Ω ⊂ Rn be a bounded Lipschitz domain with Lipschitz con-
stant M. Then the p Martin boundary of Ω can be identified with the topological
boundary of Ω in the following cases.

(1) Ω is convex,
(2) ∂Ω is C1,
(3) M = M(p) is small enough,
(4) n = 2.

Also if ∂Ω has a tangent plane at w, then a minimal positive p harmonic function
relative to w is unique up to constant multiples.

As for the proof of Theorem C we note that once (4.1) (a) is verified we can
argue as in the proof of Theorem 1 to establish certain decay estimates for the
oscillation of u/v in Ω \ B(w, r′), r′ small. Letting r′→0 we then get u = λv for
some real λ (compare with Corollary 1). Finally we mention that in future papers
we plan to establish the equivalence of the Martin and topological boundary in
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certain Reifenberg flat and Ahlfors regular NTA domains. Moreover, preliminary
results show that this equivalence also holds for Cantor sets in R2 and certain ‘
smooth ’ k dimensional sets ⊂ Rn when n− p < k < n is a positive integer.

5. Applications of Theorem 1 to Regularity - Free Boundary Problems.
We need some more notation in order to state the results in [LN2]. Let Ω ⊂ Rn

be the Lipschitz domain in section 4. If w ∈ ∂Ω, 0 < r < r0 and 0 < b < 1, we let

Γ(w) = Γb(w) = {y ∈ Ω : d(y, ∂Ω) > b|w − y|} ∩B(w, 4r).

Given a measurable function k on B(w, 4r)∩Ω we define the nontangential max-
imal function N(k) : ∂Ω→R for k as

(5.1) N(k)(x) = sup
y∈Γ(x)

|k|(y) whenever x ∈ Ω.

Let Lq(∂Ω∩B(w, 4r)), 1 ≤ q ≤ ∞, be the space of functions which are integrable,
with respect to Hausdorff n− 1 measure (Hn−1) on B(w, 4r) ∩ ∂Ω, to the power
q. Furthermore, given a measurable function f on B(w, 2r) ∩ ∂Ω, we say that f

is of bounded mean oscillation on B(w, r) ∩ ∂Ω, f ∈ BMO(B(w, r) ∩ ∂Ω), if for
all x ∈ B(w, r) ∩ ∂Ω and 0 < s ≤ r, there exists 0 < A < ∞ satisfying

(5.2)
∫

B(x,s)∩∂Ω

|f − fB| dHn−1 ≤ Asn−1.

Here fB denotes the average of f on B(x, s)∩ ∂Ω with respect to Hn−1 measure.
The least such A for which (5.2) holds will be denoted by ‖f‖BMO(B(w,r)∩∂Ω). Fi-
nally we say that f is of vanishing mean oscillation on B(w, r), f ∈ V MO(B(w, r)∩
∂Ω), provided for each ε > 0 there is a δ > 0 such that (5.2) holds with A replaced
by ε whenever 0 < s < min(δ, r) and x ∈ B(w, r).

In [LN2] we prove the following theorems.

Theorem D. Let Ω ⊂ Rn be a bounded Lipschitz domain with constant M .
Given p, 1 < p < ∞, w ∈ ∂Ω, 0 < r < r0, suppose that u is a positive p

harmonic function in Ω ∩ B(w, 4r), u is continuous in B̄(w, 4r) ∩ Ω̄ and u = 0
on B(w, 4r) ∩ ∂Ω. Then

lim
y∈Γ(x),y→x

∇u(y) = ∇u(x)
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for Hn−1 almost every x ∈ B(w, 4r) ∩ ∂Ω. Furthermore there exist q > p and a
constant c, 1 ≤ c < ∞, which both only depend on p, n and M such that

(i) N(|∇u|) ∈ Lq(B(w, 2r) ∩ ∂Ω),

(ii)
∫

B(w,2r)∩∂Ω

|∇u|q dHn−1 ≤ c r
(n−1)( p−1−q

p−1
)
( ∫

B(w,2r)∩∂Ω

|∇u|p−1 dHn−1

)q/(p−1)

,

(iii) log |∇u| ∈ BMO(B(w, r) ∩ ∂Ω), ‖ log |∇u|‖BMO(B(w,r)∩∂Ω) ≤ c.

Theorem E. Let Ω ⊂ Rn,M, p, w, r and u be as in the statement of Theorem D.
If, in addition, Ω is C1 regular then

log |∇u| ∈ VMO(B(w, r) ∩ ∂Ω).

Theorem F. Let Ω ⊂ Rn,M, p, w, r and u be as in the statement of Theo-
rem D. Then there exists M0, independent of u, such that if M ≤ M0 and if
log |∇u| ∈ VMO(B(w, r)∩ ∂Ω), then the outer unit normal to B(w, r)∩ ∂Ω is in
VMO(B(w, r/2) ∩ ∂Ω).

We note that Theorem D and Theorem E are proved in [LN] for p capacitary
functions in starlike Lipschitz ring domains and in fact, given Theorem 1, modest
modifications of the arguments of [LN] are needed to get Theorems D and E.
Hence Theorem F is the main theorem in [LN2]. As for the proof of Theorem F,
one uses Theorem 1, the assumption log |∇u| ∈ VMO (B(w, r)∩∂Ω) and blowup
type arguments to show for arbitrary wj ∈ B(w, r/2) ∩ ∂Ω and for a sequence
of scales {rj}, rj → 0, that B(wj , rj) ∩ ∂Ω gets flater and flater, as j tends to
infinity, in a sense made precise in [LN2]. Finally we remark that we intend to
generalize Theorems D, E, F, as in [KT, KT1, KT2] for p = 2, to certain chord
arc domains.
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