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Abstract: In this paper we first discuss new results of the authors concern-
ing a boundary Harnack inequality and Holder continuity up to the boundary
for the ratio of two positive p harmonic functions, 1 < p < oo, which vanish
on a portion of a Lipschitz domain. Second we discuss applications of these
results to the Martin boundary problem for p harmonic functions and to
certain boundary regularity - free boundary problems.
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1. Introduction. Denote points in Euclidean n space R™ by x = (x1,...,2,)
or (z',z,) where 2’ = (21,...,7,1) € R" ! Let E,0F, diam E, be the closure,
boundary, diameter, of the set £ C R™ and put d(y, F) equal to the distance
from y € R™ to E. Let (-,-) denote the standard inner product on R™ and let
|z| = (x,2)'/? be the Euclidean norm of z. Set B(z,r) = {y € R" : |z — y| < r}
whenever ¢ € R™, r > 0, and let dx denote Lebesgue n measure on R". If O C R”
is open and 1 < ¢ < oo, we denote by W4(0), the space of equivalence classes
of functions f with distributional gradient Vf = (fuy,..., fz,), both of which
are ¢ th power integrable on O. Let ||f|l1.q = [Ifllq + | IV f] |l be the norm in
W14(0) where || - ||, denotes the usual Lebesgue ¢ norm in O. Next let C5°(O)
be infinitely differentiable functions with compact support in O and let W& (e
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be the closure of C§°(0) in the norm of W1H4(0). Given O a bounded domain
(i.e, a connected open set) and 1 < p < oo, we say that 4 is p harmonic in O

provided & € W'?(0) and
(1.1) / \VaP~2(Vi, Vo) dr =0

whenever 0 € I/VO1 P(0). Observe that if @ is smooth and Vi # 0 in O, then
(1.2) V- (|[VaP~2va)=0in O

so @ is a classical solution in O to the p Laplace partial differential equation.
Here, as in the sequel, V- is the divergence operator. We note that ¢ : E—R is
said to be Lipschitz on E provided there exists b,0 < b < oo, such that

(1.3) |6(2) — ¢p(w)| < b|z —w|, whenever z,w € E.

The infimum of all b such that (1.3) holds is called the Lipschitz norm of ¢ on
E, denoted Hgf)ﬂ g. It is well known that if £ = R"~!, then ¢ is differentiable on
R"! and ||¢[lgn-1 = || |Vé||lco. Finally let e;,1 < i < n, denote the point in R”
with one in the ¢ th coordinate position and zeroes elsewhere.

In [LN] we proved,

Theorem A. Let G = {y = (v',yn) € R" : y, > ¢(y')} where ¢ is Lipschitz
on R"1. Given p,1 < p < o0, w = (', ¢(w)) € G, and r > 0, suppose that
u,v are positive p harmonic functions in B(w,r) NG, that u,v are continuous in
B(w,r) NG, u(w+ fe,) = v(w + %e,) = 1 and that u,v = 0 on B(w,r) NG,
Then there exist c1,1 < ¢1 < 00, depending only on p,n, and || |Vo|||eo such that

—== < ¢; whenevery € B(w,r/c1) NG.

In this note we first outline a proof of the following theorem.

Theorem 1. Let p, ¢, G,u,v,w,r be as in Theorem A. Under these assumptions

there exists ca, 1 < co < 00, and a,0 < a < 1, depending only on p,n, and

| 1V| lloo such that
log YW1 _ o ulw2) | <\y1—y2\>
T

v(y1) v(y2)
whenever y1,y2 € B(w,r/c2) NG.
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We note that Theorem 1 implies Theorem A and Hélder continuity of u/v :
u(y) _ u(y2)

v(y1) v(y2)

where ¢ has the same dependence as cz. Theorem 1 was proved in [JK] for har-

(1.4)

<c (M) for Y1,Y2 € B('UJ,T/CQ) N G7

r

monic functions in a nontangentially accessible (NTA) domain. However their
proof depends heavily on the fact that the Laplacian is a linear operator, which
is not true for the p Laplace operator when p # 2. The proofs of Theorem A
and Theorem 1 overcome this difficulty by considering a certain linear operator
for which linear estimates can be used. More specifically if 4(-,7),7 € [0,1], is
p harmonic in a domain O, Vi(z, ) is nonzero for x € O, and 4 is sufficiently
smooth in x, 7, then ¢ = %(~, T) satisfies at « the partial differential equation

(1.5) L = V- [(p—2)|VaP~(Va, V() Vi + [VaP V(] = 0,

as follows from differentiating the p Laplace equation in (1.2) with respect to 7.
Here we have written V4 for Va(-, 7). Clearly,

(1.6) Li(z,”) = (p—1) V- [|Va[~2? Vi(z,-) ] = 0.
(1.5) can be written in the form
0
(1.7) L¢ = D 5 [bi(@)G, (2)] =0,
ij=1 "

where at x € O,
(1.8) bij(z) = [ValP~H(p — 2)ie, s, + 65|Vl (2), 1 <, <,

and ;5 is the Kronecker §. Thus the first key observation in the proofs of Theorem
1 and Theorem A is that a(-,7) and %(~,7) both satisfy the divergence form
partial differential equation (1.7).

In [LN] we used this observation, to study deformations of p capacitary func-
tions from one starlike Lipschitz ring to another. More specifically, a bounded
domain 2 C R” is said to be starlike Lipschitz with respect to & € 2 provided

0N ={t+ R(w)w:w € 0B(0,1)}

where log R : 0B(0,1)—R is Lipschitz on 0B(0,1). We say that D is a starlike
Lipschitz ring domain with center & provided D = Q\ ' where Q, Q' are starlike
Lipschitz domains with center & and Q' C Q. Let R, R’ be the graph functions
for 0Q,09'. As in [LN] we shall refer to ||log RH(‘)B(O,l) + || log R’HaB(m) as the
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Lipschitz constant for D. If p is fixed, 1 < p < oo, let & = a(-,p) be the p
capacitary function for D. That is @ = 1 on 99, @ = 0 on 99 in the sense of
WO1 P(Q) and 4 is p harmonic in D. To simplify the description of our deformations,
suppose u;,7 = 1,2, are the p capacitary functions for starlike Lipschitz ring
domains, D; with D; = Q; \ B(&, p), where

(1.9) d(z,000)/4 < p < d(&,001) /2.
Also suppose 1 C Qo, w € Q1 N Iy, and
(1.10) B(w,2r) N Dy = B(w,2r) N Dy

for some fixed 7,0 < r < p/8. Let Ri,i = 1,2, be the corresponding graph
functions for 9€2; and assume that Ri,i = 1,2, are infinitely differentiable on the
manifold dB(0,1). Put R(r) = RJRI"",0 < 7 < 1, and let Q(7) be the starlike
Lipschitz domain with center Z, graph function R(7), while D(7) = Q(7)\ B(&, p)
is the corresponding ring domain. Let a(-,7),7 € [0,1], be the p capacitary
function for D(7) so that @(-,0) = d, @(-,1) = do. In [LN] we showed that
@(x,7) is smooth in z, 7 whenever z € D; and that
(x, T)

d(z, 09(7))
Moreover, u(z,7), T € [0, 1], provides a smooth deformation of @ (z) to t2(z) and
so (1.5)-(1.8) are true. It follows from this deduction that,

(1.12) log (Z?Eg) - /01 1:((;:)) dr

From (1.10), (1.5)-(1.8), one also sees that u, > 0 and u, = 0 on B(w, 2r)NdD(1).
In [LN, Theorem 2| we used these observations, (1.5) - (1.11), and some deep

~ (=2 Vi(z, 7)) whenever z € D(7).

[&—a|’

(1.11) |Via(z, )| ~

results on elliptic measure to conclude that . (-, 7)/a(-,7) is Holder continuous
in B(w, r)ND; with constants independent of 7 € [0, 1]. From this conclusion and
(1.12) it easily follows that Theorem 1 holds with u, v replaced by 1, ts. In fact
in [LN, Theorem 2] we prove (1.4) for a1, Ga, but we were not able to prove (1.4)
in general, primarily because we did not see how to define a deformation {u(-,7)}
of u into v for which (1.11) held (with (-, 7) replaced by u(-,7)). Furthermore
without (1.11) we could not prove that u,/u is Holder continuous.

In this paper, after some preliminary reductions, we let u(-, 7), 7 € [0, 1], be the
p harmonic function in B(w, 2r') NG with boundary values u(-,7) = (1 —7)u+7v
on J[B(w,2r") N G]. Here ' = -5 where ¢; is as in Theorem A. We then show

2
4ct
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that (1.11) and Theorem 1 hold for this deformation in B(w,r/¢)NG, if ¢ is large
enough. The proof uses a method of continuity - iteration type argument. That
is, we first show (1.11) holds for 7 € [0, €;] whenever x € B(w,r’/¢) NG for some
small e; > 0. We then use the techniques from [LN] to get Theorem 1 with v
replaced by u(-, €1). Second we use Theorem 1 for u(-, €1) to get (1.11) for u(-, )
on B(w,r"/d)YNG,d > ¢, when T € [e1,2¢1]. Next we prove Holder continuity of
u(+,2€1) in B(w,r’/c¢*) NG, c* > ¢, and then use this result to show that (1.11)
holds for 7 € [2¢1,3¢€1] on B(w,r’/c¢**) NG, ™ > ¢*. Continuing by induction we
eventually get Theorem 1. An important part of the proof is to show that €; can
be chosen to depend only on p,n, and |||V¢|||sc-

As for the plan of this paper, in section 2 we give some basic estimates for p
harmonic functions and state some results from [LN] which will be used in the
proof of Theorem 1. In section 3 we prove Theorem 1. In section 4 we discuss
some applications of Theorem 1 to the Martin boundary problem given in [LN1].
In section 5 we outline some applications of Theorem 1 to boundary value prob-
lems given in [LN2]. Finally we remark that for the reader well versed in [LN]
our proof of Theorem 1 is essentially self contained.

2. Basic Estimates and Results from [LN]. Let G,w,r be as in Theo-
rem A and suppose that for some fixed p,1 < p < oo, @ > 0 is p harmonic in
B(w,7)NG,0 < 7 < r, continuous on B(w,7) NG and @& = 0 on B(w,7)NG. Put

@ =0 on B(w,7)\ G. With @ now defined on B(w, ) let ggax) a, BII(liIl) @ be the

maximum and minimum of @ on B(z, s) whenever B(z,s) C B(w,7). We begin

this section by stating some interior and boundary estimates for .

Lemma 2.1. Let @ be as above. If B(y,2s) C B(w,), then

(2.2) sP=m / |VaP de < ¢ max u?
B(y,s/2) B(y,s)
while if B(y,2s) C B(w,7) NG, then

(2.3) max 4 < c min a.
B(y,s) B(y,s)

If y € B(w,7/2) N 0G, B(y,2s) C B(w,7), and s < 7/c, then

2.4 max 1 < ct(as
(2.4) max i < ci(ay(y)
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where as(y) is a point in B(y,s) N G with d(as(y),0G) = sup{d(z,0G) : z €
B(y, s) NG }. Moreover, there exists a,0 < o < 1, and ¢ such that if B(y,2s) C
B(w, ), then

(2.5) [u(x) —u(z)] < c (@)a B%EE;) @ whenever z,z € B(y, s).

Proof: (2.2) is a standard subsolution estimate. (2.3) is a well known Harnack
inequality for positive solutions of p Laplacian type. (2.4) is due to Carleson -
Domar. If B(y,2s) C B(w,7) N G, then (2.5) is a well known interior Holder
continuity estimate for solutions of p Laplacian type. Otherwise, (2.5) follows
from simple barrier type estimates and interior Holder continuity (references for
the proofs of (2.2)-(2.5) are given in [LN]). O

In Lemma 2.1, as well as in the sequel, ¢ denotes a positive constant, not neces-
sarily the same at each occurrence, which may depend only on p, n, and |||V@|||sc-
In general c(aj,as,...,a,) denotes a positive constant which may only depend
on p,n, |||Vo||leo, and aq, ..., a,. We note that a in Lemma 2.1 depends only on
p, and ||Vl

Lemma 2.6. @ has a representative in WP (B(w, 7)) that has Hélder continuous
partial derivatives in B(w,7) N G. That is, for some o € (0,1] (depending only
on p,n) we have
21) ¢ [Vile) = Va(a)| < (o —2l/5)° max (V] < e57 (lo=21/5) ily)

Y,S
whenever z,z € B(y, s/4) and B(y,2s) C G. Also, if ¢|Vu(z)| > u(x)/d(z,0G)
for all x € B(y,2s), then

1/2

(2.8)

IN

c|s™ \ﬂxix.\Qdy
/B<y,s/2) 2 !

ij=1
2 2
c”a(y)/d(y, 0G)".
Moreover if Vi(x) # 0, then @ is C* in a neighborhood of x.

n
Brnaéx E |t |
(yzz ) i,jil

IN

Proof: See [LN, Lemmas 2.3, 2.4, 2.5 |. O
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Lemma 2.9. If ¢ € CPR™ 1Y) (i.e G is C®), then there exists an open
neighborhood N O B(w,7/2) NOG such that 4 has a C™ extension to the closure
of NNG N B(w,7/2). Furthermore, there exists b > 1,3,0 < 8 < 1, depending
only on p,n, and the C® norm of ¢ such that

(a) 07" a(y)/d(y,0G) < |Vi(y)| < ba(y)/d(y,dG)
whenever y € N NG N B(w,7/2),

(2.10) ®) V() - Va)| < b(le —=1/s)? ay)/d(y, G) if
y € B(w,7/2) NG, B(y,2d(y,0G)) C N, and
x,z € B(y,2d(y, 0Q)).

Proof: See Lemma 2.4 in [LN]. O

Next suppose for fixed p,1 < p < oo, that @ is the p capacitary for the starlike
Lipschitz ring domain D = Q \ B(&, p) where ¢~ 'd(#,0D) < p < 1d(z, oD).

Lemma 2.11. Let @, D, p, be as above. There exists ¢ depending only on p,n,
and the Lipschitz constant such that

(i) 0<|Va(x)| < c(é%i‘, Via(z)) whenever x € D.

(2.12)
(1) ¢ Va(z)/d(z,0D) < |Va(z)| < ci(z)/d(x,dD) whenever x € D.

Proof: See Lemma 2.5 in [LN]. O

Let % be as in Lemma 2.11 and define L, b;; as in (1.7), (1.8) with @ replaced
by 4. In [LN] we use Lemmas 2.1, 2.6, 2.9, 2.11, to prove Lemmas 3.13 and 3.27.
Together they are equivalent to the following lemma.

Lemma 2.13. Let y € 9Q, 0 < s < p/8, and suppose that 9D is C™. Let hy, hy
be positive solutions to L in B(y,s) N D with hy = 0,7 = 1,2, continuously on
B(y,s)N dD. There exists ¢ > 1,1,0 < XA < 1 (depending only on p,n and the
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Lipschitz constant for D) such that if § = s/¢, then

h(z) | halz2) _é<|zl—z2|>A

—lo
hg(Zl) & h2(22)

Proof: We here briefly outline the proof in [LN, Lemma 2.39] of Lemma 2.13.

We first use the above lemmas and some Rellich type inequalities to show, as in

A

(2.14) log

whenever z1, z € B(y, §) N D.

[G], the existence of ¢ > p, depending only on p,n, and the Lipschitz constant
for D, such that the following reverse Holder inequality holds,

(2.15) / |Va|tdH"?
B(y,s)No2

. q/(p—1)
< s (/ i \Vﬁ!pldH”1> :
B(y,s)No

Here y, s are as in Lemma 2.13 and H"~! denotes Hausdorff n — 1 measure on
9. Let § € D be the point on the ray from # to y with |j — y| = s/4. Using
(2.15), we show in [LN, Lemma 2.45] that there exists a starlike Lipschitz domain
Q* C B(y,s) N Q with center § satisfying

(@) c¢H"™ 00N B(y,s) N oY > s 1
(2.16)
(b) cisra(g) < |Via(z)| < esla(g) whenever z € QF.

Next in [LN, Lemma 2.54] we define

n
do(z) = d(z,00")  max  {|va*® Y @i, }dy
B(z,d(z,00%)) Py Y
when z € Q*, and use (2.16), (2.8) to show that & is a Carleson measure on 2*

in the sense that if z € 9Q* and 0 < t < s/4, then
(2.17) G(B(z,t)N Q") < et (a(g)/s)?P 2

Armed with (2.17) we can apply a theorem in [KP] to deduce that if w* is elliptic
measure defined with respect to L, (b;;) in ¥, then w* is an A% weight with
respect to H"~! measure on 9Q* (see [LN, Theorem 3.11]). Finally in [LN], we
use this result for w* as well as some comparison arguments for elliptic measure
to get Lemma 2.13. O



New Results for p Harmonic Functions 353

Remark: It is important to note that Lemma 2.13 is valid whenever 4 satisfies
the hypotheses of Lemmas 2.1, 2.6, 2.9, 2.11 and does not depend on the fact
that @ is a p capacitary function. Moreover, Lemmas 2.1, 2.6, 2.9 are standard
estimates for a positive p harmonic function vanishing on a portion of the bound-
ary of a Lipschitz domain. Thus Lemma 2.11 is the only lemma which requires
proof (for the positive p harmonic functions we consider) in order to use Lemma
2.13.

3. Proof of Theorem 1. To begin the proof of Theorem 1, put u =v =0 in

B(w,r)\ G. Then u,v are continuous in B(w, ). We assume, as we may, that
(3.1) ¢ € CR™).

Indeed otherwise let G, be the domain defined as in Theorem A with ¢ replaced
by ¢ where ¢ — e < ¢ < ¢ in {2/ € R" ! : |2/ —w!| < 2r}, ¢ € C®°(R"),
and |||Voe|lloo < ||V]]|co- Existence of ¢, follows from convoluting ¢ — €/2 with
a suitable approximate identity. Let u.,ve, be the unique positive p harmonic
functions in B(w,r/2) N Ge with ue = u,ve = v on J[B(w,r/2) N G¢] in the
WP Sobolev sense. Existence and uniqueness of u., v follow from well known
arguments in the calculus of variations. From our choice of ¢, we have u, = v. =0
on B(w,r/2) N 0G, in the Wol’p Sobolev sense. Now from Lemma 2.1 it is easily
seen that wue,ve converge uniformly to u,v on compact subsets of B(w,r/2) NG
as e—0. Since ¢o in Theorem 1 depends only on p,n and the Lipschitz norm of
V., it follows that we can prove Theorem 1 for u,v., and then take limits to
get Theorem 1 for u,v. Thus we assume (3.1).

Next let £ = w + iren and observe from basic geometry that if ¢’ is large
enough (depending on the Lipschitz norm of ¢), then the domain Q C G ob-
tained from drawing all open line segments from points in B(w,r/¢') N G to
points in B(#,r/c) is starlike Lipschitz with center & and Lipschitz constant
< c([IVlloo + 1), where ¢ depends only on n. Let p = 5= and let @ be the p
capacitary function for D = Q\ B(&,p). Then D is a starlike ring domain and
from Lemma 2.11 we see that (2.12) is valid for 4. To continue note that if ¢; in
Theorem A is large, then we can also assume

(3.2) B(w,r/c1) NG = B(w,r/c1) NOD.
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From (3.2), arbitrariness of v and the triangle inequality, we find that it suffices
to prove Theorem 1 with u replaced by @, and r by r/c¢; provided ¢ is large
enough. Thus we write u for @ and assume u satisfies (2.12). We also assume for
for technical reasons that

(3.3) u<v/2 < czuin B(w,r/ci)NG

where c3 has the same dependence as c¢;. Otherwise, we can multiply v by a
positive constant to get this inequality, thanks to Theorem A with r replaced

by r/c1. Let ' = 55 and let u(+,7),0 < 7 < 1, be the p harmonic function in
1

B(w,2r") NG with

(3.4) u(-,7) =10+ (1 —7)u

on J[B(w,2r") N G] for 0 < 7 < 1. Next we prove a key lemma.

Lemma 3.5. There exists, ¢y € (0,1/4), depending only on p,n, and |||V¢||leo
such that if for some 7 € [0, 1], L,0< L < oo, and s,0 < s <1 we have

N

u(,7)

(3.6) (1—e)L < < (1+ €))L in B(w,s),

then for some c4 > 1, having the same dependence as ¢,

(3.7)  eal =L, Vu(z, 7)) > u(z,7)/d(z, 0G) whenever x € B(w,s/4) N G.

|2—z| 7

Proof: Let z € B(w,s/4) N G. From (2.7) with @ replaced by u we see that

3.8 r) — )| <ect? T
(33) Vu(an,?) = Vu(eo, )| <et? | max - [Vu(.7)

<At u(z,7)/d(z, 0G)

whenever 21,29 € B(z,td(x,0G)) and 0 < t < 1/4. Here ¢ depends only on p, n.
Now suppose that

(3.9) (Vu(z,7),w) <nu(z,7)/d(xz,0G) for some n >0 and = € B(w,s/4) NG

where w = é:i‘. From (3.8) with z = 21,2 = 22 and (3.9) we deduce

(3.10) (Vu(z,7),w) < [n+ %) u(z,7)/d(x, 0G)

for z € B(x,td(x,0G)). Integrating, it follows that if y = = + td(z, 0G)w, and
t =n'/7, then

(3.11) u(y, 7) — u(z, 7) < Yo u(e, 7).
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In (3.11) ¢’ depends only on p,n. Now from (2.12) and the mean value theorem,
we also deduce for z as above and for some ¢* (depending only on p, n, ||[|Vé|||s0),
that

(3.12) ¢ (u(y) —ul(z)) = n'/7u()

Note that if €y, L are as in (3.6), then from (3.11), (3.12) we find that

Y o P

u(y) L+nt/o/fer | ()
(3.13)
1 +C/771+1/0'

< (1+e0) <1 RSV

) i/ < (1 — Eo)fz

provided 1/¢ > n'/? > ¢ey for some large & with the same dependence as c¢;.
With & now fixed we put ¢y = 1/¢? and assume that the hypotheses of Lemma
3.5 hold for this €y. Then in order to avoid the contradiction in (3.13), it must
be true that

A u(z,T)
(Vule, 7)) 2 250 36G)

Thus (3.7) holds and Lemma 3.5 is true. O

for z € B(w,s/4) N G.

To continue the proof of Theorem 1, observe from (3.3) that if 7,7 € [0,1]
then

u(',Tz) — u(-,ﬁ)

3.14 —Lu(- <
(3.14) cu(-,m) < S

=v—u <cu(,)

on (B(w,2r")NG). From the boundary maximum principle for p harmonic func-
tions this inequality also holds in B(w, 2r")NG. Thus for ¢ as in Lemma 3.5 there
exists €, 0 < €, < €y, with the same dependence as €y, such that if |7 — 71| < €,
then

u(+, 72)
u(,71)

(3.15) 1—ey/2< <1+¢/2in B(w,2r)NG.

Divide [0,1] into closed intervals, disjoint except for endpoints, of length €/2
except possibly for the interval containing 1 which is of length < €/2. Let &; =
0 <& < ..<&yn =1 be the endpoints of these intervals. Thus [0,1] is divided
into {[€k,&k+1]},1 < k < m — 1. Next suppose for some [,1 <1 < m — 1, that
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(3.7) is valid with 7 replaced by 7 whenever 7 € [§;,£11]. Under this assumption

we claim for some cs, cg, , having the usual dependence, that
(316) log U(.T, §l+1) 1 u(yu §l+1)

o <C5<\w—y>“
u(z, &) u(y, &) |~ s

whenever z,y € B(w, s/cs) N G. Indeed from (3.7) and (2.7) we see that (2.12)
holds with @ replaced by u(-, 7) whenever 7 € [{;,&41] and for a constant having

the same dependence as ¢; (hence independent of 7). To prove claim (3.16) we
observe from (3.14), for fixed z € B(w,s/4) N G, that T—u(x,7),7 € [0,1], is
Lipschitz with norm < cu(x). Thus u,(z,-) exists almost everywhere in [0,1].
Let (z,) be a dense sequence of B(w, s/4). Let W be the set of all 7 € [0, 1] for
which w,(x,, -) exists in the difference quotients sense whenever z,, € (z,). Then
H'([0,1] \ W) = 0 where H! is linear Lebesgue or Hausdorff one measure. Let
s, 7 € [&,&+1]. From Lemma 2.9 and (3.7) applied to u(-,7) we see as in [LN,
(4.6)-(4.8)] that if

aij(n) = P~ [(p — 2)min; + i [n|°] for n € R\ {0}
and

U(x)=U(z,T,t) = w@,t) — ul,7)

t—1T1

1
Aij(z) = Ajj(z, 7,t) = / a;j[AVu(z,t) + (1 = XN)Vu(z,7)]d\, 1 < 4,5 <n,
0

then, whenever = € B(w, s/4) NG,

(3.17) LU(z) = Z (,;;i[Aij(x) Us,] =0 on B(w,s/4) NG.

4,j=1

Moreover, if z € B(w, s/4) NG, then it is easily seen that

() R Vula, )] + [Vu(z, 7)|P72 < > Aij(2)€;,
i,j=1

(3.18)

(%) D [Ay(@)] < el Vula, )] + [Vu(z, 7)|P2,
ij=1
whenever £ € R™\{0} and where ¢ depends only on p, n. Note that u(x,t)—u(z, T)
uniformly in the closure of B(z,s/8) N G thanks to Lemma 2.1 and (3.15) with
71,72 replaced by 7,t. From Lemma 2.9, (3.14), (2.12), (3.17) - (3.18), and
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Schauder type arguments we see that U is a bounded (independent of 7,t)
C* solution to a uniformly elliptic PDE in divergence form on B(w,s/8) NG
with U = 0 on B(w,s/8) NOG. Put U = 0 in B(w,s/4) \ G. From Schauder
type estimates for this PDE it follows that a subsequence of {U(:,7,t)}, say
{U(-,7,tx)} with ty—7 as k—o0, converges uniformly to f = f(-,7) in B(w, s/8)
with f € C*[B(w, s/8) N G]. Moreover,

(a)  f is a solution to (1.7),(1.8) in B(w,s/8) NG

(b)  f is continuous in B(w, s/8) with f =0 on B(w,s/8) \ G,
(3.19)
(¢)  f(zm,7) =ur(xpm, ) when z,, € B(w,s/8) NG, 7 € W,

(d) ct*<f(,7)/u(,7) <con B(w,s/8) NG.

From (3.19) and (3.7) for u(-,7), 7 € [&,&+1], we deduce that Lemma 2.13 (see
the remark below the proof of Lemma 2.13) can be applied with h; = u(-,7), hy =
f(,7), whenever 7 € [§,&41]. Doing this and using (3.19) (¢) we obtain for
z,y € (x,) and z,y € B(w, s/c) NG that

u@&) O uly.&) ‘ g( i—iﬁiii) o

Syl . a
& S

From continuity of u(-,&41)/u(-,&) we conclude that (3.20) holds for all z,y €
B(w,s/c) N G. Thus claim (3.16) is valid.

‘lo w(z,&41) w(y, §141)

(3.20)
fl@, ) fly,7)

u(z,7)  u(y,T)

We now proceed by induction. Observe from our choice of ¢, as well as
u(+,&1) = u that the hypotheses of Lemma 3.5 are satisfied whenever 7 € [{1, £2].
Thus (3.16) is true for I = 1 with s = /. Let ro = 7’ /¢g. Continuing by induction,

suppose for some 2 < k < m that we have shown
‘log u(w, &) 1 u(y, &k) < (k- 1)cs <\x \)
Tk

whenever z,y € B(w,r;) NG where «,c5 are the constants in (3.16). Choose

(3.21)

u(@) O u(y)

. < 75 so that
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whenever z,y € B(w,r)) NG. Fix x € B(w,7,) N G and choose § > 0 so small
that

u(z, &)

u(y, T) u(z, &)

u(y) u(z)
whenever y € B(w,r,) NG and 7 € [§, {+1)- To see the size of § observe for
T € [€k Ek+1] that

u(va) _ u<y77—) . u(yagk) U(I',gk)
u(y)  uw(y, &) u(y) u(z)
Thus if § = €p/4 and if ¢ is small enough then the right hand inequality in (3.22)

(3.22) (1— ) < < (1+€)

< (1+e/2)(1+9)

is valid. A similar argument gives the left hand inequality in (3.22) when § = €y /4
and €o is small enough. Also since « is independent of k,k < 2/¢(, and ¢, has
the usual dependence, we deduce from (3.21) that one can take rj = r/c7 for
c7 large enough, depending only on p,n, |||V@|| . From (3.22) we find that (3.6)

holds with L = usf(gf)’“) , s =1}, and 7 replaced by 7. From Lemma 3.5 we now get

that (3.16) is valid with [ = k and s = r.. Let rg41 = % Then using (3.16) and
the induction hypothesis we have

‘log u(, §t1) 1 u(y, Ek+1)

S‘l u(x, §pq1) 1 (Y, Ekt1)

u(@) T uly) B &) uy &)
(3.23)
u(@, &) o Y, &) c [z —y[\*
*’k’g (@) 8 u() S’“( rkH)

whenever z,y € B(w,rt+1) N'G. Thus by induction we get (3.21) with k£ = m.
Since u(-, &) = v and ry,, > r/c by construction, we conclude that Theorem 1 is
valid. O

4. Applications of Theorem 1 to the Martin Boundary Problem. Let-
ting r—oo in Theorem 1 we get the following corollary.

Corollary 1. Let p, ¢, G be as in Theorem A and suppose that u,v are positive p
harmonic functions in G with continuous boundary values 0 on OG. Then u = Av
for some X\ € (0,00).

We note that Corollary 1 can be rephrased as stating that minimal positive

p harmonic functions relative to oo in a Lipschitz graph domain are unique. To
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be more specific we need some definitions. We say that 2 C R"™ is a bounded
Lipschitz domain, provided there exists a finite set of balls {B(x;,7;)}, with
x; € 0 and r; > 0, such that {B(x;,7;)} constitutes a covering of an open
neighbourhood of 902 and such that, for each i,

QN B(zg,4r;) ={y =, yn) € R" 1 yn > ¢i(y')} N B(xy, 4r4),
0NN B(xi, 4r) ={y = (¥, yn) € R" 1y = ¢i(y)} N By, 4r4),

in an appropriate coordinate system and for a Lipschitz function ¢;. The Lipschitz
constant of € is defined to be M = max; |||V¢;||loo. @ is said to be a minimal
positive p harmonic function in the Lipschitz domain  relative to w € 0%,
provided @ > 0 is p harmonic in 2 and @ has continuous boundary value 0 on
O\ {w}. u is said to be unique up to constant multiples if © = A& for some
constant A, whenever ¥ is a minimal positive p harmonic function relative to
w € 0F2. Finally we say that the Martin boundary of 2 can be identified with
09, provided each w € 9 corresponds to a unique (up to constant multiples)
minimal positive p harmonic function. We note that for p = 2 one can easily use
Theorem A to get that the Martin boundary of a bounded Lipschitz domain 2
agrees with its topological boundary. Indeed if w € 02, and u,v are minimal
harmonic functions corresponding to w, one first uses Theorem A for harmonic
functions to show that v = info u/v > 0. Next one applies this result to u — yv, v
in order to conclude that u = yv. In the p harmonic case though we need to use a
variation of Theorem 1 with B(w, ) replaced by 2\ B(w, ). Moreover currently
our proof is not strong enough to prove that the Martin boundary of a Lipschitz
domain always agrees with its topological boundary when p # 2.

To state our results we need to introduce definitions. We call @ C Q a non-
tangential approach region at w € 92 if the intersection of the closure of Q and
the closure of Q equals w and if, for some 77 > 0, d(z, dQ) > 7|z —w| for all z € Q.
To indicate w and 1 we write Q(w, 7). Using Theorem 1 and its proof, it is easily
seen that if u is a minimal positive p harmonic function in €2 relative to w € 952
and z # w € 99, then there exists, ¢, ,0" and £ = £(x) with |¢| = 1, such that

(@)  0*u(y)/d(y,00) < §|Vuly)| < uly)/d(y, o),
(4.1)
(b)  'Vu(y)| < (Vu(y),§),

when y € QN B(x, |z —w|/c). Here ¢,d,¢" depend only on p,n, M. From (4.1) one
sees that there exists 7 such that u satisfies (4.1) (a) in Q\ Q(w, 7). Moreover,
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for each y € Q\ Q(w,7) there is a 2 € N\ {w} with y € B(z, |z — w|/c) for
which (4.1) (b) holds. Using this observation and a variation of the arguments in
Theorem 1 we in [LN1] prove,

Theorem B. Let Q C R"™ be a bounded Lipschitz domain with constant M and

let u,f)(w,ﬁ), be as above. Suppose there exist a sequence of positive numbers

{p1} with llim p1 =0, a fired number b > 1 and § > 0 such that (4.1) (a) holds
—00

for all z € Q@ = Uy Q(w,7) N [B(w,bp) \ B(w,pi/b)]. If b = b(p,n, M) is large
enough, then u is the unique minimal positive p harmonic function relative to w
(up to constant multiples).

From Theorem B we see that the determination of the p Martin boundary at a
boundary point w is reduced, for Lipschitz domains, to proving the existence of
a certain sequence of positive numbers tending to zero and a corresponding min-
imal positive p harmonic function satisfying the nondegeneracy condition (4.1)
(a) in Q, for b suitably large. We are able to verify this condition in a number of

interesting cases. In particular in [LN1] we prove the following theorem.

Theorem C. Let 0 C R" be a bounded Lipschitz domain with Lipschitz con-
stant M. Then the p Martin boundary of Q can be identified with the topological
boundary of Q2 in the following cases.

(1) Q is convex,
(2) 09 is C1,
(3) M

(4)

M (p) is small enough,
n=

Also if 02 has a tangent plane at w, then a minimal positive p harmonic function
relative to w is unique up to constant multiples.

As for the proof of Theorem C we note that once (4.1) (a) is verified we can
argue as in the proof of Theorem 1 to establish certain decay estimates for the
oscillation of u/v in @\ B(w,r’), 7’ small. Letting r'—0 we then get u = v for
some real \ (compare with Corollary 1). Finally we mention that in future papers
we plan to establish the equivalence of the Martin and topological boundary in
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certain Reifenberg flat and Ahlfors regular NTA domains. Moreover, preliminary
results show that this equivalence also holds for Cantor sets in R? and certain
smooth ’ k£ dimensional sets C R™ when n — p < k < n is a positive integer.

5. Applications of Theorem 1 to Regularity - Free Boundary Problems.
We need some more notation in order to state the results in [LN2]. Let Q@ C R”
be the Lipschitz domain in section 4. If w € 02,0 < r < rgand 0 < b < 1, we let

Iw) =Ty(w) = {y € Q:d(y, Q) > blw — y|} N B(w, 4r).

Given a measurable function k£ on B(w, 47) N2 we define the nontangential max-
imal function N (k) : 02—R for k as

(5.1) N(k)(z) = sup |k|(y) whenever z € Q.

yel(z)
Let L1(0QNB(w,4r)), 1 < g < 0o, be the space of functions which are integrable,
with respect to Hausdorff n — 1 measure (H"~!) on B(w, 4r) N dQ, to the power
g. Furthermore, given a measurable function f on B(w,2r) N 0f), we say that f
is of bounded mean oscillation on B(w,r) N 9Q, f € BMO(B(w,r) N oY), if for
all z € B(w,r) N0 and 0 < s < r, there exists 0 < A < oo satisfying

(5.2) / |f — fpldH"™! < As"7L,
B(z,s)NoN

Here fp denotes the average of f on B(z, s) N9 with respect to H"~! measure.
The least such A for which (5.2) holds will be denoted by || f|| zaro(B(w,rnaq)- Fi-
nally we say that f is of vanishing mean oscillation on B(w,r), f € VMO(B(w,r)N
o)), provided for each € > 0 there is a 6 > 0 such that (5.2) holds with A replaced
by € whenever 0 < s < min(6,r) and = € B(w, ).

In [LN2] we prove the following theorems.

Theorem D. Let Q@ C R™ be a bounded Lipschitz domain with constant M.
Given p,1 < p < oo, w € 0, 0 < r < ry, suppose that u is a positive p
harmonic function in QN B(w,47), u is continuous in B(w,4r) N Q and u = 0
on B(w,4r) N OS2 Then

lim Vu(y) = Vu(z)
yel'(z),y—z
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for H" ™1 almost every x € B(w,4r) N OQ. Furthermore there exist ¢ > p and a
constant ¢, 1 < ¢ < oo, which both only depend on p,n and M such that

(i) N(|Vu|) € LI(B(w,2r) N Q)

i q/(p—1)
(i) / Vult dH"1 < er DT ( / Ivu!”‘ldﬂ”_1> :
B(w,2r)Nox B(w,2r)Nox
(iii) log [Vu| € BMO(B(w,r) N 0Q), | log|VulllprmoBwrnaa) < c

Theorem E. Let Q C R, M, p,w,r and u be as in the statement of Theorem D.
If, in addition, Q is C* reqular then

log |Vu| € VMO(B(w,r) N oQ).

Theorem F. Let Q C R, M,p,w,r and u be as in the statement of Theo-
rem D. Then there exists My, independent of u, such that if M < My and if
log |Vu| € VMO(B(w,r)N0Y), then the outer unit normal to B(w,r) N OQ is in
VMO(B(w,r/2) N o).

We note that Theorem D and Theorem E are proved in [LN] for p capacitary
functions in starlike Lipschitz ring domains and in fact, given Theorem 1, modest
modifications of the arguments of [LN] are needed to get Theorems D and E.
Hence Theorem F is the main theorem in [LN2]. As for the proof of Theorem F,
one uses Theorem 1, the assumption log |Vu| € VMO (B(w, r)N9d?) and blowup
type arguments to show for arbitrary w; € B(w,r/2) N 0 and for a sequence
of scales {r;}, r; — 0, that B(wj,r;) N 0Q gets flater and flater, as j tends to
infinity, in a sense made precise in [LN2|. Finally we remark that we intend to
generalize Theorems D, E, F, as in [KT, KT1, KT2] for p = 2, to certain chord

arc domains.
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