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Abstract: This paper is devoted to the decomposition of an image f into u + v,
with u a piecewise-smooth or “cartoon” component, and v an oscillatory com-
ponent (texture or noise), in a variational approach. The cartoon component u

is modeled by a function of bounded variation, while v, usually represented by a
square integrable function, is now being modeled by a more refined and weaker
texture norm, as a distribution. Generalizing the idea of Y. Meyer [34], where
v ∈ F = div(BMO) = ˙BMO

−1
, we model here the texture component by the

action of the Riesz potentials on v that belongs to BMO or to Lp. In an ear-
lier work [28], the authors proposed energy minimization models to approximate
(BV, F ) decompositions explicitely expressing the texture as divergence of vector
fields in BMO. In this paper, we consider an equivalent more isotropic norm of
the space F in terms of the Riesz potentials, and study models where the Riesz
potentials of oscillatory components belong to BMO or to Lp, 1 ≤ p < ∞ (thus
we consider oscillatory components in ˙BMO

α
or in Ẇα,p, with α < 0). Theoret-

ical, experimental results and comparisons to validate the proposed methods are
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presented.
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1 Introduction and motivations

We assume that a given grayscale image f is defined on Rn or on Ω = [0, 1]n ⊂
Rn, with Ω = (0, 1)n. When f is defined on Ω, we assume that f is periodic and
Ω is the fundamental domain (or we can also assume that f is extended by zero
outside Ω).

An important problem in image analysis is the decomposition of f into u +
v, where u is piecewise-smooth containing the geometric components of f and
v is oscillatory, typically texture or noise. A general variational method for
decomposing f ∈ X1 + X2 into u + v, with u ∈ X1 and v ∈ X2, can be defined
by the minimization problem

inf
(u,v)∈X1×X2

{F1(u) + λF2(v) : f = u + v} , (1)

where F1, F2 ≥ 0 are functionals and X1, X2 are spaces of functions or distribu-
tions such that F1(u) < ∞ and F2(v) < ∞, if and only if (u, v) ∈ X1 ×X2. The
constant λ > 0 is a tuning parameter. A good model for (1) is given by a choice
of X1 and X2 so that with the given desired properties of u and v, we obtain
F1(u) << F1(v) and F2(v) << F2(u).

In standard approaches, the space L2 is used to model v when f denotes
the image of a real scene, u is a piecewise-smooth approximation of f (made
up of homogeneous regions with sharp boundaries), and v is a residual (additive
Gaussian noise or small details). For example, in the Mumford and Shah model
[37] for two dimensional image segmentation, f ∈ L∞(Ω) ⊂ L2(Ω) is split into u ∈
SBV (Ω) [4], a piecewise-smooth function with its discontinuity set Ju composed
of a union of curves of total finite length, and v = f − u ∈ L2(Ω) representing
noise or texture. The (non-convex) model in the weak formulation is [35]

inf
(u,v)∈SBV (Ω)×L2(Ω)

{∫

Ω\Ju

|∇u|2dx + αH1(Ju) + β‖v‖2
L2(Ω), f = u + v

}
, (2)
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where H1 denotes the 1-dimensional Hausdorff measure, and α, β > 0 are tuning
parameters. With the above notations, the first two terms in the energy from (2)
compose F1(u), while the third term makes F2(v). A related decomposition is
obtained by the total variation minimization model of Rudin, Osher, and Fatemi
[41] for image denoising. The (convex) decomposition model is

inf
(u,v)∈BV (Ω)×L2(Ω)

{
|u|BV (Ω) + λ‖v‖2

L2(Ω), f = u + v
}

, (3)

where |u|BV (Ω) =
∫
Ω |Du| (the semi-norm on the space BV ) [16], and λ > 0 is a

tuning parameter. This model is strictly convex and is easily solved in practice.
However, it has some limitations pointed out by several authors ([46], [47], [34]
among others). If f = αχD is a multiple of the characteristic function of a disk
D centered at the origin and of radius R, we would like the minimizer u to be f

if R is not too small. However, for any R ≥ 1
λα and any finite λ > 0, we have [34]

u = (α− 1
λR

)χD, v =
1

λR
χD.

Model (3) is of the form |u|BV (Ω) + λ‖f − u‖q
Lp(Ω), p ≥ 1, q ≥ 1, and the loss of

intensity property is always present when we have q > 1 while keeping the total
variation. In particular, we no longer have an intensity loss if we substitute ‖·‖2

L2

in (3) with ‖ ·‖L2 or ‖ ·‖L1 , which was proposed in the continuous case by Cheon,
Paranjpye, Vese and Osher [11], and further analysis in the L1 case was made
by Chan and Esedoglu [10], among others (see also earlier works of S. Alliney [1]
and [2] in the discrete one dimensional case).

We are interested in function spaces that give small penalties to oscillations.
As noted in [34], oscillatory components do not have small norms in L2 or L1.
Moreover, Alvarez, Gousseau and Morel [21], [3] argue that BV is not a good
choice to model natural images. To overcome these drawbacks, we can relax the
condition on F1(u) = |u|BV or on F2(v) = ‖v‖Lp , for p = 1 or p = 2. One way is
to use a non-convex regularization in u (like in (2), [19], [9], [50], [31], etc.), that
is weaker than | · |BV . Another way is to use weaker norms than the Lp norm.
Here we keep a convex BV regularization, and consider weaker norms than the
Lp norm, following [34]. Mumford and Gidas [36] also show that, under some
assumptions, natural images are drawn from probability distributions supported
by generalized functions, and not by functions.
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Y. Meyer [34] questions the model (3) and proposes more refined versions,
using weaker norms of generalized functions to model v, instead of the ‖ · ‖2

L2 .
Among the spaces proposed in [34] to better model the texture component, is the
space F and the minimization model

inf
(u,v)∈BV×F

{
|u|BV + λ‖v‖F , f = u + v

}
, (4)

where F is defined below.

Definition 1. In two dimensions, the space F consists of distributions v which
can be written as

v = div(~g) in D′, ~g = (g1, g2) ∈ BMO2, with

‖v‖F = inf
{
‖g1‖BMO + ‖g2‖BMO : v = div(~g) in D′, ~g ∈ BMO2

}
.

The space BMO is defined below.

Definition 2. We say that f ∈ L1
loc belongs to BMO [24], [43], if

‖f‖BMO = sup
Q

1
|Q|

∫

Q
|f − fQ|dx < ∞,

where Q is a square (it is sufficient to consider squares with sides parallel with
the axes), and fQ = |Q|−1

∫
Q f(x)dx denotes the mean value of f over the square

Q.

An equivalent norm of BMO can be obtained by taking the supremum over
dyadic squares and their 1/3 translations, as in the work [17] by the first two
authors. For f ∈ BMO(Ω), the supremum is over squares Q ⊂ Ω.

In [34], Y. Meyer also proposed two other function spaces to model the oscil-
latory component v, denoted by G and E, with u ∈ BV ⊂ L2 ⊂ G ⊂ F ⊂ E.
The space G is defined like F but having ~g in (L∞)2 instead of (BMO)2, while
E = Ḃ−1∞,∞ = 4(Ḃ1∞,∞) is a homogeneous Besov space of regularity index −1.

Meyer’s G-model is approximated and studied in [51]-[52], [39], [6], [5], [8],
[38], [22], [53], [12], [29], [27], among others. Meyer’s E model was studied and
discussed in [7], [18] and [26].
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In [28], the third and fourth authors proposed several methods to numerically
compute the BMO-norm of a function defined on a bounded domain Ω, and
approximate Meyer’s F -model (4) by the convex variational relaxed problem,

inf
u∈BV (Ω), ~g∈BMO(Ω)2

{
|u|BV (Ω) + µ‖f − u− div~g‖2

L2(Ω)+

λ
[‖g1‖BMO(Ω) + ‖g2‖BMO(Ω)

]}
. (5)

As µ → ∞, this model approximates model (4). An equivalent model was also
proposed in [28], by setting ~g = ∇g, i.e. v = ∆g, and minimizing

inf
{
|u|BV (Ω) + µ‖f − u−∆g‖2

L2(Ω) + λ
[‖gx‖BMO(Ω) + ‖gy‖BMO(Ω)

]

: u ∈ BV (Ω), g,4g ∈ L2(Ω),∇g ∈ BMO(Ω)2
}

.
(6)

Formulations (5) and (6) are still approximations to Meyer’s F -model. In
these models, a given image f is decomposed into u + v + r, where u ∈ BV (Ω)
is piecewise smooth, v = div(~g) ∈ F or v = ∆g = div(∇g) ∈ F consists of
oscillatory components, and r = f − u− v ∈ L2(Ω) is a residual. Numerically, r

is negligible. The significance of r is also discussed in [18].

Other related decomposition models using wavelets are by I. Daubechies and
G. Teschke [14], R. Coifman and D. Donoho [13], J. L. Starck, M. Elad, and D.
Donoho [42], F. Malgouyres [33], S. Lintner and F. Malgouyres [32], A. Haddad
and Y. Meyer [22], A. Haddad, [23], or J. Gilles [20].

In this paper, we consider an equivalent norm for the space F in terms of the
Riesz potentials, and study models where the action of the Riesz potentials on the
oscillatory components belong to BMO. In other words, we model the oscillatory
component v by imposing that (−∆)α/2v belongs to BMO, for some α < 0, i.e.
v ∈ ˙BMO

α
. If α = −1, we recover the space F , but now the equivalent norm

is defined in an isotropic way and we can obtain exact decompositions (4), and
equivalent decompositions as in (5) and (6).

As a byproduct and for comparison, we also consider models when (−∆)α/2v ∈
Lp, 1 ≤ p < ∞, i.e. v belongs to the homogeneous potential Sobolev space Ẇα,p,
for some α < 0. The case 1 ≤ p < ∞ and α = −1 reduces to the case from [51],
[52]. The case p = 2 and α = −1 reduces to the model from [39] in an equivalent
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PDE formulation, while the more general case with α < 0 and p = 2 reduces to
the models proposed by L. Lieu [29], [30], and also related with the proposal from
[36].

As noted in [34] in more details, the space F = ˙BMO
−1

has also been used
in an analysis of the Navier-Stokes equations by Koch and Tataru [25], where

˙BMO
−1

is defined through another isotropic equivalent norm, also recalled in
the next section.

We conclude this section by an example, motivating that oscillatory functions
(not captured in the BV−cartoon component, having large total variations), have
small ˙BMO

α
norms (α < 0) and thus are rather captured in the texture compo-

nent (therefore such spaces do not penalize oscillations). Consider for simplicity
the case α = −1 (similar discussion for general α < 0). Let vm(x) = cos(mx),

then vm(x) =
(

1
m sin(mx)

)′
and ‖vm‖G = 1

m . Since we have the embedding
G ⊂ F , this implies that ‖vm‖F ≤ C‖vm‖G → 0 as m →∞. Thus, more oscilla-
tions give smaller ˙BMO

−1
norm, or in other words, oscillations are encouraged

in the texture component v in a minimization model such as (4). By comparison,
if v ∈ Lp, p ≥ 1, then ‖vm‖Lp → constant > 0, as m →∞.

2 The homogeneous spaces ˙BMO
α

and Ẇ α,p

In this section, we consider a general form of function spaces, and in the definitions
we make no distinction between periodic functions or functions defined on Rn.
We recall the definition of the Riesz potentials (or the fractional powers of the
Laplacian)

I−αv(x) = (−4)α/2v(x) = ((2π|ξ|)αv̂(ξ))∨ (x) = kα ∗ v(x),

with kα(x) = ((2π|ξ|)α)∨ (x), where as usual, ∧ indicates the Fourier transform
and ∨ indicates the inverse Fourier transform. Of special significance is the case
−n < α < 0. Then we can write the Riesz potentials as integral operators,

(I−αv)(x) =
1

γ(α)

∫

Rn

|x− y|−n−αv(y)dy,

where γ(α) is a normalization constant depending on the dimension n and on α.
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We also recall the Riesz transforms of a function f in two dimensions:

(̂Rjf) (ξ) =
iξj

|ξ| f̂(ξ), j = 1, 2,

having the property

(R1)2 + (R2)2 = −I,

where I is the identity operator. We note that the Riesz operators Rj are bounded
in BMO [43], [40]: there is a positive constant C0 such that, for any f ∈ BMO,
we have

‖Rjf‖BMO ≤ C0‖f‖BMO.

Our main motivation of this work is the following lemma, which provides an
isotropic equivalent norm for F , easier to be used in practice. This will also lead
to generalizations.

Lemma 1. The norm ‖v‖F is equivalent with the norm ‖I1v‖BMO =
‖(−∆)−1/2v‖BMO.

Proof. Again, we note that the Riesz operators Rj are bounded in BMO,

‖Rjf‖BMO ≤ C0‖f‖BMO,

for some positive constant C0.

We have:

v =−((R1)2 + (R2)2)v = −(−4)1/2(−4)−1/2((R1)2 + (R2)2)v

= R1(−4)1/2(−R1(−4)−1/2v) + R2(−4)1/2(−R2(−4)−1/2v)

= R1(−4)1/2g1 + R2(−4)1/2g2 = div(g1, g2),

with gj = −Rj((−4)−1/2v).

Then ‖gj‖BMO = ‖ −Rj((−4)−1/2v)‖BMO ≤ C0‖(−4)−1/2v‖BMO.

Therefore,

‖v‖F := inf
~g∈BMO×BMO, div~g=v

[
‖g1‖BMO + ‖g2‖BMO

]
≤ 2C0‖(−4)−1/2v‖BMO.
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For the converse inequality, suppose v = div(g1, g2), with g1, g2 ∈ BMO.
Then

v = div(g1, g2) = (−4)1/2(R1g1 + R2g2),

therefore
(−4)−1/2v = R1g1 + R2g2,

and then

‖(−4)−1/2v‖BMO = ‖R1g1 + R2g2‖BMO ≤ ‖R1g1‖BMO + ‖R2g2‖BMO

≤ C0‖g1‖BMO + C0‖g2‖BMO = C0

[
‖g1‖BMO + ‖g2‖BMO

]
.

We conclude that

‖(−4)−1/2v‖BMO ≤ C0 inf
~g∈BMO×BMO, div~g=v

[
‖g1‖BMO + ‖g2‖BMO

]
= C0‖v‖F ,

and therefore the two norms are equivalent, since we have obtained

1
2C0

‖v‖F ≤ ‖(−4)−1/2v‖BMO ≤ C0‖v‖F .

Thus, for v ∈ F , the quantity ‖I1v‖BMO = ‖(−∆)−1/2v‖BMO provides an
equivalent norm for ‖v‖F introduced in Definition 1. This isotropic norm can be
used as an alternative way to the models proposed and solved in [28]. Moreover,
we are led to consider more general cases, when v is modeled by the space ˙BMO

α
,

α < 0, defined below.

Definition 3. (See Strichartz [44] and [45]) We say that a function (or distribu-
tion) v belongs to the homogeneous space ˙BMO

α
= Iα(BMO), α ∈ R, if

‖v‖ ˙BMO
α := ‖I−αv‖BMO < ∞.

Equipped with ‖ · ‖ ˙BMO
α , ˙BMO

α
becomes a Banach space.

Elements in BMO or ˙BMO
α

that are different by a constant are identified.
In other words, we can assume that v has zero mean (

∫
v(x)dx = 0) if v ∈ BMO

or v ∈ ˙BMO
α
.
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The space ˙BMO
α

coincides with the classical Triebel-Lizorkin homogeneous
space Ḟα

∞,2 [48]. An equivalent norm for ˙BMO
α

can also be obtained, as in
[25]: let Φ(x) = Ce−2π|x|2 , where C is chosen so that

∫
Φ(x) dx = 1. Define

Φt(x) = t−nΦ(x
t ), x ∈ Rn. For each v ∈ L1

loc, let wt(x) = Φ√4t ∗ v(x). We have
the following characterization of BMO [25], [43].

Definition 4. We say that v ∈ BMO if

‖v‖BMO := sup
x,R

(
4π

Q(x,R)

∫

Q(x,R)

∫ R

0
t|∇(Φt ∗ v)|2 dtdy

)1/2

= sup
x,R

(
1

Q(x,R)

∫

Q(x,R)

∫ R2

0
|∇wt|2 dtdy

)1/2

≈ sup
x,R

(
1

Q(x,R)

∫

Q(x,R)

∫ R2

0

∣∣∣(−∆)1/2wt

∣∣∣
2

dtdy

)1/2

< ∞,

(7)

where Q(x,R) denotes a square centered at x with side length R, and ”≈” denotes
equivalent norms.

Similarly, we have the following characterization of ˙BMO
α
, which could be

another alternative approach to the work in [28].

Definition 5. We say that v belongs to ˙BMO
α
, α ∈ R, if

‖I−αv‖BMO = sup
x,R

(
4π

Q(x,R)

∫

Q(x,R)

∫ R

0
t|∇(Φt ∗ (I−αv))|2 dtdy

)1/2

= sup
x,R

(
4π

Q(x,R)

∫

Q(x,R)

∫ R

0
t|∇(I−α(Φt ∗ v))|2 dtdy

)1/2

= sup
x,R

(
1

Q(x,R)

∫

Q(x,R)

∫ R2

0
|∇(I−αwt)|2 dtdy

)1/2

≈ sup
x,R

(
1

Q(x,R)

∫

Q(x,R)

∫ R2

0

∣∣∣(−4)1/2(I−αwt)
∣∣∣
2

dtdy

)1/2

< ∞.

(8)

Again, ”≈” denotes equivalent norms.
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In the remaining part of this paper, we use Definition 3 for ˙BMO
α
. For

comparison, substituting BMO in Definition 3 by Lp, 1 ≤ p < ∞, we arrive to
the homogeneous potential Sobolev spaces, which we recall here.

Definition 6. We say that a function (or distribution) v belongs to the homo-
geneous potential Sobolev space Ẇα,p, for α ∈ R, 1 ≤ p ≤ ∞, if

‖v‖Ẇ α,p := ‖I−αv‖Lp < ∞.

Equipped with ‖ · ‖Ẇ α,p , Ẇα,p becomes a Banach space.

Note that if g ∈ Ẇα,p, α < 0, then
∫
Ω g(x) dx = 0. Some useful properties of

˙BMO
α

and Ẇα,p are recalled below:

• I−s is an isometry from ˙BMO
α

and Ẇα,p to ˙BMO
α−s

and Ẇα−s,p, respec-
tively, for all s, α ∈ R.

• Let τδf(x) = f(δx), δ > 0, x ∈ Rn, be the dilation operator. We have

‖τδf‖Lp(Rn) = δ
−n

p ‖f‖Lp(Rn),

‖τδf‖ ˙BMO
α
(Rn) = δα‖f‖ ˙BMO

α
(Rn), ‖τδf‖Ẇ α,p(Rn) = δ

−n
p
+α‖f‖Ẇ α,p(Rn).

From this dilation property, we see that if α < 0, ‖ · ‖Ẇ α,p provides a better
separation among different oscillations compared to ‖·‖Lp , and for the same α < 0,
‖ · ‖Ẇ α,p provides a better separation among different oscillations compared to
‖ · ‖ ˙BMO

α (in other words, taking the same function f but with two different
oscillating levels, τδ1f and τδ2f , with 1 ≤ δ1 < δ2, the difference in their norms
is larger using ‖ · ‖Ẇ α,p , due to larger exponents in absolute value: n

p < |np + α|
and |α| < |np + α|, thus larger exponent in absolute value will distinguish better
between two levels of oscillations). The experimental results in this paper will
support these remarks.

In [18], the authors have numerically considered the case when the oscillatory
component v belongs to Ḃα

p,∞, α < 0, as a generalization of the space E proposed
by Y. Meyer. The following remark shows that Ḃα

p,q and Ẇα,p are in fact close
[49].

Remark 1. If α ∈ R and p ≥ 1, then

Ḃα
p,1 ⊂ Ẇα,p ⊂ Ḃα

p,∞. (9)
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3 Modeling oscillations with ˙BMO
α

and Ẇ α,p

Given an image f , we would like to decompose it into u + v, where u ∈ BV ,
and v is an element of ˙BMO

α
or Ẇα,p, for α < 0 and 1 ≤ p < ∞. In other

words, we consider modeling oscillatory component v (of zero mean) as ∆g, where
g ∈ ˙BMO

s
or Ẇ s,p, for s < 2, 1 ≤ p < ∞, in the minimization problems for

image decomposition

inf
u,g

{|u|BV + µ‖f − u−∆g‖2
L2 + λ‖g‖ ˙BMO

s

}
, and (10)

inf
u,g

{|u|BV + µ‖f − u−∆g‖2
L2 + λ‖g‖Ẇ s,p

}
. (11)

The model (10), when s = 1, is equivalent with the model (6). Since v belongs
to ˙BMO

α
or Ẇα,p with α = s− 2, we will also consider the exact decomposition

models,

inf
u

{|u|BV + λ‖f − u‖ ˙BMO
α

}
, and (12)

inf
u

{|u|BV + λ‖f − u‖Ẇ α,p

}
. (13)

Thus, when α = −1 in (12), we recover Meyer’s model (4). Theorems 1 and 2
from [18] can be exactly carried out here to show existence of minimizers for the
above models (10), (11), (12) and (13).

We discuss next scaling properties of the proposed minimization models. Re-
call the dilating operator τδf(x) = f(δx), δ > 0. We have

|τδf |BV (Rn) = δ−n+1|f |BV (Rn), ‖τδf‖Lp(Rn) = δ−n/p‖f‖Lp(Rn),

‖τδf‖ ˙BMO
α
(Rn) = δα‖f‖ ˙BMO

α,p
(Rn), ‖τδf‖Ẇ α,p(Rn) = δ−n/p+α‖f‖Ẇ α,p(Rn)

Following [18], we would like to characterize the parameters µ and λ in the
proposed models (10), (11), (12) and (13) when the image f is being dilated by
a factor δ (zoom in when 0 < δ < 1 and zoom out when δ > 1).

Proposition 1. Denote

Jf,λ(u) = |u|BV (Rn) + λ‖f − u‖ ˙BMO
α
(Rn)

For a fixed f and λ > 0, let (uλ, vλ = f −uλ) be a minimizer for the energy Jf,λ.
Then for λ′ = λδ−n+1−α, (τδuλ, τδvλ) minimizes the energy Jτδf,λ′.
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Proof. Since (uλ, vλ = f − uλ) is a minimizer, this implies

Jf,λ(uλ) = |uλ|BV (Rn) + λ‖vλ‖ ˙BMO
α
(Rn)

is minimal. Applying τδ to f , uλ and vλ using λ′, we have

Jτδf,λ′(τδuλ) = |τδuλ|BV (Rn) + λ′‖τδvλ‖ ˙BMO
α
(Rn)

= δ−n+1|uλ|BV (Rn) + λ′δα‖vλ‖ ˙BMO
α
(Rn).

We have δn−1Jτδf,λ′(τδuλ) is minimized when λ′ = λδ−n+1−α. Therefore,
(τδuλ, τδvλ) is a minimizer for Jτδf,λ′ with λ′ = λδ−n+1−α.

Similarly, when ‖·‖ ˙BMO
α is replaced by ‖·‖Ẇ α,p , we have the following result.

Proposition 2. For a fixed f and λ > 0, let (uλ, vλ = f − uλ) be a minimizer
for the energy,

Kf,λ(u) = |u|BV (Rn) + λ‖f − u‖Ẇ α,p(Rn)

Then for λ′ = λδ(−n+1)−(−n/p+α), (τδuλ, τδvλ) minimizes Kτδf,λ′.

Using the same techniques, we obtain the following results for the models (10)
and (11).

Proposition 3. Fix an f , µ > 0, and λ > 0.

1. Let (uµ,λ, vµ,λ) be a minimizer for the energy from (10), which can be rewrit-
ten as

Jf,µ,λ(u) = |u|BV (Rn) + µ‖f − u− v‖2
L2(Rn) + λ‖v‖ ˙BMO

α
(Rn)

Then for µ′ = µδ and λ′ = λδ−n+1−α, (τδuµ,λ, τδvµ,λ) minimizes Jτδf,µ′,λ′.

2. Let (uµ,λ, vµ,λ) be a minimizer for the energy from (11), which can be rewrit-
ten as

Kf,µ,λ(u) = |u|BV (Rn) + µ‖f − u− v‖2
L2(Rn) + λ‖v‖Ẇ α,p(Rn)

Then for µ′ = µδ and λ′ = λδ(−n+1)−(−n/p+α), (τδuµ,λ, τδvµ,λ) minimizes
Kτδf,µ′,λ′.
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4 Characterization of minimizers

In this section, we would like to show some results regarding the characterization
of minimizers for the exact decompositions (12) and (13) under some assumptions
or minor modifications. These can be seen as extensions and generalizations of
the results from Lemma 4, Thm. 3 (page 32), Proposition 4 (page 33) and Thm.
4 (page 4) from [34].

4.1 The case |u|BV + λ‖I−α(f − u)‖2
BMO

We have the following equivalent formulations of BMO for different values of
p ∈ [1,∞), see [43] for example. For f ∈ L2

loc, we have

1
|Q|

∫

Q
|f(x)− fQ|dx ≤

( 1
|Q|

∫

Q
|f(x)− fQ|2dx

)1/2
,

thus if supQ

(
1
|Q| |f(x) − fQ|2dx

)1/2
≤ C, then f ∈ BMO. Conversely, if f ∈

BMO according to Definition 2, then for any p < ∞, f is in Lp
loc and 1

|Q|
∫
Q |f(x)−

fQ|pdx ≤ cp‖f‖p
BMO, for all squares Q.

Thus consider the problem with p = 2 in the definition of the equivalent
BMO norm, and we substitute (12) by

inf
u
F(u),

where

F(u) = |u|BV + λ sup
Q

1
|Q|

∫

Q
|kα ∗ (f − u)− (kα ∗ (f − u))Q|2dx, or

F(u) = |u|BV + λ sup
Q

1
|Q|‖kα ∗ f − (kα ∗ f)Q − (kα ∗ u− (kα ∗ u)Q)‖2

L2(Q).

Denote 〈f, g〉L2(Q) :=
∫
Q fg dx. Consider the quantity ‖·‖α,∗, (possibly attains

∞), defined as

‖f‖α,∗ = sup
Q̄,h∈BV,|h|BV 6=0

1
|Q̄|

〈
kα ∗ f − (kα ∗ f)Q̄, kα ∗ h− (kα ∗ h)Q̄

〉
L2(Q̄)

|h|BV
,
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where the supremum is taken over all squares Q̄ satisfying

Q̄ = arg max
Q

1
|Q|

∫

Q
|kα ∗ f − (kα ∗ f)Q|2dx. (14)

Remark 2. Note that, if the functions are not sufficiently smooth, there may not
be a square Q̄ realizing the maximum in (14). In such cases, the results presented
below can still be verified, working with a sequence of maximizing squares Q̄εn

such that

sup
Q

1
|Q|

∫

Q
|kα ∗ f − (kα ∗ f)Q|2dx = lim

εn→0

1
|Q̄εn |

∫

Q̄εn

|kα ∗ f − (kα ∗ f)Q̄εn
|2dx.

Definition 7. Given an α ∈ R, we say f satisfies property (P) if for any h ∈ BV

and any square Q̄ satisfying (14), we have

lim inf
εn→0

1
|Qεn |

〈
kα ∗ f − (kα ∗ f)Qεn

, kα ∗ h− (kα ∗ h)Qεn

〉
L2(Qεn )

≥ 1
|Q̄|

〈
kα ∗ f − (kα ∗ f)Q̄, kα ∗ h− (kα ∗ h)Q̄

〉
L2(Q̄)

(15)

for some sequence of squares Qεn and of small parameters εn > 0 converging to
zero, such that

Qεn = arg max
Q

1
|Q|

∫

Q
|kα ∗ (f − εnh)− (kα ∗ (f − εnh))Q|2dx.

Proposition 4.

(i) If ‖f‖α,∗ ≤ 1
2λ , then u = 0 and v = f is a minimizer.

(ii) If u = 0 and v = f is a minimizer and if, in addition, f satisfies property
(P) from (15), then ‖f‖α,∗ ≤ 1

2λ .

Proof.

(i) Let h ∈ BV such that

F(h) = |h|BV + λ sup
Q

1
|Q|

∫

Q
|kα ∗ (f − h)− (kα ∗ (f − h))Q|2dx < +∞.

Since ‖f‖α,∗ ≤ 1
2λ , we have for all h ∈ BV and all squares Q̄ satisfying

Q̄ = arg max
Q

1
|Q|

∫

Q
|kα ∗ f − (kα ∗ f)Q|2dx, (16)
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that

−2λ
1
|Q̄|

〈
kα ∗ f − (kα ∗ f)Q̄, kα ∗ h− (kα ∗ h)Q̄

〉
L2(Q̄)

≥ −|h|BV .

Then

F(h) = |h|BV + λ sup
Q

1
|Q| ‖kα ∗ f − (kα ∗ f)Q − (kα ∗ h− (kα ∗ h)Q)‖2

L2(Q)

= |h|BV + λ sup
Q

1
|Q|

[
‖kα ∗ f − (kα ∗ f)Q‖2

L2(Q)

−2 〈kα ∗ f − (kα ∗ f)Q, kα ∗ h− (kα ∗ h)Q〉L2(Q) + ‖kα ∗ h− (kα ∗ h)Q‖2
L2(Q)

]
.

With Q̄ defined as in (16), we have

F(h) ≥ |h|BV + λ
1
|Q̄|‖kα ∗ f − (kα ∗ f)Q̄‖2

L2(Q̄) +
1
|Q̄|‖kα ∗ h− (kα ∗ h)Q̄‖2

L2(Q̄)

− 2λ
1
|Q̄|

〈
kα ∗ f − (kα ∗ f)Q̄, kα ∗ h− (kα ∗ h)Q̄

〉
L2(Q̄)

= |h|BV + λ sup
Q

1
|Q|‖kα ∗ f − (kα ∗ f)Q‖2

L2(Q) +
1
|Q̄|‖kα ∗ h− (kα ∗ h)Q̄‖2

L2(Q̄)

− 2λ
1
|Q̄|

〈
kα ∗ f − (kα ∗ f)Q̄, kα ∗ h− (kα ∗ h)Q̄

〉
L2(Q̄)

≥ F (0) +
1
|Q̄|‖kα ∗ h− (kα ∗ h)Q̄‖2

L2(Q̄) ≥ F (0).

Therefore, u = 0 is a minimizer.

(ii) Suppose now u = 0 and v = f is a minimizer and f satisfies property (P)
from (15). We have

|h|BV + λ sup
Q

1
|Q|

∫

Q
|(kα ∗ (f − h)− (kα ∗ (f − h))Q)|2dx

≥ λ sup
Q

1
|Q|

∫

Q
|kα ∗ f − (kα ∗ f)Q|2dx.

Thus

|h|BV + λ sup
Q

1
|Q|

{∫

Q
|kα ∗ k − (kα ∗ f)Q|2dx

− 2 〈kα ∗ f − (kα ∗ f)Q, kα ∗ h− (kα ∗ h)Q〉L2(Q)

+
∫

Q
|kα ∗ h− (kα ∗ h)Q|2dx

}
≥ λ sup

Q

1
|Q|

∫

Q
|kα ∗ f − (kα ∗ f)Q|2dx.

(17)



290 J. B. Garnett, P. W. Jones, T. M. Le and L. A. Vese

Let Q̂ be defined as the square depending on f and h that achieves the maximum
in supQ

1
|Q|

∫
Q |kα ∗ (f − h)− (kα ∗ (f − h))Q|2dx. Then we can rewrite (17) as

|h|BV + λ
1
|Q̂|

{∫

Q̂
|kα ∗ f − (kα ∗ f)Q̂|2dx

− 2
〈
kα ∗ f − (kα ∗ f)Q̂, kα ∗ h− (kα ∗ h)Q̂

〉
L2(Q̂)

+
∫

Q̂
|kα ∗ h− (kα ∗ h)Q̂|2dx

}
≥ λ sup

Q

1
|Q|

∫

Q
|kα ∗ f − (kα ∗ f)Q|2dx.

This implies

|h|BV + λ sup
Q

1
|Q|

∫

Q
|kα ∗ f − (kα ∗ f)Q|2dx

− 2λ
1
|Q̂|

〈
kα ∗ f − (kα ∗ f)Q̂, kα ∗ h− (kα ∗ h)Q̂

〉
L2(Q̂)

+ λ
1
|Q̂|

∫

Q̂
|kα ∗ h− (kα ∗ h)Q̂|2dx ≥ λ sup

Q

1
|Q|

∫

Q
|kα ∗ f − (kα ∗ f)Q|2dx.

(18)

Changing h into εh in (18), dividing both sides by ε > 0, and taking ε → 0, we
obtain that for any h ∈ BV and any Q̄ satisfying (14),

1
|Q̄|

〈
kα ∗ f − (kα ∗ f)Q̄, kα ∗ h− (kα ∗ h)Q̄

〉
L2(Q̄)

|h|BV
≤ 1

2λ
.

Therefore, ‖f‖α,∗ ≤ 1
2λ .

Proposition 5. Assume now ‖f‖α,∗ > 1
2λ .

(i) Suppose u is a minimizer and f − u satisfies the property (P) from (15)
(with equality if h = u). Then u satisfies

1
2λ
|u|BV =

1
|Q̄|

〈
kα ∗ (f − u)− (kα ∗ (f − u))Q̄, kα ∗ u− (kα ∗ u)Q̄

〉
L2(Q̄)

and ‖kα ∗ (f − u)‖∗ =
1
2λ

,

(19)

where Q̄ = argmaxQ
1
|Q|‖kα ∗ (f − u)− (kα ∗ (f − u))Q‖2

L2(Q).

(ii) If u satisfies the properties in (19), then u is a minimizer.
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Proof.

(i) Assume that u is a minimizer. Then, for any small ε and any h ∈ BV , we
have

|u + εh|BV + λ sup
Q

1
|Q|‖kα ∗ (f − (u + εh))− (kα ∗ (f − (u + εh)))Q‖2

L2(Q)

≥ |u|BV + λ sup
Q

1
|Q|‖kα ∗ (f − u)− (kα ∗ (f − u))Q‖2

L2(Q).

(20)

Let Q̂ be the square that achieves the maximum in the left-hand-side of the above
equation (20), which depends on kα ∗ (f − (u + εh)). By triangle inequality we
obtain

|u|BV + |ε||h|BV + λ
1
Q̂

[
‖kα ∗ (f − u)− (kα ∗ (f − u))Q‖2

L2(Q̂)

− 2ε
〈
kα ∗ (f − u)− (kα ∗ (f − u))Q̂, kα ∗ h− (kα ∗ h)Q̂

〉
L2(Q̂)

+ ε2‖kα ∗ h− (kα ∗ h)Q̂‖2
L2(Q̂)

]

≥ |u|BV + λ sup
Q

1
|Q|‖kα ∗ (f − u)− (kα ∗ (f − u))Q‖2

L2(Q).

Thus,

|ε||h|BV + λ sup
Q

1
|Q|‖kα ∗ (f − u)− (kα ∗ (f − u))Q‖2

L2(Q)

− 2λε
1
|Q̂|

〈
kα ∗ (f − u)− (kα ∗ (f − u))Q̂, kα ∗ h− (kα ∗ h)Q̂

〉
L2(Q̂)

+ λε2
1
|Q̂|‖kα ∗ h− (kα ∗ h)Q̂‖2

L2(Q̂)

≥ λ sup
Q

1
|Q|‖kα ∗ (f − u)− (kα ∗ (f − u))Q‖2

L2(Q).

Therefore,

|ε||h|BV + λε2
1
|Q̂|‖kα ∗ h− (kα ∗ h)Q̂‖2

L2(Q̂)

≥ 2λε
1
|Q̂|

〈
kα ∗ (f − u)− (kα ∗ (f − u))Q̂, kα ∗ h− (kα ∗ h)Q̂

〉
L2(Q̂)

.

(21)
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Taking in (21) ε > 0, dividing by ε, and letting ε → 0, we have, for any h ∈ BV ,

|h|BV ≥ 2λ
1
|Q̄|

〈
kα ∗ (f − u)− (kα ∗ (f − u))Q̄, kα ∗ h− (kα ∗ h)Q̄

〉
. (22)

Similarly, with h = u in (20), −1 < ε < 0, dividing by ε, and letting ε → 0, we
get

|u|BV ≤ 2λ
1
|Q̄|

〈
kα ∗ (f − u)− (kα ∗ (f − u))Q̄, kα ∗ u− (kα ∗ u)Q̄

〉
. (23)

Therefore, (22) and (23) imply (19).

(ii) Let w ∈ BV arbitrary, and let h = w − u ∈ BV , or w = u + h. We have

F(w) = |w|BV + λ sup
Q

1
|Q|‖kα ∗ (f − w)− (kα ∗ (f − w))Q‖2

L2(Q)

= |u + h|BV + λ sup
Q

1
|Q|‖kα ∗ (f − (u + h))− (kα ∗ (f − (u + h)))Q‖2

L2(Q)

= |u + h|BV + λ sup
Q

{ 1
|Q|‖kα ∗ (f − u)− (kα ∗ (f − u))Q‖2

L2(Q)

− 2
1
|Q| 〈kα ∗ (f − u)− (kα ∗ (f − u))Q, kα ∗ h− (kα ∗ h)Q〉L2(Q)

+
1
|Q|‖kα ∗ h− (kα ∗ h)Q‖2

L2(Q)

}
.

(24)

Let Q̄ be the square that achieves the supremum in

sup
Q

1
|Q|‖kα ∗ (f − u)− (kα ∗ (f − u))Q‖2

L2(Q).

We have

|u + h|BV ≥ 2λ
1
|Q̄|

〈
kα ∗ (f − u)− (kα ∗ (f − u))Q̄,

kα ∗ (u + h)− (kα ∗ (u + h))Q̄

〉
L2(Q̄)

.
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This implies

F(w) ≥ 2λ
1
|Q̄|

〈
kα ∗ (f − u)− (kα ∗ (f − u))Q̄, kα ∗ u− (kα ∗ u)Q̄

〉
L2(Q̄)

+ 2λ
1
|Q̄|

〈
kα ∗ (f − u)− (kα ∗ (f − u))Q̄, kα ∗ h− (kα ∗ h)Q̄

〉
L2(Q̄)

+ λ
1
|Q̄|‖kα ∗ (f − u)− (kα ∗ (f − u))Q̄‖2

L2(Q̄)

− 2λ
1
|Q̄|

〈
kα ∗ (f − u)− (kα ∗ (f − u))Q̄, kα ∗ h− (kα ∗ h)Q̄

〉
L2(Q̄)

+ λ
1
|Q̄|‖kα ∗ h− (kα ∗ h)Q̄‖2

L2(Q̄)

= |u|BV + λ
1
|Q̄|‖kα ∗ (f − u)− (kα ∗ (f − u))Q̄‖2

L2(Q̄)

+ λ
1
|Q̄|‖kα ∗ h− (kα ∗ h)Q̄‖2

L2(Q̄) ≥ F(u).

Therefore, u is a minimizer.

Property (P) from Definition 7 could hold (even with equality) for distribu-
tions f , when kα is a sufficiently smoothing kernel. If kα is not sufficiently smooth,
we can introduce a very small amount of smoothing by additional convolution
with another kernel, say the Poisson kernel. In other words, the quantity kα ∗ f

could be substituted by Pδ ∗ kα ∗ f , where Pδ is the Poisson kernel with some
small δ > 0, thus making Pδ ∗ kα ∗ f analytic.

The following counter-examples in one dimension show that property (P)
(with equality or inequality) may not hold for instance for discontinuous functions
f when α = 0 (thus when kα ∗ f = f).

Example 1. Consider on R the intervals In = [2−n−1, 2−n], n ≥ 0, and let cn be
the midpoint of In. Let f : R→ R be defined by f(x) = 0 outside of [0, 1], and

f(x) =





+(1− 2−n) if x ∈ [2−n−1, cn] (n ≥ 1),
−(1− 2−n) if x ∈ [cn, 2−n] (n ≥ 1),
+1 if x ∈ [12 , 3

4 ],
−1 if x ∈ [34 , 1].

Then ‖f‖BMO = 1 and [12 , 1] is the interval where the norm is attained. Now let
h = −f on [0, 1

2 ] and h ≡ 0 otherwise. Then if ε > 0, f − εh attains its BMO
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norm on one of the intervals [2−n−1, 2−n], n ≥ 1 (actually the norm increases to
1 + ε as n →∞).

But, for n ≥ 1,
1

2−n

∫

In

(f − fIn)(h− hIn)dx = 1,

while
1
2

∫

[ 1
2
,1]

(f − fI0)(h− hI0)dx = 0,

thus (15) with equality “=” instead of inequality “≥” does not hold. A similar
counter-example can be constructed in two dimensions.

The following counter-example shows that inequality “≥” also may not hold
in (15) for discontinuous functions.

Example 2. Similarly, let In = [2−n−1, 2−n), n ≥ 0, and cn be the midpoint of the
interval In. Let Jn = [2−n−1, cn] and Kn = [cn, 2−n). On I0 let f = h = χJ0−χK0

and on In for n ≥ 1 let f = (1− 1
n)(χJn − χKn). Splitting each Jn and each Kn

into two half intervals denoted An and Bn, let h = χAn − χBn . Then f and h

have mean zero over all intervals In. Again we assume that f and h are zero
otherwise. We have Q̄ = I0 and

1
|Q̄|

∫

Q̄
f(x)h(x)dx = 1,

but for n ≥ 1,
1
|In|

∫

In

|f(x)− εh(x)|2dx = (1− 1
n

)2 + ε2

and
1
|In|

∫

In

f(x)h(x)dx = 0.

The following example shows that, at least in one dimension, if f and h are
sufficiently smooth (for example polynomials or analytic functions), then property
(P) from Definition 7 holds with equality in (15).

Example 3. Let f and h be polynomials or analytic functions on a bounded
interval I in R. Let Q = [x0 − r, x0 + r], be an arbitrary interval included in I.
Then the quantities 1

2r

∫
Q |f − fQ|2dx, 1

2r 〈f − fQ, h − hQ〉L2(Q), and 1
2r

∫
Q |h −

hQ|2dx remain polynomials or analytic functions of (x0, r). Let P (ε, x0, r) =
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1
2r

∫
Q |(f − εh) − (f − εh)Q|2dx, polynomial or analytic function in (x0, r) and

quadratic polynomial in ε. If (x0
0, r

0) achieves the maximum of P (0, x0, r), and if
(xε

0, r
ε), a bounded sequence, achieves the maximum of P (ε, x0, r), then there is a

subsequence (xεn
0 , rε) and εn → 0 such that limεn→0 P (εn, xεn

0 , rεn) = P (0, x0
0, r

0),
thus property (P) is satisfied in this case.

4.2 The case |u|BV + λ‖f − u‖Ẇ α,p

Consider here the minimization

inf
u

{F(u) = |u|BV + λ‖f − u‖Ẇ α,p

}
, (25)

for some α < 0, and 1 ≤ p < ∞. Thus F(u) is the sum of two non-differentiable
functionals at the origin. Assume that we “regularize” the second term (this is
often done in practice, for valid computational calculations) by smoothing at the
origin the Lp norm; thus substituting ‖f − u‖Lp by Rδ(f − u) ={∫ √

δ2 + |f − u|2pdx
}1/p

, for very small δ > 0.

Therefore, substitute the problem (25) by the regularized functional

inf
u
{Fδ(u) = |u|BV + λRδ(Iα(f − u))} . (26)

Let f ∈ V = Ẇα,p, and let V ′ be the topological dual of V . We have
V ′ = Ẇ−α,p′ , where p′ is the conjugate of p. Denote by 〈·, ·〉 the duality pairing
for V and V ′.

Problem (26) can be seen as a particular case of a more general case, where
Rδ is a Gateaux-differentiable functional on the Banach space V , with contin-
uous Gateaux derivative. For (any) fixed f ∈ V , we have R′

δ(f) ∈ V ′ and
〈R′

δ(f),−v〉 = limε→0
Rδ(f−εv)−Rδ(f)

ε , for any v ∈ V . For any f ∈ V , define now
the quantity ‖ · ‖α,∗ (in [0,+∞]) as

‖f‖α,∗ = sup
h∈BV, |h|BV 6=0

〈R′
δ(kα ∗ f), kα ∗ h〉

|h|BV
.

We also assume that for any f, h ∈ V ,

Rδ(f − εh) = Rδ(f) + ε
〈
R′

δ(f),−h
〉

+ O(ε2)
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in a neighborhood of the origin. Using the notation g(ε) = Rδ(f − εh) for fixed
f and h, this is equivalent with

g(ε) = g(0) + εg′(0) + O(ε2),

where g′(0) = 〈R′
δ(f),−h〉.

We have the following characterizations of minimizers for (26), a more gen-
eral case than (25). Note that these are more general than the quadratic case
considered in [34]. For the converse implications below, to show that some u is a
minimizer, we need more conditions on Rδ related to convexity. The functional

Rδ(f − u) =
{∫ √

δ2 + |f − u|2pdx
}1/p

, defined in the particular case of interest
to us, satisfies the assumptions mentioned above and the additional ones that are
given below.

Proposition 6.

(i) Assume that u = 0 is a minimizer of (26). Then ‖f‖α,∗ ≤ 1
λ .

(ii) Assume that ‖f‖α,∗ ≤ 1
λ , and assume that R′′

δ exists and it is a continuous
bilinear form on V , satisfying R′′

δ (v)(h, h) ≥ 0, for any v, h ∈ V . Moreover, we
assume that in a neighborhood of the interval [−1, 1] we have

g(ε) = g(0) + εg′(0) +
ε2

2
g′′(ξε),

with ξε between 0 and ε, and g′′(ξε) = R′′
δ (f − ξεh)(−h,−h) ≥ 0. Then u = 0 is

a minimizer of (26).

Proof.

(i) For any ε ∈ R and any h ∈ BV , we have

|εh|BV + λRδ(kα ∗ (f − εh)) ≥ λRδ(kα ∗ f),

|ε||h|BV + λ
[
Rδ(f) + ε 〈R′

δ(kα ∗ f),−kα ∗ h〉+ O(ε2)
]
≥ λRδ(f),

|ε||h|BV + λε 〈R′
δ(kα ∗ f),−kα ∗ h〉+ λO(ε2) ≥ 0.

Taking ε > 0, dividing by ε and letting ε → 0, we obtain

|h|BV ≥ λ
〈
R′

δ(kα ∗ f), kα ∗ h
〉
, thus

1
λ
≥ ‖f‖α,∗.
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(ii) Conversely, take any h ∈ BV . Then using the assumptions, we have

|h|BV + λRδ(kα ∗ (f − h)) ≥ λ
〈
R′

δ(kα ∗ f), kα ∗ h
〉

+ λRδ(kα ∗ f)

+ λ
〈
R′

δ(kα ∗ f),−kα ∗ h
〉

+
λ

2
g′′(ξ1)

= λRδ(kα ∗ f) +
λ

2
g′′(ξ1) ≥ λRδ(kα ∗ f).

Therefore, u = 0 is a minimizer.

Proposition 7. Assume that ‖f‖α,∗ > 1
λ .

(i) If u is a minimizer, then

1
λ

= ‖f − u‖α,∗ and
1
λ
|u|BV =

〈
R′

δ(kα ∗ (f − u)), kα ∗ u
〉
.

(ii) Suppose that u ∈ BV satisfies

1
λ

= ‖f − u‖α,∗ and
1
λ
|u|BV =

〈
R′

δ(kα ∗ (f − u)), kα ∗ u
〉
,

and assume in addition the same conditions from Proposition 6 (ii) on the regu-
larity and convexity of Rδ. Then u is a minimizer.

Proof. By the assumption and the previous result, u = 0 cannot be a minimizer.

(i) If u ∈ BV is a minimizer, then

|u + εh|BV + λRδ(kα ∗ (f − (u + εh))) ≥ |u|BV + λRδ(kα ∗ (f − u)).

Thus

|u + εh|BV + λRδ(kα ∗ (f − u)) + λε
〈
R′

δ(kα ∗ (f − u),−kα ∗ h
〉

+ O(ε2)

≥ |u|BV + λRδ(kα ∗ (f − u)).
(27)

By triangle inequality, we also obtain

|u|+ |ε||h|BV + λRδ(kα ∗ (f − u)) + λε
〈
R′

δ(kα ∗ (f − u),−kα ∗ h
〉

+ O(ε2)

≥ |u|BV + λRδ(kα ∗ (f − u)).

After terms cancellation and division by ε > 0, taking ε → 0, we obtain that for
any h ∈ BV ,

|h|BV ≥ λ
〈
R′

δ(kα ∗ (f − u), kα ∗ h
〉
,
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therefore
1
λ
≥ ‖f − u‖α,∗. (28)

Taking now h = u in (27), with −1 < ε < 0, after cancellations and division
by ε < 0 and letting ε → 0, we obtain

|u|BV ≤ λ
〈
R′

δ(kα ∗ (f − u), kα ∗ u
〉
. (29)

Combining (28) and (29), we obtain the desired results,

1
λ

= ‖f − u‖α,∗,
1
λ
|u|BV =

〈
R′

δ(kα ∗ (f − u), kα ∗ u
〉
.

(ii) Conversely, by the assumptions and taking ε = 1, we have

|u + h|BV + λRδ(kα ∗ (f − (u + h))) = |u + h|BV + λRδ(kα ∗ (f − u))

+ λ
〈
R′

δ(kα ∗ (f − u),−kα ∗ h
〉

+
λ

2
g′′(ξ1)

≥ λ
〈
R′

δ(kα ∗ (f − u)), kα ∗ (u + h)
〉

+ λRδ(kα ∗ (f − u))

+ λ
〈
R′

δ(kα ∗ (f − u),−kα ∗ h
〉

+
λ

2
g′′(ξ1)

= |u|BV + λRδ(kα ∗ (f − u)) +
λ

2
g′′(ξ1)

≥ |u|BV + λRδ(kα ∗ (f − u)),

thus u is a minimizer.

5 Numerical minimization algorithms

For numerical studies, we consider spaces of functions or distributions that are
periodic and Ω = [0, 1]2 is the fundamental domain in R2. We give in this
section the ingredients for minimizing in practice the proposed decomposition
models from Section 3, in a gradient descent and purely PDE approach, based
on Uzawa’s minmax algorithm [15]. We formally compute the associated Euler-
Lagrange equations, which are then discretized and solved by finite differences.
We do not have a convergence proof of our algorithms, but these are stable and
well-behaved in practice.
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5.1 Algorithms for (BV , ˙BMO
α
) decompositions

For α < 0, recall the minimization problem (12) for exact decompositions

inf
u
E(u) = |u|BV (Ω) + λ‖I−α(f − u)‖BMO(Ω) = |u|BV (Ω) + λ‖kα ∗ (f − u)‖BMO(Ω)

(30)

where kα(x) = ((2π|ξ|)α)∨ (x) (here the dimension is n = 2).

We show the steps to solve (30). Using the classical definition of the BMO

norm, we re-write (30) as

inf
u∈BV (Ω)

{
E(u) =

∫

Ω
|∇u|dx + λ sup

Q

1
|Q|

∫

Q
|kα ∗ (f − u)− cQ|dx

}
,

where α < 0, Q is a square with sides parallel with the axes, and cQ denotes a
constant which depends on kα ∗ (f − u) in Q. Here we take cQ to be the median
of kα ∗ (f − u) in Q. The main steps of the algorithm are as follows (see [28]):

1. Start with an initial guess u0.

2. If un is computed, n ≥ 0, evaluate kα ∗ (f − un) using the Fast Fourier
Transform and find a square Q = Qn that achieves the BMO norm of
kα ∗ (f − u) in Ω (by one of the methods proposed in [28]; here, we use the
dyadic squares and their 1/3 translations, as explained in [17]).

3. Fix Q the square obtained at the previous step, denote by χQ the charac-
teristic function of this square Q, and minimize with respect to u = un+1

the energy

E(u) =
∫

Ω
|∇u|dx + λ

1
|Q|

∫

Ω

∣∣∣kα ∗ (f − u)− cQ

∣∣∣χQdx. (31)

The associated Euler-Lagrange equation in u = un+1 can be computed, and
we obtain using gradient descent

∂u

∂t
=

λ

|Q|kα ∗ sign [(kα ∗ (f − u)− cQ) χQ] + div
( ∇u

|∇u|
)
, (32)

with Q = Qn and u = un+1. Note that cQ is the median of kα ∗ (f − u) in
Q.
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4. Repeat steps 2 and 3 using equation (32), until convergence (update un+1

and Qn+1 each time and repeat).

Similarly, for the minimization problem (10), again with s < 2 (α = s− 2),

inf
u,g

{
A(u, g) = |u|BV (Ω) + µ‖f − u−∆g‖2

L2(Ω) + λ‖I−sg‖BMO(Ω)

= |u|BV (Ω) + µ‖f − u−∆g‖2
L2 + λ‖ks ∗ g‖BMO(Ω)

}
,

(33)

re-written as

inf
u,g

{
A(u, g) =

∫

Ω
|∇u|dx + µ

∫

Ω
|f − u−4g|2dx + λ sup

Q

1
|Q|

∫

Q
|ks ∗ g − cQ|dx

}
,

where cQ is the median of ks ∗ g over the square Q, the main steps are as follows.

1. Start with initial guess u0, g0.

2. If un and gn are computed, n ≥ 0, evaluate ks ∗ gn using the Fast Fourier
Transform and find a square Q = Qn that achieves the BMO norm of ks ∗g

in Ω (by one of the methods proposed in [28]).

3. Fix Q the square obtained at the previous step, denote by χQ the charac-
teristic function of this square Q, and minimize with respect to u = un+1

and g = gn+1 the energy

A(u, g) =
∫

Ω
|∇u|dx + µ

∫

Ω
|f − u−4g|2dx + λ

1
|Q|

∫

Ω
|ks ∗ g − cQ|χQdx,

by solving the associated Euler-Lagrange equations using gradient descent

∂u

∂t
= 2µ(f − u−4g) + div

( ∇u

|∇u|
)
,

∂g

∂t
= − λ

|Q|ks ∗ sign [(ks ∗ g − cQ) χQ] + 2µ4(f − u−4g)

with Q = Qn and u = un+1, g = gn+1. Note that cQ is the median of ks ∗ g

in Q.

4. Repeat steps 2 and 3 using equation (32), until convergence (update un+1,
gn+1 and Qn+1 each time and repeat).
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5.2 Algorithms for (BV ,Ẇα,p) decompositions

For α < 0, recall the minimization problem (13)

inf
u
E(u) = |u|BV (Ω) + λ‖I−α(f − u)‖Lp(Ω) = |u|BV (Ω) + λ‖kα ∗ (f − u)‖Lp(Ω),

(34)

which is again minimized using Euler-Lagrange equation and gradient descent,
as follows. Solve to steady state

∂u

∂t
= λ‖kα ∗ (f − u)‖1−p

Lp(Ω)kα ∗
[
|kα ∗ (f − u)|p−2kα ∗ (f − u)

]
+ div

( ∇u

|∇u|
)
,

computing the convolutions using the Fast Fourier Transform.

Finally, for the minimization problem (11), recalled here with s < 2 (α =
s− 2),

inf
u,g

{
A(u, g) = |u|BV (Ω) + µ‖f − u−∆g‖2

L2(Ω) + λ‖I−sg‖Lp(Ω)

= |u|BV (Ω) + µ‖f − u−∆g‖2
L2(Ω) + λ‖ks ∗ g‖Lp(Ω)

}
,

(35)

we use again the associated Euler-Lagrange equations and gradient descent, for-
mally written as

∂u

∂t
= 2µ(f − u−4g) + div

( ∇u

|∇u|
)
,

∂g

∂t
= −λ‖ks ∗ g‖1−p

Lp(Ω)ks ∗
[
|ks ∗ g|p−2ks ∗ g

]
+ 2µ4(f − u−4g).

In practice, the above Euler-Lagrange equations are discretized using finite
differences. The calculations are stable and the numerical energy decreases versus
iterations.

6 Numerical results and comparisons

Figure 1 shows three Barbara test images, to be used in our experimental calcu-
lations.

Figure 2 shows a decomposition of f1 from Figure 1 using the Rudin-Osher-
Fatemi model (3). Note the loss of intensity on the face area.
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f1 f2

f3

Figure 1: Test images to be decomposed.
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u v+100

Figure 2: A decomposition of f1 from Figure 1 using the Rudin-Osher-Fatemi
model (3).

Figure 3 shows a decomposition of f1 from Figure 1 using the model (5) from
[28]. Here the oscillatory component is modeled as v = div(~g), ~g ∈ (BMO)2. We
obtain an improvement in the loss of intensity, however vertical and horizontal
textures are still kept in u.

Figure 4 shows a decomposition of f1 from Figure 1 using the model (6) from
[28]. Here the oscillatory component is modeled as v = ∆g, ∇g ∈ (BMO)2. The
decomposition is now more isotropic, textures are well captured in v including
non-repeated patterns. This comes from the property of BMO.

Figure 5 shows a decomposition of f1 from Figure 1 using the model (11).
Here the oscillatory component is modeled as v = ∆g, g ∈ Ẇ s,p, s = 0.2, and
p = 1. The parameters used are: µ = 1, and λ = 1. Now, mostly repeated
patterns are captured in v.

Figure 6 shows a decomposition of f2 from Figure 1 using the model (10).
Here the oscillatory component is modeled as v = ∆g, g ∈ ˙BMO

α
with α = 1.

The parameters used are: µ = 1, and λ = 0.001. As remarked earlier, non-
repeated patterns are also captured in v. We also show the numerical energy
decrease versus iterations for this test.

Figures 7-8 show decompositions of f2 and f3 from Figure 1 using the model
(11). Here the oscillatory component is modeled as v = ∆g, g ∈ Ẇ s,p with s = 0,
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u2 v2+100

Figure 3: A decomposition of f1 from Figure 1 using the model (5) from [28].
Here the oscillatory component is modeled as v = div(~g), ~g ∈ (BMO)2.

u3 v3+100

Figure 4: A decomposition of f1 from Figure 1 using the model (6) from [28].
Here the oscillatory component is modeled as v = ∆g, ∇g ∈ (BMO)2.
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u4 v4+100

Figure 5: A decomposition of f1 from Figure 1 using the model (11). Here the
oscillatory component is modeled as v = ∆g, g ∈ Ẇ s,p, s = 0.2, and p = 1. The
parameters used are: µ = 1, and λ = 1.

and p = 1. The parameters used are: µ = 1, and λ = 1.

Figures 9-10 show decompositions of f2 and f3 from Figure 1 using the model
(11). Here the oscillatory component is modeled as v = ∆g, g ∈ Ẇ s,p with s = 1,
and p = 1. The parameters used are: µ = 1, and λ = 0.0005.

Figure 11 shows a decomposition of f2 from Figure 1 using the model (11).
Here the oscillatory component is modeled as v = ∆g, g ∈ Ẇ s,p with s = 1.5,
and p = 1. The parameters used are: µ = 10, and λ = 0.00005.

Figure 12 shows a decomposition of f2 from Figure 1 using the model (12).
Here the oscillatory component v ∈ ˙BMO

−0.5
, λ = 200. The numerical energy

versus iterations is also shown, illustrating that the algorithm is stable and well
behaved in practice.

Figure 13 shows a decomposition of f2 from Figure 1 using the model (13).
Here the oscillatory component v ∈ Ẇα,p, α = −0.1, p = 1, λ = 1.25.

Figure 14 shows a decomposition of f2 from Figure 1 using the model (13).
Here the oscillatory component v ∈ Ẇα,p, α = −0.5, p = 1, λ = 15.

Figure 15 shows a decomposition of f2 from Figure 1 using the model (13).
Here the oscillatory component v ∈ Ẇα,p, α = −0.6, p = 1, λ = 30.
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u f−u+100

Figure 6: A decomposition of f2 from Figure 1 using the model (10). Here the
oscillatory component is modeled as v = ∆g, g ∈ ˙BMO

α
with α = 1. The

parameters used are: µ = 1, and λ = 0.001. The numerical energy versus
iterations is also shown.



Modeling Oscillatory Components... 307

u f−u+100

Figure 7: A decomposition of f2 from Figure 1 using the model (11). Here the
oscillatory component is modeled as v = ∆g, g ∈ Ẇ s,p with s = 0, and p = 1.
The parameters used are: µ = 1, and λ = 1.

In conclusion, we have shown experimental results and comparisons for image
decomposition f = u + v, with u ∈ BV and v ∈ ˙BMO

α
or v ∈ Wα,p, for some

α < 0. The case of Sobolev spaces gives very good cartoon-texture separation.
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[8] J.-F. Aujol, Contribution à l’analyse de textures en traitement d’images
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[23] A. Haddad, Méthodes variationnelles en traitement d’image, Thèse de Doc-
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