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1. Introduction

Let H1, . . . , Hq be hyperplanes in general position in complex projective space
Pn, q ≥ 2n+1. Being in general position simply means that any n+1 hyperplanes
have empty intersection. By a theorem of Dufresnoy [Duf2, Th. VIII], there exists
a constant K, depending only on the hyperplanes {H1, . . . , Hq} and the dimension
n, such that if f is a holomorphic map from the unit disc to Pn which omits the
hyperplanes H1, . . . , Hq, then f#(0) ≤ K, where f# denotes the norm of the
derivative of f with respect to the Fubini-Study metric on Pn and can be defined
by

(f#)2 =

∑

j<k

|fjf
′
k − fkf

′
j |2

‖f‖4
,

where ‖f‖2 = |f0|2 + . . . + |fn|2 for some choice of homogeneous coordinate func-
tions [f0 : . . . : fn] for f. In modern terms (see for instance [Ko, §3.10] or [Lang,
§VII.2]), Dufresnoy’s theorem says that the complement of 2n + 1 hyperplanes
in general position in Pn is complete hyperbolic and hyperbolically embedded in
Pn.

In [Duf2, p. 25], Dufresnoy remarks that the constant K depends on the hy-
perplanes Hj in a “completely unknown” way. Our purpose is to give an explicit
estimate for the constant K, and therefore an explicit lower bound on the ratio
of the infinitesimal Kobayashi metric (a. k. a. Royden’s function [Lang]) on the
hyperplane complement as compared to the Fubini-Study metric on projective
space.

To that end, let [X0 : . . . : Xn] be homogeneous coordinates on Pn, and let
H0, . . . , Hn be n+1 hyperplanes in general position in Pn given by linear defining
forms

Hj(X0, . . . , Xn) = aj0X0 + . . . + ajnXn

normalized such that

||Hj ||2 = |aj0|2 + . . . + |ajn|2 = 1.

Consider the (n + 1)× (n + 1)-matrix A = (ajk) and let

0 < λ0 ≤ λ1 ≤ . . . ≤ λn
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be the n + 1 eigenvalues of the matrix AA∗ listed in non-decreasing order. We
then define the following quantities:

λ(H0, . . . , Hn) def= λ0 and Λ(H0, . . . , Hn) def= λn

λ#(H0, . . . , Hn) def=
√

λ0λ1

λn
and Λ#(H0, . . . , Hn) def=

√
λn−1λn

λ0
.

(1.1)

We can now state our main theorem as

Theorem. Let H0, . . . , H2n be 2n + 1 hyperplanes in general position in Pn. Let

G = max
0≤j0<...<jn≤2n

max{log Λ(Hj0 , . . . , Hjn), log(n + 1)− log λ(Hj0 , . . . , Hjn)},

and

G# = min
0≤j0<...<jn≤2n

1
λ#(Hj0 , . . . , Hjn)

.

Let B be the binomial coefficient

B =
(

2n + 1
n + 1

)
,

and

K = 12,672
(
2.6 · 107 log B + 108

)6(4 log B+20)
GG#.

Let f be a holomorphic map from the unit disc |z| < 1 to Pn omitting H0, . . . , H2n.

Then,

f#(0) ≤ K.

When n = 1, the classical theorem of Landau [Land] gives effective upper
bounds, and very good bounds were obtained in [Hem] and [Jen]. Effective,
though very non-sharp, estimates can also be derived from Nevanlinna’s theory
with precise error terms [CY, §5.7–5.8]. For some symmetrical arrangements of
the omitted points, one even knows sharp estimates [BC1], [BC2].

Dufresnoy’s proof of his theorem was based on the deep results of Bloch and
Cartan [Ca], [Lang, Ch. V]. It is not clear whether this approach can give an
effective estimate. One attempt in this direction is [Hal].

The theorem of Dufresnoy can also be obtained from Borel’s theorem [Lang] by
using a compactness argument called the Zalcman-Brody rescaling lemma [Ko,
§3.6], [Lang, §III.2]. This proof does not give any effective estimate of K.
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If f omits 2n +1, instead of 2n+1, hyperplanes, there is an estimate of Cowen
[Co1] (see also [Co2]), which he gets by constructing negatively curved metrics
on the hyperplane complement. It seems difficult to adapt this method to the
case of 2n + 1 omitted hyperplanes, except of course for n ≤ 2 when they are
the same. For arbitrary n, there is also a negative curvature approach of Babets
[Ba1], [Ba2], but Babets’s estimates involve higher order derivatives or higher
associated curves.

In this paper, we obtain an explicit estimate by putting in a quantitative form
the argument from [Er1], where another proof of Dufresnoy’s theorem was given.
The proof in [Er1] was based on potential-theoretic considerations which also give
a form of the Second Main Theorem for holomorphic curves [ES]. A survey of
other results obtained with this method is [Er3].

To prove our main result we combine the method of [Er1] with two new in-
gredients. The first one is a quantitative form of the uniqueness theorem for
harmonic functions in the form of a generalization of the three circles theorem of
Hadamard by Nadirashvili [Nad]. The second ingredient is Theorem 4.2, which
gives an estimate for f#(0) in terms of the Fubini–Study area of the image of
f , in the case that f omits n + 1 hyperplanes in general position. This estimate
seems to be new even for n = 1, [Er2].

The plan of this paper is as follows. In section 2 we recall some formulas for
the Fubini-Study derivative and some of its basic properties. In section 3, we
recall the Riesz theorem and Jensen’s formula. In section 4, we show using the
Poisson formula and Harnack’s inequality that if a holomorphic map f from a
disc to Pn omits n + 1 hyperplanes in general position and covers finite area σ

measured in the Fubini-Study metric, then f#(0) can be effectively bounded in
terms of σ, the dimension n, and the omitted hyperplanes. In Section 5, we recall
Cartan’s Lemma in a form we will need. In Section 6, we state Nadirashvili’s
generalization of the three circles theorem. In Section 7, we recall a covering
lemma of Rickman that was also used in [Er1]. Finally, in section 8, we put the
ingredients together to give our Landau and Schottky theorems.

Acknowledgment. Work on this article began when both authors visited the
Christian Albrechts Universität zu Kiel with financial support from the Humboldt
Foundation and continued while the first author was a member at MSRI. The
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authors would like to thank these institutions for their financial support and
hospitality.

2. Fubini-Study Derivatives and Hermitian Linear Algebra

If

Hj(X0, . . . , Xn) = aj0X0 + . . . + ajnXn

are n + 1 linear forms defining n + 1 hyperplanes in general position in Pn nor-
malized as in the introduction so that

||Hj ||2 = |aj0|2 + . . . + |ajn|2 = 1,

then for any point [w0 : . . . : wn] in Pn, we have

(2.1) λ(H0, . . . , Hn) ≤

n∑

j=0

|Hj(w0, . . . , wn)|2

n∑

j=0

|wj |2
≤ Λ(H0, . . . , Hn),

where λ and Λ are defined as in equation (1.1).

Let f = [f0 : . . . : fn] be a holomorphic map from a domain in C to Pn

given by homogeneous coordinate functions fj which are holomorphic without
common zeros. Let f ′ = [f ′0 : . . . : f ′n]. We recall the following formulas for the
Fubini-Study derivative f# of f :

(f#)2 =
∂2

∂z∂z̄
log

n∑

j=0

fj f̄j(2.2)

=

n∑

j=0

n∑

k=0

f̄ ′j f̄k[f ′jfk − fjf
′
k]

‖f‖4 =

n∑

j=0

n∑

k=0

|fj |2|fk|2
f̄ ′j
f̄j

[
f ′j
fj
− f ′k

fk

]

‖f‖4(2.3)

=

n−1∑

j=0

n∑

k=j+1

|fjf
′
k − fkf

′
j |2

‖f‖4(2.4)

=
||f ∧ f ′||2
||f ||4 .(2.5)
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Proposition 2.1. Let H0, . . . , Hn be n + 1 hyperplanes in general position in
Pn given by homogeneous forms normalized so that the coefficient vectors have
norm 1. Let f = [f0 : . . . : fn] be a holomorphic curve in Pn with homogeneous
coordinate functions f0, . . . , fn. Let g = [g0 : . . . : gn] be the holomorphic curve in
Pn given by gj = Hj(f0, . . . , fn). Then,

λ#(H0, . . . , Hn) ≤ g#

f#
≤ Λ#(H0, . . . , Hn),

where λ# and Λ# are defined as in equation (1.1).

Remark. Only the left-hand inequality involving λ# will be used in the sequel.

Proof. With notation as defined preceding equation (1.1), by linear algebra,

λ0 ≤ ||g||2
||f ||2 ≤ λn and

√
λ0λ1 ≤ ||g ∧ g′||

||f ∧ f ′|| ≤
√

λn−1λn,

and hence the proposition follows from (2.5). ¤

3. The Riesz Theorem and the Jensen Formula

In this section we recall the Riesz Theorem and the Jensen Formula, and we
derive a corollary of the Jensen Formula that says a subharmonic function with
large Riesz mass cannot stay close to a harmonic function.

Let v be a C2 function on a domain in C. We recall the differential operator
ddc which can be defined by

ddcv =
∂2v

∂z∂z̄

dA

π
=

1
4
∆v

dA

π
,

where dA = dx∧dy is the Lebesgue area form on C. One of the advantages of the
ddc notation is that the factors 2 and π do not appear in fundamental formulas.
As usual the operator ddc is extended to the space D ′ of Schwartz distributions.
When v is subharmonic, 2ddcv defines a (locally finite, positive) Borel measure
known as the Riesz measure of v.

Theorem 3.1 (Riesz Theorem). Let v be subharmonic on the unit disc |z| ≤ 1
with finite Riesz mass. Then,

v(z) −
∫

|z|<1

log |z − ζ|2ddcv(ζ)

is harmonic on |z| < 1.
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Theorem 3.2 (Jensen Formula). Let v(z) be a difference of two subharmonic
functions on |z| ≤ R and let 0 < r < R. Then,

∫ R

r

dt

t

∫

|z|≤t

ddcv =
1
2

[∫ 2π

0
v(Reiθ)

dθ

2π
−

∫ 2π

0
v(reiθ)

dθ

2π

]
.

Corollary 3.3. Let v be a subharmonic function on |z| ≤ R and let u be harmonic
on |z| ≤ R. Let r < R and assume

(a)
∫

|z|≤r

ddcv = 1 and (b) |v − u| < ε for |z| ≤ R.

Then ε ≥ log
R

r
.

Proof. On the one hand by (a) and the Jensen Formula,

1
2

[∫ 2π

0
v(Reiθ)

dθ

2π
−

∫ 2π

0
v(reiθ)

dθ

2π

]
=

∫ R

r

dt

t

∫

|z|≤t

ddcv ≥ log
R

r
.

On the other hand by (b) since u is harmonic,

1
2

∫ 2π

0
[v(Reiθ)− v(reiθ)]

dθ

2π
≤ 1

2

∫ 2π

0
[u(Reiθ)− u(reiθ) + 2ε]

dθ

2π
≤ ε. ¤

4. From an Area Estimate to a Derivative Estimate

For a holomorphic curve omitting 2n + 1 hyperplanes in general position, our
eventual goal is to bound f#(0) explicitly in terms of the 2n + 1 given omitted
hyperplanes. What we will first bound is the integral of (f#)2 on a disc centered
at the origin. In this section, we see how to obtain a derivative bound from such
an area bound. This section is based on [Er2] and appears to be new even in
dimension one.

Proposition 4.1. Let f be a holomorphic function without zeros on |z| < 1 such
that |f(z)| < 1. Then, ∣∣∣∣

f ′(0)
f(0)

∣∣∣∣ ≤ − log |f(0)|2.

Proof. Let r < 1. Since
f ′(z)
f(z)

=
∂

∂z
log |f(z)|2,
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differentiating the Poisson formula for log |f(z)|2 gives us
∣∣∣∣
f ′(0)
f(0)

∣∣∣∣ =
1
r

∣∣∣∣
∫ 2π

0
e−iθ log |f(reiθ)|2 dθ

2π

∣∣∣∣

≤ 1
r

∫ 2π

0
− log |f(reiθ)|2 dθ

2π
= −1

r
log |f(0)|2

because | log |f(z)|2| = − log |f(z)|2. The statement follows letting r → 1. ¤

Theorem 4.2. Let f = [f0 : . . . : fn] be a holomorphic map from the unit disc
|z| < 1 to Pn which omits the n + 1 hyperplanes H0, . . . , Hn in general position.
If ∫

|z|<1

(f#)2
dA

π
≤ σ,

then

f#(0) ≤ 3
√

2
λ#(H0, . . . , Hn)

[
(2 log 2)σ + log(n + 1) + log

Λ(H0, . . . , Hn)
λ(H0, . . . , Hn)

]
.

Before giving a proof, we make some comments. The above theorem is really
only of interest when σ ≥ 1. When σ < 1 and n = 1, a theorem of Dufresnoy
[Duf1] (or see also [Hay1, Th. 6.1] or [CY, Th. 2.8.3]) says

[f#(0)]2 ≤ σ

1− σ
,

even without the assumption that f is zero free. The linear functions f(z) = az

show the Dufresnoy result is sharp in that setting. The same example shows that
one cannot remove the assumption on the omitted hyperplanes from Theorem 4.2.
Note also that our estimate does not even tend to 0 as σ → 0.

We briefly comment on the sharpness of the coefficient 6
√

2 log 2 < 5.89 in front
of σ. Consider the case n = 1 and a zero free holomorphic function. Let

fm(z) =
(

z − 1
z + 1

)m

.

Then, f#
m(0) = m, and because fm wraps the disc around the sphere so as to

cover m hemispheres,

σm =
∫

|z|<1

(f#
m)2

dA

π
=

m

2
.

Hence,
f#

m(0) = 2σm
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no matter how large m is, and thus the 5.89 we obtain in front of σ is at worst
2.95 times too big.

Proof. By first working on a disc of radius ρ < 1 and then taking a limit as
ρ → 1, we may assume without loss of generality that f is analytic on |z| ≤ 1. By
abuse of notation, let Hj also denote the linear forms defining the hyperplanes,
and normalize them so that ||Hj || = 1. Let uj = log |Hj ◦ f |2, and without loss of
generality, assume the least harmonic majorant of the uj on the unit disc |z| ≤ 1
is 0 and that maxuj(0) = u0(0). Let u = log

∑ |fj |2 and let v(z) = maxj uj(z).
Then u and v are subharmonic and satisfy

v ≤ log
∑

|Hj ◦ f |2 ≤ u + log Λ(H0, . . . , Hn) and(4.1)

v ≥ log
∑

|Hj ◦ f |2 − log(n + 1) ≥ u + log λ(H0, . . . , Hn)− log(n + 1).(4.2)

Let gj = Hj ◦ f and g = (g0, . . . , gn). Because
n∑

j=0

n∑

k=0

|gj |2|gk|2

‖g‖4 = 1,

we have
(
λ#(H0, . . . , Hn)f#(0)

)2
≤ (g#(0))2 ≤ 2max

j

∣∣∣∣
g′j(0)
gj(0)

∣∣∣∣
2

≤ 2(u0(0))2

by Proposition 2.1, formula (2.3), Proposition 4.1 and our assumption that

u0(0) = max
j

uj(0).

Thus, it suffices to bound u0(0).

Let 0 < r < 1. From the Jensen formula and the assumed bound on the integral
of (f#)2, we have

1
2

[∫ 2π

0
u(eiθ)

dθ

2π
−

∫ 2π

0
u(reiθ)

dθ

2π

]
=

∫ 1

r

dt

t

∫

|z|≤t
(f#)2

dA

π
≤ σ log

1
r
.

Thus, there is some point |z0| with |z0| = r so that

v(z0) + log(n + 1)− log λ(H0, . . . , Hn) ≥ u(z0) ≥ −2σ log
1
r

+
∫ 2π

0
u(eiθ)

dθ

2π

≥ −2σ log
1
r
− log Λ(H0, . . . , Hn),
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where the outside inequalities follow from (4.1), (4.2), and the fact that v = 0
when |z| = 1. Let j be the index such that

uj(z0) = v(z0)

and then apply Harnack’s Inequality to conclude

u0(0) ≥ uj(0) ≥ 1 + r

1− r
uj(z0)

≥ 1 + r

1− r

[
−2σ log

1
r
− log(n + 1)− log

Λ(H0, . . . , Hn)
λ(H0, . . . , Hn)

]
.

Taking r = 1/2, we get

u0(0) ≥ −3
[
(2 log 2)σ + log(n + 1) + log

Λ(H0, . . . , Hn)
λ(H0, . . . , Hn)

]
. ¤

5. Cartan’s Lemma

In this section we recall Cartan’s Lemma, a well-known fundamental estimate
whose significance in the study of function theory was recognized by Bloch and
made rigorous by Cartan.

Theorem 5.1 (Cartan). Let µ be a finite Borel measure on |z| < 1, and let Φ
be the Blaschke potential

Φ(z) =
∫

|ζ|<1

log
∣∣∣∣

z − ζ

1− ζ̄z

∣∣∣∣ dµ(ζ).

Let 0 < r < 1, let η < 1/4e, and let |z0| ≤ r. Then, there is a countable family of
exceptional discs Dj , the sum of whose radii does not exceed 4eη, such that for
those z with |z| ≤ r and not in any of the Dj , we have

Φ(z) > C(r, η)Φ(z0),

where

C(r, η) =
4

(1− r)2
log

1
η
.

Theorem 5.1 is stated and proved for finite sums in Cartan [Ca, §II.21], which
is also reproduced in [Lang, Th. VIII.3.3]. The argument for general µ with finite
mass is the same, so we omit the proof here.
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Corollary 5.2. Let v be a negative subharmonic function on |z| < 1 such that
for all ρ < 1, ∫

|z|≤ρ

ddcv < ∞.

Let r, η, z0 and C(r, η) be as in the theorem. Then, for all |z| ≤ r outside of a
countable set of discs the sum of whose radii is at most 4eη, we have

v(z) ≥ C(r, η)v(z0).

Remark. Note that the radius of each exceptional disc is at most r, and hence
the collective area of the exceptional discs is at most 4πeηr.

In [Ca, Th. V], Cartan states this result in the case v = log |g| for an analytic
function g with |g| < 1, but with a slightly worse expression for C(r, η). Cartan’s
proof only makes use of Theorem 5.1 in the case of a discrete measure, rather
than for a general measure as we shall do.

Proof. If v(z0) = −∞, the estimate is trivial, so we assume v(z0) is finite. Let M

be a large constant so that

M log r < C(r, η)v(z0),

and let ṽ(z) = max{v(z),M log |z|}. Note that ṽ is subharmonic, that ṽ(z) = 0
for |z| = 1 by the assumption that v(z) < 0, and that

∫

|z|<1

ddcṽ < ∞.

By the Riesz Theorem,

ṽ(z) −
∫

|z|<1

log
∣∣∣∣

z − ζ

1− ζ̄z

∣∣∣∣
2

ddcṽ(ζ)

is harmonic on |z| < 1. However, both ṽ and the integral potential vanish iden-
tically for |z| = 1, and so ṽ(z) is actually equal to the integral. We then apply
the theorem to conclude the existence of exceptional discs as in the statement of
this corollary such that for those z outside those discs and |z| ≤ r,

1
C(r, η)

ṽ(z) ≥ ṽ(z0) > v(z0) > M log r ≥ M log |z|.

We thus conclude that for these same z, we have ṽ(z) = v(z). ¤
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6. Nadirashvili’s Generalization of the Three Circles Theorem.

In this section we state a result of Nadirashvili [Nad] specialized to dimen-
sion 2. We slightly reformulate Nadirashvili’s statement to get explicit constants
convenient for our application.

Theorem 6.1 (Three Circles Theorem). Let u be a harmonic function in the
unit disc with |u| < 1. Let 0 < r < R < 1/2 and assume |u(z)| < rτ for |z| < r

and some τ > 0. Then, |u(z)| < 2(2R)τ for |z| < R.

Proof. As in [KM, Lem. 2.1], the classical Hadamard three circles theorem im-
plies, ∫ 2π

0
[u(ρeiθ)]2

dθ

2π
≤ ρ2τ r < ρ < 1.

Thus,
∫ 2R

r
2ρ

∫ 2π

0
[u(ρeiθ)]2

dθ

2π
dρ ≤ (2R)2τ+2 − r2τ+2

τ + 1
≤ (2R)2τ+2 − r2τ+2.

Trivially, ∫ r

0
2ρ

∫ 2π

0
[u(ρeiθ)]2

dθ

2π
dρ ≤ r2τ+2.

Let z0 be a point with |z0| = R such that |u(z)| ≤ |u(z0)| for |z| ≤ R. Then, by
Jensen’s Inequality,

(2R)2τ+2 ≥
∫ 2R

0
2ρ

∫ 2π

0
[u(ρeiθ)]2

dθ

2π
dρ

≥
∫ R

0
2t

∫ 2π

0
[u(z0 + teiθ)]2

dθ

2π
dt

≥
∫ R

0
2t

[∫ 2π

0
u(z0 + teiθ)

dθ

2π

]2

dt = [u(z0)]2R2. ¤

Proposition 6.2 (Remez Inequality). Let D be a disc of radius r in C and
let U be a subset of D with area απr2. Let P (x, y) be a real polynomial of degree
n on R2 and assume |P (z)| < ε for z in U. Then, for all z in D,

|P (z)| < ε
( e

2α

)n
.

Proof. See [Nad, Lem. 2]. ¤

If a is a complex number and r > 0, let D(a, r) denote the disc of radius r

centered at a.
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Theorem 6.3 (Nadirashvili). Let u be a harmonic function in the unit disc
such that |u| < 1. Let 0 < ρ < 1/5. Let U be a subset of D(0, ρ) with area
απρ2 > 0. Let

r =
1
2

( α

36e

)2
,

and assume r < ρ/2. If |u(z)| < ε < 1/9 for all z in U, then there is a point z0

in D(0, ρ) such that

(6.1) |u(z)| < 3
√

ε, for all z ∈ D(z0, r).

Moreover,

(6.2) log |u(z)| < log(9ε) log(1/(5ρ))

2 log
[

8
5

(
36e
α

)2
] + log 2 for all |z| < ρ.

Proof. Let z0 be a point in D(0, ρ) such that

Area(U ∩D(z0, r))
πr2

≥ α

72
.

Such a point exists because D(0, ρ) is covered by at most
(
3
√

2
⌈ρ

r

⌉)2

discs of radius r with centers on a square lattice. Let n = blog2r εc and let P be
the n-th Taylor polynomial of u. Because D(z0, r) ⊂ D(0, 1/2), by estimating the
error in Taylor’s theorem using |u| < 1, we know that for z in D(z0, r), we have

(6.3) |u(z)− P (z)| ≤ 2n+1rn+1 ≤ (2r)log2r ε = ε.

Thus, |P (z)| < 2ε for z in D(z0, r) ∩ U. By Proposition 6.2, if z is in D(z0, r),
then

|P (z)| ≤ 2ε

(
eπr2

2Area(U ∩D(z0, r))

)n

≤ 2ε(36e/α)log2r ε = 2 · ε1 + log2r(36e/α) = 2
√

ε,

where the last equality follows from our choice of r. This together with (6.3)
gives (6.1).

Let v(z) = u(4
5z + z0). Then, v is harmonic on the unit disc, |v| < 1, and

|v(z)| < 3
√

ε for |z| < 5
4
r.
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Let τ be such that 3
√

ε = (5
4r)τ . Then, we conclude by Theorem 6.1 that

|v(z)| < 2(5ρ)τ for |z| < 5
2
ρ.

Because D(0, ρ) ⊂ D(z0, 2ρ), we conclude that

|u(z)| < 2(5ρ)τ for |z| < ρ,

which gives (6.2). ¤

7. Rickman’s Covering Lemma

This section describes a covering lemma of Rickman [Rick] as corrected in
[Er1]. We provide a proof here to get a slightly better constant. If a is a complex
number and r > 0, let D(a, r) denote the disc of radius r centered at a. For a
complex number b with |b| < 1 and an integer m ≥ 1, denote by

ρm(b) def=
1

2m+1
(1− |b|).

Proposition 7.1. Let a be a complex number with |a| < 1 and for j = 0 . . . 14,

let
bj = a +

3
2
ρm(a)

a

|a|e
2πij/15,

where a/|a| is understood to be 1 if a = 0. Then

D(a, 2ρm(a)) ⊂ D(a, ρm(a)) ∪
14⋃

j=0

D(bj , ρm(bj)).

Figure 1. Illustration of Proposition 7.1.
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Proof. Without loss of generality, assume a ≥ 0. The proof is illustrated by
Figure 1. The dotted circle in the left-hand picture represents the boundary
of D(0, 1), and the bold circle is the boundary of D(a, 2ρm(a)). The picture on
the right is a magnification of the bold circle on the left with only three of the
covering discs of the form D(bj , ρm(bj)) drawn in.

The point is that all the covering discs have radius at least as big as ρm(b0).
Thus, it suffices to show that the sector of the ring (shaded in the figure on the
right)

{z : |z − a| > ρm(a), |z − a| < 2ρm(a),−2π/30 < arg(z − a) < 2π/30}

is contained in the disc D(b0, ρm(b0)). This is true because the four corner points
of the annular sector are easily seen to be contained in D(b0, ρ(b0)) using the
Law of Cosines on the triangles that have as vertices a, b0, and one of the corner
points of the sector, noting that the side lengths of the triangle and ρ(b0) vary in
direct proportion with 1− |a| as a varies. ¤

Lemma 7.2 (Rickman covering lemma). let µ be a Borel measure on |z| < 1
such that |z| < 1 has finite µ-measure. Let m ≥ 1 be an integer and let c > 1.

Then, there is a complex number a with |a| < 1 such that

µ(D(a, 2mρm(a))) ≤ 16mcµ(D(a, ρm(a)))

and

µ(D(0, 1/2m+1)) ≤ cµ(D(a, ρm(a))).

Proof. Choose a with |a| < 1 such that

µ(D(a, ρm(a))) ≥ 1
c

sup
|z|<1

µ(D(z, ρm(z))),

which immediately implies the second inequality of the lemma by considering
z = 0. The first inequality follows by iterating Proposition 7.1. ¤

8. Landau and Schottky Theorems

We now prove our upper bound on the Fubini-Study area covered by a holo-
morphic curve omitting 2n + 1 hyperplanes in general position in Pn.
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Theorem 8.1. Let f be a holomorphic map from the unit disc |z| < 1 to Pn

omitting 2n + 1 hyperplanes H0, . . . , H2n in general position. Then,
∫

|z|< 1
32

(f#)2
dA

π
≤ 36

(
2.6 · 107 log B + 108

)6(4 log B+20)
G,

where B is the binomial coefficient

B =
(

2n + 1
n + 1

)

and

G = max
0≤j0<...<jn≤2n

max{log Λ(Hj0 , . . . , Hjn), log(n + 1)− log λ(Hj0 , . . . , Hjn)},

where λ and Λ are defined in equation (1.1).

Proof. By a standard limiting argument we may assume f is holomorphic in a
neighborhood of |z| ≤ 1. Let [f0 : . . . : fn] be projective coordinate functions for
f, let

u = log
(|f0|2 + . . . + |fn|2

)
,

and for j = 0, . . . , 2n, let uj = log |Hj ◦ f |2, where as usual we also use Hj to
denote the linear forms defining the hyperplanes normalized so ||Hj || = 1. For
c > 1, by Lemma 7.2, there exists a and r such that

∫

|z−a|≤16r

ddcu ≤ 164c

∫

|z−a|≤r

ddcu

and such that

(8.1) σa,r
def=

∫

|z−a|≤r

ddcu ≥ 1
c

∫

|z|≤ 1
32

ddcu.

Let ũ(z) be the least harmonic majorant of max
0≤j≤2n

uj on |z − a| ≤ 16r. Define

v(z) =
1

σa,r
[u(a+rz)− ũ(a+rz)] and vj(z) =

1
σa,r

[uj(a+rz)− ũ(a+rz)].

Then vj are harmonic and negative on |z| ≤ 16 with max vj(z) = 0 when |z| = 16.

The function v is subharmonic on |z| ≤ 16 with

(8.2)
∫

|z|≤1

ddcv = 1 and
∫

|z|≤16

ddcv ≤ 164c.
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By equation 2.1, for any distinct n + 1 indices j0, . . . , jn, we have

max ujk
≤ log

n∑

k=0

|Hjk
◦ f |2 ≤ u + log Λ(Hj0 , . . . , Hjn)

and

u + log λ(Hj0 , . . . , Hjn) ≤ log
n∑

k=0

|Hjk
◦ f |2 ≤ max ujk

+ log(n + 1).

Thus,

(8.3) |v −max vjk
| ≤ ε for |z| ≤ 16 where ε =

G

σa,r
.

Because the vj are negative, this implies

v(z) ≤ ε for |z| ≤ 16 and v(z) ≥ −ε for |z| = 16.

Let J be an index set of cardinality n + 1, and let

UJ = {z : |z| ≤ 2 and |v(z)− vj(z)| < ε for all j in J} .

By (8.3), because we have 2n + 1 hyperplanes total, at every point z0 with
|z0| ≤ 16, there are (at least) n + 1 distinct indices j0, . . . , jn such that

|v(z0)− vjk
(z0)| ≤ ε for k = 0, . . . , n,

and hence there is at least one such index set J0 such that

Area(UJ0) ≥
4π

B
.

By re-ordering the indices, without loss of generality, we will assume J0 contains
0, . . . , n, from now on we will consider only these indices, and we will denote UJ0

simply by U. By shrinking U if necessary, we may assume

Area(U) =
4π

B
.

By the Jensen Formula and (8.2),

1
2

[∫ 2π

0
v(16eiθ)

dθ

2π
−

∫ 2π

0
v(2eiθ)

dθ

2π

]
=

∫ 16

2

dt

t

∫

|z|≤t

ddcv ≤ 164c log 8.

Because v(z) ≥ −ε for |z| = 16, we conclude that there is a point z′ with |z′| = 2
such that

v(z′) ≥ −2 · 164c log 8− ε.
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We now apply Corollary 5.2 to v(z)− ε with η−1 > 16eB to conclude that

v(z)− ε ≥ C(1/8, η)[v(z′)− ε]

for |z| ≤ 2 and outside a collection of discs with radii rj such that
∑

rj < 2/B.

As rj < 2, this implies the exceptional discs have collective area less than the
area of U, and so there is a point z0 in U with

v(z0) ≥ v(z0)− ε ≥ C(1/8, η)[v(z′)− ε] ≥ C(1/8, η)[−2 · 164c log 8− 2ε].

For 0 ≤ j ≤ n, because vj is within ε of v at z0, we conclude

vj(z0) ≥ −C(1/8, η)[2 · 164c log 8 + 3ε].

Applying the Harnack Inequality twice implies

vj(z) ≥ −9C(1/8, η)(2 · 164c log 8 + 3ε), for j = 0, . . . , n and |z| ≤ 12.

Letting η−1 → 16eB, we get for j = 0, . . . , n and |z| ≤ 12,

(8.4) vj(z) ≥ −2304
49

log(16eB)(2 · 164c log 8 + 3ε).

Now suppose there is a constant δ > 0 such that for any two indices j and k

with 0 ≤ j < k ≤ n, we have

|vj(z)− vk(z)| ≤ δ for all |z| ≤ 2.

Because at every point z, one of these n + 1 functions vj comes within ε of v(z)
and they are all within δ of each other, we have that

|v(z)− vj(z)| ≤ δ + ε for 0 ≤ j ≤ n and for all |z| ≤ 2.

We can now apply Corollary 3.3 with R = 2 and r = 1 to conclude

ε + δ ≥ log(2).

We then consider the case that ε < 1/18, and so from the above,

δ > log 2− ε >
1
2
.

In this case, there are indices j and k and a point z̃ with |z̃| ≤ 2 such that

|vj(z̃)− vk(z̃)| ≥ 1
2
.

Now, vj − vk is harmonic on |z| ≤ 12, |vj − vk| < 2ε on U, and

|vj − vk| ≤ M
def= 2 · 2304

49
log(16eB)

(
2 · 164c log 8 +

1
6

)
for |z| ≤ 12 by (8.4).
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Apply Theorem 6.3 to (vj − vk)/M, which is bounded by 2ε/M < 1/9 on U, to
conclude from (6.2) that

1
ε
≤ 36

M
(2M)

2 log 8
5(36eB)2

log(6/5) ≤ 36(2M)

2 log 8
5(36eB)2

log(6/5) .

Letting c → 1 and simplifying we get,

1
ε

< 36
(
2.6 · 107 log B + 108

)6(4 log B+20)
.

Because this is much greater than 18, there was no harm in our considering only
ε < 1/18. Combining the above with (8.1) and recalling that ddcu = (f#)2dA/π,

we conclude ∫

|z|≤ 1
32

(f#)2
dA

π
≤ σa,r ≤ G

ε
,

and hence the theorem follows. ¤

Theorem 8.2 (Landau type theorem). Let H0, . . . , H2n be 2n+1 hyperplanes
in general position in Pn. Let

G = max
0≤j0<...<jn≤2n

max{log Λ(Hj0 , . . . , Hjn), log(n + 1)− log λ(Hj0 , . . . , Hjn)},

and

G# = min
0≤j0<...<jn≤2n

1
λ#(Hj0 , . . . , Hjn)

.

Let B be the binomial coefficient

B =
(

2n + 1
n + 1

)
,

and let

K = 12,672
(
2.6 · 107 log B + 108

)6(4 log B+20)
GG#.

Let f be a holomorphic map from the unit disc |z| < 1 to Pn omitting H0, . . . , H2n.

Then for |z| < 1,

f#(z) ≤ K

1− |z|2 .

When n = 1, Landau’s original theorem gave a bound on |f ′(0)| in terms of
|f(0)| for analytic functions on the unit disc omitting 0 and 1. In this context,

f#(0) =
|f ′(0)|

1 + |f(0)|2 ,
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and so Theorem 8.2 also gives a bound on |f ′(0)| in terms of |f(0)|. Of course,
the bound is non-optimal in this special case.

As we discussed in the introduction, the Kobayashi metric on the complement
of the hyperplanes Hj is a metric, so Theorem 8.2 can be interpreted as a global
lower-bound over this hyperplane complement on the ratio of the infinitesimal
Kobayashi metric to the infinitesimal Fubini-Study metric. Unfortunately, our
method does not give any information in terms of the geometry of the omitted
hyperplanes on where the minimum ratio occurs. For geometrically symmetric
hyperplane configurations, one could hope to determine these minimum points.
This was done in the one-dimensional case in [BC1] and [BC2].

Note that the dependence on G in Theorem 8.2 is essentially best possible.
Indeed, consider n = 1 and consider the points 0, m and ∞ for m large. Then the
map fr(z) = erz omits the three points provided r < log m. Then, f#

r (0) = r/2
approaches (log m)/2 as r approaches log m. Because we have included 0 and ∞
among our three points, G# = 1 in this case. A straightforward computation
shows that

G = log(2)− log

(
1−

√
m2

1 + m2

)
.

An easy application of L’Hôpital’s rule also shows that

lim
m→∞

G

log m
= 2,

and hence the linear appearance of G in the inequality in Theorem 8.2 is correct.
Of course the enormous constant in front is not optimal.

Now consider the case where the three points are m, −m, and ∞ for m large.
In this case Bonk and Cherry [BC1] gave a sharp upper bound on f#(0). If
f1 denotes the universal covering map of C \ {1,−1} which sends 0 to 0, then
the map fm(z) = mf1(z) has the largest spherical derivative at the origin in
comparison with all maps omitting m, −m and ∞. One can even compute using
Schwarz triangle functions that

f#
m(0) = m

Γ(1/4)4

4π2
≈ 4.4m.

One sees as above that here G is asymptotic to 2 log m as m →∞ and that G#

is asymptotic to m, and thus, the hyperplane dependence through the term G#

is also not too bad.
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The appearance of the combinatorial coefficient B in the exponent of our es-
timate causes the estimate to deteriorate rather severely as the dimension n

increases. It would be interesting to find out if there must be some dependence
on n in the estimate beyond the fact that G depends implicitly on n. The ap-
pearance of this combinatorial constant also prevents our method from giving a
better bound when f omits more than 2n + 1 hyperplanes. If f omits more than
2n + 1 hyperplanes, the best estimate our method gives is to choose the 2n + 1
hyperplanes that give the best G from among the omitted hyperplanes. This is
clearly a deficiency in our approach. For maps to Pn omitting q hyperplanes,
it would be nice to prove an estimate that improves as q increases, as in [CY,
Th. 5.7.4] when n = 1.

Proof. By precomposing f with a Möbius automorphism of the disc, it suffices
to prove the theorem for z = 0.

Let σ be the upper bound on
∫

|z|≤ 1
32

(f#)2
dA

π

obtained from Theorem 8.1. We apply Theorem 4.2 taking the best choice of
n + 1 hyperplanes among our given 2n + 1 omitted hyperplanes to conclude that

f#(0) ≤ 3
√

2G#[(2 log 2)(32σ) + log(n + 1) + 2G] ≤ 11 · 32σ,

since log(n + 1) + 2G is clearly less than σ, and the factor 32 in front of σ comes
from rescaling D(0, 1/32) to the unit disc before applying Theorem 4.2. ¤

We conclude with a Schottky type theorem which bounds how close f(z) can
get to the omitted hyperplanes depending on the location of f(0).

Theorem 8.3 (Schottky type theorem). With the hypotheses and notation
of Theorem 8.2, let

δj(z) =
|Hj ◦ f(z)|

||f || ,

recalling that we have normalized the defining forms of our hyperplanes so that
||Hj || = 1. Then for j = 0, . . . , n and |z| < 1,

log
1

δj(z)
<

1
1− |z|

[
16 log

1
δj(0)

+ 8K2

]
.
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Proof. See [Duf2, §20]. ¤

References

[Ba1] V. Babets, Pseudoforms with negative curvature on CPn (Russian), Izv. Akad.

Nauk SSSR Ser. Mat. 50 (1986), 1326–1337, 1344; translation in Math. USSR-Izv.

29 (1987), 677–688.

[Ba2] V. Babets,Pseudoforms with negative curvature on CPn II (Russian), Izv. Ross.

Akad. Nauk Ser. Mat. 57 (1993), 132–138; translation in Russian Acad. Sci. Izv.

Math. 43 (1994), 119–125.

[BC1] M. Bonk and W. Cherry, Bounds on spherical derivatives for maps into regions

with symmetries, J. Anal. Math. 69 (1996), 249–274.

[BC2] M. Bonk and W. Cherry, Metric distortion and triangle maps, Ann. Acad. Sci.

Fenn. Math. 24 (1999), 489–510.
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