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Abstract: Let V be an algebraic variety in C™. We say that V satisfies the
strong Phragmén-Lindelf property (SPL) or that the classical Phragmén-
Lindelf Theorem holds on V if the following is true: There exists a posi-
tive constant A such that each plurisubharmonic function v on V which is
bounded above by |z|+0(|z|) on V and by 0 on the real points in V' already is
bounded by A|Im z|. We characterize the algebraic surfaces V' in C"™ which
satisfy (SPL) by using the behavior of their branch curves with respect to
many projections in C™ which are noncharacteristic for V' at infinity.
Keywords: plurisubharmonic function, Phragmén-Lindel6f theorem, alge-
braic surface, hyperbolic variety.

1. INTRODUCTION

An algebraic variety V' in C™,n > 2, has the property (SPL) if there exists a
constant A > 1 such that for each plurisubharmonic function v on V' the estimates

u(z) < |z|+o(|z]), z €V, and u(z) <0, z€ VNR",
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imply
u(z) < Allmz|, ze V.

By the classical Phragmén-Lindel6f Theorem, V' = C" satisfies (SPL) with A = 1.
Thus the varieties V' that have the property (SPL) are the ones for which a nat-
ural extension of the classical Phragmén-Lindel6f Theorem holds. This, however,
is not the only reason why they are of interest. In fact, there are several problems
concerning linear partial differential operators with constant coefficients for which
the property (SPL) plays an important role in their solution. The first result of
this type was obtained in Meise and Taylor [17]. There it was shown that for a
homogeneous polynomial P, € C[zy,- - , 2] of degree m > 2 and P(2/, zp41) :=
Po(2") = Zny1, the operator P(D) : C®°(R"*!) — C*°(R"*!) admits a continuous
linear right inverse if and only if the variety V (P) := {z € C"*! : P(—2) = 0} sat-
isfies (SPL). For n = 3 the latter property was characterized in [4], Theorem 5.1,
by properties of P,,. For a weight function w (e.g., w(t) = t¢,0 < o < 1) and
P € Clzy,...,z,] we showed in [8] that the operator P(D), acting on the space of
w-ultradifferentiable functions &,(R"™) of Beurling type, admits a continuous lin-
ear right inverse only if certain limit varietes T 4V (P) associated with V' (P) have
the property (SPL). A modification of this result by Heinrich [16] together with a
theorem of Hérmander [15] shows that P(D) acts surjectively on the space A(R™)
of all real analytic functions on R™ only if for each £ € V(P,,) NR"™, || =1, all
limit varieties T, 5(V (Pp,) — &) satisfy (SPL), where P, is the principal part of P
and where the limit varieties are computed at the singular point 0 € (V(P,,) —¢).

In [10] we characterized the algebraic surfaces in C" which satisfy (SPL), using
methods from [8] to characterize the linear partial differential operators that ad-
mit a continuous linear right inverse on the space &, (R?) of all w-ultradifferentiable
functions of Beurling type on R3. This characterization was then used in [12] to
show that an algebraic surface V' in C" satisfies (SPL) if and only if each of its
limit varieties T’, 4V satisfies (SPL).

In the present paper we give a different characterization of the algebraic sur-
faces V' in C™ which satisfy (SPL), one that is in the spirit of our characterization
in [6] of the local Phragmén-Lindelf condition PLj,(§) (see Definition 3.3) for an-
alytic varieties V in C3. To be more precise we sketch the structure of the present
paper. In Section 2 we introduce basic notation and recall results that are used



A Characterization of The Algebraic Surfaces... 141

later. In particular, we introduce real simple curves v and limit varieties T’ 4V’
of an algebraic variety V along v of order d < 1. In Section 3 we recall various
necessary conditions for algebraic varieties V' in C" to satisfy (SPL). A subset of
these necessary conditions shows that if V' satisfies (SPL) then V' is weakly hy-
perbolic in conoids (see Definition 3.9) and satisfies PLyjo.(£) at each £ € V NR™.
In order to show that these two necessary conditions are sufficient for surfaces we
investigate in Section 4 the branching behavior of V' with respect to projections
in C" that are noncharacteristic for V' at infinity. The essential observation is
that there exists a number ¢ € N such that for all such projections the branch
curves in V' with respect to m have a Puiseux expansion near infinity which has
rational exponents with denominator ¢q. This result and others from Section 4 are
used in Section 5 to prove the main theorem of this paper, Theorem 5.2, which
gives a new characterization of the algebraic surfaces in C™ that satisfy (SPL).
In particular, Theorem 5.2(b) shows that an algebraic surface V satisfies (SPL) if
and only if it satisfies PL;,.(€) at every real point £ € V' and is weakly hyperbolic
in conoids. While verification of these facts appears to require checking infinitely
many conditions, an essential point in the proof is that, up to compactness argu-
ments, one can reduce these to a more technical but finite set of conditions which
are given in 5.2 (c). In the final Section 6 we discuss some examples that show
how the main theorem can be applied.

The authors thank T. Heinrich for several helpful discussions on the subject

matter of the present paper.

2. PRELIMINARIES

In this section we fix the notation and recall some basic facts that are needed
in the subsequent sections.

Throughout this paper, | - | denotes the Euclidean norm on C", B(&,r) or
B™(&,r) denotes the open ball with center £ and radius r in C", and S™ denotes

the Euclidean unit sphere in R**1.

2.1. Tangent cones and the cone of limiting directions at infinity. (a) Let
V be the germ of an analytic variety at some point p in C". The tangent cone
T,V of V at p is defined as the set of all v € C" which are tangent to V at p.
Here v € C" is tangent to V' at p if there exist a sequence (p;);en in V' converging
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to p and a sequence (a;);en in C such that lim;_ a;(p; — p) = v. For a general
discussion of tangent cones at p, see Whitney [21], chapter 7. The tangent cone
defined here is Whitney’s cone C'.

(b) For an algebraic variety V in C" its cone of limiting directions V}, is defined
as

Vp, == {r lim i:7”20, zj €V, |zj| — oo}.
i=o0 ||

For a different description see [5], 2.4, where it is proved in particular that V}, is
an algebraic variety.

2.2. Definition. A simple curve v in C" is a map 7 : [, 00 — C" which for

some « > 0 and some g € N admits a convergent expansion

q

Yty = Y G with |g] =1.

j=—o00

The vector & is called the limit vector of v at infinity. The trace of 7 is defined as
tr(y) := vy([o, 0[). A real simple curve is a simple curve ~ satisfying tr(y) C R™.

2.3. Remark. (a) If v : [a, 00[ — C™ is a simple curve then for some 5 > « the
restriction of «y to [/, 00] is injective. Hence it is no restriction to assume that

is injective.

2.4. Definition. A real simple curve v in R™ is said to be in standard parametriza-
tion with respect to a basis (£1,...,&,) of R™ if for some ¢ € N we have (t) =

tE+ Yony ()€, where v, (t) = Y91 ay, 1974,

From [8], Lemma 2.5, we recall the following lemma.

2.5. Lemma. (a) Let V..C C" be a pure 1-dimensional algebraic variety in
C™ and let T be a branch of V N R™ at infinity. Then there exist a
basis (&1,...,&,) of R™, r > 0, and a real simple curve v in standard

parametrization such that T'\ B™(0,7) = tr(vy).
(b) Let v be a real simple curve in R™ and let (&1,...,&,) be a basis of R™
such that & is the limit vector of v at infinity. Then there are r > 0 and

a real simple curve § which is in standard parametrization with respect to
(&1,...,&) such that tr(y) \ B™(0,7) = tr(d).
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2.6. Definition. Let V' C C" be an algebraic variety of pure dimension k£ > 1,
let v : [a,00[ — C™ be a simple curve, and let d < 1. Then for ¢t € [a, c0] we
define

Vya = {w € C" 5(t) + wi € V} = L (V (1))

and we define the limit variety T, 4V of V of order d along v as the set
T,q4V :={C€C": (= lim z;, where z; € V, 44, for j € Nand
Jj—00
(tj)jen is a sequence in [a, o[ which tends to infinity}.

If it is clear from the context we will sometimes write Vy; or just V; instead of

V%d,t'

From [9], Theorem 10, Proposition 29, and Proposition 22, we recall the fol-
lowing results about limit varieties. More details are given in section 6 below.

2.7. Theorem. Let V' be an algebraic variety of pure dimension k > 1 in C", let
v i [a,00] — C" be a simple curve in C"™ with limit vector £ at infinity, and let
d <1 be given. Then the following assertions hold:

T, 4V is either empty or an algebraic variety of pure dimension k.
T2V =V,-¢.

If d <1 then w € T, 4V if and only if w+ N\§ € T, 4V for each A € C.
For each R > 0 there exists ag > o such that for each sequence (t;);en in

(a
(b
(c
(d

N — —

[, oo which tends to infinity, the varieties (V,, 44, B(0, R))jen converge
to Ty 4V N B(0, R) in the sense of Meise, Taylor, and Vogt [18], 4.5.

2.8. Remark. Let V be an algebraic variety in C™ of pure dimension k£ > 1 and let
~ be a real simple curve. If § is the real simple curve in standard parametrization
with tr(d) = tr(y) according to Lemma 2.5 then for each d < 1 we have T4V =
T, V.

To show this, note that by the proof of Lemma 2.5 in [8] there exist ¢ € N and a
Laurent series ¢ such that ¢(s) = s + o(s) and 6(t) = v(¢(t'/9)9). This implies
for 7(t) = ¢(t'/9)? that

7(t) 1
t

Vaar = @V =80) = 5V =) = (2 )V = 2(7(0)
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Because of lim;_. o @ = 1, this implies Ts 4V =T, 4V.

2.9. Definition. Let v : [a,00[ — R™ be a real simple curve, let d < 1, U a
subset of C", and R > « be given. We call
T(v,d,U,R) := | (v(t) + ')
t>R

the conoid with core -, opening exponent d, and profile U, with tip truncated at
R.

2.10. Definition. Two simple curves v and ¢ in C" are called equivalent modulo
d < 1 if for each zero neighborhood U in C™ and each R > 1 we have

[(~,d,U,R)NT(o,d,U, R) # 0.

If T is a branch of V NR™ at infinity as in Lemma 2.5 then T is said to be
equivalent to v modulo d if there exists a real simple curve ¢ which is equivalent
to v modulo d and satisfies tr(o) = T

From [8], Lemma 2.10, we recall:

2.11. Lemma. Let v and (3 be two simple curves in C" defined on [c, 00| for
some a > 0. Then the following assertions hold:

(a) Ify and B are equivalent modulo d for some d < 1 then their limit vectors
at infinity coincide.

(b) Ify(t) = 39— a;t’'7 and B(t) = 22:_00 b;t?/! are standard parametriza-
tions of v and 3 with respect to the same real basis X, then v and 3 are

equivalent modulo d < 1 if and only if

q !
(2.1) Z ajt!/1 = Z bt/ t € [a,o00],
j=dq j=di
or equivalently, |y(t) — B(t)| = o(t?) as t tends to infinity.
(¢) The relation “equivalence modulo d” defined in 2.9 is an equivalence re-

lation for real simple curves.

2.12. Definition. Let V be an analytic variety in C™ and let 2 be an open subset
of V.

(a) By Qeg (resp. Qging) we denote the set of all regular (resp. singular)
points of V in Q.
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(b) A function u : Q — [—o00, 00| is called plurisubharmonic if it is locally
bounded above, plurisubharmonic in the usual sense on €2,¢, and satisfies
u(z) = limsup u(¢)
(E€Qreg,(—2

at the singular points of V' in . By PSH(2) we denote the set of all
plurisubharmonic functions on €.

3. NECESSARY CONDITIONS

In this section we will derive necessary conditions for an algebraic variety V of
pure dimension k in C" to satisfy the following condition (SPL).

3.1. Definition. An algebraic variety V' in C" satisfies the condition (SPL) if
there exists a constant A > 1 such that for each u € PSH(V') the conditions ()
and () imply (), where

(@) u(z) < |z| +o(|z2]), z €V,
(B) u(z) <0, z€ VR,
(v) u(z) < Allmz|, z€ V.

We will write SPL(A) when we want to specify the constant A.

3.2. Remark. By the classical Phragmén-Lindel6f theorem for plurisubharmonic
functions on C", V = C" satisfies the condition SPL(1). Hence one can consider
algebraic varieties which satisfy (SPL) as those for which the classical Phragmén-
Lindeldf theorem holds. In [4], Proposition 2.8, we pointed out why it would be
too restrictive to require A = 1 in Definition 3.1.

Besides this interpretation the property (SPL) also plays a role in the character-
ization of those polynomials P € C[zy, ..., z,] for which the differential operator
P(D) : D'(R™) — D'(R™) admits a continuous linear right inverse, as was shown
in Meise and Taylor [17], Theorem 3.4 and in [4].

In order to state various necessary conditions for (SPL) we next recall several
definitions, beginning with the local Phragmén-Lindel6f condition that was used
by Hormander [15] to characterize those differential operators P(D) that are
surjective on the space A(R™) of all real analytic functions on R".
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3.3. Definition. For £ € R™ and rg > 0 let V be an analytic variety in B(&, )
which contains . We say that V satisfies the condition PLj,.(€) if there exist
positive numbers A and rg > r; > ry such that each v € PSH(V N B(£,r1))
satisfying

(@) u(z) <1, ze VN B, r) and
(B) u(z) <0, ze VNAR*"NB(&,r)

also satisfies

(7) u(z) < Allmz|, z€ VN B(& ).

For other equivalent definitions of PLj.(§) we refer to [6], Lemma 3.3.

3.4. Definition. Let V be an analytic variety in a neighborhood of a point £ €
V NR™. We say that V satisfies the dimension condition at £ if for each locally
irreducible component W of V' at &£, the dimension of W NR"™ as a real analytic

variety is equal to the dimension of W at £ as a complex variety.

Remark. If V satisfies PLjoc(§) at £ € V NR™, then V satisfies the dimension
condition at £. This follows from Meise, Taylor, and Vogt [18], Lemma 2.8, since
the condition PLj,. (&) implies the condition RPLj,. (&), defined in [18], 2.3.

3.5. Definition. (a) Let V be an analytic variety in C" which is of pure dimension
k>1in ¢ € V. A projection 7 : C" — C" is called noncharacteristic for V at
¢ if its rank is k, its image and its kernel are spanned by real vectors, and
TeV Nkerm = {0}.

(b) Let V' be an algebraic variety in C™ of pure dimension k£ > 1. A projection
7w : C" — C" is called noncharacteristic for V at infinity if its rank is k, its image

and its kernel are spanned by real vectors, and V}, Nkerm = {0}.

Hence a projection is noncharacteristic for V' at ( if its kernel is transverse to
V at ¢ and its image and kernel are spanned by real vectors.

3.6. Definition. Let V be an algebraic variety of pure dimension k£ > 1 in C",
let v : [a,00] — C™ be a real simple curve, let d < 1, and let ( € T, 4V NR".
We say that V' is (v, d)-hyperbolic at ¢ with respect to a projection 7 : C* — C"
which is noncharacteristic for T, 4V at ¢ if there exist a zero neighborhood U in
C™ and r > « such that z € VN I'(v,d,{ + U,r) is real whenever 7(z) is real. V



A Characterization of The Algebraic Surfaces... 147

is called (7, d)-hyperbolic at ( if it is (v, d)-hyperbolic at ¢ with respect to some
projection 7w as above.

By Meise and Taylor [17], Proposition 4.4, and [10], Proposition 3.5 and 3.9,
the following theorem holds.

3.7. Theorem. Let V be an algebraic variety in C" of pure dimension k > 1. If
V' satisfies (SPL) then the following assertions hold:

(a) V satisfies PLioc(§) at each £ € V NR™.
(b) For each real simple curve v in C" and each d € | — 00, 1], we have
(i) T, qV satisfies (SPL).
(i) For each & € (Ty,q4V )reg NR™ and each projection m : C* — C™ which
is noncharacteristic for T, 4V at §, V is (v, d)-hyperbolic at & with

respect to .

3.8. Corollary. Let V be an algebraic variety in C™ of pure dimension k > 1. If
V' satisfies (SPL) then the following conditions are fulfilled:

(a) V satisfies PLioc(§) at each & € V NR".

(b) For each real simple curve v in C" and each d € | — 00,1}, T, 4V satisfies
PLioc(C) at each ¢ € T, gV NR™ and V is (v, d)-hyperbolic at each real
point of T, 4V which is regular.

3.9. Definition. If an algebraic variety V in C" satisfies condition (b) of Corollary
3.8, then we say that V' is weakly hyperbolic in conoids (at infinity).

Remark. Definition 3.9 is the analogue of Definition 3.14 in [6] for the local
Phragmén-Lindelf condition. It should be compared with Definition 3.15 in [10],
which obviously requires a lot more than Definition 3.9.

From [10], Lemma 3.17, we recall the following necessary conditions for (SPL)
which are easy to check.

3.10. Lemma. Let V' be an algebraic variety in C" of pure dimension k > 1
which satisfies (SPL). Then the following assertions hold:

(a) WNR™#£( for each irreducible component W of V.
(b) The ideal I(V') :={p € Clz1...2,] : p|lv = 0} is generated by polynomials
with real coefficients.
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In section 5 we will use the fact that a result of Braun [3] for homogeneous
surfaces in C? also holds for homogeneous surfaces in C*. To formulate this
clearly, we recall the following definition from Anderson [1], resp. Hrmander [15],
Definition 6.4.

3.11. Definition. Let V be an analytic variety of pure dimension k£ in C™ and let
& e VR We say that V is locally hyperbolic at £ if there are a neighborhood
U of ¢ and a projection 7 : C* — C" which is noncharacteristic for V at £ such
that z € VN U is real whenever 7(z) is real.

3.12. Proposition. Let V' be a homogeneous algebraic surface in C™. Then for
e VNR", €] =1, the following assertions are equivalent:

(a) V satisfies PLjoe(€).

(b) After a real linear change of variables that identifies & with (1,0,...,0)
there exist positive numbers ¢ and 0, k € N, and holomorphic maps g; :
B?((1,0), 0) — C"2 satisfying g;(B*((1,0),0) NR?) CR" 2, 1 <j <k,
such that

k
VN(B*((1,0),0) x B"7%(0,)) = U{(thwj(%z’z)) : (21,22) € B*((1,0),0)}.

(¢) V is locally hyperbolic at &.

Proof. (a) = (b): After a real linear change of variables, we may assume that
¢=(1,0,...,0) € VNR"™ Then the set

W:={/eC"!: (1,7)eV}

is an algebraic curve in C"~! which contains the origin. We claim that W satisfies
PLjoc(0). To prove this, define
Gim {zeV: o1 < - and (2,...,5%) ¢ B1(0,1)}.
2 21 21

Obviously, G is an open neighborhood of £ in V. Hence we can choose 1 > 0 such
that VN B™(&,r1) D G. Since V satisfies PLyo.(€), it follows from [6], Lemma 3.3,
that there exist 0 < r9 < 7 and A > 1 such that PLj.(£) holds for V at &
with these parameters. Now let u be any function in PSH(W N B"~1(0, 1)) which
satisfies u(2') < 1, 2 € WNB"1(0,1), and u(2') < 0, 2’ € WNR"'nB"~1(0,1),
and define

©: G — [—00,00[, o(\,\2) == u(Z'), A€ BY(1,1/2), 2 e VN B"1(0,1).
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Obviously, ¢ is in PSH(V N B™(§,71)) and satisfies
0(z) <1, ze VN B"& ) and p(z) <0, 2/ € VAR N B™(&,r1).
Consequently, ¢ satisfies ¢(z) < A|Im z| for z € V. N B™(&, r2). This implies
u(?) = ¢(1,7') < AlIm(1,2")| = A|Im 2'|, 2/ € W N B"1(0,ry).

Hence W satisfies PLyo(0).

Now we apply [6], Proposition 3.16, to find a real linear change of variables in
C* ! 09 >0, >0, k€N, and holomorphic functions hj Bl(O, 00) — cn—2
satisfying h;(B(0, 00) NR) C R""2 such that

k
W N B0, 00) x B"1(0,6) = [ J{(C2, hj(¢2)) : G2 € B0, 00)}-
j=1
Next choose 0 < ¢ < 1/2 so small that for (21, z2) € B?((1,0), 0) we have z3/21 €
B1(0, 09) and define for 1 < j < k
ne 2
gj - BQ((LO)vQ) —C 27 gj('Zle?) = Zlhj(;l)-
Then it follows that (b) holds.

(b) = (c): From (b) it follows easily that the projection 7 : C* — C",
(21, .., 2n) = (21,22,0,...,0) is noncharacteristic for V' at £ and that z €
V N (B2((1,0), 0) x B"2(0,9)) is real whenever 7(z) is real. Hence (c) holds.

(c) = (a): This follows from standard arguments. O

4. CRITICAL LEVELS

To show that the necessary conditions in Corollary 3.8 are in fact sufficient
for (SPL) for algebraic surfaces V in C", we analyze the branching behavior of
V outside large balls with respect to various coordinate choices. This analysis is
prepared in the present section by the concept of critical levels.

4.1. Definition. Let V be an algebraic surface in C™ and denote by V}, its cone of
limiting directions. A linear subspace L of C” is said to be noncharacteristic for
V' at infinity (resp. at ( € V) if dim L = codim V' =n—2, L = spancLNR", and
LNV, ={0} (resp. LNTV = {0}). We denote the set of all linear subspaces of
C™ which are noncharacteristic for V' at infinity (resp. at ) by NC(V, c0) (resp.
by NC(V,)).
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To indicate why NC(V,c0) is not empty, we recall the following definition.

4.2. Definition. For n,l € N with 1 < | < n we denote by Grass(l,n) the
set of all [-dimensional C-linear subspaces of C". In the real setting we denote
the corresponding set by Grassg(l,n). Via complexification Grassg(l/,n) can be
considered as a subset of Grass(l,n).

For given L € Grass(l,n) choose a basis vy,...,v; of L and associate with it
the element v :=v1 A--- Ay € /\l C"™. Of course, different bases lead to different
vectors v, however, as is shown in [13], A.3.6, they can only differ by a scalar.
This means that Grass(l,n) can be embedded into PV as an algebraic subvariety
if N = (7)—1. (For the details, see [13], A.3.6.) A subset A of Grass(l,n) is
called algebraic if it is algebraic in PV under this embedding.

4.3. Lemma. Let V be a pure k-dimensional analytic variety in C*. For ( € V
let

N¢:= {L € Grass(n —k,n): LNT;V ={0}}.
Then the set A := Grass(n — k,n) \ N¢ is an algebraic subset of Grass(n — k,n).
Moreover, a projection w : C* — C" of rank k whose image and kernel are

spanned by real vectors is noncharacteristic for V at ¢ if and only if kerw ¢ A.

Note that Grassg(n — k,n) \ A is dense in Grassg(n — k,n). In particular,
NC(V,¢) # 0. Note that this result also holds for ¢ = co.

Proof. We may assume ¢ = 0. It is well known that N is an open and dense
subset of Grass(n — k,n) in the Zariski topology (cp., e.g., [13], 3.8, proof of
Corollary 2). Then the claim holds for A := Grass(n — k,n) \ N¢.

To prove the claimed density result, note that L € Grass(n — k,n) is in
Grassg(n — k,n) if and only if all its Plcker coordinates are real. Hence the
standard argument applies that is used to show that R™ \ B is dense in R" if B

is algebraic in C". O

4.4. Definition. Let V' be an algebraic surface in C* and L € NC(V, 00). Then
we denote by By, C V the branch locus of any projection 7 in C" with kerm = L
in the sense of Chirka [13], 2.7. Since two projections 71, w2 in C" which satisfy
ker m; = ker my = L have the same branch locus, the set By, is well-defined.

4.5. Lemma. For each algebraic surface V in C™, n > 3, the following assertions
hold:
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(a) If L € NC(V,00), then dim By, < 1.

(b) There is v > 0 such that for each L € NC(V,00) the set By, \ B(0,r) is
either empty or an algebraic variety of pure dimension 1.

(¢) There exists ¢ € N such that for each L € NC(V,0), each irreducible
component W of B, and each basis (by, ..., by,) of C" with by € W}, there
exist a compact set K, § > 1, and Laurent series » t,2<v<n,
such that

j<q aV?j

(4.1) WACt\ K = {t%l + i:z@y,jtjby ] > 5}.

v=2j<q

Proof. (a) is proved in Chirka, [13], Proposition 4.5. There it is also shown
that if a is an isolated point of B, then there are a neighborhood U of a and
complex 2-dimensional manifolds M, ..., M}, such that VN U = U§:1 M; and
BynNnU = U#j M; N M;. In particular, the set of isolated points of By is
independent of L. It is finite since the algebraic set By, has only a finite number
of connected components by Bochnak, Coste, and Roy [2], Théoreme 2.4.4. This
proves (b).

For the proof of (¢), let m be the degree of the algebraic variety V' in the sense
of Chirka [13], 11.3, i.e., m is the number of sheets of the projection mp; for an
arbitrary (n —2)-dimensional plane M in C™ such that VN M}, = {0}. Note that
each M € NC(V, 00) satisfies this requirement.

We fix L € NC(V,00). We may assume L = {(0,0)} x C" 2 and 7;(z) =
(21,22,0,...,0). Our aim is to reduce the proof to the hypersurface case, hence we
define for j = 3,...,n the projections 7;(2) := (21, 22, ;) and 7' (w1, w2, w3) :=
(w1, wz). Applying a unitary transformation in the last (n — 2) variables as in
the proof of Chirka [13], Corollary 3.6, we may assume that all the maps 7,
j =3,...,n, are almost single sheeted in the sense of [13], 3.6. The latter implies
in particular that m;: V' — C? is proper and that for Vj :=mj(V) the restriction
mi: VN w;l((‘/j)reg) — (V})reg is biholomorphic. Hence, by [13], Theorem 3.2,
the sets V; are algebraic subsets of C3. The sheet numbers of Vj and of V' coincide
since 77, = 7’ o w; and 7; is biholomorphic in an open subset of V. Hence Vj is
the zero variety of some square-free polynomial F; € C[Z1, Za, Z3] of degree m.

Fix j = 3,...,n. We claim that (4.1) holds for Vj instead of V, the projection
7/, and some ¢ < m?(m — 1). To see this, let D € C[Z1, Z5] be the discriminant
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of F; with respect to z;. Then deg D = m(m — 1). Let us assume that the line
M := {0} x C is noncharacteristic for the zero variety of D, i.e., for 7/(B;). Then
for each z € C there are no more than m(m — 1) points in 7’(B;) whose first
coordinate is . Above each of these points there are at most m points in Vj.
Since B;j C Vj; this means that for fixed = there are at most m?(m — 1) points
in B; whose first coordinate is z. Since for generic = each of the possible g-th
roots in (4.1) yields a different point, the claim is shown.

Let B; be the branch locus of 7/: V; — C?. We claim 7;(Br) C B;. To see this,
assume by way of contradiction the existence of z € By, with w := 7j(2) € B;.
Then w € (V})reg and hence z € Vieg by the properties of an almost single sheeted
map. Since 7; is biholomorphic in a neighborhood of z and 7’ is biholomorphic
in a neighborhood of w, we arrive at a contradiction to 7z, = 7’ o 7;.

Fix a basis (by,...,b,) of C" for which by € Wj. Note first that ¢ does not
depend on the choice of bo,...,b,. Hence it suffices to show the claim for the
standard coordinate system. In this case, the j-th component of any branch
curve is contained in the third component of B;, hence admits a Puiseux series
expansion for some ¢ < m?(m — 1). In particular, this q is a factor of (m?)!,
hence can be replaced by (m?3)!. Since m is independent of L, the claim is shown
for ¢ = (m3)!. O

4.6. Definition. Let V be an algebraic surface in C",  a real simple curve, d < 1,
and A a proper algebraic subset of Grass(n — 2,n) which satisfies NC(V, 00) D
Grassg(n — 2,n) \ A. A real number § < d is called A-admissible for ~, if for
each L € Grassg(n — 2,n) \ A each real simple curve 7 which is equivalent to ~y
modulo d and satisfies tr(7) C By NR™ is already equivalent to v modulo §.

4.7. Lemma. Let V' be an algebraic surface in C™, v a real simple curve, and A a
proper algebraic subset of Grass(n—2,n) which satisfies NC(V,00) D Grassg(n—
2,n) \ A. Then for each d <1 there exist AA(v,d) € [~o00,d[ such that

{6 < d:6is A-admissible for v} = |A%(v,d), d].
This implies in particular that A (v, d) is not A-admissible if A (v, d) > —oo.
Proof. Fix L € Grassg(n —2,n) \ 4, let W be a locally irreducible component of

By, at infinity, and 7 a real simple curve with tr(7) C By, NR™ which is equivalent
to v modulo d. Then Lemma 2.5 implies that v and 7 have the same limit vector
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& at infinity and that & € W), This shows that £ does not depend on L. Choose
a basis (by,...,b,) of R" with by = £&. By Lemma 2.5 we can assume that ~
and 7 are in standard parametrisation with respect to this basis, which does not
depend on L. Hence there exists [ € N such that in the basis (b1, ..., by,) we have

l
)= > ait!! t>a.

j=—o0

By the choice of the basis and Lemma 4.5 we have

q
(0= 3 b,
j=—00
where ¢ € N is the number that exists by Lemma 4.5. Now fix a number A which
is A-admissible. Then v and 7 are equivalent modulo A. By Lemma 2.11 this
implies

q l
(4.2) by =" a;t! £ > .
J=Aq J=Al
From (4.1) it follows easily that there exists ¢ > 0, not depending on L and T,
such that (4.2) holds with A replaced by A — . Hence Lemma 2.11 implies that
v and 7 are equivalent modulo § for each 6 € [A—¢, A]. Since A was an arbitrary
A-admissible number, this proves that the set of A-admissible numbers is open.
Since it is obviously an interval, the claim is proved. O

4.8. Definition. The number A“(y,d) from 4.7 is called the A-critical level of
the pair (v, d).

4.9. Definition. Let V be an algebraic surface in C", v a real simple curve,
d<1,and n €T,V NR"

(a) By Lemma 4.3 the sets A, := Grass(n —2,n) \ N, and A := Grass(n —
2,n) \ N are both algebraic subsets of Grass(n — 2,n). We let A(n) :=
ApU Ay,

(b) We say that n is a simple point of T, 4V if there are L € Grassg(n—2,n)\
A(n), a zero neighborhood D in C", and g > 1 such that there is at most
one real branch T' of By, N R™ which is contained in I'(~,d,n + D, p).

4.10. Lemma. Let V' be an algebraic surface in C", let d < 1, and let v(t) :=
Zé‘:k ajtj/l be a real simple curve in standard parametrization for which k € Z
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satisfies k > ld. Forn € T, 4V NR™ define A(n) as in 4.9 and assume that 1 is
not a simple point of T, 4V. Let v,(t) :=v(t) +nt? if d <1 and v, ==y ifd = 1
and denote by q the number from Lemma 4.5. Then there exists v € 7, v < dgq,
such that A (v, d) = v/q.

Proof. To show first that A := A4 (v, d) is finite, fix L € Grassg(n — 2,n) \
A(n). Since 1 is not a simple point of T, 4V, there are at least two different
branches S, T of By "R™ which both have non-empty intersection with I'(~y, d, n+
D,R) = T'(v,,d, D, R) for each zero neighborhood D in R" and each R > 1.
Hence S and T are equivalent to 7, modulo d. Since S and T are different, it
follows from Lemma 2.5 and Lemma 2.11 that we can choose § < d such that one
of these branches is not equivalent modulo 6 to vy,. Hence § is not A(7)-admissible
for v, and hence —oco < § < A.

Since A is not A(n)-admissible for -, by Lemma 4.7, there exist L € Grassg(n—
2,n) \ A(n) and a real simple curve 7 with tr(7) C By, which is equivalent to v,
modulo A +¢ for 0 < ¢ < 1 — A but which is not equivalent to v, modulo A.
Since 7 and v have the same limit vector at infinity, it follows from Lemma 2.5
and Lemma 4.5 that Z?:_Oo bjtj/ 9 is a standard parametrization for 7 in the
same coordinates as the ones for v. Hence Lemma 2.11 implies that for each
0 <e<d— A we have for all large t > 0

l q

(4.3) dooappprt= YT bt/

i=(ate)l i=(a+e)q

while

(4.4) > aith gt £ > bitd/
J=Al Jj=Agq

where n = 0 if d = 1. Because of k/l > d, the left hand sides of (4.3) and (4.4)
do not change. Hence we must have Aq € Z. If we let v := Aq we have v < dg
since A < d and A =v/q. O

4.11. Lemma. Let V be an algebraic surface in C™ and v a real simple curve in
R™ with tangent vector £ at infinity. Then the following assertions hold:

(a) Ifd=1,~(t) =&t, andn € T, 1V NR" then n is a simple point of Ty 1V
if and only if T(n+ &) — & is a simple point of Ty 1V for each T > 0.
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(b) Ifd <1 andn €Ty 4V NR" then n is a simple point of T 4V if and only
if n+ 7§ is a simple point of T 4V for each T € R.

Proof. (a) By Theorem 2.7 (b), we have T,V = Vj, — & Therefore, part (a)
follows by a slight modification of the proof of [6], Lemma 4.9(a).

(b) By Theorem 2.7 (c), n € T, 4V is equivalent to n +7& € T 4V for each 7 € C
and hence

T)(TyqV) = Tyyre(T qV) for each 7 € C.

Therefore, the exceptional analytic sets A C Grass(n — 2,n) for n and for n+ 7¢,
7 € R, coincide. Since one implication in (b) follows by specializing 7 = 0, it
suffices to prove the following assertion: If L € Grass(n — 2,n) \ A(n), a zero
neighborhood D in C", and g > 1 are given such that I'(vy,d,n+ D, o) contains at
most one branch of By NR™ then for each 7 € R there exist a zero neighborhood
Dy in C" and ¢! > 1 such that

(4.5) L(v,d,n+ 7€+ D1,01) CT(v,d,n+ D, ).

To prove this, fix L,D,p, and 7 and write v(t) = &t + o(t), where o(t) =
Z?;l_oo a;t’/1. Then o'(t) = Z?;l_oo aj%t(j_‘”/q. Hence there exist C' > 0 and
to > 1 such that

(4.6) o/ (1) < CtY4, t > .

Without restriction we can choose ty so large that for t > tg, s(t) := t + 7t¢ =
t(1 4 7t?71) is in the domain of definition of v for each t > t;. From (4.6) and
the generalized mean-value-theorem we get for ¢ > ¢g

(4.7)

lo(t)—o(s(t)] < |t—s(t)| sup |o'(t+Ao(t)—1))] < |T|tdC sup ]t+)\7td|_1/q.
o<1 o<1

Next choose a zero neighborhood D; in C" and t1 > tg such that for each ¢ > ¢
(1+ 7t Y4y +2D;)) c n+ D.
We can choose t; so large that by (4.7) we also have

o(t) —a(s(t)) € tDy.
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Since s(t)? = t4(1 4 7t?1)9, these choices imply

YO+t (0 + 7€ + D) = (t+ 7t)E + o () + (0 + D1) = 4(s(t)) — o (s(t)) + t*(n + D1)

t d
€606+ 0+2D0) = 1(6(0) + 4oy + 2D1) € 2(5(0) + 500 + D),
Since (4.5) follows from this, the proof is complete. O

4.12. Lemma. Let V be an algebraic surface in C", let v be a real simple curve
in R™ with limit vector £ at infinity, which is in standard parametrization y(t) =
Z?:_OO ajtj/q, where q is the number from Lemma 4.5. Let

My a={neT,qsVNR":nis not simple}.
(a) If d =1 and y(t) = &t then the set
M:={¢CeV,nS" (-t My}

is finite and My 1 \{=¢§} = Ueep{r¢—&§: 7> 0}
(b) Ifd = % for some v € Z, v < q, then the set

M :={¢ € Myq: (¢ =0}
is finite and Myq = Ueep{¢ + 76 7 € R}

Proof. (a) To argue by contradiction, assume that M is infinite. Then we can
choose an infinite set {( : k € N} in M. For each k € N let Ay denote the minimal
algebraic set in Grass(n — 2, n) which satisfies NC(V, 00) C Grassg(n —2,n) \ Ak
and AN T¢, —¢(Ty1V) = {0} for each A € Grassg(n — 2,n) \ Ax. Since Ay is
nowhere dense in Grass(n —2,n), also the set A := J, oy Ak is nowhere dense in
Grass(n—2,n) by the Baire category theorem. Hence there exists L € Grassg(n—
2,n) \ A. Since L is in NC(V, 00), Lemma 4.5 implies that there exist a compact
set @ C R", m € Ny, and real simple curves 7;,1 < j < m, such that

(4.8) BLN(R"\ Q) = U N(R"\ Q).

For 1 < j < 'm denote by &; the limit vector of 7; at infinity fix £k € N, let ¢ := (i,
and define ¢ : £ — (¢, t > 1. Since ¢ — ¢ is not simple, there are at least two real

simple curves 7 satisfying

tr(7) € B NR™ and tr(r) C I'(v,1,( —&,+D,R) # 0
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for each zero neighborhood D in C" and each R > 1. Since

T(7,1,( =&+ D,R)= | Jt6+t({ =&+ D) =T(3,1,D,R)
t>R
it follows in particular that there exists 1 < j < m such that v is equivalent
modulo 1 to 7;. By Lemma 2.11, this implies ( = ¢&; € {&1,...,&n}. Hence the
set M has at most m elements in contradiction to the assumption. O

5. SUFFICIENCY

In this section we will prove the main theorem of this paper, which states that
the necessary conditions which were derived in section 3 are also sufficient. In
fact we will prove more, namely, that only a finite set of conditions have to be
satisfied. To formulate this result, we first construct a specific set of real simple

curves.

5.1. Construction of a particular finite set C. Let V be an analytic surface
in C". For n € V;, NIR™ define o0y, : t — tn, t > 0. To begin the construction, we
first consider the set of real singular directions in V}, for which there are several
real branch curves of V' nearby with respect to almost all elements of NC(V, 00).
More precisely, for £ € R™, || = 1, this set is defined as

My :={n € (Vi)sing "R™ : 9| =1, n—¢&isnot a simple point of T, 1V'}.

It is easy to check that M; does not depend on the choice of £. If My = () then
let C := (). Otherwise we let

Co :={(op,1) :n € M}
and we are going to define recursively sets C;, j € N, satisfying the following

condition:

(5.1)
C; is a finite set and for each (v,d) € C; thereis v e€Z, v <q—j, such

q

that d = 2~ and v has a standard parametrization of the form ~(t) = Z a; t/4.
q i=v+1

To start the recursive definition, fix n € My. Then 0 € T, 1V =V}, —n. Let A(0)

be defined as in 4.9 and denote by A4 (g, 1) the A(0)-critical level of (o), 1).
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By Lemma 4.10 we have ¢gA%(0)(q,,1) = v(n) € Z with v(n) < ¢ — 1. Since M;
is finite by Lemma 4.12, the set C; defined as

Cr = {(0y, 8O0, 1)) s € My}
satisfies the conditions in (5.1) for j = 1.

Assume now that for some j € N, j > 2, the set C;_; is defined in such a way
that (5.1) holds for j — 1. To define Cj, let

Ci—1c:={(7,d) €Cj_1: there exists n € (T qV)sing NR", 17 is not simple}.

If Cj_1,. = 0 then let Cj := (). Otherwise fix (v,d) € Cj_1, and denote by ¢ the
limit vector of 4 at infinity. By the induction hypothesis it follows from (5.1)

that d = v/q for some v € N, v < g — j + 1 and that y(t) = g:wrl a;t’/1. Let

M, q:={n € (Ty,4V)sing NR" : (n,{) = 0 and 7 is not simple}

By Lemma 4.12, M, 4 is a finite set. For n € M, 4 define v, by v,(t) := ~(t) +
ntd = g=u+1 a;t"? with ay+1 = nand p < g — j. Since Cj_1. is finite, also
the following set is finite, where we let A(+,7n) be the minimal exceptional set

according to 4.9 for n € T, 4V:
Cj = {(y, A (,d)) : (3,d) € Cjmr e 0 € Myal.

By the above, each (v,d) € C; satisfies (5.1). Hence the induction step is com-
plete.

Now we claim

there exists N € N such that for each (v,d) € Cy all
5.2
(5:2) the points in (T, 4V )sing NR™  are simple.

To prove this, we argue by contradiction and assume that Cj. # () for each j € N.
Then for j € N, (v,d) € Cj. and n € M, 4, denote by A(j, (,d),n) the minimal
algebraic set in Grass(n — 2,n) which satisfies NC(V, 00) D Grassg(n — 2,n) \
A(7, (v,d),n) and ANT,(Ty 4V) = {0} for each A in Grass(n—2,n)\ A(j, (v, d), n).
For n € M; define A, in a similar way and let

A= Vh U U An U U{A(jv (%d)ﬂ]) .7 € N7 ('77d) € Cj,07 RS M('y,d)}'
neM
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As in the proof of Lemma 4.12 it follows that A is nowhere dense in Grass(n—2,n)
and that we can choose L € Grassg(n — 2,n) \ A C NC(V,0). By Lemma 4.5,
this choice implies that there exist a compact set Q € R", m € Ny, and real
simple curves 7;, 1 < j < m, such that (4.8) holds. Since these curves are all

different, we can choose 6 € | — oo, 1] so small that there are R > 1 and ¢ > 0
such that
(53) P(ij 67 B(07 5)7 R) N F(Tk7 57 B(()? 5)7 R) - @7 J 7é k.

Next choose p € N so large that (¢ —p)/q < § and fix (v,d) € Cp . and n € M, 4.
By (5.1) we then have

d=v/q<(¢—p)/qa<0.

By (5.3), this implies that I'(y,d,n + B(0,¢/2), R) = I'(v,,d, B(0,e/2), R) can
contain at most one of the curves 7,...,7,, which satisfy By N (R" \ Q) =
U;'n:l tr(7;) N Q. Hence 7 is a simple point of T', 4V, in contradiction to n € M, 4.
By this contradiction, the proof of (5.2) is complete.

5.2. Theorem. For an algebraic surface V in C", the following conditions are

equivalent:

(a) V satisfies (SPL).
(b) V' is weakly hyperbolic in conoids and V satisfies PLi.(§) at each £ €
VNR"™
(c) The following conditions are satisfied:
(1) V satisfies PLioc(§) at each £ € V NR™.
(2) V3, satisfies (SPL).
(3) For each & € VN S™™1 which is regular, V is (e, 1)-hyperbolic at
0€ Ty, V forvye:t— 1.
(4) For each (v,d) € C (C as in 5.1) T, 4V satisfies PLioc(n) at each n €
T, aVNOR"™ and V is (v, d)-hyperbolic at each point in (T 4V )reg NR™.

In order to prove Theorem 5.2 we need some preparation. To avoid notational
complications, we assume from now on that all real simple curves are defined on
[1, 00[.

5.3. Definition. Let V' C C” be an algebraic variety of pure dimension k, let ~
be a real simple curve in C", d < 1,R > 1, D a bounded open set in C", and let
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I' :==T(v,d,D, R) be a conoid. We say that V satisfies the conoidal Phragmén-
Lindelf condition PL(V,T") if for each compact set K C D there exist Ag > 1 and
R;1 > R such that each v € PSH(V NT') which satisfies

(@) u(z) <|z|?, zeVNT
(B) u(z) <0, zeVnNnI'NR"

also satisfies

(7) u(z) < Apllmz|, zeVNI(y,d K,Ry).

The following two lemmas can be proved by a slight modification of the argu-
ments that we used to prove Lemma 5.6 resp. Lemma 5.7 in [6].

5.4. Lemma. Let V be an algebraic variety of pure dimension k in C". Let ~ be
a real simple curve, R > 1,d <1, and D a bounded open set in C™. Assume that
R 1sup{|z| : z € D} < 1/2. Then the following assertions hold:

(a) If V satisfies PL(V,T'(v,d, D, R)) then there exists Ry > R such that for
each open subset G of D and r > Ry, V satisfies PL(V,T'(v,d, G, ).

(b) If for each & € DNT, 4V NR™ there exist an open neighborhood D¢ C D
of & and R¢ > 1 such that V satisfies PL(V,T¢) for the conoid T'¢ :=
['(v,d, D¢, Re) then V satisfies PL(V,I'(v,d, D, R)) for each R > 1.

5.5. Lemma. Let V be an algebraic variety of pure dimension k in C™, let v be a
real simple curve and d < 1. If V is (v, d)-hyperbolic in & € T, gV NR™ then there
exists a zero-neighborhood G in C™ such that V satisfies PL(V,T'(v,d,§ + G, r))
for each r > 1.

For the proof of Theorem 5.2 we will also need the following technical lemma
which shows that the behaviour of the limit variety 7, 4V at point § € T, 4V tells
something about V' in a suitable conoid I'(v,d, £ + G, 0).

5.6. Lemma. Let V be an algebraic surface in C", let v be a real simple curve
which is in standard parametrization with respect to the canonical basis of R™,
and let d < 1. Assume further that 0 € T, 4V and that 7™ : (z1,...,2,) —
(21,22,0,...,0) is noncharacteristic for T, 4V at 0. Then for each zero neigh-
borhood D in C" there are € > 0,8 > 0, and o1 > 1 such that G := B(0,¢)? x
B"2(0,6) is contained in D and

VN F(77d7G7 Ql) - F/(’]T © VadaB(07€)27 Ql)
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18 proper.

Proof. Since 7 is noncharacteristic for T, 4V at 0, we can apply [6], Lemma 3.10,
tofind e; > 0and 0 < §y < 1 such that Gy := B(0,£1)?xB"2(0, 61) is contained
in D and such that

(5.4) T, 4V NGy C T, 4V N B(0,e1)* x B"2(0,8).

Then fix 0 < e < &1 and §y < d < J2 < 7 and choose 0 < 1 < min(d; —da2, d —dp).
We claim that for suitable r > 1:

(5.5) VNI'(v,d, B(0,€)*x B""2(0,05),7) € VNT(v,d, B(0,¢)>x B"2(0,6),r).
To prove (5.5) let
K :=B(0,e)? x B"=2(0,62) and G;:=KNT,,V+ B"(0,7n).

Using Theorem 2.7 (d) it follows as in the proof of [6], Lemma 2.8, that there
exists r > 1 such that K NV, 4 C Gy for all ¢ > r. To derive (5.5) from this, fix
z = (t) +t¥ € V, where t > r and ¢ € B(0,¢)? x B"2(0,82). This implies
¢ € V4. Therefore there exists w € K NT, 4V such that |( —w| < 7. From this
we get,

lws| < [Cs] +n < d2+m < b1
By (5.11) this implies |wsz| < dp and consequently

C3] < |ws| +n < dg+1n < 6.

Hence we have z € V N T(v,6,B(0,¢)2 x B"2(0,6),r) and (5.12) holds. To
derive the statement of the Lemma from (5.5), fix a compact set @ in I'(7 o
v,d, B(0,€)?,r) and let

L:={z€VNT(y,d,B(0,e)* x B"2(0,6),7) : 7(2) € Q}.

To show that L is compact, let

k kr
Uy = t) +t4B(0 20t k[ e
cimU{ment+ o0 e e )
Then (Ug)ren is an increasing sequence of open sets satisfying
| Ur =T'(m07.,d, B(0,2)% 7).
keN
Since () is compact, there is k € N such that Q C U,. Now fix any sequence

(2j)jen in L. Since L is bounded in C",(2;)jen contains a subsequence which

converges in C". Hence we may assume that (z;);en converges to some ¢ € L.
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Since the sequence (2)jen is in @ C Uy, we can choose a sequence (;)jen in
]kkal,k[ and (w;);en € B(0, ﬁs)Q x B"2(0,6) such that

Zj :’y(tj)+t?wj, jeN.
Passing to suitable subsequences we may assume that (¢;),;en converges to ty €
[kkal, k] and that (w;),en converges to wy € B(0, kiﬂa)? x B"=2(0,8) C B(0,e)%x
B"2(0,42). Since

¢ =(to) + tgwo
is also in V', we have ¢ € VNI'(y,d, B(0,£)?x B"~2(0,2), 7). By (5.5) this implies
¢ € VNT(y,d,B(0,6)* x B"2(0,8),r). Since 7(¢) = lim;j_,oo m(25) = lim;je0 Z;
is in @, we proved ¢ € L. Since Q was any compact set in I'(r oy, d, B(0,€)?,r),

the Lemma is proved with G := B(0,¢)? x B"2(0,5) and g = 7. O

The definition of weak hyperbolicity in conoids has no requirement on the
behaviour of V' in conoids of the form I'(v,d,n + G, ¢) for singular points 7 in
T, 4V NR". If 1 is a simple point then one can conclude that V' is in fact (v, d)-
hyperbolic at 7, if it has this property at all neighboring regular points. To prove
this, we need the following lemma.

5.7. Lemma. Let V be an algebraic variety in C" of pure dimension k > 1. Let
v be a real simple curve in C*, d > 1, and k € (Ty gV )reg "NR™. If V is (v,d)-
hyperbolic at k, then V is (v, d)-hyperbolic at k with respect to each projection w

which is noncharacteristic for T, 4V at k.

Proof. By Lemma 5.5, there exist a neighborhood G in C" and ¢ > 1 such
that V satisfies PL(V,I'(v,d, k + G, p)). Then a modification of the proof of [6],
Lemma 3.4 and Lemma 3.19, shows that by a variation of the proof of [6], Propo-
sition 3.12, it follows that V is (v, d)-hyperbolic with respect to each projection
7 which is noncharacteristic for T, 4V at . U

5.8. Lemma. Let V be an algebraic surface in C™, let v be a real simple curve,
d<1, andletn € T, 4V NR" be a simple point of T, 4V . Assume that T, 4V is
locally hyperbolic at n and that there is an open neighborhood U of n such that V'
is (v, d)-hyperbolic at each ¢ € (T 4V )reg NR* NU. Then V is (7, d)-hyperbolic
at mn.

Proof. It is no restriction to assume that the limiting vector & of v at infinity is
in V},. Since 7 is a simple point of T, 4V, there are L € Grassg(n—2,n)\ A(n), an
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absolutely convex zero neighborhood Dy in C", and g > 1 such that there is at
most one real branch T of Br, NR™ which is contained in I'(v, d, n + Dy, ¢). Since
LNV, =0, & does not belong to L. We choose & € R™ and &3,...,&, € L, such
that (&1,...,&,) is a basis of R™. Without restriction we may assume that this is
the standard basis of R™ and that ~ is in standard parametrization for this basis.
Obviously, the projection 7 : (21,...,2,) — (21, 22,0,...,0) is noncharacteristic
for T', 4V at 1. In the sequel we assume without loss of generality that n = 0.

Next note that T, 4V is locally hyperbolic at n = 0 by hypothesis. We claim
that T, 4V is locally hyperbolic at 7 = 0 for the given projection 7. To prove
this, note that

(5.6) [T%dv]o = U [Wj]m

where W} is a complex manifold which satisfies the dimension condition. For d =
1 this follows from Proposition 3.12 and for d < 1 it follows from Theorem 2.7 (a)
together with [6], Proposition 3.16. From (5.6) it follows that T, 4V is locally
hyperbolic at 0 for each projection that is noncharacteristic for T’, 4V at the
origin. In particular, we may use the projection 7 defined above. Consequently,
we may assume that the set Dy is so small that z € T, 4V N 2Dy is real whenever
7(z) is real. Since 7 is noncharacteristic for T, 4V at the origin, it follows from
[6], Lemma 3.10, that we can choose €,0 > 0 such that

m: T,4V N B(0,2¢)* x B"%(0,8) — B(0,2¢)?

is a proper map and that D := B(0,£)?x B"2(0, §) is contained in Dy. Moreover,

it follows from Lemma 5.6 that we can choose € > 0 so small such that
(5.7) m: VNT(y,d,D,09) = I'(w07,d, B(0,¢)?, 02)

is proper for a suitable go > 1. Let I' := I'(vy,d,D, 02) and I" := T'(7 o
7v,d, B(0,€)?, 02). Denote by X the critical set for the covering map 7 in (5.7).
Shrinking D if necessary, we may assume that either ¥ N R? = ) or that there
exists m € N such that

(5.8) YNR? = Lmj tr(o;),
j=1

where o1, ..., 0, are real simple curves in I'" which satisfy

o;(t) —moy(t) = o(t?), 1 < j < mand tr(s;) Ntr(o;) =0, i # j.
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We first consider the case that X NR? = (). Let W be any sheet of V N T and
let
Wo:={z € W:n(z) € R?}.
If we show that Wy C R™ then it follows that V is(v, d)-hyperbolic at 0. To show
Wy C R™, note first that by the present hypothesis, W} is a real analytic manifold
in C" which is connected. Then choose ' € B(0,£)? N R™ such that

(5.9) Each ¢ € 7 1(x) N Ty 4V NB(0,£)? x B*2(0,6) is in (T,qV )reg-
Next define
G(t) == mon(t) + w't%, t > 0.
Then & is a real simple curve in I” N R2. Since Wy does not contain any branch
point over IV NR%, o := (7|w,) ! 0 & is an analytic curve in I'. Consequently,

o(t) = (1)

7 € D for all t > oo.

Hence we can choose a sequence (t;);ey with lim;_ |t;| = co such that

(5.10) lim U(tﬂ);d'y(tf) =k€T,qVND.

J—00 t5
By the continuity of 7, we have 7(x) = ' and hence x € (T 4V )reg NR™ by (5.9).
By hypothesis V' is (v, d)-hyperbolic at . Now note that 7 is noncharacteristic for
T, 4V at k because 7 is a biholomorphic map between some neighborhood of « in
T,.qV and a suitable neighborhood of «’ in C", which implies ker 7N T} (T5,4V) =
{0}. Therefore, it follows from Lemma 5.7 that V is (v, d)-hyperbolic at  for
the given projection 7. This implies that there exist a zero neighborhood G in
C™ and p3 > 1 such that each z € VNT'(v,d,k + G, p3) is real whenever 7(z) is

real. From (5.10) it follows that for j € N sufficiently large,
(o(t) = 7(t;))/t €+ G.

Hence o(t;) is in I'(o,d, k + G, 03). Since 7(o(t;)) is real, o(t;) must be real.
Since o (t;) is in Wy and since 7 o o(t;) is an interior point of I N R?, o (to) has
a neighborhood in Wy which consists of real points. Since Wy is a real analytic
connected manifold in C", it follows that Wy is contained in R™.

Ifin (5.8) m = 1, then the arguments above can be applied to the two connected
components of ' NR? \ ¥. If we assume that m > 1 in (5.8), then we apply the
arguments used above to the two connected components of I' N Y. NR? for which

the boundary does not contain tr(o;) and tr(c;) for ¢ # j. By these arguments
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it follows that over these connected components all points z in V' for which 7(z)
is real are real itself. In particular, By N R™ consists of at least two different
branches, in contradiction to the present hypothesis. O

To treat also points § € T, gV N R™ which are not simple points, we use the
following technical lemma which is a modification of [6], Lemma 5.10.

5.9. Lemma. Let V be an algebraic surface in C", let v : [1,00[— R"™ be a
real simple curve of the form (t) = (t,y2(t),...,W(t)) with |v;(t)] = o(t) for
2 < j < nast tends to infinity, and let 7 : (x1,...,2,) — (z1,22). Fix R; >0,
0<r; <1/2, for1<j<n and let

D = ﬁB(O, Rj), D' :=n(D), G := ﬂB(O,rj), G = 7n(Q).

J=1 J=1

Let A < d <1 and assume that for some o > 1
w: VNI(y,d,G,0) — I'(ro~,d G, o)
is proper. Furthermore, assume that the following conditions are satisfied:

(a) If ze VNT(v,d,G,0) \T'(v,A,3D, 0) satisfies 7(z) € R" then z € R™.
(b) Whenever L > maxg<j<n 3R; and z € VNI'(vy,d,G, o) is in I'(v,A, H, o)
for H= B(0,3R;) x B(0,3Rz) x B(0,L)""? then z € T'(v,A,3D, o).

(¢) V satisfies PL(V,T'(v,A,3D, 0)).
(d) If z € VNT(y,d,G,0) satisfies 7(z) € R? and 7(z) ¢ I'(r o7, A, D', 0)
then z € R™.

Then there exist A,0,04 > 0 such that, whenever v € PSH(V N I['(~v,d, G, p))
satisfies

(@) u(z) < |2I", = € V N\ T(3.d, G, 0) and
(B) u(z) <0, ze VAR*"NI(y,d,G, o)

then u satisfies

(v) u(z) < AlImz| for all z € VNT(y,d,0G, 04).

Proof. The assumption on ~ implies the existence of C1 > 0 and gy > p such that

(5.11) |z| < C1|z1] for z € T'(v,d, G, 0o).
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Since « is defined by a Puiseux series there is g; > 0 such that v admits a
holomorphic extension to the set

C\ (B(0, 01) U] — 00,0]).

The extension will also be denoted by ~. By the hypothesis on «, there is ¢ € N
such that () = Z?;ioo amtj/q for 2 < k < n. Hence there exist Cy > 0 and
02 > 1 such that for r = mino<;<, rj/rl we have

Ry r

(5.12)  |y4(t)] < Calt| ™7 < min( 1) fort € C, Ret > g9, 2 < k <n.

20R; 4’
Obviously, we may assume that gy = g1 = 02 and that gy is so large that
(5.13) 1+ 02(3)1@ <2.
00
Next choose 0 < o < 1 such that [z—1| < o implies |22 —1| < % and [z¢—1| < 3.
Then choose m € N so large that max(1 — %, %—ﬂ — 1) < o. Since the

conditions (a)-(d) hold for any ¢’ larger than o, we may assume that g is so large
that o2 'Ry < % Then let

(5.14)
£:= min(1 1,7 i) 0= min(i . = )
= 27 1,72, ) T 47,177,172d87~172d8(T1+T2)’2T1(1+U)
11
L:= —Ry/e, 03 1= 200.

10
We claim that there exists A; > 0 such that each v € PSH(V') which satisfies the
conditions () and ((3) of the lemma also satisfies the following two estimates

(5.15)  w(z) < Aj[Imz|, ze€VNIL(y,d,d0G,03),7(z) €T (mory, A, 2D, 03),

(5.16)  u(z) < Aq|z|®,  zeVNI(v,d,0G,03),m(z) € T'(mory, A,3D', 03).

To prove this claim, define

v: I(moy,d,G', 0) — [—00, 00[, v(2') := max{u(z) : 2 € VNI['(v,d, G, 03), 7(z) = 2'}.

Using the fact that 7: V N T'(v,d,G,0) — I'(wov,d,G’, o) is proper together
with the theorem about removable singularities of plurisubharmonic functions
(Hérmander, [15], 4.4), it is easy to see that v is plurisubharmonic. By («) and
the choice of C; in (5.11) we have v(2") < (Cq|z1|)%.

Let tg > p3 be given and define

Y: DxD— C? pla,b) = (tg+ etla, v2(to + etda) + etlb).
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To show that /(D x D) C I'(7w o ,d,G’, 0), note first that ¢ < 1/2. Hence for
each a € D, we have
(5.17) Re(to + etda) > tg — etg > /2 > 03/2 > 0o.
Therefore, we get from (5.12)
oty + etfa) —a(to)| < <t swp bt + peta)] < <HCa(5) 7

This implies that for each (a,b) € D x D we have by (5.13) and (5.14)

W (a,b) = (to, 72(t0)) € (0,72(to + etja) — 72 (to)) + et (D x D)
C ctf(1+ Co(2) (D x D) € G
and hence v (a, b) € (to,Y2(to)) + t3G’. As a consequence, we get
(5.18) vot(a,b) < (Cy(to+etd))? < C¥2%d, (a,b) € D x D.
Next fix a € D and b€ | — 1,1\ ] — Lt5 4, Lt5 . We claim
(5.19) P(a,b) ¢ T'(roy, A, D' o).

To prove this by contradiction, let us assume that for some t > p and w € D" we
have

Y(a,b) = 7oy (t) + tAw
which means
(5.20) (to + ctda, ya(to + ctda) + etdb) = (t + t2wy, ya(t) + t2ws).
The first component in the equality (5.20) gives
%O =14 t2 "ty —etdtta
and hence

t t t
(5.21) 1+ 2 Ty | —5?0 <2< 1+ tA | +5?0.

Since A — 1 < 0 by hypothesis, it follows from (5.21) and ¢ 'Ry < % that

m—1

t
(1 +s)?0 > |14+ t2 | > 1=t Hwy | > 1— 02 'Ry > —

and that

t 1
(1—5)?0§]1+tA*1w1|§1+gA*1R1§ mt .
m
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Since 0 < € < %, we get from the preceding two estimates
m—1 < to < m + 1.

m+1—" 1t m-1
By our choice of m this implies

A
to 1 39
22 ) >1- =
(5:22) (t) =740 40

Next we isolate ws from the second component in (5.20) and get

wy =t~ (ya(to + etda) + etdb — 12 (t)).
Because of (5.17) we can apply (5.12) together with (5.22), (5.20), and the defi-

nition of L to obtain the following estimate:

R
mt A > e LS~ Ul — [tAwy | et A

> ctd|p|¢—A
’wQ‘ —50’ ’ 20R;

t R 11 1 R
0)a 2> Ry Iig

]__
20 ~ 10 40) 50 =

by our choice of m and . Since this estimate contradicts the hypothesis |ws| <
Ry, our claim (5.19) is proved.

Next define
¢: DxD— [—o0,00, d(a,b) := (2C1te) "% o ¥(a,b).
Then it follows from (5.18) and (5.19) together with condition (d) that
¢(a,b) <1 for (a,b) €D x D,
¢(a,b) <0 for (a,b) €] —1,1[ x (] — 1,1[\ ] — Lt5 %, Lt5 ™).
By [4], Lemma 5.8, there is C3 > 0, not depending on u, such that

¢(a,b) < Cs (]Im al 4 |[Im /b2 — L2t(2)(A_d)

) for a,b € B(0,3/4).

(3/ 2)L7§0A d then  [4], Lemma 5.7, implies

}Im\/b2 L2t0 2A=d) ’ < 3|Imb|/v/5. On the other hand, if [b] < 3Lt5~%, then
‘Im \/ b2 — L2t ‘ < 4Lt5~%. This term can be estimated by a multiple of

|Im a| provided [Ima| is large enough. Hence there is Cy, not depending on u or
to, such that for a,b € B(0,3/4)

CyIm(a,b)| if [b] > 3Lt5 or [Ima| > Fr54,

Ctd=t i b <3Lt2 % and |Ima| < 4548



A Characterization of The Algebraic Surfaces... 169

To prove (5.15) and (5.16), fix z € I'(, d, 6G, p3). Then there are w € G and
t > p3 with

(5.24) 2 =~(t) + thw.

Of course, t and w are not unique. We start with some estimates that hold for
all choices of ¢t and w. Finally, the proof of (5.15) and (5.16) will be broken into
several cases with different additional assumptions concerning ¢ and w. To do
this let
] 1

(5.25) to:=Rez, a:= Ld Imzy, b= —5(22—72(21))-

ety ety
If we assume that z = (f) + % for some £ > %Qg and w € 20G then we get from
(5.24) and 7 (t) = t that tg = ¢ + ¢ Re ;. This implies

lg— 7?2(57"1 < f— ﬂ Reu?l\ <ty < f—i-fd’Re’LT)l‘ < t~+t~2(57"1
and hence
(5.26) — <

By our choice of § and the definition of a we now get

1.1 1 1
la] = —|Tm 2| = =(—)" Tm 1| < =(

1

d d

—— %207 < =226 < 3/4.
et ) € 1—25r1) n € n<3/

To derive an estimate for |b|, note first that from the hypothesis on 71 we get
(5.27) Rez >t — |thwy| >t —tdry > /2> 03/2 > po.

Since £ > 203/3 > 09 = 02 we can apply (5.12) and our choice of § to get

1 ~ . 1 - o
|b] = E@W(ﬂ — y2(21) + thio| < 5?(“ — 21| + tdg))
(5.28) 105 ' 0
= g(%)d(’@ﬂ + |a|) < E2d(r1 +19)26 < 3/4.

Thus we have shown a,b € B(0,3/4). From the definition of a and b it follows
that ¢(a,b) = m(z). Later we will also need the following estimate for |Imb|

which we obtain using (5.12):
(5.29)

1 1
| Im b = 5?HmZz —Imya(21)] < 6?(\ Im zo| + [Im(y2(21) — 72(Re 21))|)
0 0

-

1
< — ([ Im 2| + [72(21) — 12(Re 21)]) <
ety et

2
([Tm zo| + [Im 21]) < —[Im 2|.
ety

o
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Next we distinguish three cases:

Case 7(z) € I'(m oy, A, 3D/, p3):
Then there exist 7 > p3 and ¢ € 3D’ such that 7(z) = woy(r)+72¢. In particular,
the first components of these vectors coincide, which gives t + t%w, = 7 + 72¢1,

and consequently
t td
— =14 TA_1C1 — —w.
T T
Since § < e/rqy, |wi| < 071, and d < 1, this implies

t t t
1+ 7879 —e- < = <L+ 72710 e
T T T

From these estimates we derive

similary as above, where we derived the same type of estimate from (5.21). By
our choice of m, we get (t/7)% < 3/2. Next let  := 7, @ := 7%z — y(7)). Then
v(t) + t%h = z and 7(w) = 72479 € 3t2~4D’. Moreover,

t=1>

m—1 2 _ () —~(7) t\d
m—+1 = 3¢ and w 7d +(7')

To estimate @ note first that
1
|U~)1| = —d\t+tdw1 - T‘ = TAfa‘Cll < TAfd?)Rl < 57’1/2,
T

if we choose gy large enough. It also follows that

t— t 3
% < TAid‘Cll + (*)d‘wl‘ < TAfd?)Rl + =or; < 20ry.

T T 2
From this and (5.12) we get for 2<j <n

~ 1 t d T5 3
5] = 22 () = ()] + ()| < 26ma 2 + Sor, < 20

Next define tg,a, and b as in (5.25). Then it follows from our choice of ¢ and
(5.26) that (£/to)> < 22. Thus we have the following estimate

~\ d ~\ A

1 1/t 3/(1t R

Ima| = —|Imzi| == ( — ) JImwy| <2 () t879R <4—t5~
ety € \to € \to €
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To derive an estimate for |b| in the present case, we argue similary as in (5.28),
however, we use a different estimate from (5.12) to get by our choice of ¢

1 s N 1 .- Rs
bl < —(yo(t) — thpe) < — (| — f43th—dR,
o] < 6td(%( ) = 72(z1) + ths) < 875g(| Zl|20R + )
Ry . 3821 2122 11 Ry
< 32 |R 32 Ry|) < fR th=d < 3= T2yA-d
- td( = R1+ | 2|)—5t320 TP TAC 10 ¢ ©
= 3Lty

Hence the definition of ¢ together with (5.23) and ¢y < |z| implies
u(z) < v(r(z)) < (2C1t0)%p(a,b) < (2C1t)?Cut5 ™4 < 21CiCyts < 290 Cy|2|A.
This shows that (5.16) holds with A; := 2¢C{Cy.

Case |[Im 2| > thOA:

Then R
1
Ima| = —[Im 2| > —ltOA*d.
ety €

Hence we are in the first case of (5.23), and claim (5.15) follows using (5.29):
u(z) <w(n(z)) = (201750)%(@, b) < (2C1to)"Cy|Im(a, b)|
2¢C{13C
< zdcf@to —([Tm 1| +2[Tm 2]) < 1?4\ Im z|.
0

Case |Im 21| < Rit5 and 7(z) € TV(m 0, A, 2D, 03):

Then

z — (o
= ~(to) +tex for z= tA()'

0
The hypothesis of this case implies m(z) ¢ 2D’. Investigate its first coordinate:

|l‘1| = taA ‘Zl — Rez1| = taAHle’ < R; < 2R;.
Hence the second coordinate must satisfy |xa| > 2Ry. Since

1 1
b= —t5 "%y + — (12(Rez1) —y2(21))
€ ety

we can use the estimate for |z2|, the assumption of this case, and (5.12) in view
of (5.27) to get

2 A—d 1 R tOA_d R2 33R2 A—d 3 A—d
bl > ZtAIR I > Ry — 2) > o~ = SLep .
b= Jto "R — td‘ mzl|20R1_ R 5g) 2557 0
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Thus (5.23) and (5.29) imply as in the previous case

2¢0d3C,
9

u(z) < 28C¢CtdIm(a, b)| < |Im z|.

This proves (5.15) also in the remaining case. Altogether we showed that (5.15)
and (5.16) hold if we let A; := max(2?C{Cy,2¢C¢3C, /¢).

To complete the proof of the lemma, note first that by (5.15) the estimate ()
for u is already shown for z € VNT'(v,d, 0G, p3) with 7(2) & I (mwo~y, A,2D’, p3).
On the other hand, if 7(z) € I'(mweovy, A,2D’, p3), then there are two cases. First,
for z € VNI'(7y, A, 2D, 04), 04 > 03 sufficiently large, the estimate () for u follows
from hypothesis (c) since (5.16) gives estimate («) of PL(V,T'(vy, A, 3D, g)). For

the remaining case, consider

w: T (wovy, A, 3D, 03) — [—00, 00|,
w(z') = max{u(z) : 2 € VNI(7,d,6,G, 03) \T(v,4,3D, 03), n(z) = 2'}.

Then w is plurisubharmonic by (b) and the argument concerning removal of
singularities in [15], 4.4. We have w(2') < A;C{|2/| for 2/ € T(w o, A,3D’, 03)
by (5.16) and w(z’) < 0 for all real 2’ by (a) and estimate () for u. Hence the
arguments that were used for the proof of Lemma 5.5 (see [6], Lemma 5.7) also
apply here, and we get

w(z') < Allm 2’| for 2/ € T'(wony, A, 2D, 04)
for suitable A, o4 > 03. This completes the proof. O

5.10. Lemma. Let V be an algebraic surface in C", let v : [1,00[— R™ be a real
simple curve, d < 1, and assume that 0 € T, V. Let A := AAO) (~, d), where
A(0) is defined in 4.9, and assume that the following conditions are satisfies:

(a) 0 €T, qV is not a simple point of T, 4V .

(b) T, 4V is locally hyperbolic at each & € T, 4V NR".

(c) V is (v, d)-hyperbolic at n for each 1 € (T gV )reg NR™.

(d) For each ¢ € Ty AV NR™ there exist a zero neighborhood D¢ and o > 1
such that V' satisfies PL(V,T'(v, A, ¢ + D¢, 0¢))-

Then there exist an open zero neighborhood G and o > 0 such that V satisfies
PL(V,I'(v,d, G, 0)).
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Proof. By condition (a) and Lemma 4.10 we have A > —oo and T, AV # 0.
Hence we can choose Ly € NC(V, 00) such that

(5.30) LoNTo(TyqV) = {0} and Lo is noncharacteristic for 7, AV at infinity.

Moreover, condition (a) implies the existence of k € N, k > 2, such that there
are k different branches Si,..., Sy of Br, NR™ which are equivalent to v modulo
d. We denote by & the limit vector of v at infinity and choose & € R linearly
independent from &; and not in Lg. Furthermore, we choose £3,...,&, € Lg so
that (&1,...,&,) is a basis of R™. Modulo a real linear change of variables we
assume that (£1,...,&,) is the standard basis (eq, ..., e,) of R™.

By our choice of & = e it follows from Lemma 2.5 that we may assume that

v is in standard parametrization with respect to this basis. Hence we have

(5.31) V() = (t,72(8), -+, 7n(t), where |y;(t)] = o(t), 2 < j <n.

Note that by Remark 2.8 T, 4V amd T', AV do not change by the reparametriza-
tion. Also it is easy to check that 0 is still a simple point of T’, 4. Next let 7 be
given by m(z1,...,2,) := (21, 22,0,...,0). Then (5.30) implies

(5.32) 7 is noncharacteristic for T, 4V at 0,

(5.33) there exists C' > 1 such that |z| < C(1+ |7 (2)]), z € T, AV.

Then note that T, 4V is locally hyperbolic at 0 by condition (b). Hence it follows
as in the proof of Lemma 5.8 that T’, 4V is locally hyperbolic with respect to the
given projection m. Therefore, we can choose an open zero neighborhood G in
C" such that the following holds:

(5.34) If z€ T, 4V NG and if (%) is real, then z is real.

By Lemma 4.12, the set M., 4 of all non-simple points of T’, 4V is a finite union
of real lines, parallel to e; when d < 1, and M, 1\ {—e1} is a finite union of open
real rays for each of which —e; is an adherent point. If we let ./K/lv%d =M, 4 for
d <1 and /T/lJ%l =M1\ {—ei} for d =1 then we can choose G so small that

(5.35) Gn //\/lv%d is connected.

Furthermore, we may choose g; > 1 and G so that

(5.36)
each branch T of By NR™ with T NT(v,d,G,01) # 0 is equivalent to ~y
modulo d.
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Note that the conditions (5.34), (5.35), and (5.36) continue to hold if we replace
G by any smaller convex zero neighborhood and p; by any larger positive number.
Hence we can apply Lemma 5.6 to get € > 0, § > 0, and o1 > 0 such that for
G := B(0,¢)? x B(0,8)"2 we have (5.34), (5.35), and (5.36) as well as

(5.37) m: VNI(y,d,G, 01) — I'(ro~,d B(0,£)?, 01) is proper.
Next note that because of A < § we can choose Ry > 0 and g2 > o1 such that for
Dy := B(0, R1)*xB(0,2C(6R1+1)+1)""2 we haveI'(y, A, Dy, 02) C T'(v,d, G, 02)
and that by the definition of A the following holds:
(5.38) Each branch T of By, N R™ which is equivalent to v modulo d is
eventually contained in I'(y, A, Dy, 02).
Now note that by the conditions (b) and (c¢) we can argue as in the proof of
Lemma 5.8 to show that for go large enough
(5.39) For each z € VNI (v,d,G, 02) with 7(z) real and 7(z) ¢ I'(7 o
v, A, DY, 02), z is real.

Next we claim:

(5.40) For R > 1 let S := 2C(2R + 3) + 1, where C is the constant
in (5.33). Then for each L > S there is r > 1 such that ¢t > r,
¢ € B(0,R)?x B(0,L)""2, and ~(t) +t*¢ € V imply |(;| < S for
3<j<n
To prove (5.40) fix R > 1 and L > S, let  := B(0, R)? x B(0,L)" 2, and choose
1n > 0 so small that

n<1/2, 2% <1/2, (1—-722)"2 <2, and (14+7n2°)* <2.

Since v is in standard parametrization, v can be extended analytically to C \
(B(0,a)U ] — 00,0]) and we can choose 79 > « such that

2n
| < ;
1+2L+4R
SE(C\(B(O,’I"())U]—O0,0]), 2<j<n.

(5.41) |y(t)| +t2(L+2R) < 2t, t > 1o, |7j(s)

Moreover, it follows from [9], Proposition 35, that there is r > 2rg such that for
each z € VNI'(vy,A,Q,r) there exist 7 € C\ (B(0,a)U | —00,0]) and v € T, AV
satisfying v; = 0 such that for w := v(7) + 720 we have

(5.42) |z —w| < 2|2



A Characterization of The Algebraic Surfaces... 175

Next fix z € VNT(v, A, Q,7) and choose t > 7 and ¢ € Q such that z = v(¢)+t2(.
Let 7,v, and w be as above so that (5.42) holds. Then ¢ € © and (5.41) imply

|21 < (O] +t2[¢] < (0] + 13 (L + 2R) < 2t.

From this and (5.42) we get
(5.43)
7=t = w1 =21 = 2G| < |w— 2| + 131G < nl2l® + 123G < (25 + L+2R)E5.

Next let 5 := 1/2+ L+2R and note that our choice of 1 implies 22+ L+2R < f3.
Because of A < 1 we can choose r so large that t> < t/2 for t > r. By the
choice of 7 and r, we now obtain

Rer >t —|Re(r —t)| >t —|r—t| >t — Bt> >1/2 > ro.
Hence we can apply (5.41) together with ¢ > r to obtain

(5.44) (7)) = (@) < 2022 + L+ 2RS <t 2<j<n.

SRS

Because of ¢ > 1 the estimate (5.43) also implies
t— Bt <t—|t—7| < || <t+[t—7] <t + B2

Since A < 1 we can assume that 7 > g was chosen so large that gt® < 28nt.

A 1 A
1-28n)

Then the estimate above implies

1 A
_— <
<1+2An> -

Next note that because of |(2] < R we get from this, (5.43), and (5.44) the

following estimate

t

T

IN

1

1
lva| = W\U& —72(7)] < Wﬂw — 22| + |22 — v (t)| + [2(T) —12(t)])

1 1 A
< E@ENS + R ) < (1_2%> (R+1)<2R+2.

Since v = (0,v2,...,vy,), we get from this and (5.33)

v < C(1+|r(v)]) < C(1+2R+2) = C(2R + 3).
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From this estimate, (5.42), (5.43), and (5.44) we get for 3 < j <n

1 1
61 = sxl2 =101 < 75 (12 = wil + w; =30+ 1(7) = % (0)
1
= tz(n(%)A + 78v;| 4+ ntD) < 922 +2C(2R + 3) + 1

<2C(2R+3)+1=5.

Thus we proved (5.40).

For R; as above let Ry := 3R1,S2 := 2C(2Rs +3) + 1, Ly := So + 2, Dy :=
B(0, R2)? x B(0, Ly)" 2 and choose g3 > 3 so that (5.40) holds for these choices
of R, L, and o3 = r. Enlarging o3 if necessary, we may assume that for all ¢ > o3

we have

(5.45) mon(t) + [-t2 Ry, ARy x {2t R} C R2\ T (w0, A, D}, 03).
Then we claim that the following assertion holds:

(5.46) If ze VNI(v,d,G,03) \T(v,A, Dg,p3) and 7(2) is real then z is real.

To prove (5.46), fix zg as in (5.46). If w(z0) & I'(7 oy, A, D}, 03) then 2 is real
by (5.39). If w(29) € I'(w 07, A, D}, 03) then

W(ZO) =mo ’)’(t()) + tOA(glv 52)7
for some tg > p3 and (£1, &) € B(0, R1)? NR2. Next define
G :]=Ra, Ro[ = R?, 6(s) :=wo(to) + 15 (&, ).

Since 7 : V-NI'(y,d, G, 03) — I'(m 07,d, G, 03) is a branched covering map, we

can choose a continuous map
0 :]—=Ra, Ro[ — V NT(v,d,G, p3) satisfying m oo = & and z9 = o(&2).

By (5.45) we have 6(2R;) € R2\ I"(7m o, A, D}, 03). Hence (5.39) implies that
0(2R;) is a real regular point of V. Next note that (5.40) and our choices imply

1 .
M::{SE]—R2,R2[5tZ|Uj(S)—7j(t0)‘<L2’ SSJSn}
0

1
= {S € ]—RQ,RQ[ : th|O'j(S) — ’)/j(to)‘ < SQ, 3<5< n}
0
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Since |—Rg, Ra[ is connected M is either empty or M = |—Ra, Ry[. Since zy ¢
(v, A, Do, p3) there exists k with 3 < k < n such that

1 1
tj|0'k(€2) — (o) = tjlzo,k — vk (to)| > Lo.
0 0

This implies M = () and
1
I (05() = 5(to)j=s)lloo = Lz for all s € ] — Ry, Ral.
0
Hence the lifting o cannot pass through any real branch point of 7 on V N
I'(v,d, G, p3), since all of these lie in I'(, A, D1, p3) by (5.38). Consequently, the
lifted curve s +— o (tg + t5'¢1,v2(to) + t5's, o3(s)) is unique and real analytic as a
function of s € |—Ra, Ra[. However, o(s) must be real for s in some neighborhood

of 2Ry, so in fact it must be real for each s € |—Ra, Ro[. In particular, zo = o(&2)
is real, which completes the proof of (5.46).

Next let D := £D, = Dy and note that by (5.31) and (5.37) the general hy-
potheses of Lemma 5.9 are fulfilled. Then note that condition 5.9 (a) holds by
(5.46) and the choice of D, while 5.9 (b) follows from (5.40). Condition 5.9 (c) fol-
lows from condition 5.10 (d) together with Lemma 5.4. Finally, condition 5.9 (d)
holds by (5.39). Therefore, we can use Lemma 5.9 to show that V satisfies
PL(V,T'(~,d, G, p)). To do this, let A,d, and g4 be the constants that exist ac-
cording to Lemma 5.9 for G and D as above. Then fix u € PSH(VNI'(v,d, G, 0))
satisfying

u(z) <|z|%, 2 € VNT(v,d,G,0) and u(z) =0, z € VAR"NT(y,d,G, o).
By Lemma 5.9 this implies
(5.47) u(z) < Allmz|, z € VNTI(y,d,0G, 04).

To conclude from (5.47) that V satisfies PL(V,I'(v,d, G, 0)) assume first d = 1
and fix a compact subset K of G. We may aasume K = B%(0,¢1) x B(0, ;)" 2
for suitable 0 < €1 < ¢ and 0 < 0; < 6. From (5.35) and Lemma 4.12 (a) it
follows that each point n € K NR3\ R x {0} x {0} is a simple point of T}, 1 V.
Therefore, it follows from condition (b), Lemma 5.8, and Lemma 5.5, that we can
find a zero neighborhood U,, A, > 1 and 7, > 1 such that

u(z) < Apllmz|, z€ VNI (y,1,n+ Uy, ry).
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Because of this and (5.47), a compactness argument implies that we can find

Ay > 1, §2 > 0 and r9 > g4 such that for K7 := K NR™ 4+ B"(0,d2) we have
(5.48) u(z) < Agllmz|, z € VNI(y,1,K1,r).
Since there exists @ > 0 such that

Tmz| > plsl, = € (3,1, K, 0) \T(3,1, K1, 0),

the a priori estimate for u and (5.48) imply the existence of A > 1 and r3 > ro,
such that

u(z) < A|llmz|, ze VNI(y,1,K,7r3).
Hence V satisfies PL(V,I'(, 1, G, g)) in this case.

If d < 1 then obvious modifications of the above proof, using (5.35) and
Lemma 4.12 (b), give the desired conclusion also in that case. O

To prove our main Theorem 5.2, we are going to use a result from Meise and
Taylor [17]. In order to state it clearly, we recall the following definition.

5.11. Definition. A pure dimensional algebraic variety V in C" is said to satisfy
the strong radial Phragmén-Lindel6f condition (SRPL) if there are constants
A >1, B > 0 such that each u € PSH(V') which satisfies

(@) u(z) < [z[+o(lz]), z€V
(B) u(z) <0, z€VNR"

also satisfies

(v) u(z) < Alz|+ B, zeV.

By Meise and Taylor [17], Proposition 4.5, the following holds:

5.12. Proposition. An algebraic variety V in C" satisfies (SPL) if and only if

it satisfies the following conditions:

(i) V satisfies PLioe at each £ € V NR™,
(ii) V satisfies (SRPL),
(iii) For each & € Vi NR™, || = 1, there exist A>1, R>1, and 0 < § <1
such that for each w € PSH(V') satisfying 3.1 () und (3),

u(z) < Allm z| for all z € VN T(ve, 1, B(0,6), R).
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Proof of Theorem 5.2:
(a) = (b): In view of Definition 3.9, this implication follows from Corollary 3.8.

(b) = (c¢): Condition (1) in (c) is identical with a condition in (b). Since V is
weakly hyperbolic in conoids, for each £ € (Vj,)reg N S™ ! and 7¢(t) := t&, T,V
satisfies PLjoc(C) at each ¢ € T,V NR™ and V' is (v¢, 1)-hyperbolic at each real
point of T, , V' which is regular. Now note that by Theorem 2.7 (b) we have
T,V = Vi — & Therefore, V), satisfies PLioc(0). Since Vj, is homogeneous, [8],
Remark 3.14, shows that V}, satisfies (SPL). Hence (2) holds. Also (3) follows
from above, since & € (Vj,)reg N S™ ! implies that 0 = £ —£ € V), — & = Ty aV
is a regular point of T, 4V. Finally, (4) holds, since V' is weakly hyperbolic in
conoids.

(¢) = (a): In order to derive (a) from Proposition 5.12, we show that the
hypotheses of this proposition are fulfilled. Condition 5.12 (ii) holds, note that
V}, is homogeneous and satisfies (SPL) by (2) in (c). Hence it follows from The-
orem 3.7 that each irreducible component W of V}, satisfies PLj,.(0) and hence
the dimension condition, as we remarked after Definition 3.4. In particular, each
irreducible component W of V}, has real regular points. By condition (3) in (c), V'
is (¢, 1)-hyperbolic at such a point & € W NS for y¢(t) := t£. In the notation
of [5], 2.8, this means that V is locally hyperbolic at infinity in the direction
€. Hence V satisfies the condition (SRPL) by [5], Theorem 5.1. Therefore, it
follows from Proposition 5.12 that V satisfies (SPL) if we show that the following
condition holds:

(5.49) For each £ € V;, N S" ! there exist A>1, R>1,and 0 < § < 1
such that for y¢(t) :=t£, t > 1, each u € PSH(V') which satisfies
the conditions («) and (3) of 3.1 also satisfies

u(z) < AlImz|, ze VNI(y,1,B(0,9),R).

To show that (5.49) holds, fix £ € V}, N S"~! and consider the following cases:
case 1: § € (Vj)reg- Then V' is (v¢, 1)-hyperbolic at 0 € T, ; V' by condition (3)
in (c¢). By Lemma 5.5 and Lemma 5.4 (a), this implies that there exist § > 0 and
R > 1 such that V satisfies PL(V,T'(y,1, B(0,20)), R). Hence condition (5.49)
holds for &.

case 2: £ € (V3)sing N S™ ! and 0 is a simple point of T,, , V. If we show that V

Ve
is (7¢, 1)-hyperbolic at 0 € T, |V, then (5.49) holds for £ as in case 1. To derive



180 R. W. Braun, R. Meise and B. A. Taylor

the (¢, 1)-hyperbolicity from Lemma 5.8, note first that V}, satisfies (SPL) by
condition (c) (2). By Theorem 3.7 this implies that V}, satisfies PLj.(£) and
consequently, Vj, is locally hyperbolic at §. Since T, |V = V; — £, by Theo-
rem 2.7 (b), Ty, ,V is locally hyperbolic at 0. Next note that we can choose an
open neighborhood U of £ in C" such that (V})sing NU = (C-£)NU. By hypoth-
esis (c) (3), for each ¢ € (Vi)reg NR™ NU the variety V' is (v¢, 1)-hyperbolic at
0 €T, ,V. It is easy to check that this implies that { — & € (T, ,V)reg and that
V' is (¢, 1)-hyperbolic at ¢ — £. Therefore, we can apply Lemma 5.8 to conclude
that V' is (v¢, 1)-hyperbolic at 0.

case 3: £ € (Vi,)sing NS™ ! and 0 is not a simple point of T, ,V. This implies
that £ belongs to the set M, defined in 5.1, and that for A(§) := T¢V}, UV}, the
pair (og, AA®) (0¢,1)) belongs to Ci. In particular, C # (. Hence we know from
5.1 that there exists N € N such that C = Ué\;l Cj. We claim that the following
assertion holds:

(5.50) For each 1 < j < N, each (v,d) € Cj, and each n € T, 4V NR"
there exist an open zero neighborhood D,, of  and g, > 1 such
that V' satisfies PL(V,I'(v,d, Dy, o))

If (5.50) holds then we argue as follows: 0 is not a simple point of 7>, , V' by the
present hypothesis. From Proposition 3.12 we know that for each real point in
T, ,V = V), — £ this variety is locally hyperbolic, since V}, satisfies (SPL) by hy-
pothesis (c) (2). From (c) (3) we know that V' is (7, 1)-hyperbolic at each regular
point of T,V NR". Hence the conditions (a)-(c) of Lemma 5.10 are fulfilled.
By (5.50), also condition 5.10 (d) holds. Hence this Lemma implies the existence
of a zero neighborhood G and g > 0 such that V satisfies PL(V,I'(¢,1, G, 0)).
This implies that condition 5.12 (iii) holds also in this case. Hence the proof of

Theorem 5.2 is complete, as soon as we show that (5.50) holds.

To prove (5.50), we argue by induction downward from N to 1. To start the
induction, note that by (5.2) for each (v,d) € Cy all points in (T gV )sing NR™ are
simple points. Hence the hypotheses in 5.2 (c) imply that for each £ € T 4V NR"
the hypotheses of Lemma 5.8 are fulfilled. Therefore, Lemma 5.5 implies that
(5.50) holds for j = N.

Assume now that (5.50) holds for j + 1, where 2 < j +1 < N. To show that
then (5.50) also holds for j, fix (v,d) € C; and n € T, 4V NR". If n is a regular
point of T, 4V, then condition (5) in 5.2 (c) together with Lemma 5.5 implies that
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(5.50) holds for n. If n € (T 4V )sing NR™ is a simple point of T, 4V, then T, 4V
is locally hyperbolic at n. This follows from condition (4) in 5.2 (c) together
with Theorem 2.7 and [6], Proposition 3.16. By 5.2 (c), condition (4), also the
second hypothesis in Lemma 5.8 is fulfilled. Hence this lemma implies that V is
(7, d)-hyperbolic at n. By Lemma 5.5 it follows as before, that (5.50) holds for
7.

If n € (T,4V)sing N R™ is not a simple point of T, 4V then it follows from
Lemma 4.10 (b) that there are ¢ € T, 4V and 7 € R such that n = (4 7§y, where
&o is the limit of v at infinity. We assume first that 7 = 0 and define

Ye(t) == y(t) + ¢t

Then T, 4V =T, 4V — C. Hence 0 is not a simple point of Ty, ,aV. Thus, condi-
tion 5.10 (a) holds. As above we get from condition (4) in 5.2 (c) that also the
conditions 5.10 (b) and (c) are satisfied. Since To(T,,d)V = T¢(T,,4V), we have
A(v,¢) = A(v,0) in the notation of 5.1. Hence A0 (v, d) = A0 (4, d) =:
A. Since (y¢,A) is in Cj41 by the definition of Cjy1, the induction hypothe-
sis implies that for each & € T, AV N R" there are a zero neighborhood G¢
and g¢ > 0 such that V satisfies PL(V,I'(v¢, A, € + Ge, 0¢)). Hence we showed
that also condition (d) of 5.10 is fulfilled. Therefore, we can apply Lemma 5.10
to get the existence of a zero neighborhood G and ¢ > 0 such that V sat-
isfies PL(V,I'(y¢,d, G, p)). Since I'(v¢,d,G,0) = I'(y,d,{ + G, ), V satisfies
PL(V,T'(v,d,¢ + G, 0)).

Now assume 1 = ( + 7& for some 7 € R. Then it follows from (4.5) that there
are a zero neighborhood D, and g, > 0 such that

I'(v,d,n+ Dy, 0n) CT(v,d,{+G,0).

Since we just showed that V satisfied PL(VT'(v,d,{ + G, 0)) it follows from this
inclusion and Lemma 5.4 (a), that (5.50) holds for 7. O

6. FURTHER RESULTS AND EXAMPLES

In order to show that the conditions in Theorem 5.2 simplify considerably
under mild additional hypotheses, and to treat examples more easily, we have to
explain in greater detail how limit varieties of a given algebraic variety V in C"
are computed. We recall the following facts from [9] and [11].
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6.1. Canonical defining functions for algebraic varieties. Let V be an
algebraic variety in C™ which is of pure dimension £ > 1 and has degree m. We
choose coordinates in C™ that are excellent for V. This means that the projection
7:CFx C" % = Ck, n(¥,2") = 2, is proper when restricted to V and satisfies

for some C > 0 the estimate
(6.1) |z] <C(1+17]), zeV.

The existence of excellent coordinates is shown, e.g., in Chirka [13], 7.4, Theo-
rem 2. Then the branch locus B of 7: V — C* as well as 7(B) are algebraic

varieties of dimension at most k£ — 1 and
7: V\ B — CF\ n(B)

is a covering map. For 2z’ € C*F\ 7(B) there are m points in the fiber over /. We
write

7 1) = {(Z,(?)): 1<i<m}
where the «;(2’) are all distinct. We will also use the same notation for 2z’ € 7(B)
by repeating each a;(z’) as many times as indicated by the multiplicity (V] z)
for z = (ai(2), 2’). Using this notation, the canonical defining function for V is
defined as

m

(6.2) P(z,&V,m) = [[( — ai(2)), 6).

i=1
It is a polynomial in z and £ of degree m in z and £ separately.

If W is a holomorphic k-chain, i.e.,
W = nl[Wl] + ...+ np[Wp],

where the W; are the irreducible components of Supp W and degree W; = m;,

then let v := >

=1 1jm; and define

p
P(w,&W,m) = [ [ Plw,&Wj,m)".
j=1

Then P(w,&; W, ) is a polynomial of degree v in &.
6.2. Definition. For d < 1, ¢ € N, and | € Ny let p be a Laurent series in

the variable ¢}/ with coefficients in Clwi,...,wn,&1,...,&]. Then p is called
d-quasihomogeneous in w and t of d-degree w if

p(A\w, AL, €) = Np(w, t,€), X > 0.
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It is easy to check that p is d-quasihomogeneous of d-degree w if and only if p has

p(w,t,§) = Z Zajgawﬁtﬁo‘

j+d|B|=w aeN}

the form

where 3 runs through Nj and j through a subset of %Z which is bounded from
above.

6.3. Remark. For an algebraic variety V' in C" of pure dimension k£ > 1 and 7 as in
6.1, let P be its canonical defining function. For a simple curve 7y : [R, co[ — C"
and d <1 let
(6.3) F(w,t,6) = P(y(t) +w,&V,m) = Y ajpat 0,

3B
where the sum is the Laurent series expansion of the holomorphic function
F(w,s%,€) in s = t1/4, w, &, where s runs through a neighborhood of co and
w through C". Collecting all terms in (6.3) which have the same d-degree, we
can regroup the series as

(6.4) F(w,t,€) = Fuy(w, t,§) + Y Fo(w,t,6),

w<wo

where F,, is the d-quasihomogeneous part of d-degree w of the series and
(6.5) wo = wo(d, V, ) = max{w : F,, does not vanish identically}.

Now note that for ¢ € C\ (B(0,R) U]—o00,0]) the quasihomogeneity property
implies

F(t"w,t,€) =t F(w,1,€) + > t*Fu(w,1,9)
w<wo
and hence

(6.6)  Jim 70 P(y(t) + tw, & Vom) = lim 0 F (1%, ,6) = Fiy (w, 1,6),
—00 — 00
where the convergence is uniform on compact subsets of C*¥ x C*~*.

6.4. Newton polygon and critical values. Let V be an algebraic variety in
C", m a projection, and v a simple curve in C" as in 6.3. To define the Newton
polygon for the function F' in (6.3), we denote the support of that series by

M :={(4,1) :qj € Z,l € Ny, ajp, # 0 for some § with |3| =1 and |a] = m}.
For § € R?\ {0} and b € R define the closed half plane
Hpyp = {x € R?: (2,0) <b}.
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We call it admissible if § € [0,00[ x R and M C Hpp. The Newton polygon N of
F is the intersection of all admissible half planes. Note that all vertices of IV are
elements of M. In particular, if (j,1) is a vertex of N, then [ € Ny and [ < m
since we remarked in 6.1 that P and hence F' has degree m in w. Hence N has
at most m + 1 vertices and at most m edges between them (plus two unbounded
edges).

It is not difficult to see that s < —1 whenever s is the slope of an edge of IV,
see [9], proof of Proposition 31.

Let 1 =d; > dy > --- > d, be an enumeration of

1
{1} U {— : s is the slope of a bounded edge of N} .
s

The numbers 1 = dy; > dp > ... > d, are called critical values of V with respect
to 7. They do not depend on the projection = by [11], Corollary 4.13. Their
significance is explained below in Corollary 6.8. From the definition of M and
(6.4) it follows that for each d < 1 we have

Fo@,t,9) = > Y ajpaw’te.

Jj+d|Bl=wo(d) o
6.5. Limit currents. For an algebraic variety V in C" of pure dimension k > 1,
a simple curve v in C", d < 1, and ¢ > « define the set V, 4 as in 2.6. It was

shown in [9] that there exists a limit current of V' of order d along v, i.e.,

(6.7) de[V} = tlim [V%d,t]a

o0
where [W] denotes the current of integration for a given algebraic variety W in
C". The support of T, 4[V] is denoted by T, 4V and is called the limit variety of
V of order d along v, i.e,

T, 4V = Supp T 4[V].
More precisely, the following was shown in [9] and [11].

6.6. Theorem. Let V be an algebraic variety in C™ that is of pure dimension
k> 1, let v be a simple curve in C", and let d < 1. Assume that the choice of
coordinates in 6.1 is excellent for V and T, 4V. Then there exists a polynomial
®cC[&,...,&—k] such that

Fwo (U}, 1, 5) = P(w7 gv Tw,d[V])(I)(f)v
where F,, is defined in (6.4).
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6.7. Remark. Note that for an algebraic hypersurface V in C" the canonical
defining function has just a factor £&™, £ € C. Therefore, we can delete the
&-variable in this case.

As an important corollary from Theorem 6.6 we recall from [11], Corollary 4.15:

6.8. Corollary. For V and v as in Theorem 6.6 let 1 = dy > dy > ... > d, be
the critical values for v and V. If dji1 < d < d; for some j < p then

To(Ty,a;[V]) = TyalV] = (Ty.a; 0, [V
and if d < dp and T, 4,V # 0 then

TO(T%dp [V]) = T%d[v]-

By [10], Lemma 5.3, the following holds:

6.9. Lemma. Let P € R[z1,...,2,)\R, a real simple curve y, v(t) = Z?:_OO a;t!,
andd € QN ] —o00,1] be given. Expand

[ee]
P(y(t)+w)= > ajot!w*=>"F, (w,1),
JEZ,0ENY k=0

where wy = wo(d) = max{j/q + dla|] : ajo # 0} and F, (w,t) =

: o oF,, n
Zj/q+d|a|:wk aj,atj/qw S If azno (§,1) # 0 for some § € V(Fy(,1)) NR",
then V(P) is (v, d)-hyperbolic at £ with respect to the projection m : C* — C",

(2, zn) == (2,0).

Using Lemma 6.9 we can now give a simpler version of Theorem 5.2 under mild

additional hypotheses.

6.10. Theorem. Let V be an algebraic surface in C3. Assume that V}, and T, 4V
have multiplicity 1 for each (v,d) € C (C defined in 5.1). Then V satisfies (SPL)
if and only if the following conditions are satisfied:

(1) V satisfies PLige(€) at each € € V NR3.

(2) V3, satisfies (SPL).

(3) For each (v,d) € C the limit variety T, 4V satisfies PLioc (&) at each real
point £ € T, 4V.
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Proof. To derive the theorem from Theorem 5.2, note first that the conditions (1)
and (2) are identical in both theorems. Then note that by (5.1) we have d € Q for
each (v,d) € C. Hence (3) implies that F,, (4 (-, 1) and F, (q)(-, 1) are square-free
for each (v,d) € C. Therefore, condition (3) of 5.2 (c) holds by Lemma 6.9. It
also follows that the second condition in 5.2 (c) (4) holds, while the first one holds
by the present condition (3). O

The next result shows that our methods can be applied to hypersurfaces in C"
under additional hypotheses.

6.11. Proposition. Let P € R[z1,..., z,]| be of degree m > 1, denote its principal
part by Py, and assume that the following conditions are satisfied:

(1) V(Pp,) satisfies (SPL).
(2) gradP,(x) # 0 for each x € R™\ {0}.
(3) V(P) satisfies PLyoc(§) at each & € V(P) NR™.

Then V(P) satisfies (SPL).

Proof. To derive the assertion from Proposition 5.12, note first that 5.12 (i) holds
by (3). Then note that from (2) and Lemma 6.9 it follows that V(P) is (e, 1)-
hyperbolic for each £ € V(Py,) N S"! for y¢(t) := &t. Since V(Py,) satisfies
(SPL) by (1), it follows as in the proof of Theorem 5.2, part (c) = (a), that
V (P) satisfies (SRPL), i.e., condition 5.12 (ii) holds. By the (¢, 1)-hyperbolicity
that we just remarked it follows from Lemma 5.5 that also condition 5.12 (iii) is
fulfilled. Hence the proposition follows from Proposition 5.12. U

Remark. Note that for a given algebraic variety V in C" and a simple curve ~
the critical values of V' with respect to v are determined by the Newton polygon
which we decribed in 6.4. However, it is more complicated to determine the
corresponding A-critical level of V' with respect to a given simple curve v and
d > 1. The next result shows that under additional hypotheses there is a relation
between A4(v,d) and the critical values of V with respect to «. It is similar to
[6], Proposition 4.11.

6.12. Proposition. Let Q C R[z1, 29, 23] be of degree py, let v be a real simple
curve, d < 1, and assume that for the critical values of V.=V (Q) with respect to
we have dy+1 < d < d, for 1 <v < p. Assume furthermore that 0 is not a simple
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point of T, 4V and that the localization (F,q4,)(+,1))o of Fi(a,)(; 1) at the origin
is square-free. Then for A := A(0), defined in 4.9, we have AA(y,d) < dy41.

Proof. To argue by contradiction, we assume that A := A%(y,d) > d, 1. Then
Lemma 4.7 implies d, 11 < A < d < d,. Since 0 is not a simple point of T, 4V,
there exists L € Grassg(1,3) \ 4 such that By, N R? has at least two branches
which are equivalent to v modulo d and which are not both equivalent to
modulo A. Hence we can choose a real simple curve o with tr(c) C Bp such
that o is equivalent to v modulo d but not modulo A. Consequently, v and o
have the same limit vector e; at infinity. Because of d < 1 we have e; € V}.
Since L intersects V}, only at the origin and since dim L = 1, we can assume that
L = span(e3). Without restriction we may assume that (e, ez, e3) is the standard
basis of R and that + and o are in standard parametrization with respect to this
basis, say Y(t) = (t,72(t),v3(t)) and o(t) = (t,02(t),03(t)) for t > o > 1.
Define 7 : C® — C3, m(z1,20,23) = (21,22,0). If y(t) = Y9 _ a;t7/7 and

]:
o(t) =51 bjtj/ 9 for a suitable number ¢ € N, then the present hypotheses

j=—o0

imply by Lemma 2.11

q q
(6.8) D aith 1= "t/ fort > 1and A < p
Jj=p Jj=p
and
(6.9) Jlim t= 2y (t) — o(t)] > 0.

Next consider the expansion

(6.10) Q) +2)= > ajaz®T= Y F(z1)

lo|<l,j<q w<wo(dv)
Note that for some 07 > gg the series converges absolutely and uniformly on
K x [01,00[ for each compact set K in C3. Next denote by P the localization of
Flo@,) (- 1) at zero, i.e.,

Pi= (Foo(a,)(1))o-
Then P is homogeneous, say of degree m > 1, and does not depend on z;. This
follows for v < 1 from Theorem 2.7 (c), while for v = 1 it follows from the fact
that we localize @) at e; (see [4], Lemma 3.9). By hypothesis, P is square-free
and by Corollary 6.8 we know that for d,+1 < § < d,, we have

(6.11) (T, V=T,V =To(Ty4,V) = V((Foya,)(1,-))o) = V(P).

7du+1
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In particular, we have Ty(T, 4V') = V(P). Since Ce3 ¢ A, e3 is noncharacteristic
for P at the origin, but also at infinity (since P is homogeneous). Therefore,

there are pairwise different complex numbers fi,..., 5, and B € C\ {0} such
that
m
P(wy,w3) = B [ (ws — Bjws).
7=1

It is no restriction to assume that B = 1.

Next regroup the expansion (6.3) according to the procedure described in 6.3,
ie., for d,41 < 6§ <d, let

wo == wo(d) = max{|a] +§ L JEZ, j<q, o] <po, aja # 0}

and choose a decreasing sequence (wg)reny = (Wi (0))ken such that for

Fy (w,t) := Z aj,awatj/q
Slal+i/q=wr
we have
QUy(t) + tw) = Y F,, (tw,t) = >t F,, (w,1).
keNg keNg
From this and (6.11) we get for d, 11 < 0 < d,
612 OQU (D) + thw) = P(w) + 3 OO E, (1)
keN
Next we claim that
1
(6.13) Jim tj(o’z(t) —72(t)) =b#0.

To prove this, note that oy — 79 is given by a Laurent series in ¢'/9. Hence it
follows from (6.8) that the limit exists. If we assume that the limit is zero then
there exists € > 0 such that

1

(6.14) t—A|02(t) —72(t)| = o(t™°) as t — 0.
Hence it follows from (6.9) and the same arguments that
.1
(6.15) Jim - (o3(t) — 73(t) = d £ 0.

Now let
1
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Because of tr(o) C By, it follows from (6.12) with § = A that for ¢ > p; we have
(6.16)
0= 179Q(a (1) = 17QU (1) + 135(1)) = P(s(1) + Y 1570 Foy (s(1), 1),

keN

From (6.14) and (6.15) we get the existence of g2 > g1 such that x is bounded
n [g2,00[ and that

(6.17) lim P(k(t)) = hm H k3(t) — Bjka(t)) = d™ # 0.

t—o00

Next note that by the convergence properties of the expansion in (6.10) there
exists D > 0 such that

sup{|Fi,, (k(t),1)] : t > g2, k € N} < D.

Since 0 < wy —wi < min(|d],1/q) it follows from (6.16) that lim; .~ P(x(t)) = 0,
in contradiction to (6.17). Because of this contradiction, our claim is proved, i.e.,
(6.13) holds.

To apply a result from [9] note first, that according to formula (2) in [9], p. 109,
we have

!
Q(21,22,23) = [ [ (23 — (21, 22)),
j=1

where the functions «; are locally analytic functions outside an algebraic subset
in C2. According to formula (3) in [9], p. 110, we have

l
Q(’Y(t) + tAw) = tlA H(w?) - ﬁj(wlvw?a t)),

J=1

where
Bj(wi, wa,t) = t%(aj((tmz(t)) + 12 (w1, wa)) — 73(1)).

Next let
1 . .
u:zimln{\ﬁj—ﬂk\: 1<j<k<m}

and choose ¢ := p|b|/4. By [9], Lemma 15, the functions ;(wi, ws,t) converge
uniformly on B2((0,b),d) as t tends to infinity. Hence for £ := pu|b|/4 there is
t1 > to such that

sup{|8; (w1, w2, t) — Bjwa| = (w1, w2) € B2((0,b),0)} <e.
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For j # k and (w1, w2) € B%((0,b),0) we now get

185 (w1, w2, 8) — (w1, wa, )] = Ingws — Gyws| — 22 > 4plb|/2 — plbl /2 = 3ulb|/2.

Since (0, x(t)) € B%((0,b),8) for t > ty > ty, it follows that o (t) = y(t) + t"k(t)
cannot be a branch curve of V(Q). Because of this contradiction, the proof of
the proposition is complete. [l

6.13. Example. Define P € R[z,y, z] by
1
Pla,y,2) = sy(a® ) — (@ —y)e 2= Pyt Pyt Py
Then V = V(P) satisfies (SPL).

To derive this from Theorem 6.10, note first that grad P does not vanish on
V. Hence each point & € V NR3 is a regular point. By [6], Proposition 7.4, this
implies that V(P) satisfies PLjo(£) at each € € V NR3. Thus, condition (1) of
6.10 is satisfied.

Next note that Ps is square-free, that Vj, = V(P3), and that

(Vh)sing N 52 = {£+7 5—}7

where 4 := (0,0,£1). Hence V}, has multiplicity one and satisfies (SPL) since
it is the union of three hyperplanes with real generators. Hence condition (2) of
Theorem 6.10 also holds.

Some computation shows that for ¢ := (1,0,0) and ~(t) := t(, the point {&- — (
is a simple point of 7T, 1V, while £, — ¢ is not simple. By the construction
in 5.1 we therefore have M; = {£{;}. Next we define 4 : t — t&;, t > 1. By
Proposition 6.11, the first candidate for A4&+) (v, 1) is A = 1/2. A computation
shows that indeed AAEH)0+1) =1/2, Hence C; = {(74,1/2)}.

The procedure that we described in 6.4 together with Theorem 6.6 and Re-
mark 6.7 or [9], Corollary 27, gives

(618) T'y+,1/2v = {($,y,2) € C?: Q+(l’,y) = 0}
where
(6.19) Q+(z,y) = (x,y)y(x +v)/2 = 1| = y(a® —y*) /2 -z +y.

Since gradQ (z,y) = (vy — 1, (2% — 3y?)/2 + 1), we get
(T, 172V )sing NR* = {(1,1,2) : z€ R}U{(-1,-1,2): z € R}.
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An inspection of the points (1,1,0) and (-1,-1,0) shows that they are simple points
of T, 1/5V. By Lemma 4.11 (b), this implies that all points of T, 5V are sim-
ple. Therefore, the definition of the set C in 5.1 gives that C = C; = {(v+,1/2)}.

Next note that the characterization of the algebraic curves in C? which satisfy
(SPL), given in [10], Corollary 3.11, implies that V(Q,) C C? satisfies (SPL).
Hence, also T, 1,5V = V(Q4) x C satisfies (SPL). By Theorem 3.7 (a) this
proves that T,V satisfies PLjoc(§) at each £ € T, 1,2V N R3. Therefore, we
showed that condition 6.10 (3) is satisfied. Since it follows from (6.18) and (6.19)
that T’ 1,2V has multiplicity 1, all the hypotheses of Theorem 6.10 are fulfilled.
Hence V satisfies (SPL) by Theorem 6.10.

Remark. Note that Example 6.13 was considered already in [10] as Example 5.5.
We have included it here in order to show that it is much easier to handle with
the characterization given in Theorem 6.10 than with the one given in [10], The-

orem 4.3.

The intersection of two algebraic hypersurfaces which both satisfy (SPL) need
not satisfy (SPL), as the following example shows.
6.14. Ezample. Let Vi and V5 in C* be defined as
Vi= {(z,y,z,w) € C*: 22 + 4> + 22 —w? =0}
Vo = {(z,y,2,w) € C*: 2% +¢* — 2> +w? =0}
Then V; and Vs satisfy (SPL), but V4 N V4 does not satisfy (SPL).

A standard max-over-the-fiber-argument together with the classical Phragmén-
Lindelf Theorem for C? shows that V; and V4 satisfy (SPL). To prove that V1NVa
does not satisfy (SPL), note first that V4 N Vo = Wy U Wo U W3 U Wy, where

Wy = {(s,is,t,t): (s,t) € C2},  Wo:= {(s,is,t,—t): (s,t) € C*}

Wi := {(s,—is,t,t): (s,t) € C*}, Wy := {(s,—is,t,—t): (s,t) € C*}.
If we assume that V3 N V5 satisfies (SPL), then W7 satisfies (SPL), since it is an
irreducible component of V3 N V5. By Theorem 3.7 and the Remark following

Definition 3.4, it then follows that Wj satisfies the dimension condition at each

real point of W;. Now note that
WiNRY = {(0,0,t,t): t € R}.
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This shows that W does not satisfy the dimension condition at the origin in
contradiction to our assumption. Hence Vi NV, does not satisfy (SPL).

6.15. Ezample. Let P : C* — C? be defined by P(w,z,y, ) := (w? —y? + 2, 2% —
y? + z + w) and define the variety V by

V=V(P):={(w,z,y,2) €C*: w? —y?* +2z=0and 2? —y* + 2z + w = 0}.

Then V satisfies (SPL).

To derive this from Theorem 5.2, note first that a standard computation shows
that for each a € V there is a 2 x 2 submatrix of the Jacobian of P whose deter-
minant does not vanish at a. Therefore, V is a complex manifold of dimension
2. Since P has real coefficients, it follows that for each € € V N R?*, V N R*
is a real manifold of dimension 2 by the implicit function theorem. Because of
this, well-known arguments show that V' satisfies PLj,c(§). Hence condition (1)
in 5.2 (c) holds.

To show that also condition (2) in 5.2 (c) is fulfilled, note that the polynomials

2 2

2?2 — w? + w and y? — w? — z form a Grbner basis for I(V) with respect to a
graded term order. By Cox, Little, O’Shea [14], Theorem 8.4.4, this implies that

(6.20) Vi ={(w,z,y,2) € C*: 22 —w? =0 and w? — y? = 0}.

From this it follows easily that V}, is the union of four linear subspaces of dimen-
sion 2 which have real generators. By the classical Phragmén-Lindelf Theorem
for C? each of these linear subspaces satisfies (SPL) and hence V}, satisfies (SPL).
Thus condition (2) in 5.2 (c) holds.

From formula (6.20) it follows that
(6.21) (Vh)sing = {(0,0,0,2) : z € C}.

We claim that for the real simple curve v defined by ~(t) := (0,0, 0, —t) the point
0 € T,V is a simple point. To show this, define the projection m_ : Cc* — C4,
m_(w,z,y,z) :=(0,0,y,2). Then ker 7_ is in NC(V, ), since

Vi N {(w,z,0,0) : w,z € C} = {(0,0,0,0)}.
Next note that Vj, + (0,0,0, z) =V}, for each z € C. This implies

To(Ty 1 V) = Vi
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Hence m_ is also noncharacteristic for T 1V =V}, +(0,0,0,1) at 0. Next assume
that for (yo, 20) € R? with 29 < —1 the point (wo, 20,0, 20) is in V. Then the
defining equations for V imply wi = y3 — zp > 0. Hence wy is real and wy =

+ yg — Zp Or wp = —\/yg — 2p. From this it follows that x% = y(z]—zozlz\/yg — 20.
Since y% — 29 > 1 this implies that z¢ is real and the point (wy, zo, Yo, 20) is one

of the following four points:

(\/ g — 20, \/yé — 20 + /Y3 — 20, %0, 20),

(\/ Yg — 2o, —\/y?) — 2o+ \/ﬂ, Y0, 20)
(o — 038 — 20— /R — 2020,
(—1/ Y5 — 20, —\/y8 — 20 = \/Y§ — 20, Y0, 20)-

If we vary (yo, 20) in Rx | — 0o, —1[ then it follows that V has four real branches

(6.22)

over this set which consist of manifold points of V. Hence there exists a cone
I'(v,1, D, R) such that for L := ker7_ we have B, "R*NT(v,1, D, R) = (). This
shows that 0 is a simple point of 7%, ; V.

We also claim that for the real simple curve o, defined by o(t) := (0,0,0,1),
the point 0 € 7,1V is a simple point. To show this, define the projection w1 in
C* by 4 (w,z,y, 2) := (0,7,0,2). As above it follows that 7 is noncharacteristic
for V' at infinity and for T, ;V at 0. If for (zg,20) € R? with zp > 1 a point
(wo, o, Yo, 20) is in V' then we have —y% + 20 = —w% and hence 1:(2) — wg +wy =0
or equivalently 22 = (wp — 1/2)? — 1/4, which implies

1
+§\/4x3+10rw0: 3~ \/4x(2)+1.

Note that in both cases wy is real. Inserting wg in the second component of P it
follows that

1 1
(6.23) Yo = 20+ x5 +wo = z0+x3+§i§\/4x%+l.

—_

woy =

N =
N =

It is easy to check that the right hand side of (6.23) is positive because zy is
positive. Hence yo must be real. Altogether we showed that (wp, o, Yo, 20) is one
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of the points

1 1 1 1
RN S T N )
1 1 1 1

3+ oI Lo ad e s D)

(6.24)

1 1 2 2 1 1 2
(§_§m7$0’ ZO+$O+§+§\/maZO)7
1 1 1 1

(= s Lo~ ad e L4 L g 1),

If we vary (xo, 20) in R x [1, 00 then it follows from these formulas that V' has
four real branches over this set which consist of manifold points of V. As above,
this shows that 0 is a simple point of 751 V. From (6.23) it now follows that in
the notation of 5.1, we have M; = (). Hence it follows that the set C, constructed
in 5.1, is empty. Therefore, condition (4) in 5.2 (c) is void and we only have to
show that condition (3) in 5.2 (¢) holds, i.e., we have to show the following:

(6.25) For each & € (V)reg NS and ¢ (t) := t&, V is (v, 1)-hyperbolic
at 0 € Ty, V.

To prove this, fix £ € (Vi)weg N 5%, say & = (a,b,c,d). Then (6.21) implies
that (a,b,c) # (0,0,0), while (6.20) implies that a? = b* = . Thus we have
€& = (A, XA\, 1), where p = +v/1—3X2. Assume next that g < 0 and let
v (t) = t(\, ). Then it follows from (6.22) that there exist 0 < d <1 and R > 0
such that 7—!(I'(y/,1, B%(0,6), R)) NV consists of four branches and that ¢ in
this set is real whenever 7m_(() is real. From this it follows that (6.25) holds for
these €. If ;1 > 0 then we can argue in the same way, using 74 and formula (6.24).

If # = 0, then ¢ = (a,b,c,0) with a®> = b?> = ¢ and ¢ # 0. Therefore,
it follows from (6.22) that for ¢ sufficiently small and ~”(¢) := ¢(c,0) the set
7~ YI'(y",1,B%(0,6), R)) NV consists of four branches and that ¢ in this set is
real, whenever 7_(() is real. Hence (6.15) holds for these (.

These arguments show that condition 5.2 (c) is fulfilled. Hence V satisfies
(SPL) by Theorem 5.2.

6.16. Example. To indicate how to compute a limit variety as it was described
in 6.1-6.4, let V be defined as in Example 6.15 and let v be the real simple
curve y(t) := (0,0,0,—t). To compute the canonical defining function of V' with
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respect to the projection n_ : (w,z,y,z) — (0,0,y, z), note that we computed
the functions «;(y, 2), j = 1,...,4, in formula (6.22). If we apply definition (6.2),
a computation with MAPLE shows that the canonical defining function of V' is
given by

P(w,z,y,2,&,n) = (2* —202y2 4 2022+ — 222+ 22 — 92+ 2) €4+
(4ay? + 423w — dzwy? — 4wz +4xwz)né> + (622w? + 2222 +4y? 2 —
222 — 2w?y? 4 2w?z + dwy? — 222%y? — 2yt — 4w2)n?E? + (dawz —
drwy? + 4xwd)n3€ + (y* + 2w?z — 2w?y? — 2922 + 2% + whnt.

It follows that

P(y(t)+(w,2,y,2);&,m) = (=207 + 0" + €8 + ((—22° +2y* —
2z — 1)E* 4 (—daw + 4x)ng3 + (42 — 202 — 2w? + 4w — 4y?)n?€? —
drwn3€ + (2y% — 2w? — 22)nMt + (2* — 22%y% + 2222 + ot — 222 +
22—y 4 2) €4+ (day? + 43w — dovwy? — 4oz + 4wz )né3 + (62x2w? +
2222 +4y? 2 — 222 2wy +2w? 2+ dwy? —222y? — 2yt —dwz)n2 €2+
(4xwz—dzwy? +4rw) P+ (yH+2w? 2 —2w?y? — 2y 2+ 22 +wh)nt.

From this expansion we compute its support M and its Newton polygon N ac-
cording to 6.4 and get

M ={(2,0),(1,0),(1,1),(1,2),(0,1),(0,2),(0,3), (0,4)}.

This implies that N = {(j,1) € R? : | = 4 — 2j}. Hence the critical values of V'
with respect to v are just d; = 1 and do = 1/2. Some computation shows that
we have

Fooy)(w,m,y,2:6,m) = (y* — 222 — 22%y% 4+ 2% + 2t + 1)¢* +
(4a3w — dzw — dowy?)n€3 + (—2y* — 202 — 2 — 2w? — 49?4 62%w? —
22%y% — 2wy )n?€? + (—daw + 4rw? — dawy?)3E + (—2w?y? —
2w? + 2y% +w +y* + 1)n?

and that
{(w7«73;y7 Z) € (C4 : Fw0(1/2)(w7$7y72;€777) = 0 for all fﬂl € SQ}
is equal to

W::{(w,x,y,z)e(C4: w2—y2—1:0andx2—y2—1:0}.
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Hence we get from Theorem 6.6:

T, aV =Vyforl<d<1/2
T%l/gv — W
T,qV =0 ford > 1/2.

Note that in this example it follows from [9], Corollary 27, that for Py := w? —
y? + z and Py := 22 — y? + 2z + w we have

(1]
2]
B3l
(4]
[5]

(6]

(7l

(8]

(9]
(10]
(1]

(12]

(13]

T,Y71/2V - T’y,l/QV(PI) ﬂ T7’1/2V(P2).
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