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Abstract: We modify a construction of Kisaka and Shishikura to show
that there exists an entire function f which has both a simply connected
and a multiply connected wandering domain. Moreover, these domains are
contained in the set A(f) consisting of the points where the iterates of f

tend to infinity fast. The results answer questions by Rippon and Stallard.

1. Introduction and results

Let f be an entire or rational function. The Fatou set F (f) is defined as
the set where the iterates fn of f form a normal family. If U0 is a component
of F (f), then fn(U0) is contained in a component Un of F (f). If all Un are
different, then U0 is called a wandering domain of f . While a famous theorem
of Sullivan [14] says that rational functions do not have wandering domains, it
had been shown already earlier by Baker [2] that such domains may exist for
transcendental entire functions. While the wandering domain in Baker’s example
was multiply connected, examples of simply connected wandering domains were
given later by various authors; see [9, p. 106], [14, p. 414], [3, p. 564, p. 567]
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and [7, p. 222]. Baker [4, Theorem 2] showed that his construction can be mod-
ified to yield wandering domains of infinite connectivity. Recently Kisaka and
Shishikura [11] constructed an example with a multiply connected wandering do-
main of finite connectivity, thereby answering a question of Baker. In fact, they
showed that the connectivity may take any preassigned value. Here we modify
the construction of Kisaka and Shishikura to prove the following result.

Theorem 1. There exists an entire function which has both a simply connected
and a multiply connected wandering domain.

The question whether an entire function with this property exists had been
raised by Rippon and Stallard [13, p. 1125, Remark 3]. In the same paper,
Rippon and Stallard also asked a question about the set A(f) introduced in [6].
This is defined by

A(f) := {z : there exists L ∈ N such that |fn(z)| > M(R, fn−L) for n > L},
where M(r, f) := max|z|=r |f(z)| and R > minz∈J(f) |z|. Roughly speaking, A(f)
consists of the points z where fn(z) tends to infinity “as fast as possible.” Rippon
and Stallard showed that A(f) has no bounded components and that the closure
of every multiply connected wandering domain is contained in A(f). They also
showed that if a simply connected wandering domain intersects A(f), then it
must lie entirely in A(f), and they ask [13, p. 1126, Remark 4] whether an entire
function f with such a simply connected wandering domain exists. It turns out
that an example with this property is provided by the function constructed in
Theorem 1.

Theorem 2. There exists an entire function f for which A(f) contains a simply
connected wandering domain.

As mentioned, our construction is largely based on that of Kisaka and Shishiku-
ra. We state two of their lemmas in §2 and then repeat their construction in §3.
There is only one minor change in the construction, which will be explained at
the beginning of §4. In the remainder of §4 we then show that the function con-
structed has a simply connected wandering domain, thereby proving Theorem 1.
In §5 we prove Theorem 2.

Acknowledgment. I would like to thank the referee for a careful reading of the
manuscript and useful suggestions.
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2. Two lemmas of Kisaka and Shishikura

Kisaka and Shishikura first construct a quasiregular map g : C→ C and then
obtain the entire function f with the following lemma.

Lemma 1. [11, Theorem 3.1] Let g be a quasiregular mapping from C to C.
Suppose that there are (disjoint) measurable sets Ej ⊂ C (j = 1, 2, ...) satisfying:

(a) For almost every z ∈ C, the g-orbit of z passes Ej at most once for
every j;

(b) g is Kj-quasiregular on Ej;
(c) K∞ :=

∏∞
j=1 Kj < ∞;

(d) g is holomorphic a.e. outside
⋃∞

j=1 Ej (i.e. ∂g
∂z̄ = 0 a.e. on C\⋃∞

j=1 Ej).

Then there exists a K∞-quasiconformal map ϕ such that f = ϕ ◦ g ◦ ϕ−1 is an
entire function

In order to construct g they need to “interpolate” two polynomials given on cir-
cles by a quasiregular map with small dilatation. This is done with the following
result, where log denotes the principal branch of the logarithm.

Lemma 2. [11, Lemma 6.3] Let k ∈ N, b, ω ∈ C \ {0} and ρ], λ], ρ[, λ[ ∈ R with
0 < λ[ < ρ[ < 1 < ρ] < λ].

(a) Suppose that these constants satisfy

ρ] ≥ 2|ω|, λ] ≥ eρ], C] := 1− 1
k + 1

( | log b|
log(λ]/ρ])

+
4|ω|
ρ]

)
> 0,

Then the map bzk(z − ω) on |z| = ρ] and zk+1 on |z| = λ] can be inter-
polated on ρ] ≤ |z| ≤ λ] with a K-quasiregular map g where K ≤ 1/C].

(b) Suppose that these constants satisfy

|ω| ≥ 2ρ[, ρ[ ≥ eλ[, C[ := 1− 1
k

(
| log(−bω)|
log(ρ[/λ[)

+
4ρ[

|ω|

)
> 0.

Then the map bzk(z−ω) on |z| = ρ[ and zk on |z| = λ[ can be interpolated
on λ[ ≤ |z| ≤ ρ[ with a K-quasiregular map g where K ≤ 1/C[.
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3. Construction of f

As mentioned, we follow closely the ideas of Kisaka and Shishikura and will
first construct a quasiregular map g : C→ C and then obtain f via Lemma 1.

We denote by ann(r,R) the open annulus with inner radius r and outer ra-
dius R; that is, ann(r,R) := {z ∈ C : r < |z| < R}. The idea is to choose
sequences (an) and (Rn) such that the map z 7→ anzn+1 maps ann(Rn, Rn+1)
onto ann(Rn+1, Rn+2). The map g will then be defined by g(z) = anzn+1 on a
large subannulus of ann(Rn, Rn+1), and will interpolate the mappings z 7→ an−1z

n

and z 7→ anzn+1 in an annulus containing the circle {z : |z| = Rn}.
Choosing R1 > R0 := 1 we obtain sequences (Rn) and (an) as required by

putting

Rn+1 :=
Rn+1

n

Rn
n−1

and

an :=
Rn+1

Rn+1
n

=
1

Rn
n−1

.

Various estimates in the sequel will require that R1 has been chosen large enough.
Note that with γ := log R1 we have

log
Rn+1

Rn
= n log

Rn

Rn−1
= ... = n! log

R1

R0
= γn!.

We define sequences (Pn), (Qn), (Sn) and (Tn) by

log
Tn

Sn
= log

Sn

Rn
= log

Rn

Qn
= log

Qn

Pn
=

√
log

Rn+1

Rn
=

√
γn!

Choosing R1 > e we have γ > 1 and thus

Tn

Sn
=

Sn

Rn
=

Rn

Qn
=

Qn

Pn
> e.

We also have

log
Pn+1

Tn
=− log

Qn+1

Pn+1
− log

Rn+1

Qn+1
+ log

Rn+1

Rn
− log

Sn

Rn
− log

Tn

Sn

=−2
√

γ(n + 1)! + γn!− 2
√

γn!

> 0



Wandering Domains 111

for all n ∈ N, provided that R1 and hence γ is large enough. Thus

Pn < Qn < Rn < Sn < Tn < Pn+1

for all n ∈ N. We now define

bn := −(n + 1)2

n + 2

(
n + 1

n

)n

an = −(n + 1)2

n + 2

(
n + 1

n

)n Rn+1

Rn+1
n

for n ∈ N. We also put E1 := ann(P2, Q2) and

En := ann(Sn, Tn) ∪ ann(Pn+1, Qn+1)

for n ≥ 2.

We shall show that there exists a quasiregular map g : C→ C with the following
properties:

(i) g(z) = a1z
2 for |z| ≤ P2;

(ii) g(z) = anzn+1 for Tn ≤ |z| ≤ Pn+1 and n ≥ 2;
(iii) g(z) = bn(z −Rn)zn for Qn ≤ |z| ≤ Sn and n ≥ 2;
(iv) g is Kn-quasiregular in En for n ≥ 1, with Kn := 1 + 1/n2;
(v) g(ann(Sn, Qn+1)) ⊂ ann(Sn+1, Qn+2) for n ≥ 1.

Since En ⊂ ann(Sn, Qn+1) and since the annuli ann(Sn, Qn+1) are pairwise dis-
joint it then follows that g satisfies the hypothesis of Lemma 1. Thus there exists
a quasiconformal map ϕ such that f := ϕ◦g ◦ϕ−1 is entire. This function f then
has the desired properties.

In order to show that a map g with the properties stated exists, we simply
define g by (i), (ii), (iii) in the ranges given there and thus have defined g in
C\⋃∞

n=1 En.

To define g in ann(Pn, Qn), where n ≥ 2, we consider G(z) := g(Rnz)/Rn+1.
For |z| = λ[ := Pn/Rn we then have

G(z) = an−1
(Rnz)n

Rn+1
=

Rn

Rn
n−1

Rn
nzn

Rn+1
= zn

and for |z| = %[ := Qn/Rn we have

G(z) = bn
(Rnz −Rn)(Rnz)n

Rn+1
= bn

Rn+1
n

Rn+1
(z − 1)zn = cn(z − 1)zn

with

cn :=
bnRn+1

n

Rn+1
= −(n + 1)2

n + 2

(
n + 1

n

)n

.
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Now

%[ =
Qn

Rn
= exp(−

√
γn!)

and

λ[ =
Pn

Rn
= exp(−2

√
γn!) = (%[)2.

Thus %[ ≥ eλ[ since γ ≥ 1 and also 2%[ ≤ 1. By Lemma 2, (b), there exists a
K-quasiregular map Gn : {z ∈ C : λ[ ≤ |z| ≤ %[} → C such that Gn(z) = zn for
|z| = λ[ and Gn(z) = cn(z − 1)zn for |z| = %[, with K ≤ 1/C[ where

C[ := 1− 1
n

( | log(−cn)|
log(%[/λ[)

+ 4%[

)
,

provided that C[ > 0. But since

| log(−cn)| = log
(

(n + 1)2

n + 2

(
n + 1

n

)n)
≤ log((n + 1)e) = 1 + log(n + 1)

we may in fact achieve that

C[ ≥ 1− 1
n

(
1 + log(n + 1)√

γn!
+ 4 exp

(
−

√
γn!

))
≥ 1− 1

(n− 1)2 + 1

for all n ≥ 2 by choosing γ large enough. Thus

K ≤ 1
C[

≤ 1 +
1

(n− 1)2
.

Putting

g(z) := Rn+1Gn

(
z

Rn

)

for z ∈ ann(Pn, Qn) ⊂ En−1 we see that (iv) holds for z ∈ En−1∩ann(Pn+1, Qn+1).
Similarly we define g in the remaining part of En; that is, in En ∩ ann(Sn, Tn).
Here we use the first part of Lemma 2.
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To prove (v) we note that if z ∈ ann(Sn, Qn+1), then, by the maximum prin-
ciple,

|g(z)| ≤ max
|ζ|=Qn+1

|g(ζ)|

= max
|ζ|=Qn+1

∣∣bn+1(ζ −Rn+1)ζn+1
∣∣

= |bn+1| (Rn+1 + Qn+1) Qn+1
n+1

=
(n + 2)2

n + 3

(
n + 2
n + 1

)n+1

Rn+2

(
1 +

Qn+1

Rn+1

)(
Qn+1

Rn+1

)n+1

≤ 2e(n + 2)Rn+2

(
Qn+1

Rn+1

)n+1

= 2e(n + 2)Rn+2 exp
(
−(n + 1)

√
γ(n + 1)!

)

≤Rn+2 exp
(
−

√
γ(n + 2)!

)

= Qn+2

if γ is large enough. Similarly, noting that g has no zeros in ann(Sn, Qn+1) and
using the minimum principle, we find that |g(z)| ≥ Sn+1 for z ∈ ann(Sn, Qn+1).
We deduce that (v) holds.

As in the paper of Kisaka and Shishikura we deduce from (v) that gn(z) →
∞ as n → ∞ for z ∈ ann(S1, Q2), while g(0) = 0 by (i). This implies that
ϕ(ann(S1, Q2)) lies in a multiply connected component U1 of the Fatou set of f ,
with fn|U1 → ∞ as n → ∞. Since multiply connected components of the Fatou
set are always bounded by a result of Baker [1, Theorem 1], this implies that f

has a multiply connected wandering domain.

Remark. The Fatou set and the other concepts of complex dynamics can also be
defined for quasiregular maps, by carrying over the definitions from the holomor-
phic case literally. In order to retain the basic features of the theory one has
to require, however, that all iterates of g are K-quasiregular with the same K.
Such maps are called uniformly quasiregular. That our function g is uniformly
quasiregular follows directly from the definition of g, or trivially from the repre-
sentation g = ϕ−1 ◦ f ◦ϕ. Lemma 1 says, essentially, that uniformly quasiregular
selfmaps of the plane are quasiconformally conjugated to entire functions; see
also [8, 10] for this result.
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4. Proof of Theorem 1: f has a simply connected wandering domain

The sequence (ξn) of critical points of g is given by ξ1 := 0 and ξn := n
n+1Rn.

The only difference between the present construction and that of Kisaka and
Shishikura concerns the orbits of these points. While we have chosen the values
bn such that

g(ξn) = bn(ξn −Rn)ξn
n = −bn

Rn

n + 1

(
n

n + 1

)n

Rn
n =

n + 1
n + 2

Rn+1 = ξn+1

for n ≥ 2, Kisaka and Shishikura worked with different values of bn which yielded
g(ξn) = Rn+1 and hence g2(ξn) = 0.

Denote by D(a, r) the disk of radius r around a. Let δ > 0 and define Dn :=
D(ξn, δRn/n4) for n ≥ 2. We shall show that if δ is sufficiently small, then
g(Dn) ⊂ Dn+1 for all n. This implies that Dn ⊂ F (g) for n ≥ 2. We will then
show that Dn lies in a simply connected wandering domain of g and thus ϕ(Dn)
lies in a simply connected wandering domain Vn of f . Moreover, we will see in
§5 that Vn ⊂ A(f) for all n.

First we note that if δ is small enough, then Dn ⊂ ann(Qn, Rn) so that g is
holomorphic in Dn and

|g′′(z)|=
∣∣bn

(
n(n + 1)zn−1 −Rnn(n− 1)zn−2

)∣∣
≤ |bn|(n(n + 1) + n(n− 1))Rn−1

n

= 2n2|bn|Rn−1
n

for z ∈ Dn. Thus

|g′(z)|= |g′(z)− g′(ξn)|
≤

∫ z

ξn

|g′′(ζ)| |dζ|

≤ 2n2|bn|Rn−1
n

δRn

n4

=
2δ

n2
|bn|Rn

n
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for z ∈ Dn. It follows that if z ∈ Dn, then

|g(z)− ξn+1|= |g(z)− g(ξn)|
≤

∫ z

ξn

|g′(ζ)| |dζ|

≤ 2δ

n2
|bn|Rn

n

δRn

n4

=
2δ2

n6

(n + 1)2

n + 2

(
n + 1

n

)n

Rn+1

≤ 2δ2e(n + 1)
n6

Rn+1

≤ δRn+1

(n + 1)4
,

provided δ is sufficiently small. Thus g(Dn) ⊂ Dn+1 for n ≥ 2. As already
mentioned, this implies that Dn lies in a Fatou component V ′

n of g and thus
ϕ(Dn) lies in the Fatou component Vn := ϕ(V ′

n) of f . By U ′
n we denote the

multiply connected Fatou component of g which contains ann(Sn, Qn+1), and by
Un := ϕ(U ′

n) the corresponding Fatou component of f . As mentioned at the end
of §3, the Un are wandering domains. In fact, we have Um 6= Ul for m 6= l (and
thus U ′

m 6= U ′
l for m 6= l). We shall show that U ′

m 6= V ′
l (and thus Um 6= Vl) for

all m and l. Since V ′
l lies “between” the annuli ann(Sl−1, Ql) and ann(Sl, Ql+1)

and thus “between” the domains U ′
l−1 and U ′

l , it suffices to show that U ′
m 6= V ′

l

for l = m and l = m + 1.

Suppose that U ′
m = V ′

l where l = m or l = m + 1. Since Dl ⊂ V ′
l and

ann(Tm, Pm+1) ⊂ U ′
m there exists a simply connected domain Ωm with

Dl ∪ ann(Tm, Pm+1)\(−Pm+1, Tm) ⊂ Ωm ⊂ U ′
m.

Since gn(z) 6= 0 for z ∈ Ωm and since the gn are K-quasiregular for some K, we
may define for n > m a K-quasiregular map hn : Ωm → C by

hn(z) =
(

gn−m(z)
Rn

)m!/n!

,

for some branch of the root. We will show that the hn form a normal family so
that (hn) has a convergent subsequence, say hnk

→ h. Next we will show that
hn(z) = h(z) = z/Rm for z ∈ ann(Tm, Pm+1)\(−Pm+1, Tm), if the branch of the
root has been suitably chosen. This implies in particular that h is nonconstant.
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On the other hand, we will see that h is constant in Dl so that we obtain a
contradiction.

To prove that (hn) is normal we note that if z ∈ Ωm ⊂ U ′
m, then gn−m(z) ∈ U ′

n

and thus |gn−m(z)| ≤ Sn+1, since ann(Sn+1, Qn+2) ⊂ U ′
n+1. Hence

|hn(z)| ≤
∣∣∣∣
Sn+1

Rn

∣∣∣∣
m!/n!

=
∣∣∣∣
Sn+1

Rn+1

Rn+1

Rn

∣∣∣∣
m!/n!

for z ∈ Ωm. We deduce that

log |hn(z)| ≤ m!
n!

(
log

Sn+1

Rn+1
+ log

Rn+1

Rn

)

=
m!
n!

(√
γ(n + 1)! + γn!

)

≤ 2γm!

for z ∈ Ωm and large n, and this yields the desired normality.

It is not difficult to see by induction that if z ∈ ann(Tm, Pm+1)\(−Pm+1, Tm)
and n > m, then

gn−m(z) = Rn

(
z

Rm

)n!/m!

∈ ann(Tn, Pn+1)\(−Pn+1, Tn)

so that

hn(z) = h(z) =
z

Rm

if the branch of the root in the definition of hn has been suitable chosen. In
particular, h is nonconstant.

For z ∈ Dl we have

gn−m(z) ∈ Dn−m+l

and thus gn−m(z) ∈ Dn or gn−m(z) ∈ Dn+1 depending on whether l = m or
l = m + 1. In the first case we have

gn−m(z)
Rn

∈ D

(
ξn

Rn
,

δ

n4

)
= D

(
n

n + 1
,

δ

n4

)
⊂ D

(
1,

1
2

)

for large n, and this implies that h is constant in Dl. In the second case, that is
for l = m + 1, we have

gn−m(z)
Rn

∈ D

(
ξn+1

Rn
,

δRn+1

(n + 1)4Rn

)
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and hence (
1− 2

n

)
Rn+1

Rn
≤

∣∣∣∣
gn−m(z)

Rn

∣∣∣∣ ≤
Rn+1

Rn

for large n. Since n!
√

1− 2/n → 1 as n →∞ and
∣∣∣∣
Rn+1

Rn

∣∣∣∣
m!/n!

= exp(γm!)

we deduce that |h(z)| = exp(γm!) for z ∈ Dl. Thus h is constant in Dl in this
case as well. As already noted, this is a contradiction. This completes the proof
that U ′

m 6= V ′
l and hence Um 6= Vl for all l and m.

It remains to show that Vl is simply connected for all l. Suppose that this is
not the case. It is not difficult to show that then all Vl are multiply connected.
By a result of Baker [3, Theorem 3.1] there exists k ∈ N and a Jordan curve
τ in Vk whose interior contains 0. This implies that D(0, Qk) is contained in
the interior of τ ′ := ϕ−1(τ). The argument principle implies that the winding
number of g(τ ′) around 0 is at least k. This winding number is equal to the
winding number of f(τ) around 0, and thus the latter winding number is also at
least k. Induction shows that the winding number of τn := fn−k(τ) around 0 is
at least (n − 1)!/(k − 1)! for n ≥ k. A contradiction will now be obtained from
a consideration of the hyperbolic length of τn in Vn. We denote the hyperbolic
length of a curve σ in a hyperbolic domain U by `(σ,U). By the Schwarz-Pick-
Lemma we have

`(τn, Vn) ≤ `(τ, Vk)

for all n ≥ k. On the other hand, we have V ′
n ⊂ ann(Qn, Sn) and thus Vn ⊂

ϕ(ann(Qn, Sn)). This implies that

`(τn, Vn) ≥ `(τn, ϕ(ann(Qn, Sn))).

Now ann(Qn, Sn) is an annulus of modulus log(Sn/Qn)/(2π). Since ϕ is K-quasi-
conformal this yields that ϕ(ann(Qn, Sn)) has modulus at most

K

2π
log

(
Sn

Qn

)
=

1
2π

log

((
Sn

Qn

)K
)

.

It follows that there exists a conformal map ψ : ϕ(ann(Qn, Sn)) → ann(1, rn)
where rn ≤ (Sn/Qn)K . We may choose ψ such that |ψ(ϕ(z))| → 1 as |z| → Qn.
Put σn := ψ(τn). Then

`(σn, ann(1, rn)) = `(τn, ϕ(ann(Qn, Sn)))
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and the winding number of σn around 0 is the same as that of τn and thus at
least (n− 1)!/(k− 1)!. We note that the density %(z) of the hyperbolic metric in
ann(1, rn) is given by (see, e. g., [12, p. 12])

%(z) =
π

|z| sin(π log |z|/ log rn) log rn
.

In particular we have %(z) ≥ π/(|z| log rn) and thus we conclude that

`(σn, ann(1, rn)) =
∫

σn

%(w)|dw| ≥ π

log rn

∫

σn

|dw|
|w| ≥

2π2

log rn

(n− 1)!
(k − 1)!

.

Since log rn ≤ K log (Sn/Qn) = 2K
√

γn! we deduce that

`(σn, ann(1, rn)) ≥ π2

K(k − 1)!
(n− 1)!√

γn!

so that
`(σn, ann(1, rn)) →∞

as n →∞.

On the other hand, our previous estimates imply that

`(σn, ann(1, rn)) = `(τn, ϕ(ann(Qn, Sn))) ≤ `(τn, Vn) ≤ `(τ, Vk).

This is a contradiction. Thus V` is simply connected for all `. This completes the
proof of Theorem 1.

Remark. Except for the fixed point ϕ(0), the critical points of f are contained in
the simply connected wandering domains Vn of f . Thus the wandering domains
Un do not contain critical points. Using this it can be shown with the arguments
of Kisaka and Shishikura (in particular, [11, Proposition 4.5]) that the Un are
doubly connected.

5. Proof of Theorem 2: the Vk are in A(f)

We will use the following characterisation of the set A(f) given by Rippon and
Stallard [13, Lemma 2.4]. Here we denote for a domain U by Ũ the union of U

and its bounded complementary components.

Lemma 3. Let f be a transcendental entire function and let D be a domain
intersecting the Julia set of f . Then

A(f) = {z : there exists L ∈ N such that fn+L(z) 6∈ f̃n(D) for n ∈ N}.
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We apply this result with D := U1. It follows from the maximum principle
that f̃n(U1) = Ũn+1. Since U ′

m ⊂ D(0, Sm+1) we have V ′
l ∩ Ũ ′

m = ∅ and hence
Vl ∩ Ũm = ∅ for l ≥ m + 2. Thus we see that if k ≥ 2 and z ∈ Vk so that
fn+1(z) ∈ Vk+n+1, then

fn+1(z) 6∈ Ũn+1 = f̃n(U1).

Choosing L := 1 in Lemma 3 we see that Vk ⊂ A(f) for k ≥ 2. This completes
the proof of Theorem 2.
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