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1. Introduction
The Hp-theory of analytic functions is well understood. The purpose of this

paper is to show that also quasiconformal mappings in space admit a rich Hp-
theory. Naturally, much of the powerful machinery of the plane is not available to
us and thus our approach is a combination of the analytic and geometric aspects
of the theory of quasiconformal mappings together with a number of tools from
harmonic analysis.

This paper is an edited version of a manuscript under the same name that
has been circulating since the early 1990’s; some of the results were already an-
nounced in [A]. Since then some of the results in the manuscript have been also
obtained independently by different methods by other authors, see for example
the sequence of papers by Nolder in the list of references. For the sake of com-
pleteness, such results have not been removed from this paper. We have tried
to include in our list of references all the papers related to our topic that we are
aware of, even though the potential overlap with our work has not necessarily
been pointed out in the text.

The paper is organized as follows. Section 2 contains preliminary material.
We introduce the quasiconformal Hp-classes in Section 3. Section 4 includes a
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new proof of a theorem due to Zinsmeister and its consequences. In Section 5 we
produce various characterizations for the membership in the Hp-classes. These
contain an extension of a classical theorem of Littlewood and Paley. We establish
a version of the Riesz theorem in Section 6, and, in Section 7, we discuss results
related to BMO. Section 8 deals with Hp-theory for Df ; since the differential
Df is only defined almost everywhere we, in fact, consider an averaged version
of Df. In Section 9 we present connections between Hp-classes and Ap-classes
for both f and Df. Finally, Section 10 contains a list of open problems related
to the contents of this paper.

2. Preliminaries
We write B(x, r) for the open ball in Rn of radius r and centered at x, and we
abbreviate B(0, r) to B(r) and B(0, 1) to Bn. We denote the boundary of B(x, r)
by Sn−1(x, r), we write Sn−1 = Sn−1(0, 1), and we denote the surface area of
Sn−1 by ωn−1. We often use the symbol ≈ to mean comparability, with constants
that depend only on dimension n, dilatation K or other similar appropriate
parameters, but not on the specific functions under consideration.

The modulus of a family Γ of paths in Rn is by definition

M(Γ) = inf
∫

Rn

ρndx

where the infimum is taken over non-negative Borel functions ρ on Rn with∫
γ

ρ ds ≥ 1 for each locally rectifiable γ ∈ Γ. We will frequently employ the
following estimates. Given two compact, connected and disjoint sets E, F ⊂ Bn,
denote the family of paths γ joining E and F in Bn by ΓE,F . Then

(2.0) M(ΓE,F ) ≥ ωn−1

2[log(λn(1 + t))]n−1
,

where t = d(E,F )
min{diam(E),diam(F )} and λn is a constant that only depends on n. For

us, an important path family is the family Γ of radial segments joining Sn−1(0, r),
0 < r < 1, to a set E ⊂ Sn−1. We have then

(2.1) M(Γ) = σ(E)(log(1/r))1−n,

where σ(E) is the surface area of E. As for uppper bounds, we always have

M(Γ) ≤ ωn−1

[log(R/r)]n−1
,

if each γ ∈ Γ joins Sn−1(x, r) to Sn−1(x,R), 0 < r < R. For all these estimates
see [Ge],[V].
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A homeomorphism of a domain Ω in Rn into Rn is K-quasiconformal if f
belongs to the Sobolev class W 1,n

loc (Ω;Rn) and |Df(x)|n ≤ KJf (x) for almost
every x ∈ Ω. It then follows [V] that M(Γ)/K ≤ M(fΓ) ≤ Kn−1M(Γ) for all
path families Γ ⊂ Ω; here fΓ = {f ◦ γ : γ ∈ Γ}.

In the sequel we shall always assume that f is a quasiconformal homeomor-
phism of Bn into Rn. Also, x denotes a generic point in Bn, and ω in Sn−1, and
we write

f(ω) = lim
r→1

f(rw)

whenever this limit exists. By Beurling’s theorem for quasiconformal mappings,
this is the case for almost all ω ∈ Sn−1. Indeed, the radial limit exists if the image
of the radial line segment from ω to Sn−1(0, 1/2) is rectifiable. It is easy to check
that M(fΓ) = 0 for the path family Γ consisting of those radial segments for
which f(γ) fails to be rectifiable. Thus M(Γ) = 0 and the claim follows from
(2.1).

In what follows, T always denotes a Möbius transformation of Bn onto itself.
Given 0 6= x ∈ Bn we let S(x) = Sn−1 ∩B(x, 3(1− |x|)) be the cap with center
x/|x| and Tx be the Möbius transformation of Bn with Tx(x) = 0,

Tx(y) =
(1− |x|2)(y − x)− |y − x|2x

|x|2|y − (x/|x|2)|2 .

Then Tx(S(x)) always contains a hemisphere and

|ω − ω′|/9 ≤ |Tx(ω)− Tx(ω′)|(1− |x|) ≤ 2|ω − ω′|
for all ω, ω′ ∈ S(x). For each ω ∈ Sn−1 we let

Γ(ω) = {x ∈ Bn : |x− ω| ≤ 3(1− |x|)}
be the cone with vertex ω. Clearly, S(x) = {ω ∈ Sn−1 : x ∈ Γ(ω)}. Moreover, for
a continuous function u on Bn, we define its non-tangential maximal function
u∗(ω) by

u∗(ω) = sup{|u(x)| : x ∈ Γ(ω)}.
Next, given x ∈ Bn, we write Bx = B(x, (1− |x|)/2).

2.1. Lemma. Let f : Bn → Ω be K-quasiconformal. There is a constant C,
which depends only on n,K, so that for each x ∈ Bn

diam(f(Bx))/C ≤ d(f(x), ∂Ω) ≤ C diam(f(Bx)) ≤ C2d(f(Bx), ∂Ω).

Moreover, f(Bx) contains a ball of radius d(f(x), ∂Ω)/C, centered at f(x).

This lemma is a well-known consequence of the modulus estimates above. See
for example [V]. We continue with another consequence of the basic modulus
estimates.
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2.2 Lemma. Let f : Bn → Ω be K-quasiconformal and assume that f(x) 6= 0
for all x ∈ Bn. Then

(1− |x|)b/C ≤ |f(x)|
|f(0)| ≤ C(1− |x|)−b,

where b = (2K)1/(n−1) and C depends only on K, n. Moreover, if Ω is con-
tained in a half space H, then we may replace b above in the upper estimate with
K1/(n−1), provided we allow C also depend on d(f(0),H).

If Γ denotes the family of paths joining B(0, 1/2) to Bx in Bn with Bx ∩
B(0, 1/2) = ∅, then 2M(Γ) ≥ wn−1(log C

1−|x| )
1−n, where M(Γ) is the modulus

of Γ. As M(Γ) ≤ KM(fΓ) by the quasiconformality of f, and since M(Γ′) ≤
wn−1(log R

r )1−n for the family Γ′ of paths joining S(f(0), r) to S(f(0), R), r < R,
in Ω, the desired growth estimate follows from Lemma 2.1. The lower decay
estimate is obtained analogously. Regarding the half-space claim, simply notice
that then 2M(Γ′) ≤ wn−1(log R

Mr )1−n. For the details see [K1], [M].
Following Astala and Gehring [AG1] we write

af(x) = exp[
∫

Bx

log Jf (y)dm/(n|Bx|)],

where |Bx| is the n-measure of Bx. Notice that if f is conformal, then the mean
value property implies that af = |Df |. For the proof of the following lemma see
[AG2].

2.3. Lemma. Let f : Bn → Ω be K-quasiconformal. There is a constant C,
which depends only on n,K, so that for each x ∈ Bn

d(f(x), ∂Ω)/C ≤ af(x)(1− |x|) ≤ Cd(f(x), ∂Ω)

and
1
C

[
∫

Bx

|Df(y)|ndm/|Bx|]1/n ≤ af(x) ≤ C[
∫

Bx

|Df(y)|ndm/|Bx|]1/n.

Combining Lemma 2.1 with the first part of Lemma 2.3 easily gives the fol-
lowing estimate (cf. [K1]).

2.4. Lemma. Let f : Bn → Ω be K-quasiconformal. If γ ⊂ Bn is a rectifiable
path with l(γ) ≥ d(γ, Sn−1), then

diam(fγ) ≤ C

∫

γ

af(x)ds.

Here C depends only on n,K.

We conclude this section with a lemma that compares the integrals of |Df |
and af .
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2.5. Lemma. Let f : Bn → Ω be K-quasiconformal. Suppose that u > 0
satisfies

u(y)/C ≤ u(x) ≤ Cu(y)

for each x ∈ Bn and all y ∈ Bx. Let 0 < q ≤ n and p ≥ q. Then

∫

Bn

af
p u dx ≈

∫

Bn

af
p−q |Df |qu dx

with constants that only depend on p, q, n, C, K.

Notice that
∫

Bx
af

q ≈ ∫
Bx
|Df |q whenever 0 < q ≤ n by Lemma 2.3. Because

of the estimate on u and the analogous estimate on af that follows from Lemma
2.1 and Lemma 2.3, we may multiply the integrands by af

p−q u in this semi-
global setting. The global estimate then follows by covering Bn using a suitable
collection of the balls Bx.

3. Quasiconformal mappings and Hp-classes

Adopting the classical definition we say that a quasiconformal mapping f of Bn,
n ≥ 2, belongs to the class Hp provided

||f ||Hp = sup
0<r<1

(
∫

Sn−1
|f(rω)|pdσ)1/p < ∞.

According to a theorem of Jerison and Weitsman [JW], each quasiconformal
mapping f belongs to some Hp-class.

3.1. Theorem (Jerison-Weitsman). There exists a constant p0 = p0(n,K) >
0 so that every K-quasiconformal mapping f of Bn belongs to Hp whenever
p < p0.

By the classical theorem of Prawitz [Pr], all conformal mappings f of the unit
disk belong to Hp for p < 1/2, and the Koebe mapping f(z) = z/(1− z)2 shows
that this bound is sharp. The exponent p0 obtained by Jerison and Weitsman
is not the best possible. We give a new proof for Theorem 3.1 that yields the
sharp exponent in the plane. In higher dimensions, our estimate is optimal for
mappings into a half space, but we do not know if our bound is also best possible
in the general situation.

For each K ≥ 1 and n ≥ 2, let a(n,K) be the infimum of the numbers a such
that

sup
|x|<1

(1− |x|)a|f(x)| < ∞

for every K-quasiconformal mapping f of Bn. Then we have:
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3.2. Theorem. The best possible bound p0(n,K) in Theorem 3.1 is

p0(n,K) = (n− 1)/a(n,K).

In particular, p0(2,K) = 1/(2K), and for n ≥ 3

(n− 1)/(2K)1/(n−1) ≤ p0(n,K) ≤ (n− 1)/K1/(n−1).

Moreover, for the subclass of f mapping into a half space,

p0(n,K) = (n− 1)/K1/(n−1).

When n = 2 and K = 1, p0 = 1/2, and we obtain Prawitz’s theorem.
The upper bounds on p0 in higher dimensions are realized by the simple K-
quasiconformal mappings f(x) = (x− e1)|x− e1|−1+a, a = K1/(n−1), composed
with a Möbius transformation which map Bn into a half space. This map-
ping also works for the half space setting in dimension two, and the mapping
g(x) = f(k(x)), where k is the Koebe function, achieves the general upper bound
in the plane.

The theorem of Prawitz and its proof combined with estimates due to Hardy
and Littlewood yield estimates for individual functions as well. Indeed, if we
denote

M(r, f) = sup{|f(x)| : |x| = r}, 0 < r < 1,

then these results show that a conformal mapping of the disk belongs to Hp

if and only if
∫ 1

0
M(r, f)pdr < ∞. This characterization does not hold for an-

alytic functions, see [D], but it generalizes to quasiconformal mappings in any
dimension.

3.3. Theorem. The following two conditions are equivalent for quasiconformal
mappings of Bn.

(3.4) f ∈ Hp.

(3.5)
∫ 1

0

(1− r)n−2M(r, f)pdr < ∞.

Proof. We show first that the inequality

(3.6)
∫

Sn−1
|f(ω)|pdσ ≤ C(n, p)K

∫ 1

0

(1− r)n−2M(r, f)pdr
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holds for each K-quasiconformal mapping with f(0) = 0. The conclusion that
(3.5) implies (3.4) immediately follows from this estimate: one may assume that
f(0) = 0, and it suffices to estimate

∫
Sn−1 |f(rω)|pdσ for 1/2 ≤ r < 1; for this

one simply applies (3.6) to the quasiconformal mapping g(x) = f(rx) of Bn.
Fix a number λ > 0 and let E = {ω ∈ Sn−1 : |f(ω)| > λ}. As M(0, f) = 0,

there is a unique r = r(λ) such that

2M(r, f) = λ.

Let next ΓE be the path family consisting of the radial segments connecting
B(0, r) to E. Then,

M(ΓE) = σ(E)(log(1/r))1−n ≥ σ(E)21−n(1− r)1−n

for 1/2 < r < 1. On the other hand, if Γ′E = fΓE is the image family, then each
γ in Γ′E connects B(0, λ/2) to Rn \B(0, λ), and so M(Γ′E) ≤ ωn−1(log 2)1−n. As
M(ΓE) ≤ KM(Γ′E),

(3.7) σ({ω ∈ Sn−1 : |f(ω)| > λ}) ≤ C1(n)K(1− r)n−1,

whenever λ = 2M(r, f) and 1/2 < r < 1. If ν is the measure on [0, 1] defined by
dν = (1− r)n−2dr, then

ν({t ∈ [0, 1] : M(t, f) > λ/2}) = (1− r(λ))n−1/(n− 1),

and so
∫

Sn−1
|f(ω)|pdσ = p

∫ ∞

0

σ({ω ∈ Sn−1 : |f(ω)| > λ})λp−1dλ

≤ σ(Sn−1)2pM(1/2, f)p + C2(n)Kp

∫ ∞

0

ν({t ∈ [0, 1] : M(t, f) > λ/2})λp−1dλ

≤ C3(n)2pK

∫ 1

0

(1− r)n−2M(r, f)pdr.

For the converse direction, choose points xk ∈ Bn with |xk| = rk = 1 − 2−k

and |f(xk)| = M(rk, f), k = 1, 2, · · · . Then

∫ 1

0

(1− r)n−2M(r, f)pdr ≤ 2nΣ∞k=1(2
−k)n−1M(rk, f)p

= 2n

∫

Bn

|f(x)|pdµ,
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where
dµ(x) = Σ∞k=1(1− |x|)n−1δxk

.

To conclude that (3.4) implies (3.5) we require the quasiconformal version of
Carleson’s theorem whose proof will be given in the next section in Theorem 4.5:
Since µ is a Carleson measure,

µ(Bn ∩B(ω, ρ)) ≤ Cρn−1

for ω ∈ Sn−1 and ρ > 0, Theorem 4.5 implies that

∫

Bn

|f(x)|pdµ ≤ C(n,K)
∫

Sn−1
|f(ω)|pdσ.

Proof of Theorem 3.2. Let f ∈ Hp, and assume that f(0) = 0. Then, by Lemma
2.1 and Theorem 3.3, for every x ∈ Bn

(1− |x|)n−1|f(x)|p ≤ C

∫ 1

0

(1− r)n−2M(r, f)pdr ≤ C < ∞

and hence |f(x)| ≤ C(1− |x|)−a, a = (n− 1)/p.
Conversely, if |f(x)| ≤ C(1− |x|)−a for all x ∈ Bn and p < (n− 1)/a, then

∫ 1

0

(1− r)n−2M(r, f)pdr ≤ C

∫ 1

0

(1− r)n−2(1− r)−apdr < ∞.

Consequently, we have shown that p0(n,K) = (n− 1)/a(n,K).
The numerical estimates now follow from the estimate on a(n,K) in Lemma

2.2 and the discussion after Theorem 3.2.

4. Zinsmeister’s theorem and its consequences
One of the cornerstones of the modern development of Hp-spaces is the the-

orem of Hardy and Littlewood that characterizes Hp-functions in terms of the
nontangential maximal function

f∗(ω) = sup
x∈Γ(ω)

|f(x)|, ω ∈ Sn−1.

According to this result a (holomorphic) function f of the disk belongs to Hp

if and only if f∗ ∈ Lp(S1). Zinsmeister [Z] has extended this maximal function
characterization to quasiconformal mappings in space.
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4.1. Theorem (Zinsmeister). The following conditions are equivalent for
each quasiconformal mapping f of Bn, n ≥ 2, and for all 0 < p < ∞.

(1) f(ω) ∈ Lp(Sn−1).
(2) f(x) ∈ Hp.
(3) f∗(ω) ∈ Lp(Sn−1).

In addition, the corresponding “norms” are equivalent with constants depending
only on n,K, p.

Recall that f(ω) denotes the radial limit of f at ω ∈ Sn−1 whenever it exists;
this is the case for almost every ω ∈ Sn−1. A holomorphic function f of the
disk may have Lp-boundary values without being in the space Hp. On the other
hand, Hq ∩ Lp = Hp also in the holomorphic setting and thus, by Theorem
3.1, it is reasonable to expect that conditions (1) and (3) of Theorem 4.1 are
equivalent, i.e., that the quasiconformal Hp-theorems are really results of the
boundary values.

The original proof of 4.1 in [Z] was based on a result of Jones [J] on Carleson
measures and quasiconformal mappings. Below we describe a different approach,
more directly tied to the the geometric nature of quasiconformal mappings. In-
deed, Lemma 4.2, which was in [Z] deduced from the work of Jones, will be
applied in Section 6 to give a simple proof of Jones’ theorem according to which
log |f(ω)| ∈ BMO(Sn−1) whenever f is quasiconformal and f(x) 6= 0 for all
x ∈ Bn.

4.2. Lemma. Suppose f is quasiconformal with f(x) 6= 0 for all x ∈ Bn. Then,
for each x ∈ Bn and all M > 1,

(4.2) σ({ω ∈ S(x) : |f(ω)| < |f(x)|/M}) ≤ C(n,K)σ(S(x))(log M)1−n.

Proof. Let us first consider the case where in (4.2) we have x = 0. We may
assume that d(f(0), f(Sn−1)) = 1. After this normalization it follows from a
simple modulus estimate that |f(x) − f(0)| ≤ 1/2 for |x| ≤ r0; here r0 depends
only on n,K. As

1 = d(f(0), f(Sn−1)) ≤ |f(0)|,
the set fB(0, r0) cannot intersect B(0, |f(0)|/2).

Let next E = {ω ∈ Sn−1 : |f(ω)| < |f(0)|/M} and choose ΓE to be the
path family of radial segments connecting B(0, r0) to E. Then ΓE has modulus
M(ΓE) = σ(E) log(1/r0)1−n. If M > 3, the paths in the image family Γ′E =
fΓE connect the complement of B(0, |f(0)|/2) to B(0, |f(0)|/M) and therefore
M(Γ′E) ≤ ωn−1(log(M/2))1−n ≤ C(n)(log M)1−n. As M(ΓE) ≤ KM(Γ′E), we
obtain

σ(E) ≤ C(n,K)(log M)1−n.
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Finally, for 1 < M ≤ 3, clearly σ(E) ≤ σ(Sn−1)(log 3)n−1(log M)1−n.
Let then x ∈ Bn be general. The desired estimate follows by mapping x to 0

by the Möbius transformation Tx defined in Section 2, and applying the estimate
from the first part of the proof to g = f ◦ T−1

x .

Remark. For further reference, let us record here that a simple modification to
the proof of Lemma 4.2 gives the estimates: if M > 1 and x ∈ Bn, then

σ({w ∈ S(x) : |f(w)− f(x)| > Md(f(x), ∂f(Bn))}) ≤ Cσ(S(x))(log M)1−n

and
σ({w ∈ S(x) : |f(w)| > M |f(x)|}) ≤ Cσ(S(x))(log M)1−n.

Note also that the first estimate holds without assuming f(x) 6= 0 in Bn.

4.3. Corollary. If f is quasiconformal in Bn, then

|f(x)|q ≤ C
1

σ(S(x))

∫

S(x)

|f(ω)|qdσ

for all x ∈ Bn and each 0 < q < ∞. The constant C depends only on n,K, q.

Proof. Assume first that f(x) 6= 0 for all x ∈ Bn. We apply Lemma 4.2. If M0

is so large that C(n,K)(log M0)1−n = 1/2, the estimate in Lemma 4.2 gives

2σ({ω ∈ S(x) : |f(ω)| ≥ |f(x)|/M0}) ≥ σ(S(x)).

Consequently,
∫

S(x)

|f(ω)|qdσ ≥ |f(x)|qM−q
0 σ({ω ∈ S(x) : |f(ω)| ≥ |f(x)|/M0})

= C(n,K)|f(x)|qσ(S(x)).

If f(x) = 0 for some x ∈ Bn, we may choose a point y in the complement of fBn

so that |y| ≤ |f(ω)| for all ω ∈ Sn−1. Applying the above estimate to f − y we
get

σ(S(x))|f(x)|q ≤ 2q+1C(n,K)(
∫

S(x)

|f(ω)|qdσ + |y|qσ(S(x)))

≤ C

∫

S(x)

|f(ω)|qdσ.

Zinsmeister’s theorem follows now immediately. It is enough to prove that
condition (1) implies condition (3): As |f(rω)|, |f(ω)| ≤ |f∗(ω)|, (3) gives (1) and
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(2), and (2) yields (1) by the Fatou lemma. So, assume (1). Applying Corollary
4.3 we see that f∗(ω)q ≤ CM(|f |q)(ω), where M denotes the Hardy-Littlewood
maximal function on the sphere Sn−1. Since M is bounded on Ls(Sn−1) for all
1 < s < ∞, we obtain for q < p

∫

Sn−1
f∗(ω)pdσ =

∫

Sn−1
(f∗(ω)q)p/qdσ

≤ C

∫

Sn−1
(M(|f |q))p/q(ω)dσ ≤ C

∫

Sn−1
|f(ω)|pdσ,

which proves Theorem 4.1.
It is well known that many properties of the Hp-spaces can be obtained as

consequences of the Hardy-Littlewood maximal characterization. Therefore also
Theorem 4.1 has similar corollaries.

4.4. Corollary. If f is quasiconformal in Bn and f(ω) ∈ Lp(Sn−1), then

∫

Sn−1
|f(rω)− f(ω)|pdσ → 0 as r → 0.

Proof. As |f(rw)− f(w)| ≤ 2f∗(ω), the claim follows from Theorem 4.1 and the
dominated convergence theorem.

A measure µ on Bn is called an α-Carleson measure, 1 ≤ α < ∞, if

γα(µ) := sup{r−α(n−1)µ(Bn ∩B(ω, r)) : ω ∈ Sn−1, r > 0} < ∞.

For α = 1 the definition reduces to the usual notion of a Carleson measure. The
fundamental theorem, due to Carleson, states that the Poisson integral defines a
bounded operator from Lp(S1) to Lp

µ(B2) if and only if µ is a Carleson measure
on B2. We utilize a version of Stein’s proof [Ste] for this theorem to obtain a
quasiconformal counterpart.

4.5. Corollary. Let f be a quasiconformal mapping of Bn and µ an α-Carleson
measure on Bn. Then

(4.6)
∫

Bn

|f(x)|αpdµ ≤ C(
∫

Sn−1
|f(ω)|pdσ)α, 0 < p < ∞,

where C depends only on K, n, γα(µ). Conversely, if K ≥ 1 and p > (n −
1)/K1/(n−1) are fixed and (4.6) holds for all K-quasiconformal mappings, then
µ is an α-Carleson measure. In particular, if p > n− 1, the converse part holds
for any K.
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Proof. Let E(λ) = {x ∈ Bn : |f(x)| > λ} and U(λ) = {ω ∈ Sn−1 : f∗(ω) > λ}.
We apply the generalized form of the Whitney decomposition, cf. [G], to the
open set U(λ) ⊂ Sn−1. More precisely, we can write

U(λ) =
∞⋃

k=1

S(xk),

where the points xk ∈ Bn are chosen so that each ω ∈ U(λ) is contained in at
most N = N(n) caps S(xk) and (1 − |xk|)/C ≤ d(S(xk), ∂U(λ)) ≤ C(1 − |xk|).
Here C is an absolute constant and the distance is measured in the spherical
distance of Sn−1. If |f(x)| > λ, then f∗(ω) > λ for all ω ∈ S(x) and we see that
E(λ) is contained in the union of the balls B(xk/|xk|, C(1− |xk|)), k = 1, 2, · · · ,
where C is an absolute constant. Hence

µ(E(λ)) ≤
∞∑

k=1

µ(B(xk/|xk|, C(1− |xk|)))

≤ C
∞∑

k=1

σ(S(xk))α ≤ C[
∞∑

k=1

σ(S(xk))]α ≤ Cσ(U(λ))α.

Therefore ∫

Bn

|f(x)|αpdµ = αp

∫ ∞

0

λαp−1µ(E(λ))dλ

≤ C

∫ ∞

0

λαp−1σ(U(λ))αdλ

≤ C
∞∑

j=−∞
σ(U(2j))α2jαp

≤ C(
∞∑

j=−∞
σ(U(2j))2jp)α

≤ C(
∫

Sn−1
f∗(ω)pdσ)α,

where C depends only on p, n, α, and the Carleson norm of µ. The sufficiency
part of the claim now follows from Theorem 4.1.

For the necessity of the Carleson measure condition, fix ω ∈ Sn−1 and r > 0.
We may assume that r ≤ 2. Define then a K-quasiconformal mapping f of Bn

as follows. First, consider a Möbius transformation

Φ(x) =
A(x− y)
|x− y|2 .
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When A is a sense reversing isometry of Rn we have JΦ(x) ≥ 0, and then
Φ is 1-quasiconformal. Composing Φ with a radial stretching gives us the K-
quasiconformal mapping

f(x) = A(x− y)|x− y|−1−a, a = K1/(1−n).

We choose here y = (1 + r)ω. Then a simple calculation and the assumption
p > (n− 1)/a show that

∫

Sn−1
|f |pdσ ≤ Crn−1−pa

and ∫

Bn

|f |αpdµ ≥ C−1r−paαµ(Bn ∩B(ω, r)),

where C is independent of ω, r. The claim follows.

4.6. Corollary. Let L ⊂ Rn be an (n−1)-dimensional plane through the origin.
Then ∫

L∩Bn

|f(x)|pdHn−1 ≤ C

∫

Sn−1
|f(ω)|pdσ

for all 0 < p < ∞ and all quasiconformal mappings f of Bn. The constant C
depends only on K, n, p.

5. Characterizations for the Hp class
In this section we present more characterizations for the membership in Hp.
Recall that, by an old theorem of Littlewood and Paley [LP],

∫

B2
|Df |p(1− |x|)p−1dx < ∞

whenever f ∈ Hp is analytic and p ≥ 2. It is known, see [Gi], that this result does
not hold for 0 < p < 2. Conversely, if the above integral converges for an analytic
f for some 1 ≤ p ≤ 2, then f belongs to Hp, and, again, the restriction on p
is necessary. Our next observation shows, in particular, that the convergence of
this integral is a test for the membership in Hp for univalent functions for all
p > 0. Since |Df |p is not necessarily locally integrable for large values of p for a
fixed quasiconformal mapping, we formulate our result in terms of the averaged
derivative.

5.1. Theorem. Let f be a quasiconformal mapping of Bn and fix 0 < p < ∞.
Then the following conditions are equivalent.

(1) f(w) ∈ Lp(Sn−1).
(2)

∫
Bn af

p(x)(1− |x|)p−1dx < ∞.

(3) supx∈Γ(ω)(af(x)(1− |x|)) ∈ Lp(Sn−1)
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Proof. Suppose first that f(w) ∈ Lp(Sn−1). Assume that 0 < p ≤ 1. We may
assume that f 6= 0 in Bn. Then Lemma 5.6 below and Corollary 4.5 yield that

∫

Bn

|f |p|Df |p|f |−p(1− |x|)p−1dx ≤ C||f ||pHp ,

and we conclude by Lemma 2.5 that
∫

Bn

af(x)p(1− |x|)p−1dx < ∞,

as desired. Let now p > 1, and assume that f(0) = 0. Fix y ∈ ∂f(Bn) with
|y| = d(f(0), ∂f(Bn)). Then, by Lemma 2.5 and Lemma 2.3,

∫

Bn

af(x)p(1− |x|)p−1dx ≤ C

∫

Bn

|Df | af(x)p−1(1− |x|)p−1dx

≤ C

∫

Bn

|Df(x)|d(f(x), ∂f(Bn))p−1dx ≤ C

∫

Bn

|Df ||f − y|p−1dx.

Since f − y 6= 0 in Bn we may again apply Lemma 5.6 and Corollary 4.5 to
conclude that also in this case

(5.1)
∫

Bn

af(x)p(1− |x|)p−1dx < ∞.

Assume then that (5.1) holds. Notice first that for any function u, integrable
on Bn, Fubini’s theorem gives

(5.2)
∫

Bn

u dx ≈
∫

Sn−1

∫

Γ(w)

u(y)(1− |y|)1−ndydσ.

Set
v(w) = (

∫

Γ(w)

af(x)p(1− |x|)p−ndx)1/p.

Then (5.2) ensures that v ∈ Lp(Sn−1). Fix w ∈ Sn−1. If x ∈ Γ(w), then Lemma
2.1 and Lemma 2.3 give

af(x)(1− |x|) ≤ C(
∫

Bx

af(y)pdy)1/p(1− |x|)1−n/p

≤ C(
∫

Γ(w)

af(x)p(1− |x|)p−ndx)1/p,
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and we conclude that

sup
x∈Γ(w)

(af(x)(1− |x|)) ∈ Lp(Sn−1),

as desired.
Assume finally that (3) holds. Set

v(w) = sup
x∈Γ(w)

(af(x)(1− |x|)).

Then v ∈ Lp(Sn−1), and appealing to Lemma 2.3 we see that for each x ∈ Γ(w)

d(f(x), ∂f(Bn)) ≤ Cv(w),

where C depends only on n,K. Thus, Lemma 5.5 below shows that (1) holds.

We continue with a characterization that involves |Df | instead of af .

5.3. Lemma. Suppose that f is quasiconformal in Bn and f(x) 6= 0 for all
x ∈ Bn. Then f ∈ Hp, if and only if

∫

Bn

|f(x)|p−1|Df(x)|dx < ∞.

Proof. If f ∈ Hp, then the desired integrability condition follows from Theorem
4.1, Corollary 4.5 and Lemma 5.6. On the other hand, if Ar = B(r) \ B(1/2),
then ∫

Sn−1
|f(rw)|pdσ −

∫

Sn−1
|f(w/2)|pdσ ≤ C

∫

Ar

d

dt
|f(tw)|pdx

≤ pC

∫

Ar

|f |p−1|Df |dx

and so the indicated integrability condition ensures that f ∈ Hp.

5.4. Corollary. Let f be a quasiconformal mapping of Bn with f(x) 6= 0 in
Bn, and fix 0 < p < ∞. Then the following conditions are equivalent.

(1) f ∈ Hp.
(2) f(w) ∈ Lp(Sn−1).
(3)

∫
Bn |f |p−1|Df |dx < ∞.

(4)
∫
Bn af

p(x)(1− |x|)p−1dx < ∞.

(5) supx∈Γ(ω)(af(x)(1− |x|)) ∈ Lp(Sn−1).

It remains to establish the Lemmas that we used in the proof of Theorem 5.1.
First we have
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5.5. Lemma. Let f be a quasiconformal mapping of Bn with f(0) = 0. Suppose
that we are given a function v ∈ Lp(Sn−1) such that

sup
x∈Γ(ω)

d(f(x), ∂f(Bn)) ≤ v(ω)

for almost every ω ∈ Sn−1. Then
∫

Sn−1
|f(w)|pdσ ≤ C

∫

Sn−1
v(w)pdσ,

where C depends only on n,K, p.

Proof. Define U(λ) = {w ∈ Sn−1 : f∗(w) > λ}. Then, as in the proof of Corollary
4.5, we can write U(λ) as the union of caps S(xj)

U(λ) = ∪S(xj)

so that the caps have uniformly bounded overlap and

d(S(xj), ∂U(λ)) ≤ C(1− |xj |).

If v(w) < γ for some w ∈ S(xj), then Lemma 2.1 implies that

|f(xj)| ≤ λ + Cγ,

and, by assumption,
d(f(xj), ∂f(Bn)) ≤ γ,

where C depends only on K, n. Let now ω ∈ S(xj) satisfy |f(w)| > 2λ and
v(w) ≤ γ, where λ = (M + 1)Cγ. Then we conclude that

|f(w)− f(xj)| > Md(f(xj), ∂f(Bn)).

Hence we have the good λ-inequality

σ({w ∈ S(xj) : |f(w)| > 2λ, v(w) ≤ γ})

≤ σ({w ∈ S(xj) : |f(w)− f(xj)| > Md(f(xj), ∂f(Bn))})
≤ Cσ(S(xj))(log M)1−n,

where C depends only on n,K. Here we used the remark after Lemma 4.2 for
the last estimate. By continuity, f∗(w) > 2λ provided |f(w)| > 2λ, and hence
each such w belongs to U(λ). Thus

σ({w ∈ Sn−1 : |f(w)| > 2λ})
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≤ σ({w ∈ U(λ) : |f(w)| > 2λ, v(w) ≤ γ}) + σ({w ∈ Sn−1 : v(w) > γ})
≤ CΣjσ(S(xj))(log M)1−n + σ({w ∈ Sn−1 : v(w) > γ})
≤ Cσ(U(λ))(log M)1−n + σ({w ∈ Sn−1 : v(w) > γ}).

Integrating we obtain (recall that γ = λ/(C(M + 1)))
∫

Sn−1
|f |pdσ ≤ C(log M)1−n

∫

Sn−1
f∗(w)pdσ + MpC

∫

Sn−1
v(w)pdσ.

We want to combine the integral involving f∗(ω) with the left hand side of the
estimate. In principle both terms could be infinite, but by scaling and considering
ft(x) = f(tx), 0 < t < 1, we force the integrals to converge. By Theorem 4.1

∫

Sn−1
f∗(w)pdσ ≤ C

∫

Sn−1
|f |pdσ,

and hence, taking M sufficiently large and then letting t → 1, we conclude that
∫

Sn−1
|f |pdσ ≤ C

∫

Sn−1
vpdσ.

We close this section with the following version of a result of Jones [J] that
was employed above.

5.6. Lemma (Jones). If f is quasiconformal in Bn, 0 < p < n, and f(x) 6= 0
for all x ∈ Bn, then the measure µ defined by dµ = |Df(x)|p|f(x)|−p(1−|x|)p−1dx
is a Carleson measure on Bn.

Proof. Given a quasiconformal mapping f as above, we first notice that, given
ε > 0, ∫

Bn

|Df(x)|p|f(x)|−p(1− |x|)p−1dx ≤

≤ (
∫

Bn

|Df(x)|n|f(x)|−n(1−|x|)εn/pdx)p/n(
∫

Bn

(1−|x|)(p−1−ε)n/(n−p)dx)(n−p)/n

by Hölder’s inequality. We can now choose ε > 0, depending only on p, n so
that the latter integral converges. Applying the distortion inequality |Df(x)|n ≤
KJf (x), a change of variables, splitting the resulting integral over f(Bn) into two
integrals, one over f(Bn)∩B(0, |f(0)|) and the second over f(Bn) \B(0, |f(0)|),
and inserting the estimate from Lemma 2.2, we conclude that there is a constant
M = M(p, n, K) so that

∫

Bn

|Df(x)|p|f(x)|−p(1− |x|)p−1dx ≤ M
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for each f as in the claim. Let then g satisfy the assumptions of our lemma,
ω ∈ Sn−1, and r > 0. By choosing a point x on the radius to ω appropriately
and applying the Möbius transformation Tx from Section 2, we conclude that
∫

Bn∩B(ω,r)

|Dg(y)|p|g(y)|−p(1−|y|)p−1dy ≤ Crn−1

∫

Bn

|Df(z)|p|f(z)|−p(1−|z|)p−1dz,

where f(z) = g(Tx(y)). The claim follows.

6. Conjugate functions
According to the Riesz theorem, an analytic function f belongs to Hp for some
1 < p < ∞, if and only if the real part of f belongs to Hp. Moreover, a theorem
of Burkholder, Gundy and Silverstein [BGS] shows that the Lp(S1) norm of the
harmonic conjugate v of a harmonic function u is bounded by a constant multiple
(depending on p > 0) of the Lp(S1) norm of the maximal function u∗ of u. Notice
that, naturally, the use of a maximal function is essential as seen for example by
considering the real and imaginary parts of a Möbius transformation that maps
the unit disk onto the upper half plane. We begin by giving a quasiconformal
analog of this result.

6.1. Theorem. Let f be a quasiconformal mapping of Bn, and let u = fj be
one of its components. Then f ∈ Hp if and only if u∗(w) ∈ Lp(Sn−1).

Proof. If f ∈ Hp, then u∗(w) ∈ Lp(Sn−1) by Theorem 4.1. For the converse,
assume that u∗(w) ∈ Lp(Sn−1). If u∗(w) < γ then Lemma 2.1 implies that for
each x ∈ Γ(w)

d(f(x), ∂f(Bn)) ≤ Cγ,

where C depends only on K, n. Thus we may apply Lemma 5.5 to conclude that
f ∈ Hp.

The quasiconformal mapping f(x) = (x− e1)|x− e1|−1−(n−1)/p, p > 0, shows
that the Riesz theorem does not extend as such to the class of quasiconformal
mappings. Indeed, this mapping does not belong to Hp, but the first coordinate
function belongs to Hp. In view of the following theorem this is in some sense
the worst possible situation.

6.2. Theorem. Let f be a quasiconformal mapping of Bn. If one of the coordi-
nate functions of f belongs to Hp, then f belongs to Hq for all q < p. Moreover,
f belongs to the space weak-Lp(Sn−1).

Proof. We begin by showing that f belongs to Hq for all q < p. By Theorem
3.3 it suffices to show that M(r, f) ≤ C(1− r)(1−n)/p. To this end, let fi be the
coordinate function of f belonging to Hp. Then the Fubini theorem shows that

∫

Bx

|fi(y)|pdy ≤ C(1− |x|)
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for all x ∈ Bn. Hence, by the weak Harnack inequality [HKM,3.34]

|fi(x)| ≤ C(−
∫

Bx

|fi(y)|pdy)1/p ≤ C(1− |x|)(1−n)/p.

By Lemma 2.1 and Lemma 2.3 we conclude that

af (x) ≤ Cd(f(x), ∂f(Bn))/(1− |x|) ≤ C(1− |x|)b,

where b = −1 + (1− n)/p. Integrating and applying Lemma 2.4 we arrive at the
desired growth estimate.

Now we turn to the weak-Lp-result. We may assume that f(0) = 0. As in
the proof of Theorem 3.3, we pick for a fixed λ > 0 the unique r > 0 with
2M(r, f) = λ. We may assume that r > 1/2. Then, by inequality (3.7),

(6.3) σ({w ∈ Sn−1 : |f(w)| > λ}) ≤ C(1− r)n−1.

On the other hand,
λ = 2M(r, f) ≤ C(1− r)(1−n)/p

by the first part of the proof. Hence

(1− r)n−1 ≤ Cλ−p,

and the weak-Lp-estimate follows from (6.3).

Notice that there is no restriction on p in the above theorem, whereas the
assumption p > 1 is essential for analytic functions. Indeed, there exist analytic
functions that belong to no Hp but whose real parts belong to Hp for all 0 <
p < 1.

6.4. Remark. Since the gradients of the coordinate functions of a quasiconfor-
mal mapping f are comparable almost everywhere and the coordinate functions
satisfy a Caccioppoli-type inequality, it is reasonable to expect that the best
exponents of integrability over Bn for the coordinate functions coincide. This
conclusion has been verified by Iwaniec and Nolder [IN].

7. BMO and VMO
In this section, we first give a geometric proof for a result of Jones [J] according

to which log |f(w)| belongs to BMO(Sn−1) for each quasiconformal mapping f
of Bn that omits 0. Prior to Jones’ work this result was established for univalent
functions by Baernstein [B] and by Cima and Schober [CS]. Then we produce
a long list of characterizations for the membership in BMO and comment on
various function classes related to the boundary values.



38 KARI ASTALA AND PEKKA KOSKELA

7.1. Theorem (Jones). Suppose that f is quasiconformal in Bn and f(x) 6= 0
for all x ∈ Bn. Then log |f(w)| ∈ BMO(Sn−1).

Proof. By Lemma 4.2 and the remark after it

σ({w ∈ S(x) : | log |f(w)| − log |f(x)|| > log M}) ≤ Cσ(S(x))(log M)1−n,

and so
σ(S(x))−1

∫

S(x)

| log |f(w)| − log |f(x)||pdσ

= σ(S(x))−1p

∫ ∞

0

tp−1σ({w ∈ S(x) : | log |f(w)| − log |f(x)|| > t})dt

≤ 1 + C

∫ ∞

1

ptp−1t1−ndt < C1

whenever p < n− 1. When n ≥ 3 we may take p = 1 and the claim follows. We
can also apply alternative arguments which work also when n = 2, for example
the theorem of Strömberg [Str].

It is well known [G] that a holomorphic function f belongs to BMO(S1) if and
only if |Df(z)|(1−|z|) is a Carleson measure. Moreover, a holomorphic function
f belongs to BMO with respect to area if and only if f is a Bloch function, i.e.,

sup
|z|<1

|f ′(z)|(1− |z|) < ∞.

Furthermore, by a result of Pommerenke [P1], a univalent holomorphic function
f belongs to BMO(S1) if and only if f is a Bloch function. Theorem 7.2 below
extends these observations.

7.2. Theorem. The following conditions are equivalent for a quasiconformal
mapping of Bn.

(1) f ∈BMO(Sn−1).
(2) supT

∫
Sn−1 |f ◦ T − f(T (0))|dσ < ∞, where the supremum is taken over

the Möbius transforms T : Bn → Bn.
(3) |Df(x)|n(1− |x|)n−1 is a Carleson measure.
(4) af(x) ≤ M(1− |x|)−1 for all x ∈ Bn.
(5) d(f(x), ∂f(Bn)) ≤ C < ∞ for all x ∈ Bn.
(6) fj ∈BMO for some (each) coordinate function fj of f.
(7) f ∈BMO.

Proof. It easily follows from the argument in [G] that (1) implies (2). Next, (3)
follows from (2) by Lemma 7.5. Then Lemma 2.3 shows that (3) yields (4) and
that (4) implies (5). From Lemma 2.3 and Lemma 7.6 below we observe that (1)
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is a consequence of (5). Moreover, (5), Lemma 2.3 and the Poincaré inequality
guarantee that the BMO-estimate holds for f for each ball B with 2B ⊂ Bn.
This seemingly weaker version of the BMO-condition implies that f belongs to
BMO (cf., [Sta]). Thus (7) follows from (5). Next, clearly, (6) is a consequence
of (7).

Finally, by the John-Nirenberg inequality we deduce from (6) that
∫

Bx

|fj − a|ndy ≤ C(1− |x|)n

for each x ∈ Bn, where a denotes the average of fj in B. The Caccioppoli
inequality [HKM, (3.33)] then states that

∫

Bx

|∇fj |ndx ≤ C,

and (4) follows using Lemma 2.3 (the gradients of the coordinate functions of f
are comparable almost everywhere). This completes the desired string of impli-
cations.

For analytic functions the growth of |f ′(z)| determines whether f satisfies
a Lipschitz condition or not. As an appropriate radial stretching indicates, for
quasiconformal mappings one has to look at Lipschitz conditions for the boundary
values. We write f ∈ Lipα(E) if there is a constant M such that

|f(x)− f(y)| ≤ M |x− y|α

for all x, y ∈ E.

7.3. Theorem. The following are equivalent for 0 < α ≤ 1.

(1) f ∈ Lipα(∂Bn).
(2) af(x) ≤ M(1− |x|)α−1 for all x in Bn.

Proof. A standard modulus estimate shows that (1) implies (2) (use Lemma 2.1
and Lemma 2.3). Furthermore, (2) yields (1) by Lemma 2.3.

Since af is essentially a constant in each Bx, we have the following corollary
that gives a version of the Sobolev embedding theorem for p > n; notice that one
cannot conclude local Hölder continuity with exponent α as seen by considering,
for example, the quasiconformal mapping of the type f(x) = x|x|−1/2 for which
af is bounded.

7.4. Corollary. If
∫
Bn af

p dx < ∞, p > n, then f ∈ Lipα(∂Bn), where α =
1− n/p.

We close this section with the following two lemmas that were used in the
proof of Theorem 7.2 above.
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7.5. Lemma. If f ∈ BMO(Sn−1), then |Df(x)|n(1 − |x|)n−1 is a Carleson
measure.

Proof. Since f ∈ BMO(Sn−1), it follows from the argument in [G], Corollary
VI.1.4, that

sup
T

∫

Sn−1
|f ◦ T − f(T (0))|ndσ = M < ∞.

From Lemma 9.4 below we thus deduce that
∫

Bn

|D(f ◦ T )|n(1− |x|)n−1dx ≤ CM

for each T. Now
∫

Bn

|D(f ◦ T )|n(1− |x|)n−1dx =
∫

Bn

|Df |n(1− |T−1(x)|)n−1dx

≈
∫

Bn

|Df |n(1− |x|)n−1|D(T−1)|n−1dx.

Hence
sup
T

∫

Bn

|Df |n(1− |x|)n−1|DT |n−1dx ≤ CM < ∞,

and hence it follows from an n-dimensional version of Lemma VI 3.3 in [G] that
|Df |n(1− |x|)n−1 is a Carleson measure.

7.6. Lemma. If d(f(x), ∂D) ≤ M < ∞ for all x ∈ Bn, then f ∈BMO(Sn−1).

Proof. Suppose first that g is a quasiconformal mapping of Bn with g(0) = 0
and d(g(x), ∂D) ≤ M < ∞ for all x ∈ Bn. Then

∫

Sn−1
|g|dσ ≤ CM

by Lemma 5.5, where C depends only on n,K. The claim follows easily from this
estimate by applying it, for a fixed x ∈ Bn, to g(y) = f(T−1

x (y)) − f(T−1
x (x)),

where Tx is as in Section 2.

8. Hp-theory for Df and the growth of integral means
The derivative of an analytic function is analytic and hence a number of results

in the Hp-theory for the derivative of an analytic function immediately follow.
This approach naturally fails in the context of quasiconformal mappings. Another
drawback is the lack of smoothness. For example, the image of a circle under a
quasiconformal mapping of the disk can fail to be rectifiable and the quantity
Df(x) is in general only defined almost everywhere. Hence a reasonable attempt
is to replace Df(x) by the averaged derivative af(x). This choice has turned out
to be fruitfull. We begin by recording a result due to Hanson [H]. Also see [BK].
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8.1. Theorem [H]. Let f be quasiconformal in B2. Then af ∈ H1 if and only
if the length of the boundary H1(∂f(B2)) < ∞.

Theorem 8.1 does not extend as such to higher dimensions. If Hn−1(∂fBn) <
∞, then still af ∈ Hn−1, but in the opposite direction, one can only control the
size of the porous part of ∂fBn. For this see [BK].

As Theorem 8.1 suggests, the growth of the integral means of af is related
to the size of the boundary of the image domain. We continue in this direction
by establishing a quasiconformal analog of a result of Ch. Pommerenke [P2] for
conformal mappings of the disk.

8.2. Theorem. Suppose that f ∈ Lipα(Bn) for some 0 < α ≤ 1. Then the
following two conditions are equivalent.

(a) dimM (∂fBn) ≤ λ.
(b)

∫
Sn−1 af(tw)βdσ ≤ C(1 − t)n−β−1 for each β > λ for some constant C

for all 0 < t < 1.

Pommerenke proved the equivalence of (a) and (b) for conformal mappings of
the disk onto so called John domains. Since a (quasi)conformal mapping of the
ball onto a John domain is always uniformly Hölder continuous, Theorem 8.2
extends Pommerenke’s result. He also constructs an example that shows that
(b) does not, in general, imply (a) without additional assumptions on f.

Theorem 8.2 relates the growth of the integral means of af to the Minkowski
dimension of the boundary of fBn. Here the Minkowski dimension dimM (E) of
a compact set set E is defined as follows. Set

Ms(E, r) = inf{krs : E ⊂ ∪k
1B(xi, r)}

for r > 0 and define

dimM (E) = inf{s > 0 : lim sup
r→0

Ms(E, r) < ∞}.

Notice that the Minkowski dimension is closely related to the Hausdorff dimen-
sion; we cover the set by balls of equal radii instead of allowing variable radii.
The Minkowski dimension of a set E is larger or equal to the Hausdorff dimension
of the set E.

8.3. Corollary. Suppose that
∫
Bn af

p(x)dx < ∞, p > n. Then

dimM (∂fBn) ≤ p(n− 1)/(p− 1) < n.

Proof. Note first that f ∈ Lipα(Bn) for some α > 0 by Corollary 7.4 and [NP].
Hence, by Theorem 8.2, it suffices to estimate the integral means of af . From
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Hölder’s inequality and the Fubini theorem we deduce for any λ < p and for any
0 < t < 1 that

∫

Sn−1
af(tw)λdσ ≤ C0(

∫

Sn−1
af(tw)pdσ)λ/p ≤ C1(1− t)−λ/p.

Furthermore, λ/p ≤ λ − n + 1 if and only if λ ≥ p(n − 1)/(p − 1) and hence
Theorem 8.2 yields the claim.

Recall that for each 1/2 < α ≤ 1 there is a quasiconformal mapping f of B2

with
|f(x)− f(y)| ≈ |x− y|α

for all x, y ∈ S1; see for example [K2]. For this mapping one easily computes
that ∫

B2
af

p dx < ∞

for all p < 1/(α − 1). On the other hand, dimM (∂fBn) = 1/α and hence the
conclusion of Corollary 8.3 is sharp in the plane. In higher dimensions, this is
also the case at least for all α close to 1; one can use a mapping from [DT].

We divide the proof of Theorem 8.2 into several lemmas. We begin by relating
the dimension of the boundary to an integrability condition.

8.4. Lemma. Suppose that f ∈ Lipα(Bn) for some 0 < α ≤ 1. If
∫

f(Bn)

d(x, ∂f(Bn))λ−ndx < ∞,

then dimM (∂f(Bn)) ≤ λ.

Proof. Because f has a continuous extension to the closure of Bn, it easily follows
that for each y ∈ ∂f(Bn) there is ω ∈ Sn−1 so that the radial limit at ω is y.
Fix y ∈ ∂f(Bn) and small r > 0. Pick a point z ∈ f(Iω) ∩ Sn−1(y, r/2), where
Iω denotes the radius terminating at ω. Because f ∈ Lipα(Bn), we know that
|f−1(z)−ω| ≥ r1/α/C. Consider the balls Bx ⊂ Bn that intersect the line segment
between f−1(z) and ω and whose images intersect B(y, r). We may choose k such
balls, B1, · · · , Bk so that k ≤ 2 log(C/r1/α), Σk

1χBi
≤ 3 and f(B1), · · · , f(Bk)

join Sn−1(y, r/2) to Sn−1(y, r). Then Hölder’s inequality gives

r/2 ≤
k∑
1

diam(fBi) ≤ (
k∑
1

diam(fBi)n)1/nk(n−1)/n,

and the estimate on k, Lemma 2.1 and Lemma 2.3 give us the bound

|B(y, Cr) ∩ f(Bn)| ≥ rn log1−n(1/r)/C,
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where C is a constant independent of y, r.
Let now r > 0 be small. By the Vitali covering theorem, we find pair-

wise disjoint balls B(yj , r), j = 1, · · · , l, centered at ∂f(Bn)) so that the balls
B(yj , 5r) cover all of ∂f(Bn)). By the previous paragraph, |B(yj , r) ∩ f(Bn)| ≥
rn log1−n /C ′, and thus

∫

B(yj ,r)

d(x, ∂f(Bn))λ−ndx ≥ rλ log1−n(1/r)/C ′.

The desired estimate follows.

The converse to the statement of Lemma 8.4 holds even without the Hölder
continuity assumption.

8.5. Lemma. If f(Bn) is bounded and dimM (∂f(Bn)) ≤ λ < n, then
∫

f(Bn)

d(x, ∂f(Bn))λ−n+εdx < ∞

for each ε > 0.

Proof. It suffices to show that, given ε > 0,

|{x ∈ f(Bn) : d(x, ∂f(Bn) ≤ t}| ≤ Mtn−λ−ε

for some constant M for all sufficiently small t > 0. This immediately follows
from the bound on the Minkowski dimension and a standard covering argument.

8.6. Lemma. For all real numbers q, s we have
∫

Bn

d(f(x), ∂f(Bn))n+q

(1− |x|)n+s
dx ≈

∫

f(Bn)

d(x, ∂f(Bn))q

(1− |f−1(x)|)s
dx

with constants depending only on K,n, q, s.

Proof. Since f is K-quasiconformal, a change of variables shows that
∫

Bn

|Df(x)|n d(f(x), ∂f(Bn))q

(1− |x|)s
dx ≈

∫

fBn

d(x, ∂f(Bn))q

(1− |f−1(x)|)s
dx.

Moreover, Lemma 2.1 shows that for any Bx ⊂ Bn,

d(f(x), ∂f(Bn)) ≈ d(f(y), ∂f(Bn))

for each y ∈ Bx with constants depending only on K,n. Hence Lemma 2.5 reveals
that ∫

Bx

af(z)n d(f(z), ∂f(Bn))q

(1− |z|)s
dz ≈

∫

Bx

|Df(z)|n d(f(z), ∂f(Bn))q

(1− |z|)s
dz

with constants depending only on K, n, q, s. Therefore we obtain the desired
conclusion by relying on Lemma 2.3 and by covering Bn suitably by the balls
Bx.
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8.7. Lemma. Suppose that
∫

f(Bn)
d(x, ∂f(Bn))λ−ndx ≤ M. Then

∫

Sn−1
af(tw)λdσ ≤ C(1− t)n−λ−1

for all 0 < t < 1.

Proof. Fix 0 < t < 1. By Lemma 8.6 (with q = λ − n and s = 0), Lemma 2.3,
the Fubini theorem and the assumption there is a constant C = C(K, n, λ,M)
such that ∫ (1+t)/2

t

(1− s)λ−n

∫

Sn−1
af(sw)λdσds ≤ C.

Hence there exists t < to < (1 + t)/2 with

∫

Sn−1
af(tow)λdσ ≤ C(1− to)n−λ−1.

Furthermore, to − t < (1 + t)/2− t < (1− to)/2, and hence, by Lemma 2.1 and
Lemma 2.3, af(tow) is comparable to af(tw) for any w ∈ Sn−1(1). Consequently,

∫

Sn−1
af(tw)λdσ ≤ C ′(1− t)n−λ−1,

where C ′ = C ′(n,K, λ).

8.8. Lemma. Suppose that f ∈ Lipα(Bn) for some 0 < α ≤ 1. If

∫

Sn−1
af(tw)λdσ ≤ C(1− t)n−λ−1

for all 0 < t < 1, then
∫

f(Bn)

d(x, ∂f(Bn))λ+ε−ndx < ∞

for each ε > 0.

Proof. Note first that for any ε,M > 0 the Fubini theorem and our assumption
give ∫

Bn

af(x)λ(1− |x|)λ−n[log
M

1− |x| ]
−1−εdx

=
∫ 1

0

∫

Sn−1
af(tw)λdσ(1− t)λ−n[log

M

1− t
]−1−εtn−1dt < ∞.
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On the other hand, by the Hölder continuity of f

log
1

d(f(x), ∂f(Bn))
≥ α−1 log

M

1− |x| ,

where M = M(f). Appealing to these estimates and Lemma 2.3 we conclude
that ∫

fBn

d(x, ∂f(Bn))λ+ε−ndx < ∞

for each ε > 0.

We conclude this section by deducing Theorem 8.2 from the above lemmas.

Proof of Theorem 8.2. Suppose first that dimM (∂f(Bn)) ≤ λ < n. Then the
growth estimate on the integral means of af follows by combining Lemma 8.5
and Lemma 8.7. Conversely, the estimate on the growth of the integral means
of af in Theorem 8.2 yields the Minkowski dimension bound by Lemma 8.8 and
Lemma 8.4.

9. Ap-spaces
Extending the classical definition we define

||f ||Ap = (
∫

Bn

|f |pdx)1/p,

and write f ∈ Ap if ||f ||Ap < ∞.

9.1. Theorem. Let f be a quasiconformal mapping of Bn.

(1) If f ∈ Hp, then f ∈ Apn/(n−1).
(2) If f ∈ Ap, then f ∈ Hq for all q < p(n− 1)/n.

Proof. The first claim follows from Corollary 4.5 with the choice dµ = dx. For
the second claim, notice that

|f(x)| ≤ C(−
∫

Bx

|f(y)|pdy)1/p ≤ C(1− |x|)−n/p

for each x ∈ Bn. Hence we conclude from Theorem 3.3 that f ∈ Hq for all
q < p(n− 1)/n.

Theorem 9.1(2) is sharp. To see this, consider the quasiconformal mapping

(9.2) f(x) = (x− e1)|x− e1|−s−1(log
3

|x− e1| )
−t,

where s, t > 0. Choosing s = (n− 1)/q and t = 1/q, we obtain a quasiconformal
mapping that belongs to Ap, p = qn/(n− 1), but fails to belong to Hq.

For quasiconformal mappings the integrability of |f | and that of |Df | are
closely related. The following theorem follows from results in [BuK] and [K1].
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9.3. Theorem. Let f be a quasiconformal mapping of Bn.

(1) If |Df | ∈ Ap, 0 < p < n, then f ∈ Apn/(n−p).
(2) If f ∈ Apn/(n−p), 0 < p < n, then |Df | ∈ Aq for all q < p.

Theorem 9.1 motivates for the search of an extension of Theorem 9.3 where
the Aq-condition for f is replaced by an appropriate Hs-condition. On the other
hand, if one chooses for 0 < p < 1 the exponents s, t in (9.2) by s = −1+n/p and
t = n−p

p(n−1) , then |Df | ∈ Ap, but f does not belong to Hq, q = p(n−1)
n−p . Theorem

9.5 below establishes a positive result for p ≥ 1. Another, similar choice of the
exponents s, t produces a quasiconformal mapping f so that Df does not belong
to Ap, p > 1, but with f ∈ Hq, q = p(n−1)

n−p . Again, Theorem 9.5 gives a positive
conclusion for other values of p.

9.4. Lemma. For each quasiconformal mapping f of Bn with f(0) = 0,
∫

Bn

|Df(x)|n(1− |x|)n−1dx ≤ C||f ||nHn ,

where C depends only on n and K.

Proof. For j = 1, 2, ... define Ωj = B(0, 1 − 2−j) \ B(0, 1 − 2−j+1). Since f is
quasiconformal,

∫

Ωj

|Df(x)|n(1− |x|)n−1dx ≤ C|f(Ωj)|n(1− 2−j−1)n−1

≤ CM(f, 1− 2−j)n(1− 2−j)n−1.

Summing over j and applying Theorem 3.3 gives the claim.

9.4. Theorem. Let f be a quasiconformal mapping of Bn. If |Df | ∈ Ap, 0 <

p < n, then f ∈ Hs, where for p ≥ 1 we may take s = (n−1)p
n−p , and for 0 < p < 1

any s < (n−1)p
n−p . Conversely, if f ∈ Hq, q = (n−1)p

n−p , then |Df | ∈ As, where for
0 < p ≤ 1 we may take s = p and for p > 1 any s < p.

Proof. Assume that |Df | ∈ Ap. Suppose first that 0 < p < 1. Then we conclude
from Theorem 9.3(1) and Theorem 9.1(2) that f belongs to Hs for all s < (n−1)p

n−p .

Suppose then that p ≥ 1, and assume that f(0) = 0. By Hölder’s inequality
we have

∫

Bn

|f |q−1|Df |dx ≤ (
∫

Bn

|Df |pdx)1/p(
∫

Bn

|f |(q−1)p/(p−1)dx)(p−1)/p.

Now (q−1)p/(p−1) = pn/(n−p) and hence the usual Sobolev-Poincaré inequality
shows that the second integral is bounded by an appropriate power of the p-
integral of Df ; see for example [BuK]. Hence Lemma 5.3 shows that f ∈ Hq.
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For the converse, suppose that f ∈ Hq and assume that 0 < p ≤ 1. By
Lemma 5.3 it suffices to consider the case 0 < p < 1. We may clearly assume
that f(0) = 0. Define for s > 0 a function g by setting g(x) = x|x|s−1. Then g is
quasiconformal and it follows that, with the choice s = q/n, the quasiconformal
mapping

F (x) = g(f(x))

belongs to Hn. Moreover,

|Df(x)| ≤ C|F (x)|(1−s)/s|DF (x)|

for almost every x. By Lemma 9.4
∫

Bn

|DF (x)|n(1− |x|)n−1dx ≤ C||f ||qHq .

Then the Hölder inequality gives
∫

Bn

|Df(x)|pdx ≤
∫

Bn

|DF (x)|p|F (x)|p(1−s)/sdx

≤ (
∫

Bn

|DF (x)|n(1− |x|)n−1dx)p/n(
∫

Bn

|F (x)|r(1− |x|)tdx)(n−p)/n

≤ C||f ||qp/n
Hq (

∫

Bn

|F (x)|r(1− |x|)tdx)(n−p)/n,

where r = pn(1−s)
s(n−p) and t = p(1−n)

n−p . Since 0 < p < 1, t > −1, and hence the
measure µ defined by

dµ = (1− |x|)tdx

is an α-Carleson measure,

α = (n + t)/(n− 1) ≥ 1.

By Theorem 4.5 ∫

Bn

|F (x)|nαdµ ≤ C(
∫

Sn−1
|F |ndσ)α.

A simple but tedious computation shows that nα = r, and the desired inequality
follows.

The remaining case p > 1 follows by combining Theorem 9.1(1) and Theorem
9.2(2).
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10. Open problems

1) Does there exist a quasiconformal analog for the Riesz theorem on conjugate
functions? More precisely, given n,K, does there exist p0 depending on n,K such
that each K-quasiconformal mapping whose first coordinate function belongs to
Hp for some p > p0, in fact, belongs itself to Hp? See Section 6.
2) If f is conformal in the unit disk B, then

∫

B

|f ′(x)|2−pdx < ∞

for all p < p0, where 3 < p0 ≤ 4. Brennan’s conjecture states that one can take
p0 = 4, for estimates on p0 see [HS]. By using factorization, one has a similar
result for quasiconformal mappings. In higher dimensions, one can ask for an
analog for af . The initial result from [HK] has recently been improved in [R] for
the so-called inner dilatation. Can one obtain such an improvement also for the
distortion K considered in this paper?
3) The exponent b in Lemma 2.2 is sharp in the plane, but one expects that it can
be improved in higher dimensions. This would then result in improved exponents
for Theorem 3.2. An improvement in terms of the inner dilatation is given in
[R]. Can one obtain improvements also in terms of the distortion considered in
this paper?
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P.O. Box 35, FIN-40014 University of Jyväskylä
Finland
E-mail: pkoskela@maths.jyu.fi


