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Abstract: Let D be a bounded domain in C with ζ0 ∈ ∂D. We say that ζ0 is
a substantial boundary point of D for the affine stretch x+iy 7→ Kx+iy,
where K > 1, if for every neighbourhood U of ζ0 and for every component
V of U ∩ D with ζ0 ∈ ∂V , the maximal dilatation of f is at least K for
every quasiconformal map f of V such that f(x + iy) = Kx + iy for all
x + iy ∈ ∂V ∩ ∂D.
We give here a criterion for a point ζ0 to be a substantial boundary point
for the affine stretch in D — Theorem 1.1 below. This will depend on the
“narrowness” of D near ζ0 though the particular way that D is narrow may
vary, as we shall show.
Keywords: quasiconformal mappings, substantial boundary points, affine
stretch.

1. Introduction

Let D denote the unit disk {z : |z| < 1} in the complex plane C, with boundary
T. Let D be an arbitrary simply connected domain in C other than C itself. The
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affine stretch of D,

fK : x + iy 7→ Kx + iy, where K > 1,

is the simplest example of a non-conformal quasiconformal mapping of D onto
fK(D) with complex dilatation

µ(fK) ≡ K − 1
K + 1

.

Such a mapping induces a quasiconformal mapping of D onto itself given by

f̃K = φ2 ◦ fK ◦ φ−1
1

where φ1 and φ2 are conformal mappings of D and fK(D) onto D, respectively.

Of course, f̃K induces a quasisymmetric boundary homeomorphism on T. For
the basic facts on quasiconformal mappings we refer to [6].

Suppose that ζ0 ∈ ∂D and write B(ζ0, r) = {w : |w − ζ0| < r}. Given a
neighbourhood U of ζ0 we let U0 be a component of D ∩ U with ζ0 ∈ ∂U0. Let
fK be the affine stretch restricted to ∂U0 ∩ ∂D and let f be a quasiconformal
mapping of U0 with f(x+iy) = fK(x+iy) = Kx+iy on ∂U0∩∂D, with maximal
dilatation K(f).

We set
H(ζ0) = H(ζ0, fK) = inf K(f)

where the infimum runs over all neighbourhoods U of ζ0 and all such quasiconfor-
mal mappings f . Clearly H(ζ0) ≤ K. We say that ζ0 is a substantial boundary
point of D for fK if H(ζ0) = K. The same definition applies to the function f̃K

restricted to T. The function

H(ζ, f̃K), ζ ∈ T,

is, of course, in L∞(T). Although it need not be continuous, it has been shown
by Fehlmann [2] that it is upper semicontinuous and so attains its supremum on
T. There are interesting connections between substantial boundary points and
degenerating Hamilton sequences. We refer to [4] for details.

Criteria have been obtained in terms of the smoothness of a boundary function
for the function to have no substantial boundary points [2]. If the geometry
of the domain close to the boundary point ζ0 is regular enough then ζ0 is not
a substantial boundary point for the affine stretch. For example, if D has a
non-zero angle at ζ0 then this is the case (see [7], pp. 123–124). One can ask
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whether ζ0 is a substantial boundary point for the affine stretch provided that D

is sufficiently irregular at ζ0. Note that obviously the substantial boundary points
for the affine stretch form a closed subset of ∂D so that in order to find interesting
criteria, it may be a good idea to look at isolated substantial boundary points.
We give below a sufficient condition for ζ0 to be a substantial boundary point.
This condition does not preclude the possibility of there being other substantial
boundary points arbitrarily close to ζ0 but it does not require it either, as our
examples will show.

We prove the following result. Recall that a ring domain is a doubly con-
nected domain in C, both of whose boundary components contain more than one
point. If R is a ring domain then there is a conformal map ϕ of R onto the
annulus { z : 1 < |z| < R1 } for a unique R1 > 1, and, as usual, we define the
conformal module M(R) of R by M(R) = (log R1)/(2π). We denote the closed
line segment joining the points w1 and w2 in C by [w1, w2], and the open line
segment joining w1 and w2 by (w1, w2). The area of a set E ⊂ C is denoted by
|E|, and the Euclidean diameter of E is denoted by diamE.

Theorem 1.1. Let D be a bounded domain in C with ζ0 ∈ ∂D. Suppose that
there is a neighbourhood W of ζ0 such that W ∩ ∂D is a Jordan arc. Suppose
further that D has a sequence of subdomains Dn for n ≥ 1 such that

(i) ζ0 ∈ ∂Dn for all n;

(ii) Dn+1 ⊂ Dn for all n;

(iii) an = diam Dn → 0 as n →∞;

(iv) (∂Dn) \ (∂D) = Ln is an open line segment of length bn;

(v) b2
n/|Dn| → 0 as n →∞; and

(vi) there exist positive constants C0 > 1 and δ0 ≤ 1/10, depending only on D

and independent of n, such that whenever the distinct points c1 and c2 lie in
Ln = (z1, z2) with c1 between z1 and c2 and with

|c1 − c2| < δ0 min{|c1 − z1|, |c2 − z2|},

and c3 = (c1+c2)/2, r = min{|c3−z1|, |c3−z2|}, and further B′ is the component
of B(c3, r) ∩D containing c3, then

M(B \ [c1, c2]) ≤ C0M(B′ \ [c1, c2]).
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Then ζ0 is a substantial boundary point of D for the affine stretch fK : x+iy 7→
Kx + iy for each K > 1.

The assumption of Theorem 1.1 that there is a neighbourhood W of ζ0 such
that W ∩ ∂D is a Jordan arc is imposed to ensure that the domains Dn give us
all the information that is necessary concerning the behaviour of D close to ζ0.
Clearly this assumption is satisfied, for example, if D is a Jordan domain.

The assumptions of Theorem 1.1 mean that there is a sequence of short cross
cuts Ln tending to ζ0, such that D is very narrow at these cross cuts. However,
the particular way that D is narrow may vary, as we now show by examples. The
condition (v) means that a disk with diameter Ln has a small area if compared to
the area of Dn. The condition (vi) states that there is, in a sense, enough space
in D (also outside Dn) close to Ln. We could formulate geometric conditions
guaranteeing that (vi) holds, for example by requiring that D contains the disk
with diameter Ln, but that would be more restrictive than necessary. Therefore
we have opted for including the module condition that we actually use in the
proof.

Examples. Let P be a non-rectangular parallelogram with one pair of sides
parallel to the x−axis and of length a (we call them the upper and lower sides
of P ). Let the other pair of sides have length sa, where s > 0. For n ≥ 1, let
Pn be a parallelogram congruent to P and with one pair of sides parallel to the
x−axis and of length αn. Then the other pair of sides has length sαn. Suppose
that the points on the upper side of Pn+1 have imaginary part at most that of
those on the lower side of Pn. Let Ln be an open segment of length bn contained
in the upper side of Pn for n ≥ 2. We assume that the right end point of Ln

coincides with the right end point of the upper side of Pn. Let D be a bounded
Jordan domain formed by taking the parallelograms Pn and joining each Pn to
Pn+1 by forming a connection between Ln+1 and a segment of length at most
cbn+1, for some positive absolute constant c, on the lower side of Pn. We assume
that αn → 0 monotonically and

∑
n αn < +∞, so that the Pn converge to a single

point ζ0 ∈ ∂D. Let Dn be the natural subdomain of D whose boundary contains
Ln, with ζ0 ∈ ∂Dn. Suppose that bn/αn → 0. Then also b2

n/|Dn| → 0, and D

satisfies the conditions of Theorem 1.1, possibly apart from (vi). However, it is
easy to adjust the construction to make sure that also (vi) is satisfied.
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We now see that small modifications of this example would lead to others,
still satisfying the conditions of Theorem 1.1, but in a different way. Above, the
segment Ln is horizontal. We could take Ln to be part of the right hand side
boundary segment of Pn. This would lead to the set Vn considered in Section 6
being non-empty. Next, the examples would look somewhat different depending
on whether Ln is only a small part of the right hand side boundary segment of
Pn, or almost all of it. The latter can still be compatible with the assumptions
of Theorem 1.1 provided that bn is small compared to an and

√
|Dn|. With

a suitable connection of Pn to Pn−1, condition (vi) of Theorem 1.1 can still
be satisfied. These choices may vary with n, so we can obtain a domain that
is narrow infinitely often but in somewhat different ways. Obviously we can
construct D so that ζ0 is the only substantial boundary point of D.

In Section 2 we obtain a lemma that shows how one can estimate the dilatation
of a quasiconformal extension of the affine stretch even when there is part of the
boundary of the domain where the boundary values are not given. This is done by
adapting the usual length-area method used in the proof of the Main Inequality
of Reich and Strebel [7].

In Section 3 we adopt notation to discuss the kind of domains that satisfy the
assumptions of Theorem 1.1.

In Sections 4 and 5 we perform auxiliary estimates required to control the
behaviour of the function on that part of the boundary where boundary values
are not prescribed. This is based on estimating moduli of quadrilaterals and the
well known connection between such moduli and geometric quantities.

In Section 6 we put our previous results together and prove Theorem 1.1. In the
concluding Section 7 we make some general remarks on possible generalisations.

2. Horizontal foliations

Before we get to the proof of Theorem 1.1, we make some preliminary obser-
vations. Here the notation is not restricted to that of Theorem 1.1.

Given a bounded domain D and the affine stretch fK : x+ iy 7→ Kx+ iy of D

into D1, say, we may consider the boundary correspondence fK |∂D on ∂D and
ask for all possible extensions f of fK |∂D into D. This problem, in the general
case, has been much studied, see, for example, [1], [3], [5], [7], [9], [10], [11], [12],
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[13]. We wish here to consider the extensions f , say, with f = fK on ∂D \ L

where L is in some appropriate sense a small subset of ∂D.

Let D be a bounded domain, and L a small line segment contained in the
boundary of D. So we are looking at those quasiconformal mappings f of D

such that f = fK on ∂D \ L and the values of f on L are not prescribed. If
L is horizontal we may foliate D by horizontal segments whose end points are
in ∂D \ L so that f = fK at all these end points. If f = fK on all of ∂D

then K(f) ≥ K. But since there is an exception on L we can only assert that
K(f) ≥ K1, where K1 is a quantity which may be smaller than K but will be
close to K if the length of L is small.

To deal with the values of f on L, we show by means of techniques employing
estimates of modules of ring domains and the connection of such modules to
distances that f |L cannot deviate very far from fK |L if L is short and K(f) ≤ K.
If L is not horizontal, then we cannot foliate all of D by horizontal segments such
that f = fK at both end points of every segment. However we may still foliate
a subset of D in this way, namely, the set obtained from D by removing the
segments with one end point on L. Even in the part of D that was so removed,
it is possible to emulate the standard arguments by again using the fact that f |L
will be close to fK |L if K(f) ≤ K.

In the proof below, we will apply these ideas to the domains Dn described in
Theorem 1.1, and then the role of L will be taken by Ln.

We introduce some standard notation. For a general quasiconformal mapping
f we write fz = ∂f/∂z, fz = ∂f/∂z. The quotient fz/fz is the complex dilata-
tion µf and the Jacobian Jf is |fz|2 − |fz|2. These are functions of z, but this
dependence is frequently suppressed.

The following Lemma is based on an elementary application of the method of
proof of the M−inequality due to Reich and Strebel, as given, for example, in
[7], p. 110. It gets us started. Later, we will revisit the proof of this lemma to
study a more general situation involving a non-horizontal line segment L.

Lemma 2.1. Let D be a bounded open set in the plane. Let f be a quasiconformal
homeomorphism of D such that for some K > 1, we have f = fK on ∂D \ L

where L ⊂ ∂D is a horizontal line segment. Then

K2|D| ≤ K(f)|f(D)|.
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We assume in Lemma 2.1 that D is an open set rather than a domain since we
may wish to apply Lemma 2.1 to the situation where D is obtained by removing
a rectangle-like domain from a larger domain.

Lemma 2.1 gives a lower bound for K(f) in terms of the quantity |D|/|f(D)|,
which we should expect to be close to 1/K.

Proof of Lemma 2.1. For any η ∈ R let Γ(η) = D ∩ {x + iη : x ∈ R }. The
set Γ(η), if not empty, is the union of at most countably many open horizontal
line segments. Each such segment has both of its boundary points in ∂D \L. Let
L(Γ) denote the total length of paths comprising the set Γ.

Suppose that for a fixed η, the set Γ(η) consists of only one segment. We write
Γ′(η) = fK(Γ(η)), Γ′′(η) = f(Γ(η)). Then Γ′(η) is a horizontal line segment with
the same end points as the arc Γ′′(η) so that KL(Γ(η)) = L(Γ′(η)) ≤ L(Γ′′(η)).
Since f is absolutely continuous on lines, we can deduce that for almost every η

K

∫

Γ(η)
dx≤

∫

Γ(η)
|fz dz + fz dz|

=
∫

Γ(η)
|fz + fz| dx =

∫

Γ(η)
|fz| |1 + µ(f)| dx.

If Γ(η) consists of more than one segment, the above argument applies to each
of them, and adding up we obtain the conclusion

(2.1) K

∫

Γ(η)
dx ≤

∫

Γ(η)
|fz| |1 + µ(f)| dx.

for the entire set Γ(η).

We note that

|fz| =
(

Jf

1− |µf |2
)1/2

.

Integrating (2.1) with respect to η between the limits arising from the bounded
open set D we obtain

K|D| ≤
∫

D

(
Jf

1− |µf |2
)1/2

|1 + µ(f)| dxdy.

Applying the Cauchy–Schwarz inequality we obtain

K2|D|2 ≤
(∫

D
Jf dxdy

)(∫

D

|1 + µ(f)|2
1− |µ(f)|2 dxdy

)
≤ |f(D)|K(f)|D|.
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This last inequality follows from the fact that

|1 + µ(f)|2
1− |µ(f)|2 ≤

(1 + |µ(f)|)2
1− |µ(f)|2 =

1 + |µ(f)|
1− |µ(f)| ≤ K(f)

almost everywhere in D. This proves Lemma 2.1.

3. The set-up related to the domain D

Let D satisfy the assumptions of Theorem 1.1. Let U be a neighbourhood of
ζ0 and let U0 be a component of D ∩ U with ζ0 ∈ ∂U0 such that U ∩ ∂D is a
Jordan arc. Let f be a quasiconformal map of U0 with f = fK on (∂U0)∩ (∂D).
There exists a positive integer m such that Dm ⊂ U0. We now view f as a
quasiconformal map of Dm. Then f = fK on ∂Dm \ Lm. To get a lower bound
for K(f), we may assume that K(f) ≤ K.

We shall show that for all sufficiently large values of m, we have

(3.1)
|f(Dm)|
|Dm| ≤ K + πC2

1

b2
m

|Dm|
for a suitable positive constant C1.

If Lm were horizontal, we could combine this with Lemma 2.1 and obtain

K(f) ≥ K

(
1 +

πC2
1

K

b2
m

|Dm|
)−1

→ K as m →∞.

However, since Lm need not be horizontal, a more careful argument will be
needed.

Clearly the part of D which is far from ζ0 plays no role in the argument.

We discuss the above selection of m more carefully. First note that U0 contains
D ∩ B(ζ0, r) for some r > 0, and hence there exists m1 ≥ 2 such that Dn ⊂ U0

for all n ≥ m1. We choose m > m1 such that if Dm is the subdomain of D which
lies “below” the segment Lm and Dm1 is the subdomain of D which lies “below”
the segment Lm1 , then there exists ρ > 0 such that Dm ⊂ D ∩ B(ζ0, ρ/2) and
Lm1 lies outside B(ζ0, ρ). It suffices to find a lower bound for K(f |Dm). In what
follows, Lm need not be horizontal.

We denote the end points of Lm by z1 and z2, respectively, suppressing the
dependence on m. Recall that we denote the closed line segment joining the
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points w1 and w2 by [w1, w2], and the open line segment joining w1 and w2 by
(w1, w2). Thus Lm = (z1, z2).

The assumption that Dn ⊂ U0 for all n ≥ m1 and not only for all n ≥ m means
that there is some extra space in the domain of definition of f “above” Dm. We
will make some use of this later. Note that Dm ⊂ Dm1 , and f is defined and
is K−quasiconformal in Dm1 , with f = fK on ∂Dm1 ∩ ∂D. The set Dm1 \ Dm

contains at least Dm−1 \Dm.

Furthermore, by the assumption (vi) of Theorem 1.1, there exist fixed positive
constants C0 > 1 and δ0 ≤ 1/10, depending only on D and independent of m,
such that the following holds. Pick any points c1 ∈ (z1, z2) = Lm and c2 ∈ (c1, z2)
such that

|c1 − c2| < δ0 min{|c1 − z1|, |c2 − z2|}.
Recall from condition (vi) of Theorem 1.1 that c3 = (c1 + c2)/2 and B = B(c3, r)
where r = min{|c3 − z1|, |c3 − z2|}. We need not have B ⊂ D. Write B′ for the
component of B∩D containing c3. Then clearly (z1, c2) ⊂ B′ if |c3−z1| ≤ |c3−z2|,
and (c1, z2) ⊂ B′ if |c3 − z2| ≤ |c3 − z1|. Depending on the precise shape of D, it
is conceivable that B \B′ could have two or more components.

Our assumption implies that

(3.2) M(B′ \ [c1, c2]) ≤ M(B \ [c1, c2]) ≤ C0M(B′ \ [c1, c2]),

where M(R) denotes the module of the ring domain R.

Note that if ∞ ∈ f(Dm1) then there is a point ζ ∈ Dm1 ∪ Lm1 such that
f(ζ) = ∞ (since the set f(∂Dm1 ∩ ∂D) = fK(∂Dm1 ∩ ∂D) is bounded). Taking
m1 larger, we manage to exclude ζ from Dm1 . We assume that this has been
done, if necessary. Thus we assume that f(Dm1) is a compact subset of the finite
complex plane C.

4. Auxiliary results

To use Lemma 2.1 we must find a lower bound for |Dm|/|f(Dm)|, or equiva-
lently an upper bound for |f(Dm)|/|Dm|. For fixed m we write γ0 = ∂Dm \ Lm.
Then f(Dm) is a Jordan domain with ∂f(Dm) = fK(γ0) ∪ f(Lm). If f(Dm) ⊂
fK(Dm), we have |f(Dm)| ≤ |fK(Dm)| = K|D′|. So we may assume that
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f(Dm) \ fK(Dm) 6= ∅. Then we can find an upper bound for |f(Dm)| by es-
timating

(4.1) s1 = sup{|f(z)− f(z1)| : z ∈ Lm, f(z) /∈ fK(Dm)}.
Note that f(z1) = fK(z1) and Im f(z1) = Im z1. We clearly have |f(Dm)| ≤
|fK(Dm)|+ πs2

1, and |fK(Dm)| = K|Dm|.
The set f(Lm) \ fK(Dm), possibly empty, is the union of at most countably

many open arcs, ∪kγk, say. We fix k and suppress the dependence on k in the
notation. Then γk contains at least one point w such that

(4.2) t = |f(w)− f(z1)| = max { |f(z)− f(z1)| : z ∈ γk }.
If f(w) ∈ [fK(z1), fK(z2)] then t ≤ Kbm. Hence we may assume that f(w) /∈
fK(Dm).

We require the following two results. The first one can be found in [6], Lemma
4.1, p. 23.

Lemma 4.1. Let Q be a quadrilateral in the Riemann sphere C. Let sa =
sa(Q) denote the distance of the a−sides of Q measured in Q, that is, sa is the
infimum of the lengths of closed Jordan arcs γ such that γ lies in the interior of
Q apart from its end points, and γ has one end point on each of the a−sides of
Q. Similarly let sb = sb(Q) denote the distance of the b−sides of Q measured in
Q. Let M(Q) denote the module of Q. Then

(4.3) M(Q) ≤ π
1 + 2L

L2
where L = log

(
1 +

2sa

sb

)
.

The conjugate quadrilateral Q′ of Q is obtained from Q by interchanging the
roles of the a−sides and b−sides. We have M(Q′) = 1/M(Q). Hence Lemma 4.1
implies that

(4.4) M(Q) ≥ 1
π

(L′)2

1 + 2L′
where L′ = log

(
1 +

2sb(Q)
sa(Q)

)
.

The second result is known as Teichmüller’s module theorem, and it can be
found, e.g., in [6], p. 56.

Lemma 4.2. If the ring domain R separates the points 0 and ζ1 from ζ2 and ∞
then

M(R) ≤ 2µ

(√
|ζ1|

|ζ1|+ |ζ2|

)
.
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Here, as usual, µ(r) = M(B(0, 1)\[0, r]) is the module of the Grötzsch ring (see
[6]). The function µ(r) is decreasing for 0 < r < 1 and has an inverse function
µ−1(r) defined on (0,∞).

5. Distance estimates

Recall that t is defined by (4.2) and that δ0 and C0 are as in Section 3 (that is,
as in Theorem 1.1, (vi)). We wish to show that there exists a positive constant
C1 depending on K, δ0 and C0 alone, such that

(5.1) t ≤ C1bm.

Then s1, defined by (4.1), also satisfies

s1 ≤ C1bm.

We define δ1 and δ2 by

2δ2

1 + δ2
2

= µ−1

(
4KC0µ

(
1
4

))
,

(5.2) δ1 = min
{

δ0, δ2,
1
2
(
√

e− 1)
}

.

Then 0 < δ2 < 1 and

4KC0 µ

(
1
4

)
= µ

(
2δ2

1 + δ2
2

)
≤ µ

(
2δ1

1 + δ2
1

)
.

We establish (5.1) with

(5.3) C1 = 4K exp
{

8π2K

δ1

}
> 4K.

We suppose now that (5.1) does not hold, where C1 is defined by (5.3). Then
there exists a first point z3 on (z1, z2) when moving from z1 to z2 such that
|f(z3)− f(z1)| = C1bm. Similarly there is a last point z4 on (z1, z3) when moving
from z1 to z3 such that |f(z4)− f(z1)| = C1bm/2. Thus, for all z on the segment
(z4, z3),

C1bm

2
< |f(z)− f(z1)| < C1bm.

To get a contradiction we suppose that

|z4 − z3| < δ1 min { |z4 − z1|, |z2 − z3| }
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and define B and B′ as in (3.2) using z4 and z3 instead of c1 and c2. Now, of
course, f is K−quasiconformal in B′ and so, since δ1 ≤ δ0, we obtain from (3.2)
that

M(B \ [z4, z3]) ≤ C0 M(B′ \ [z4, z3]) ≤ K C0 M(f(B′) \ f([z4, z3])).

Now ∂B′ contains at least one of the points z1 and z2 so that ∂f(B′) contains
at least one of the points f(z1) and f(z2). We denote such a point by b, so
b ∈ {f(z1), f(z2)}. Since f(B′) is bounded, the ring domain f(B′) \ f([z4, z3])
separates the points f(z3) and f(z4) from the points b and ∞. It follows from
Lemma 4.2 and the invariance of the module under Möbius transformations that

(5.4) M(f(B′) \ f([z4, z3])) ≤ 2µ(r0)

where

(5.5) r0 =
{

1 +
∣∣∣∣

b− f(z4)
f(z3)− f(z4)

∣∣∣∣
}−1/2

.

To get a lower bound for r0, we next obtain an upper bound for
∣∣∣∣

b− f(z4)
f(z3)− f(z4)

∣∣∣∣ .

Since |f(z3) − f(z1)| = C1bm and |f(z4) − f(z1)| = C1bm/2, it follows that
|f(z3)− f(z4)| ≥ C1bm/2.

If b = f(z1) then |b− f(z4)| = |f(z1)− f(z4)| = C1bm/2, so that
∣∣∣∣

b− f(z4)
f(z3)− f(z4)

∣∣∣∣ ≤ 1.

If b = f(z2) then |b−f(z4)| = |f(z2)−f(z4)| ≤ |f(z2)−f(z1)|+|f(z1)−f(z4)| ≤
Kbm + C1bm/2. Hence

∣∣∣∣
b− f(z4)

f(z3)− f(z4)

∣∣∣∣ ≤
Kbm + C1bm/2

C1bm/2
=

2K + C1

C1
= 1 +

2K

C1
≤ 3

2

by (5.3).

Thus in all cases

r0 ≥ {1 + 3/2}−1/2 =

√
2
5

>
1
2
.
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On the other hand, considering a Möbius transformation taking B \ [z4, z3]
onto B(0, 1) \ [0, r1], we find that

(5.6) M(B \ [z4, z3]) ≥ µ(r1)

where

(5.7) r1 =
2δ1

1 + δ2
1

.

Hence, by (5.2),

(5.8) 4KC0µ(1/4) ≤ µ(r1) < 2K C0 µ(1/4),

which gives a contradiction. We deduce that (5.1) cannot hold, and so necessarily

(5.9) |z4 − z3| ≥ δ1 min { |z4 − z1|, |z2 − z3| }.

Now let Q be the quadrilateral whose domain is Dm and whose a−sides are
the arcs of ∂Dm going along ∂Dm \ Lm from z1 to z2 and along the segment Lm

from z3 to z4. Then we have (noting that sa(Q) is defined by means of distances
measured inside Q)

sa(Q) ≤ min { |z4 − z1|, |z2 − z3| }

and sb(Q) = |z3 − z4|. Hence

L1 = log
(

1 +
2sb(Q)
sa(Q)

)
≥ log (1 + 2δ1) = P1,

say. Since δ1 ≤ (1/2)(
√

e− 1) by (5.2) we see that P1 ≤ 1/2. Thus, from (4.4),

M(Q) ≥ 1
π

P 2
1

1 + 2P1
≥ P 2

1

2π
≥ δ2

1

2π
.

Analogously, we write

P2 = log
(

1 +
2sa(f(Q))
sb(f(Q))

)

so that, by (4.3),
M(Q)

K
≤ M(f(Q)) ≤ π

1 + 2P2

P 2
2

.

We have sb(f(Q)) ≤ K|z1 − z2| = Kbm and sa(f(Q)) ≥ C1bm/2−Kbm. Thus

P2 ≥ log
(

1 +
(C1 − 2K)bm

2Kbm

)
= log

(
1 +

C1 − 2K

2K

)
= L0,
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say. Now, from (5.3), we have (C1 − 2K)/(2K) > 1 so that L0 ≥ log 2 > 1/2.
Hence,

M(Q)
K

≤ M(f(Q)) ≤ π
1 + 2L0

L2
0

≤ 4π

L0
.

We deduce that
4πK

L0
≥ δ2

1

2π

and hence

1 +
C1 − 2K

2K
≤ exp

{
8π2K

δ2
1

}

which gives a contradiction to (5.3).

We conclude that s1 ≤ C1bm.

We have proved that for all sufficiently large m, we have

|f(Dm)|
|Dm| ≤ |fK(Dm)|+ πs2

1

|Dm| ≤ K + πC2
1

b2
m

|Dm| .

This yields (3.1).

6. Completion of the proof of Theorem 1.1

Choose ε > 0. Since, by the assumptions of Theorem 1.1, we have that
b2
n/|Dn| → 0, there is a positive integer n0 such that for all n ≥ n0, we have

b2
n/|Dn| < ε2.

Now pick n with n ≥ n0. Our aim is to get a lower bound for K(f), where f is a
quasiconformal map of U0 with f = fK on ∂U0 ∩ ∂D and hence on ∂Dn \ Ln, in
terms of |Dn| and |f(Dn)|. Note that K(f) ≥ K(f |Dn) for all large n. We begin
by exploring the consequences of Lemma 2.1.

Now foliate the domain Dn by horizontal line segments. (Note that foliation by
horizontal segments is necessary for us to be able to use the ideas of the proof
of Lemma 2.1. This is because we are considering a horizontal stretch fK .) Let
Vn denote the union of those open horizontal line segments with one end point in
Ln. Then Vn is either a domain or the empty set. Write Un = Dn \ Vn. Clearly
Vn = ∅ if, and only if, Ln is horizontal. Note that Ln ⊂ D.

If Vn = ∅, we may apply Lemma 2.1 to Dn and obtain

K2|Dn| ≤ K(f)|f(Dn)|.
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If there is a sequence of values of n with Vn = ∅, we may apply the arguments of
the previous sections to these n (with m there replaced by n), and conclude, using
(3.1) and the assumption that limk→∞ b2

k/|Dk| = 0, that K(f) ≥ K. Namely,
given any neighbourhood U0 of ζ0, we merely have to consider a value of n that
is large enough for all these conditions to hold, and such that Dn is contained
in U0 by a wide margin as explained before. So we may now assume that for all
large n, we have Vn 6= ∅.

Suppose next that for a certain large n ≥ n0, we have Vn 6= ∅. Applying
Lemma 2.1 to the bounded open set Un we obtain

(6.1) K2|Un| ≤ K(f)|f(Un)|.

Next, at least one of the inequalities

b2
n

|Vn| < ε and
|Vn|
|Dn| < ε

must hold for this n, for if both of these inequalities fail, then

b2
n

|Dn| =
b2
n

|Vn|
|Vn|
|Dn| ≥ ε2,

which is a contradiction. Note that it may depend on n which one of these two
inequalities holds.

Suppose that Vn 6= ∅ and |Vn|/|Dn| < ε. This is the easier case. Now, since
Un ⊂ Dn, we obtain from (6.1) that

K2

K(f)
≤ |f(Un)|

|Un| ≤ |f(Dn)|
|Dn| − |Vn| =

|f(Dn)|
|Dn|

|Dn|
|Dn| − |Vn| ≤

|f(Dn)|
(1− ε)|Dn| .

We may then assume that n is so large that the arguments given in the previous
sections for Dm apply when m is replaced by n. Then (3.1) implies that

|f(Dn)|
|Dn| ≤ K + πC2

1

b2
n

|Dn| .

Thus altogether
K2

K(f)
≤ 1

1− ε

(
K + πC2

1

b2
n

|Dn|
)

,

that is,

K(f) ≥ (1− ε)K
(

1 + πC2
1

b2
n

K|Dn|
)−1

.
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It follows that if there is a sequence of positive integers n tending to infinity such
that for each such n, we have Vn 6= ∅ and |Vn|/|Dn| < ε, then K(f) ≥ K(1− ε).

Suppose then that for some n, we have Vn 6= ∅ and b2
n/|Vn| < ε. Now apply

the proof of Lemma 2.1 to Vn. Note that by (5.1), we have

L(f(Γ(η))) ≥ KL(Γ(η))− C1bn

for each η. Here we observe that even if the set Γ(η) were the union of more than
one line segment, at most one of those segments can have an end point on Ln.
Thus for almost every η,

KL(Γ(η))− C1bn ≤
∫

Γ(η)

√
Jf√

1− |µf |2
|1 + µf | dx

so that integration over the appropriate values of η gives

K|Vn| − C1b
2
n ≤ K|Vn| − C1bnhn ≤

√
K(f)|Vn||f(Vn)|

where hn denotes the variation of the η−coordinate over Vn so that hn ≤ bn. We
may assume that ε < K/C1 and therefore K|Vn| − C1b

2
n > 0. This yields

(K|Vn| − C1b
2
n)2 ≤ K(f)|Vn||f(Vn)|.

To get an upper bound for |f(Vn)|, we recall the arguments concerning Dm.
Clearly (5.1) implies that |f(Vn)| ≤ K|Vn|+ πC1b

2
n. Thus

(K|Vn| − C1b
2
n)2 ≤ K(f)|Vn|(K|Vn|+ πC1b

2
n).

It follows that

K(f) ≥ (K|Vn| − C1b
2
n)2

|Vn|(K|Vn|+ πC1b2
n)

= K
(1− C1

K
b2n
|Vn|)

2

1 + πC1
K

b2n
|Vn|

.

This last expression is greater than or equal to

K
(1− εC1

K )2

1 + επC1
K

.

Thus K(f) ≥ K(1 − C ′ε), where C ′ > 1 depends on K, δ0, and C0 only. Now,
since for each ε > 0, there are infinitely many n for which Vn 6= ∅ and b2

n/|Vn| < ε,
or there are infinitely many n for which Vn 6= ∅ and |Vn|/|Dn| < ε, it follows that
K(f) ≥ K(1 − C ′ε) for each ε > 0. Thus K(f) ≥ K, so that ζ0 is a substantial
boundary point of D. This completes the proof of Theorem 1.1.
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7. General remarks

The result of Theorem 1.1 is, of course, very special but it raises the question
of whether there would be results of the same type in more general situations. It
would also seem reasonable to suppose that the line segment Ln can be replaced
by any Jordan arc, and that the condition b2

n/|Dn| → 0 as n → ∞ should be
replaced by a condition involving harmonic measure. One can also ask to what
extent the condition (vi) of Theorem 1.1, guaranteeing that there is a certain
amount of space in D around Ln, could be relaxed. Indeed, it seems possible
that a condition of narrowness of a domain D at a point ζ0 ∈ ∂D might be
sufficient to make this point a substantial boundary point for the affine stretch.
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