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1 Introduction

Let p > 1 be a constant. In 1920, Hardy [7] showed that, for any positive
f(x) ∈ Lp(0,∞),

∫ ∞

0

[
F (x)

x

]p

dx ≤
(

p

p− 1

)p ∫ ∞

0
|f(x)|p dx,

where F (x) =
∫ x
0 f(t) dt, and the constant

( p
p−1

)p is optimal.
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In 1933, Leray [8] gave the following multidimensional version of Hardy’s
inequality

∫

R2\B1(0)

u2

|x|2 ln2 |x| dx ≤ 4
∫

R2\B1(0)
|∇u|2 dx, u ∈ C∞

0 (R2 \B1(0)) (1.1)

∫

RN

u2

|x|2 dx ≤
(

2
N − 2

)2 ∫

RN

|∇u|2 dx, u ∈ C∞
0 (RN ), N ≥ 3 (1.2)

We may call the above two inequalities Hardy-Leray inequality, which is called
Hardy-Sobolev inequality in the literature (see [1]). For any bounded domain
Ω ⊂ BR(0) including origin, BR(0) denotes a ball in RN with radius R and
centered at 0, Shen [9] obtained (1.1) with ln2 |x| being replaced by ln2 R/|x|.

Brézis and Vázques [3] obtained a remainder term for the Hardy-Leray’s
inequality. More precisely, if 1 ≤ q < 2N

N−2 , N ≥ 3, there exists a constant
C(q, |Ω|) > 0 such that

∫

Ω
|∇u|2 dx− (N − 2)2

4

∫

Ω

u2

|x|2 dx ≥ C(q, |Ω|)
(∫

Ω
|u|q dx

)2/q

, u ∈ H1
0(Ω)

(1.3)
They raised some open problems in [3], and the second one states whether there
is a further improvement in the direction of this inequality.

Vázquez and Zuazua [16], among other results, improved the previous in-
equality by showing that if 1 < q < 2, there exists a constant C(q, |Ω|) > 0 such
that, for each u ∈ H1

0(Ω),

∫

Ω
|∇u|2 dx− (N − 2)2

4

∫

Ω

u2

|x|2 dx ≥ C(q, |Ω|)
(∫

Ω
|∇u|q dx

)2/q

(1.4)

The Caffarelli-Kohn-Nirenberg inequality [4] shows that, if 1 < p < N and
γ < N−p

p , for any u ∈ C∞
0 (Ω),

cp

∫

Ω
|x|−p(γ+1)|u|p dx ≤

∫

Ω
|x|−pγ |∇u|p dx (1.5)

where Ω is allowed to be the whole space RN .

Wang and Willem [17] obtained the Caffarelli-Kohn-Nirenberg inequality with



Some Improved Caffarelli-Kohn-Nirenberg Inequalities with General... 1125

optimal remainder, that is, if 0 ∈ Ω ⊂ BR(0), then for any u ∈ H1
0 (Ω),

∫

Ω
|x|−2γ |∇u|2 dx−

[
N − 2(γ + 1)

2

]2 ∫

Ω
|x|−2(γ+1)|u|2 dx

≥ C

∫

Ω
|x|−2γ(lnR/|x|)−2|∇u|2 dx (1.6)

It is optimal in the sense that (lnR/|x|)−1 can not be replaced by g(x)(lnR/|x|)−1

with g satisfying |g(x)| → ∞ as |x| → 0. If γ = 0, (1.6) gives a positive answer to
the second open problem of [3] in some sense. The authors proved another result
which works for bounded domains as well as exterior domains, that is,

∫

Ω
|x|−2γ |∇u|2 dx−

[
N − 2(γ + 1)

2

]2 ∫

Ω
|x|−2(γ+1)|u|2 dx

≥ 1
4

∫

Ω
|x|−2(γ+1)(lnR/|x|)−2u2 dx,

where γ ≤ N−p
p , Ω ⊂ BR(0) or Ω ⊂ BC

R(0). Moreover, the constant 1
4 is also

sharp.

Abdellaoui et al. [1] proved that if 1 < q < p < N , then for any u ∈ C∞
0 (Ω),

∫

Ω
|x|−γp|∇u|p dx−

[
N − p(γ + 1)

p

]p ∫

Ω

|u|p
|x|p(γ+1)

dx ≥ C

∫

Ω
|x|−γr|∇u|q dx

(1.7)
where q < r < +∞ if γ ≤ 0, or r < p + ρ(N, p, q, γ) for some positive constant
ρ if γ > 0. The authors point out that it seems to be an open problem to
obtain the best weight for (1.7) as in (1.6), in the case p 6= 2. In this paper, we
give a positive answer to this open problem. In fact, we obtain the Caffarelli-
Kohn-Nirenberg inequality with general weights and remainder term. Because
the weight is general, we also obtain the corresponding inequality with weight
|x|−γp in the case of N = p > 1. When N = p = 2, this problem has been
discussed in [14].

Now we introduce the weighted Sobolev space. Let φ be a positive continuous
function with φ(|x|) ∈ L(Bδ(0)) for some positive δ, and define

h̄(r1, r2) = c0

∫ r2

r1

(φrN−1)−1/(p−1) dr

for 0 ≤ r1 ≤ r2 ≤ ∞, where c0 is a given positive constant. In this paper, we
consider the following two cases:
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(A1) h̄(r,∞) < ∞ for all r > 0 and h̄(0,∞) = ∞;

(A2) h̄(r,∞) = ∞ and h̄(0, D) = ∞ for some r, D > 0.

Definition 1. Let p > 1, we denote by W 1,p
0 (Ω, φ) the completion of C∞

0 (Ω)
with respect to the norm

‖u‖1,p,φ =
(∫

Ω
φ(r)|∇u|p dx

)1/p

where r = |x|.
Example 1. Let φ = r−pγ and 0 ∈ Ω ⊂ BD(0). If γ < N−p

p , then (A1) happens,
and W 1,p

0 (Ω, |x|−pγ) is identical with D1,p
0,γ(Ω) in [1]. If γ = N−p

p , then (A2)
happens, and W 1,p

0 (Ω, |x|−pγ) has not been discussed before.

In what follows, for short, we use φ for φ(r) or φ(|x|), etc.

Set

h̄ =





h̄(r,∞), if (A1) holds

h̄(r,D), if (A2) holds

If N > p and φ ≡ 1, then (A1) holds, therefore h̄(|x|) = |x| p−N
p−1 is a fundamental

solution for the p-Laplace operator. For general weight φ, function h = h̄(p−1)/p

satisfies in the sense of distribution

−∆φ,pu =: div(φ|∇u|p−2∇u) = ψ|u|p−2u (1.8)

where ψ =
(

p−1
p

)p
φ

(
− h̄′

h̄

)p
= φ

(
−h′

h

)p
, that is, h is a weak solution of the

Euler-Lagrange equation (1.8) of the functional

I1,φ(u) =:
∫

Ω

(
φ|∇u|p − ψ|u|p) dx (1.9)

In [10][11][12] it has been proved that if φ, ψ are positive functions in C1(0, a)
and satisfy the Bernoulli equation

(φ1/pψ1−1/p)′ +
N − 1

r
φ1/pψ1−1/p = pψ (1.10)

then for any u ∈ C∞
0 (Ω),

∫

Ω
ψ|u|p dx ≤

∫

Ω
φ|∇u|p dx,
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and the constant 1 is optimal, where a = +∞ and Ω = RN if (A1) holds, or
a = D and Ω ⊂ BD(0) if (A2) holds. Because h̄ is a fundamental solution of
operator −∆p,φ, in other words, h is a distribution solution of equation (1.8), we
know ψ can be expressed by h̄ and φ or by h and φ as follows

ψ =
(

p− 1
p

)p

φ

(
− h̄′

h̄

)p

= φ

(
−h′

h

)p

Theorem 1.1 ([5], Theorem 1.1). Let Ω be RN if (A1) holds or Ω be a bounded
domain included in BD(0) if (A2) holds. Suppose that φ is continuous and set

h =
(

c0

∫ a

r
(φrN−1)−1/(p−1) dr

)(p−1)/p

(1.11)

where a = +∞ if (A1) holds or a = D if (A2) holds. Then for any u ∈ W 1,p
0 (Ω, φ)

∫

Ω
φ

(
−h′

h

)p

|u|p dx ≤
∫

Ω
φ|∇u|p dx

where the constant 1 is optimal.

Remark 1.1. (A1) or (A2) implies the integrability of φ
(−h′

h

)p in Bδ(0).

Theorem 1.2. Let p > 1 and Ω be a bounded domain in RN . Suppose φ is
continuous satisfying (A1) or (A2), h is defined by (1.11). Set

h1 =





p
(p−1)c0

ln h(r)
h(D) , if (A1) holds

p
(p−1)c0

lnh(r), if (A2) holds
(1.12)

then

(1) There exists a positive constant D0 ≤ D such that for any u ∈ W 1,p
0 (Ω, φ)

∫

Ω
φ|∇u|p dx−

∫

Ω
ψ|u|p dx ≥ p

2(p− 1)c2
0

∫

Ω
ψh−2

1 |u|p dx (1.13)

where ψ = φ
(
−h′

h

)p
.

(2) The constants in (1.13) are optimal, that is,

p

2(p− 1)c2
0

= inf
W 1,p

0 (Ω,φ)

Iφ(u)∫
Ω ψh−2

1 |u|p dx
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Remark 1.2. Let φ = r−pγ with γ < N−p
p and c0 = N−p(γ+1)

p−1 . It follows from
(1.11) and (1.12) that

h = r
−N−p(γ+1)

p , ψ =
(

N − p(γ + 1)
p

)p

r−p(γ+1), h1 = ln
D

r

hence we obtain by (1.13)
∫

Ω

(
|x|−pγ |∇u|p −

(
N − p(γ + 1)

p− 1

)p

|x|−p(γ+1)|u|p
)

dx

≥ p− 1
2p

(
N − p(γ + 1)

p− 1

)p−2 ∫

Ω
|x|−p(γ+1)(lnD/|x|)−2|u|p dx

which is identical with Theorem A in [2] when γ = 0.

Remark 1.3. Theorem 1.2 improves the results of [13][15].

Theorem 1.3. Under the hypothesis of Theorem 1.2, we have

i)
∫

Ω
φ|∇u|p − ψ|u|p dx ≥ C

∫

Ω
φh−2

1 |∇u|p dx, ∀u ∈ W 1,p
0 (Ω, φ) (1.14)

ii) The inequality (1.14) is optimal in the sense that h−2
1 can not be replaced

by any weight of the form g(x)h−2
1 where g(x) is a positive function such

that g(x) →∞ as x → 0.

Remark 1.4. Taking φ = r−pγ in Theorem 1.3, if γ < N−p
p , then

∫

Ω

(
|x|−pγ |∇u|p −

(
N − p(γ + 1)

p− 1

)p

|x|−p(γ+1)|u|p
)

dx

≥ C

∫

Ω
|x|−pγ(lnD/|x|)−2|∇u|p dx

for any u ∈ W 1,p
0 (Ω, φ). This is a positive answer to the open problem in [1]. If

γ = N−p
p , then

∫

Ω

(
|x|−pγ |∇u|p −

(
p− 1

p

)p

|x|−p(γ+1)(lnD′/|x|)−p|u|p
)

dx

≥ C

∫

Ω
|x|−p(γ+1)(lnD′/|x|)−p(ln lnD′/|x|)−2|∇u|p dx

for any u ∈ W 1,p
0 (Ω, φ), where D′ > eD. This solves the problem for the case of

γ = N−p
p which has not been discussed before.
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Remark 1.5. Wang and Willem [17] proved (1.6) by using a change of variable
that appear in [6]. However, to prove Theorem 1.3, we use a change of variables
that appear in [14] (p = 2), which involves the function h̄ or the distribution
solution h.

Remark 1.6. Theorem 1.3 gives a positive answer to the second open problem of
[3] in the case of general weights.

2 Some Lemmas and Corollaries

Lemma 2.1 ([1]). For all ζ1, ζ2 ∈ RN , the following inequalities hold

i) if p ≤ 2,

|ζ2|p − |ζ1|p − p|ζ1|p−2〈ζ1, ζ2 − ζ1〉 ≥ c(p)
|ζ2 − ζ1|2

(|ζ1|+ |ζ2|)2−p
(2.1)

ii) if p > 2,

|ζ2|p − |ζ1|p − p|ζ1|p−2〈ζ1, ζ2 − ζ1〉 ≥ c(p)|ζ2 − ζ1|p (2.2)

Direct calculations give the following results:

Lemma 2.2. Assume h satisfies (1.11). If (A1) or (A2) happens, then

div
(

φhα(−h′)p−1 x

|x|
)

= (1− α)φhα−1(−h′)p (2.3)

Lemma 2.3. Let h =
(
c0

∫∞
r (φrN−1)−1/(p−1) dr

)(p−1)/p
. Then

i) the function h satisfies the Euler-Lagrange equation

−div(φ|∇h|p−2∇h) = ψhp−1, x ∈ RN \ {0}

and in weak sense,
∫

RN

φ|∇h|p−2∇h∇ζ dx =
∫

RN

ψhp−1ζ dx, ζ ∈ C∞
0 (RN )

where ψ = φ
(
−h′

h

)p
;



1130 Yaotian Shen and Zhihui Chen

ii) the function

h̄ = hp/(p−1) = c0

∫ ∞

r
(φrN−1)−1/(p−1) dr

satisfies in the sense of distribution

−div(φ|∇h̄|p−2∇h̄) =
(

p

p− 1

)p−1

ωNδ(x)

where δ(x) is the Dirac measure and ωN denotes the volume of the unit
ball in RN . In other words, h̄ is a fundamental solution for operator −∆φ,p

defined as before.

Corollary 2.4. Under the hypothesis of Theorem 1.2, if α > 0, then for any
u ∈ W 1,p

0 (Ω, φ), ∫

Ω
ψh−α

1 |u|p dx ≤
∫

Ω
φh−α

1 |∇u|p dx

Proof. Assume (A1) holds. Set φ̄ = φh−α
1 , then

− h̄′

h̄
=

p− 1
p

(φh−α
1 rN−1)−1/(p−1)

∫ D
r (φh−α

1 rN−1)−1/(p−1) dr

By Theorem 1.1, we have
∫

Ω
ψ̄|u|p dx ≤

∫

Ω
φ̄|∇u|p dx

where ψ̄ = φ̄(−h′
h )p. We claim that

ψh−α
1 ≤ ψ̄

that is

φh−α
1 (−h′

h
)p ≤ φh−α

1 (− h̄′

h̄
)p

and this complete the proof. In the following we prove this claim. Since h1 is
decreasing, we have

∫ D

r
(φh−α

1 rN−1)−1/(p−1) dr ≤ h
α/(p−1)
1

∫ D

r
(φrN−1)−1/(p−1) dr

Multiplying by (φrN−1)−1/(p−1), we obtain

(φrN−1)−1/(p−1)

∫ D
r (φrN−1)−1/(p−1) dr

≤ (φh−α
1 rN−1)−1/(p−1)

∫ D
r (φh−α

1 rN−1)−1/(p−1) dr
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Hence

−h′

h
≤ − h̄′

h̄
that is, the claim is true.

3 Proof of Theorem

Proof of Theorem 1.2 (1). We proceed to make use of a suitable vector field as
in [2]. Define a vector field as follows

T = φ

(
−h′

h

)p−1

(1 + c−1
0 η + aη2)∇r

where a is a free parameter to be chosen later and η = h−1
1 . By Lemma 2.1, we

have

div T ≥ φ

(
−h′

h

)p [
(p + pc−1

0 η + apη2) +
pη2

(p− 1)c2
0

+
2apη3

(p− 1)c0

]
(3.1)

Next we compute (p− 1)φ−1/(p−1)|T |p/(p−1). We set for convenience

g(η) = (1 + c−1
0 η + aη2)p/(p−1)

When η > 0 is small, the Taylor expansion of g(η) about η = 0 gives

g(η) = 1 +
p

(p− 1)c0
η +

1
2

(
p

(p− 1)2c2
0

+
2pa

p− 1

)
η2

+
1
6

(
p(2− p)

(p− 1)3c3
0

+
6pa

(p− 1)2c0

)
η3 + O(η4)

and so

(p− 1)φ−1/(p−1)|T |p/(p−1) = φ

(
−h′

h

)p [
(p− 1) +

p

c0
η

+
(

p

2(p− 1)c2
0

+ pa

)
η2 +

(
p(2− p)

(p− 1)2c3
0

+
pa

(p− 1)c0

)
η3 + O(η4)

]

Hence

div T − (p− 1)φ−1/(p−1)|T |p/(p−1)

≥ φ

(
−h′

h

)p [
1 +

pη2

2(p− 1)c2
0

+
(

pa

(p− 1)c0
− p(2− p)

(p− 1)2c3
0

)
η3 + O(η4)

]
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If we show
ap

(p− 1)c0
≥ p(2− p)

(p− 1)2c3
0

+ O(η) (3.2)

then we obtain

div T − (p− 1)φ−1/(p−1)|T |p/(p−1) ≥ φ

(
−h′

h

)p [
1 +

pη2

2(p− 1)c2
0

]
(3.3)

If 1 < p < 2, we assume that η is small for the case (A1). Since

h1 =
p

(p− 1)c0
ln

h(r)
h(D)

and Ω ⊂ BD0(0) is bounded, we can choose D0 large enough such that h−1
1 (D0)

is small enough. Then η = h−1
1 is small. Hence, we have (3.2) for a big enough.

The same argument gives (3.2) for the case (A2).

If p ≥ 2, we choose a = 0, then

(1 + c−1
0 η)

p
p−1 = 1 +

p

(p− 1)c0
η +

p

2(p− 1)2c2
0

η2 +
p(2− p)

6(p− 1)3c3
0

(1 + c−1
0 ξ)

3−2p
p−1 η3

for some ξ ∈ (0, η), without any smallness assumption. Since 2− p ≤ 0, we have

(1 + c−1
0 η)

p
p−1 ≤ 1 +

p

(p− 1)c0
η +

p

2(p− 1)2c2
0

η2

Hence we prove (3.3).

Let u ∈ C∞
0 (Ω). For ε > 0, it follows from integration by parts that

∫

Ω\Bε(0)
|u|p div T dx = −p

∫

Ω\Bε(0)
(T · ∇u)|u|p−2u dx−

∫

∂Bε(0)
|u|pT · ∇r dS

Note that

φ

(
−h′

h

)p−1

= r−(N−1)

(∫ a

r
(φrN−1)−1/(p−1) dr

)−(p−1)

= r−(N−1)h−p/(p−1)2(r)

then ∣∣∣∣∣
∫

∂Bε(0)
|u|pT · ∇r dS

∣∣∣∣∣ ≤
∫

∂Bε(0)
|u|pε−(N−1)h−p/(p−1)2(ε) dS

which tends to 0 as ε → 0 since h−1(0) = 0. Hence we obtain
∫

Ω
|u|p div T dx = −p

∫

Ω
(T · ∇u)|u|p−2u dx
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By Hölder’s inequality and Young’s inequality, we have

∫

Ω
|u|p div T dx ≤ p

(∫

Ω
φ|∇u|p dx

)1/p (∫

Ω
|Tφ−1/p|p/(p−1)|u|p dx

)(p−1)/p

≤
∫

Ω
φ|∇u|p dx + (p− 1)

∫

Ω
|Tφ−1/p|p/(p−1)|u|p dx

that is,

∫

Ω
φ|∇u|p dx ≥

∫

Ω
(div T − (p− 1)|Tφ−1/p|p/(p−1))|u|p dx

This complete the proof by (3.3).

Proof of Theorem 1.2 (2). We complete the proof by four steps.

Step 1. Let θ ∈ C∞
0 (Bδ) be such that 0 ≤ θ ≤ 1 in Bδ and θ = 1 in Bδ/2, where

Bδ denotes the ball of radius δ centered at the origin. We fix small positive
parameters α0, α1 and define the functions

w(x) = h
1− α0

(p−1)c0 h
1−α1

p

1

and

u(x) = θ(x)w(x)

Let (A1) or (A2) happen. Hence u ∈ W 1,p
0 (Ω, φ). To prove the proposition we

shall estimate the corresponding Rayleigh quotient of u in the limit of the order
α0 → 0, α1 → 0.

It is easily seen that

∇w =
p

(p− 1)c0
h
− α0

(p−1)c0 h′Y
−1+α1

p

1

(
(p− 1)c0

p
+

η

p

)
∇r

where Y1 = h−1
1 and η = −α0 + (1− α1)Y1.

Now ∇u = θ∇w + w∇θ and hence, using the elementary inequality

|a + b|p ≤ |a|p + cp(|a|p−1|b|+ |b|p), a, b ∈ RN
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for p > 1, we obtain
∫

Ω
φ|∇u|p dx ≤

∫

Ω
φθp|∇w|p dx

+ cp

∫

Ω
φθp−1|∇θ||w||∇w|p−1 dx + cp

∫

Ω
φ|∇θ|p|w|p dx (3.4)

=: I1 + I2 + I3 (3.5)

We claim that

I2, I3 = O(1) uniformly as α0, α1 tend to zero. (3.6)

Let us give the proof for I2. In fact,

I2 ≤ C

∫

Bδ

φh
− α

c0 |h′|p−1Y
(−1+α1)(p−1)

p

1

[
(p− 1)c0 + α0 + (1− α1)Y1

]p−1

· h1− α0
(p−1)c0 Y

−1+α1
p

1 dx

≤ C

∫

Bδ

φh
1− α0p

(p−1)c0 |h′|p−1Y −1+α1
1

[
(p− 1)c0 + α0 + (1− α1)Y1

]p−1 dx

It follows from the definition of h (1.11) that

φ|h′|p−1h = Cr1−N (3.7)

hence

I2 ≤ C

∫

Bδ

r1−Nh
− α0p

(p−1)c0 Y −1+α1
1

[
(p− 1)c0 + α0 + (1− α1)Y1

]p−1 dx

Then the boundedness of h−1 together with the fact Y1(0) = 0 implies that I2 is
uniformly bounded. The integral I3 is treated similarly.

Step 2. Define

A0 =
∫

Ω
θpφh

− α0p
(p−1)c0 (−h′)pY −1+α1

1 dx

A1 =
∫

Ω
θpφh

− α0p
(p−1)c0 (−h′)pY 1+α1

1 dx

Γ01 =
∫

Ω
θpφh

− α0p
(p−1)c0 (−h′)pY α1

1 dx
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By Lemma 2.1, we have

φh
− α0p

(p−1)c0 (−h′)p =
(p− 1)c0

pα0
div(φh

1− α0p
(p−1)c0 (−h′)p−1∇r)

Multiplying the above equality by θpY −1+α1
1 and integrating over Ω, we obtain

A0 =
(p− 1)c0

pα0

∫

Ω
θpY −1+α1

1 div(φh
1− α0p

(p−1)c0 (−h′)p−1∇r) dx

=
(p− 1)c0

pα0

∫

Ω
φh

1− α0p
(p−1)c0 (−h′)p−1∇(θpY −1+α1

1 ) dx

=
(p− 1)c0

pα0

(
− p(1− α1)

(p− 1)c0

∫

Ω
θpφh

1− α0p
(p−1)c0 (−h′)pY α1

1 dx

+
∫

Ω
(θp)′φh

1− α0p
(p−1)c0 (−h′)p−1Y −1+α

1 dx

)

= (1− α1)Γ01 + O(1)

Step 3. We proceed to estimate I1.

I1 =
∫

Ω
φθp|∇w|p dx

≤
(

p

(p− 1)c0

)p ∫

Ω
θpφh

− α0p
(p−1)c0 (−h′)pY −1+α1

1

(
(p− 1)c0

p
+

η

p

)p

dx

where η = −α0 + (1− α1)Y1. Since η is small compared to (p− 1)c0/p, we may
use Taylor’s expansion to obtain

(
(p− 1)c0

p
+

η

p

)p

≤
(

(p− 1)c0

p

)p

+
(

(p− 1)c0

p

)p−1

η

+
p− 1
2p

(
(p− 1)c0

p

)p−2

η2 + Cη3

Using this inequality we can obtain

I1 ≤ I10 + I11 + I12 + I13 (3.8)

where

I10 =
∫

Ω
θpφh

− α0p
(p−1)c0 (−h′)pY −1+α1

1 dx =
∫

Ω
θpψh

p− α0p
(p−1)c0 Y −1+α1

1 dx

=
∫

Ω
θpψ|w|p dx =

∫

Ω
ψ|u|p dx (3.9)

I12 =
p

2(p− 1)c2
0

∫

Ω
θpφh

− α0p
(p−1)c0 (−h′)pY −1+α1

1 η2 dx (3.10)
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We shall prove that

I11, I13 = O(1) uniformly in α0, α1. (3.11)

Firstly,

I11 =
p

(p− 1)c0

[
− α0

∫

Ω
θpφ(−h′)ph

− α0p
(p−1)c0 Y −1+α1

1 dx

+ (1− α1)
∫

Ω
θpφ(−h′)ph

− α0p
(p−1)c0 Y α1

1 dx

]
+ O(1)

=
p

(p− 1)c0
(−α0A0 + (1− α1)Γ01) + O(1)

Next we estimate I13.

I13 ≤ α3
0

∫

Ω
θpφ(−h′)ph

− α0p
(p−1)c0 Y −1+α1

1 dx + C

∫

Ω
θpφ(−h′)ph

− α0p
(p−1)c0 Y 2+α1

1 dx

=: I ′13 + I ′′13

Since
Y −1

1 =
p

(p− 1)c0
ln

h(r)
h(D)

we have

I ′13 ≤ Cα3
0

∫ δ

0

(∫ ∞

r
(φrk−1)−1/(p−1) dr

)−1−α0/c0 [
ln

h(r)
h(D)

]2

d
(∫ ∞

r
(φrk−1)−1/(p−1) dr

)

≤ Cα2
0c0

∫ δ

0

[
ln

h(r)
h(D)

]2

d
(∫ ∞

r
(φrk−1)−1/(p−1) dr

)−α0/c0

Denote

s =
(∫ ∞

d
(φrk−1)−1/(p−1) dr

)−α0/c0

then we have

I ′13 ≤ Cα2
0

∫ δ

0

[
C − (p− 1)c0

pα0
ln s

]2

ds ≤ O(1)

The same argument gives I ′′13 = O(1) uniformly in α0 and α1. Hence, by (3.4),
(3.6), (3.8), (3.9) and (3.11), we conclude that

∫

Ω
φ|∇u|p dx−

∫

Ω
ψ|u|p dx ≤ I12 + O(1) (3.12)
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uniformly in α0 and α1.

Step 4. We proceed to estimate I12 and complete the proof.

I12 =
p

2(p− 1)c2
0

∫

Ω
θpφh

− α0p
(p−1)c0 (−h′)pY −1+α1

1

(
α2

0 + (1− α1)2Y 2
1 − 2α0(1− α1)Y1

)
dx

=
p

2(p− 1)c2
0

(
α2

0A0 − 2α0(1− α1)Γ01 + (1− α1)2A1

)

=
p

2(p− 1)c2
0

A1 + O(1) (3.13)

if α0 and α1 tend to 0. Because

φ(−h′)ph
− α0p

(p−1)c0 =
(

c0

∫ a

r
(φrN−1)−1/(p−1) dr

)−α0/c0−1

· c0φ(φrN−1)−1/(p−1)

we have

A1 ≥ C

∫ δ/2

0

(∫ a

r
(φrN−1)−1/(p−1) dr

)−α0/c0−1

· c0(φrN−1)−1/(p−1)h−1−α0
1 dr

≥ C

(∫ a
r (φrN−1)−1/(p−1) dr

)−α0/c0

−α0/c0

∣∣∣∣
δ/2

0

= C· c0

α0




(∫ a

0
(φrN−1)−1/(p−1) dr

)−α0/c0

−
(∫ a

δ/2
(φrN−1)−1/(p−1) dr

)−α0/c0

 →∞

as α0 tends to 0. Since
∫

Ω
ψh−2

1 |u|p dx =
∫

Ω
φ

(
−h′

h

)p

h−2
1 θph

p− α0p
(p−1)c0 h1−α1

1 dx

=
∫

Ω
θpφ(−h′)ph

− α0p
(p−1)c0 h−1−α1

1 dx = A1

by (3.12) and (3.13), we have

∫
Ω (φ|∇u|p − ψ|u|p) dx∫

Ω ψh−2
1 |u|p dx

≤
p

2(p−1)c20
A1 + O(1)

A1
→ p

2(p− 1)c2
0

as α0 tends to 0. This completes the proof.

The proof of Theorem 1.3. i) Assume (A1) holds. Consider the case of p ≥ 2.
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Let u ∈ C∞
0 (Ω) and set v = u(x)/h(r). Then by Lemma 2.1 (2.2), we have

∫

Ω
φ|∇u|p dx =

∫

Ω
φ

∣∣∣∣vh′
x

|x| + h∇v

∣∣∣∣
p

dx

≥
∫

Ω
φ|v|p|h′|p dx− p

∫

Ω
φ|vh′|p−2〈vh′

x

|x| , h∇v〉dx

+ c(p)
∫

Ω
φhp|∇v|p dx

Note that ∫

Ω
φ|v|p|h′|p dx =

∫

Ω
ψ|u|p dx

and for any ε > 0, by Lemma 2.2, (3.7) and (A1) (or (A2)), we have

−
∫

Ω\Bε(0)
φ|vh′|p−2 dx

=
∫

Ω\Bε(0)
φh(−h′)p−1〈 x

|x| , h∇|v|
p〉dx

=
∫

∂Bε(0)
φ(−h′)p−1h|v|p dS −

∫

Ω\Bε(0)
|v|p div(φh(−h′)p−2∇h)

=
∫

∂Bε(0)
φ(−h′)p−1h|v|p dS → 0

as ε → 0. Hence, we obtain

I1,φ(u) =
∫

Ω
(φ|∇u|p − ψ|u|p) dx ≥ c(p)

∫

Ω
φhp|∇v|p dx (3.14)

Taking C1 > 0 such that C1h
−2
1 ≤ c(p), it follows from (2.2) of Lemma 2.1 that

c(p)
∫

Ω
φhp|∇v|p dx ≥ C1

∫

Ω
φhph−2

1 |∇v|p dx

≥ C1

∫

Ω
φh−2

1

[∣∣∣∣
∇h1

h1

∣∣∣∣ |u|p − p

∣∣∣∣
∇h

h
u|p−1

∣∣∣∣∇u|+ c(p)|∇u|p
]

dx

≥ C1

∫

Ω
φh−2

1

[
(c(p)− ε)|∇u|p −

(
(p− 1)ε−1/(p−1) − 1

) (
−h′

h

)p

|u|p
]

dx

Taking ε = c(p)/2, then by Theorem 1.2, we obtain

I1,φ(u) ≥ C

∫

Ω
φh−2

1 |∇u|p dx
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Now let 1 < p < 2. By using Lemma 2.1, (2.1) and arguments analogues to
the case of p ≥ 2, we have

∫

Ω
(φ|∇u|p − ψ|u|p) dx ≥ c(p)

∫

Ω

φ|∇u− ∇h
h u|p

(|∇u|+ |u||h′h |)2−p
dx

≥ c(p)
∫

Ω

φh−2
1 |∇u− ∇h

h u|2
(|∇u|+ |u||h′h |)2−p

dx

By Hölder’s inequality and Corollary 2.4, we have

∫

Ω
φh−2

1 |∇u− ∇h

h
u|p dx ≤

(∫

Ω

φh−2
1 |∇u− ∇h

h u|2
(|∇u|+ |u||h′h |)2−p

dx

)p/2

(∫

Ω
φh−2

1 (|∇u|+ |h
′

h
||u|)p dx

)1−p/2

≤ C(I1,φ(u))p/2

(∫

Ω
φh−2

1 |∇u|p dx

)1−p/2

Note that
∫

Ω
φh−2

1 |∇u|p dx ≤ C

(∫

Ω
φh−2

1 |∇u− ∇h

h
u|p dx +

∫

Ω
φh−2

1

∣∣∣∣
∇h

h

∣∣∣∣ |u|p dx

)

≤ C(I1,φ(u))p/2

(∫

Ω
φh−2

1 |∇u|p dx

)1−p/2

+
∫

Ω
ψh−2

1 |u|p dx

≤ C(I1,φ(u))p/2

(∫

Ω
φh−2

1 |∇u|p dx

)1−p/2

+ I1,φ(u)

By Young’s inequality, we obtain
∫

Ω
φh−2

1 |∇u|p dx ≤ CI1,φ(u)

One can prove the result for the case of (A2) by the analogues argument.

ii) Let w and u be as those defined in the proof of Theorem 1.2 (2), and let
p > 2. First, it follows from (3.12) and (3.13) that

∫

Ω
φ|∇u|p dx−

∫

Ω
ψ|u|p dx ≤ p

2(p− 1)c2
0

A1 + O(1)

By (2.2) we have

|∇u|p = |θ∇w + w∇θ|p ≥ θp|∇w|p − pθp−1|∇w|p−1|∇θ|w + c(p)|w|p|∇θ|p
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Hence
∫

Ω
φh−2

1 g(x)|∇u|p dx ≥ min
x∈Bδ(0)

g(x)
∫

Bδ(0)
φh−2

1 θp|∇w|p dx+

c(p)
∫

Bδ(0)
φh−2

1 g(x)|w|p|∇θ|p dx− p

∫

Bδ(0)
φh−2

1 g(x)θp−1|∇θ||∇w|p−1|w|dx

Analogues to the argument of Step 3 for the proof of Theorem 1.2 (2), we obtain
∫

Bδ(0)
φh−2

1 θp|∇w|p dx =
∫

Bδ(0)
φh−2

1 θph
− α0p

(p−1)c0 (−h′)pY −1+α1
1

(
(p− 1)c0

p
+

η

p

)p

dx

where η = −α0 + (1− α1)Y1. Because of p > 2, we have
(

(p− 1)c0

p
+

η

p

)p

=
(

(p− 1)c0 − α0

p
+

η + α0

p

)p

≥
(

(p− 1)c0 − α0

p

)p

+
(

(p− 1)c0 − α0

p

)p−1

(η + α0)

Hence
∫

Bδ(0)
φh−2

1 θp|∇w|p dx ≥
(

(p− 1)c0 − α0

p

)p ∫

Bδ(0)
φθph

− α0p
(p−1)c0 (−h′)pY 1+α1

1 dx

+
(

(p− 1)c0 − α0

p

)p−1

(1− α1)
∫

Bδ(0)
φθph

− α0p
(p−1)c0 (−h′)pY 2+α1

1 dx

=: J1 + J2

By Step 3 of the proof of Theorem 1.2 (2) we know

J1 =
(

(p− 1)c0 − α0

p

)p

A1, J2 = O(1)

if α0, α1 tend to 0. Next, we will estimate

J3 :=
∫

Bδ(0)
φh−2

1 g(x)θp−1|∇θ||∇w|p−1|w|dx

In fact,

J3 ≤ C

∫

Bδ(0)
g(x)φh−2

1 h
1− α0p

(p−1)c0 (−h′)p−1Y −1+α1
1 [(p−1)c0−α0+(1−α1)Y1]p−1 dx

≤
∫

Bδ(0)
g(x)φh−2

1 h
1− α0p

(p−1)c0 (−h′)p−1
[(

(p− 1)c0 − α0

)p−1
Y 1+α1

1 + (1− α1)p−1Y p+α1
1

]
dx
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It follows from (3.7) that

J3 ≤
∫ δ

0
g̃(r)h−

α0p
(p−1)c0

[(
(p− 1)c0 − α0

)p−1
Y 1+α1

1 + (1− α1)p−1Y p+α1
1

]
dr

Set
g̃(r) =

1
NωN

∫

|ω|=1
g(rω) dω

and we may assume
|g̃(r)h−1

1 (r)| ≤ C

Then we obtain

J3 ≤ C

∫ δ

0
h
− α0p

(p−1)c0

[(
(p− 1)c0 − α0

)p−1
Y α1

1 + (1− α1)p−1Y p−1+α1
1

]
dr ≤ C

Hence
∫
Ω (φ|∇u|p − ψ|u|p) dx∫
Ω φh−2

1 g(x)|∇u|p dx
≤

p
2(p−1)c20

A1 + O(1)

min
x∈Bδ(0)

g(x)
(

(p−1)c0−α0

p

)p
A1 + O(1)

→ 0

as δ → 0 since A1 →∞ as α0, α1 → 0 and g(x) →∞ as x → 0.

We can prove our result for the case of 1 < p < 2 by the similar argument.
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