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Abstract: In this paper we derive maximal pointwise Hölder estimates
for the Kohn’s Laplacian on strongly pseudoconvex CR manifolds of
class C3 using the Tanaka-Webster Pseudohermitian metric. The es-
timates can be used to improve the Boutet De Monvel’s embedding
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mension greater or equal to five with less smoothness assumption.
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Introduction

A CR manifold, as first formulated in Kohn-Rossi [KR], is a smooth 2n − 1-
dimensional real manifold equipped with an integrable CR structure where n ≥ 2.
Any boundary of a smooth bounded domain in Cn is a CR manifold. It is natural
to ask if every CR manifold can be embedded as a submanifold in Cn. If M is
a smooth compact CR manifold, we have the following well-known theorem.

Theorem (Boutet De Monvel [Bou]). Let M be a compact C∞ smooth
strongly pseudoconvex CR manifold of real dimension 2n − 1, n ≥ 3. Then
M is embeddable into CN by smooth CR functions for some large N .
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The proof uses the Hölder regularity of the Szegö projection obtained in [BS].
In [Ko3], Kohn gives another proof which uses the Sobolev regularity for the
Kohn’s Laplacian ¤b [Ko2] which gives by the Sobolev embedding theorem the
Hölder regularity for ¤b as well as the Szegö projection. When n = 2, Rossi [Ros]
gives an example of a real analytic compact strongly pseudoconvex CR manifold
of real dimension 3 which is not globally embeddable.

In this paper we study the embeddability of strongly pseudoconvex CR mani-
folds of class C3,α using Hölder estimates for ¤b. Hölder and Lp estimates for ¤b

and the Szegö projection for any strongly pseudoconvex CR structures of class
C∞ are well-known (see [FS, RS, BS, BG, KS]). In recent papers by Shaw-Wang
[SW1,SW2], a much more direct method is used to derive estimates for ¤b and
the Szegö projection under condition Y(q).

When the CR manifold is strongly pseudoconvex, one can use the pseudo-
hermitian metric introduced in Tanaka [Tan] (see also Webster [We1]) to have
a very elegant formula for the Kohn’s Laplacian. Similar formula were first
obtained for the Heisenberg group case by Folland-Stein [FS]. Here we derive
the precise formula for ¤b using the C3 smoothness assumption. This explicit
formula for the Kohn’s Laplacian can be viewed as an analogue of the simple
expression for the ∂̄-Laplacian ¤ on Khäler manifold (see Wu [Wu]).

Minimal smoothness assumption is important since many applications require
it. One motivation to study this problem is to construct bounded holomorphic
functions on Kähler manifolds with nonpositive curvature (see [Bla]). Our results
immediately reduced the smoothness assumption used in [Bla] from C∞ to C3,α

(see Theorem 4.2). To completely solve this problem without assuming that
the boundary has a C3,α CR structure, one actually needs to study the CR

manifold of only Hölder continuous topology (see Schoen-Yau [SY]). Estimates
for ¤b with only Hölder smoothness assumption are also important for studying
nonlinear subelliptic operators. The embeddability result is also important in the
deformations of CR structures (see [Tan]). Our results are not the most general,
but the beginning of more investigation on these problems.

In the case for the local embedding of almost complex manifolds, the well-
known Newlander-Nirenberg theorem [NN] show that any almost complex man-
ifold of class C2n is actually embeddable. The smoothness assumption for the
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almost complex structures to be embeddable is reduced to C1,α, 0 < α < 1 by
Nijinhuis and Woolf [NW] (see also [We2]). An L2 linear approach was given by
Kohn [Ko1] for smooth almost complex structure using the ∂̄-Neumann problem
where the required smoothness also depends on n since the Sobolev embedding
theorem is used. Using the pointwise Hölder estimates applied to the elliptic
systems immediately relaxes the assumption of the linear method to C1,α class
with the Hölder condition required only at one point (see Remarks at the end of
the paper). The method used in this paper also has the potential of relaxing the
smoothness requirements of local embedding problem of strongly pseudoconvex
CR structure, but it is a much more difficult problem and will not be discussed
here.

In Section 1, we discuss CR manifolds of class Ck, k ≥ 2 and the pseudo-
hermitian metric on strongly pseudoconvex CR manifolds. In Section 2 we derive
the Folland-Stein-Tanaka formula for CR manifold with C2 pseudo-hermitian
Levi metric. This gives a very simple proof of Kohn’s L2 theory for ¤b on strongly
pseudoconvex CR manifolds. Based on the L2 theory, optimal pointwise Hölder
estimates for ¤b can be obtained based on scaling arguments and the use of
Campanato spaces, as was done in [SW1] and [SW2]. The embedding theorem
of compact strongly pseudoconvex CR structures of class C3,α is obtained in
section 4 using arguments in [Bou].

1. Strongly pseudoconvex CR structures of

class C2 and the pseudo-hermitian metric

A manifold is of class Ck, k ∈ N, if any two coordinate systems are related by
a transformation of class Ck. If M is a manifold of class Ck+1, then the tangent
bundle of M , T (M), is a Ck manifold. A vector field X is of class Ck if its
coefficients in any coordinates are in Ck. This is well-defined since changing co-
ordinates will result in multiplication of coefficients with Ck functions. Similarly,
we can define differential forms or other tensor fields of class Ck.

Recall that a vector bundle is of class Ck if the transition functions are of
class Ck. Locally it is spanned by Ck sections.

Definition 1.1. Let M be a real manifold of class Ck+1 of dimension 2n − 1,
where k ∈ N and n ≥ 2. The pair (M, T 1,0) is called a CR manifold of class Ck
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if M is equipped with a subbundle T 1,0 of class Ck of the complexified tangent
bundle CT (M) such that the following holds:

(1) dimCT 1,0 = n,
(2) T 1,0 ∩ T 0,1 = {0}, where T 0,1 = T

1,0
,

(3) T 1,0 is integrable in the sense that if L1, L2 are the Ck sections of T 1,0,
their Lie bracket [L1, L2] is a Ck−1 section of T 1,0.

We can also use the operator J to define CR structure. Let H be a subbundle
of real dimension 2n of the real tangent bundle TM and J : H → H, J2 = −I.

The tensor J is called integrable if for any X and Y in H, so is [JX, Y ]+[X, JY ]
and J{[JX, Y ] + [X, JY ]} = [JX, JY ]− [X, Y ]. The triple (M, H, J) is called a
CR manifold of class Ck if J is integrable and of class Ck. One can check easily
that these two definitions agree (see e.g. Jacobowitz [Jac]). For simplicity, we
only use M to denote the CR manifold (M, T 1,0) or (M, H, J). A CR manifold
M is called an embedded CR manifold in CN if there exists an embedding f

from M into CN such that the push forward of the CR structure of M is the
induced CR structure of f(M) ⊂ CN .

On any given CR manifold M of class Ck, k ≥ 1, we set Λ0,q(M) = (∧qT 0,1∗).
Sections in Λ0,q are called the (0, q)-forms on M . We use Cm

(0,q)(M) to denote
the space of (0, q)-forms with Cm coefficients, where 0 ≤ m ≤ k. Define ∂̄b :
Ck

(0,q)(M) → Ck−1
(0,q+1)(M) by the standard derivation formula.

Let k ≥ 1, φ ∈ Cm, where 1 ≤ m ≤ k + 1, then ∂bφ is defined by

〈∂bφ,L〉 = L(φ)

for all Ck sections L of T 0,1(M). Then ∂b is extended to Ck
(0,q)(M) for q > 0

as a derivation. If we let θ0,q be the projection from ΛqCT ∗(M) onto Λ0,q(M),
then ∂b = θ0,q+1 ◦ d, where d is the exterior derivative on M . It is standard to
see that ∂̄b satisfies ∂

2

b = 0.
Let N(M) denote the 1-dimensional bundle such that

N(M) = CT (M)/(T 1,0(M) + T 0,1(M)).

We denote the dual bundle of N(M) by N∗(M). Let τ ∈ N∗(M), then τ

annihilates T 1,0 ⊕ T 0,1. Thus N∗(M) is called the characteristic bundle.
For a fixed real τ ∈ N∗(M), the Levi form Θp is defined as the quadratic form

〈Θ(L,L′), τ〉p =
√−1〈[L,L

′
], τ〉p, L, L′ ∈ T 1,0(M).
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Definition 1.2. A CR manifold M of class C1 is strongly pseudoconvex if the
Levi form is positive definite or negative definite.

Following Tanaka, we have (see Proposition 2.1 in [Tan])

Proposition 1.3. Let M be a strongly pseudoconvex CR manifold of class Ck,
k ≥ 2. Then there exists a basic form θ of class Ck such that the hermitian form
−dθ is positive definite on T 1,0 + T 0,1 at each x ∈ M .

On a strongly pseudoconvex CR manifold of class Ck, k ≥ 2, we fix the basic
form θ of class Ck, k ≥ 2 and its corresponding basic field ξ (for defintion, see
Tanaka [Tan]). Then ξ will be of class Ck−1 from definition. Set

(1.1) −dθ = ω.

Then ω is a 2-form of class Ck−1.
There exists a pseudo-hermitian metric g of class Ck−1 corresponding to ω.

Notice that g is not a Riemannian metric since ξyω = 0. Let the volume element
on M be given by

(1.2) θ ∧ (dθ)n−1.

The pseudo-hermitian metric together with the volume element induces a met-
ric of class Ck−1 on M . This metric will be called the (Tanaka-Webster) pseudo-
hermitian Levi metric. We can define the formal adjoint ϑb of ∂̄b such that
ϑb : Ck−1

(0,q+1)(M) → Ck−2
(0,q)(M), k ≥ 2, by requiring

(∂̄bφ, ψ) = (φ, ϑbψ), φ ∈ Ck
(0,q)(M), ψ ∈ Ck

(0,q+1)(M).

Note that ϑb is a first-order differential operator with Ck−2 coefficients written
in local coordinates.

We define the ∂̄b-Laplacian ¤b (or Kohn’s Laplacian) by

¤b = ∂̄bϑb + ϑb∂̄b : Ck−1
(0,q)(M) → Ck−3

(0,q)(M).

When k ≥ 3, the operator ¤b is a system of second-order differential operators
with Ck−3 coefficients in local coordinates.
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2. Folland-Stein-Tanaka formula for

¤b on a pseudo-hermitian manifold

Let M be a strongly pseudoconvex CR manifold of class C3. We quip M with
the pseudohermitian Levi metric of class C2. In this section, we will derive the
explicit formula for the ∂̄b-Laplacian

(2.1) ¤b = ∂̄bϑb + ϑb∂̄b.

These formula are particular simple under the pseudo-hermitian metric and they
agree with the Folland-Stein calculation [FS] for ¤b on the Heisenberg group.
Our derivation follows the arguments in Tanaka (see Proposition 5.1 in [Tan]).
We include it here only to show that it is valid for CR pseudo-hermitian manifolds
of class C2. Let ∇ denote the unique canonical connection associated with the
pseudo-hermitian metric (For the existence and properties of ∇, see Chapter 3
in [Tan]).

Proposition 2.1. Let M be a strongly pseudoconvex CR manifold of class
C2 with the pseudohermitian Levi metric of class C1. Let e1, · · · , en−1 be an
orthonormal frame field for T 1,0(M) in an open neighborhood in M and let
w1, · · · , wn−1 be its dual. Then

(2.2) ∂̄b =
n−1∑

j=1

w̄j ∧∇ēj
.

The equation (2.2) follows from the definition. In fact, this formula holds for
any CR manifold without any assumption on the metric. Next we compute the
adjoint ϑb of ∂̄b under the pseudoconvex hermitian metric.

Proposition 2.2. Let M be a strongly pseudoconvex CR manifold of class
C2 with the pseudohermitian Levi metric of class C1. Let e1, · · · , en−1 be an
orthonormal frame field for T 1,0(M) in an open neighborhood in M and let
w1, · · · , wn−1 be its dual. Then

(2.3) ϑb = −
n−1∑

j=1

y(ēj)∇ej .
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Proof. Let φ be a (0, q)-form and ψ be a (0, q + 1)-form on M . We have

(2.4) 〈∂̄bφ, ψ〉 = 〈φ, ϑbψ〉+ δ′β

where β is a (0,1)-form defined by β = βjw̄j with β(ēj) = 〈φ, ejyψ̄〉 and δ′β is
the function defined to be

δ′β =
n−1∑

j

∇ēj βj .

Let ?β be a (2n− 2)-form defined by

?β =
n−1∑

j

βj ējydV .

We first prove the following claim:

(2.5) d(?β) = δ′βdV.

To see this, let X =
∑

j βj ēj be the dual of β. Let AX be the (1,1) tensor on
M defined by

AX = LX −∇X .

Since ∇dV = 0, we have

LXdV = AXdV.

Let ξ1, · · · , ξ2n−1 be a basis for TxM . Since AX is a derivative which maps every
function into zero, we have

LXdV (ξ1, · · · , ξ2n−1) = AXdV (ξ1, · · · , ξ2n−1)

= AX(dV (ξ1, · · · , ξ2n−1))−
∑

j

dV (ξ1, · · · , AXξj , · · · , ξ2n−1)

= −
∑

j

dV (ξ1, · · · , AXξj , · · · , ξ2n−1)

= −TraceAXdV (ξ1, · · · , ξ2n−1)

Thus we have

(2.6) LXdV = −TraceAXdV.
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Recall the torsion formula (see Proposition 2.5, Chapter 6 in [KoN])

(2.7) AXY = LXY −∇XY = −∇Y X − T (X, Y ).

where T is the torsion tensor of ∇. Now we choose a special frame for CTx(M)
with ej = ξj +iξn+j−1, ēj , where j = 1, · · · , n−1 and ξ2n−1 = ξ, the basic vector
field. Then we have

T (ej , ēk) = −ω(ei, ēk)ξ =
1
i
δjk∇ξ

and

T (Y, ξ) ∈ T 1,0 + T 0,1

for all Y ∈ T 1,0 + T 0,1. Thus the torsion term in (2.7) has no contribution
when taking trace of AX . Also note that ∇XY preserves types for X and Y in
T 1,0 + T 0,1 and ∇ξ = 0. We have

TraceAX = 〈∇ēj
X, ēj〉 = δ′β

and

(2.8) TraceAXdV = δ′βdV.

For each vector field X, the divergence formula is defined to be

(2.9) (div)XdV = LXdV = d(XydV ),

we have proved from (2.6)-(2.9) that

δ′βdV = LXdV = d(?β).

Integrating with respect to the volume element dV in (2.4), we have proved the
proposition.

Theorem 2.3 (Folland-Stein-Tanaka formula for ¤b). Let (M, T 1,0(M) be
a strongly pseudoconvex CR manifold of class C3 with the pseudo-hermitian Levi
metric of class C2 and ξ be a basic field of class C2. Let e1, · · · , en−1 be an



EMBEDDING COMPACT STRONGLY PSEUDOCONVEX CR... 1113

orthonormal frame field (of class C2) for T 1,0(M) in an open neighborhood in
M and let w1, · · · , wn−1 be its dual.

(2.10) ¤b = −
∑

j

∇2
ej ēj

+
q

i
∇ξ −

∑

i,j

w̄k∧y(ēj)Rej ēk
,

(2.11) ¤b = −
∑

j

∇2
ējej

− (n− q − 1)
i

∇ξ,

(2.12)

¤b =− n− q − 1
n− 1

∑

j

∇2
ej ēj

− q

n− 1

∑

j

∇2
ējej

− n− q − 1
n− 1

∑

i,j

w̄k∧y(ēj)Rej ēk
,

where

∇2
XY = ∇X∇Y −∇∇XY

is the second covariant differential and

RXY = −∇X∇Y +∇Y∇X −∇[X,Y ] = ∇2
Y X −∇2

XY

is the curvature tensor, both extended C-linearly to (p, q)-forms.

Proof.

ϑb∂̄b = −
∑

j

y(ēj)∇ej
(
∑

k

w̄k ∧∇ēk
)

= −
∑

j,k

y(ēj)w̄k ∧∇ej
∇ēk

= −
∑

j

∇ej
∇ēj

+
∑

j,k

w̄k∧y(ēj)∇ej
∇ēk

.

∂̄bϑb = −
∑

k

w̄k ∧∇ek
(
∑

j

y(ēj)∇ej
) = −

∑

j,k

w̄k∧y(ēj)(∇ēk
∇ej

)

since ∇ēk
y(ej) =y(ej)∇ēk

.
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From the Ricci’s formula, we have

[∇ej ,∇ēk
] = −Rej ēk

−∇T (ei,ēk)

where T is the torsion tensor of ∇ and

T (ej , ēk) = −ω(ei, ēk)ξ =
1
i
δjk∇ξ.

Thus we obtain

¤b = −
∑

j

∇ej
∇ēj

+
∑

j,k

w̄k∧y(ēj)[∇ej
,∇ēk

]

= −
∑

j

∇ej
∇ej

+
1
i
q∇ξ −

∑

i,j

w̄k∧y(ēj)Rej ēk

which proves (2.10). Equation (2.11) follows from (2.10) and the Ricci formula.
Equation (2.12) follows from (2.10) and (2.11).

Notice only C2 smoothness of the frame fields is required in the derivation.

3. Estimates for ¤b on strongly CR manifolds of class C3

In this section we first derive Kohn’s subelliptic maximal estimates for ¤b in
the Hilbert spaces for a strongly pseudoconvex CR manifold M of class Ck+1 with
the pseudo-hermitian Levi metric of class Ck, k ≥ 2. We denote by L2

(0,q)(U)
the space of (0, q)-forms with L2(U) coefficients. The set W s(U) denote the
usual Sobolev spaces, 0 ≤ s ≤ k, i.e., W s(U) consists of L2 functions whose
sth derivatives in some coordinate system are in L2 for 1 ≤ s ≤ k. This is well
defined since different coordinate charts will give equivalent norms. Similarly,
W s

(0,q)(U) denote the space of (0, q)-forms with W s(U) coefficients and we use
W s to denote its norm and omit the subscript (0, q). The norms for noninteger
s with 0 < s < k can be defined by interpolation norms and denoted by ‖ ‖s.

We also define the nonisotripic Sobolev spaces W k
∗ (U). Let e1, · · · , en−1 be

an orthonormal frame field for T 1,0(M) in U and define

‖u‖2L(U) =
n−1∑

i=1

‖eiu‖2 + ‖u‖2, ‖u‖2L(U)
=

n−1∑

i=1

‖ēiu‖2 + ‖u‖2
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and

‖Xu‖2 =
n−1∑

i=1

‖ēiu‖2 +
n−1∑

i=1

‖eiu‖2 =
2(n−1)∑

i=1

‖Xiu‖2,

where ej = Xj + iXn−1+j . These norms are well defined since different choices
of basis will result in equivalent norms. Thus Xu can be viewed as the gradient
of u with respect to the “good” directions. We also define inductively for k ≥ 2,

‖Xku‖2 =
2(n−1)∑

i1,··· ,ik=1

‖Xi1 · · ·Xik
u‖2,

‖u‖2W k∗ (U) =
k∑

m=1

‖Xmu‖2 + ‖u‖2.

The space W k
∗ (U) is the completion of u ∈ Ck(U) under the W k

∗ (U) norm. We
also define W k

0∗(U) as the completion of Ck
0 (U) under the W k

∗ (U) norm. Let
W−1
∗ (U) be defined as the dual of W 1

0∗(U).
From the Folland-Stein-Tanaka formula, we immediately arrive at the fol-

lowing results of Kohn’s maximal L2 estimates for ¤b on a compact strongly
pseudoconvex CR manifold of real dimension at least 5 (see Kohn [Ko2]). Notice
that Kohn’s original L2 theory holds for any smooth strongly pseudoconvex CR

manfiold under any hermitian metric.

Theorem 3.1 (Kohn’s subellitpic 1
2 estimates for ¤b). Let M be a compact

strongly pseudoconvex CR manifold of real dimension 2n−1 and of class C3 with
the pseudo-hermitian metric of class C2, n ≥ 3. Then there exists a constant
C > 0 such that for any f ∈ L2

((0,q)(M) ∩Dom(¤b), 1 ≤ q < n− 1,

(3.1) (¤bf, f) + (f, f) ≥ C‖f‖21
2
.

Proof. From (2.12), we have using integration by parts,

(3.2) (¤bf, f) =
n− q − 1

n− 1
‖f‖2L +

q

n− 1
‖f‖2L +

n− q − 1
n− 1

(R?f, f)

where R? is the corresponding curvature operator in (2.12) (see Theorem 5.2 in
[Tan]). Theorem 3.1 follows from (3.2) directly.

We also have the following maximal L2 estimate (see [SW2] for the proof)
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Theorem 3.2. Let M be a compact strongly pseudoconvex CR manifold of real
dimension 2n− 1 and of class C3 with the pseudo-hermitian metric of class C2

and n ≥ 3. Then the following estimates hold: for any φ ∈ L2
((0,q)(M)∩Dom(¤b),

1 ≤ q < n− 1,

(3.3) ‖φ‖2W 2∗
≤ C(‖¤bφ‖2 + ‖φ‖2).

Corollary 3.3. Let M be the same as in Theorem 3.2. For 1 ≤ q ≤ n − 2,
Ker(¤b) consisits of smooth forms and is finite dimensional. There exists com-
pact operators Gb : L2

(0,q)(M) → L2
(0,q)(M) and H(0,q) : L2

(0,q)(M) → L2
(0,q)(M)∩

Ker(¤b) such that

(1) For any f ∈ L2
(0,q)(M), f = ∂b∂

∗
bGbf + ∂

∗
b∂bGbf +H(0,q)f.

(2) Gb¤b = ¤bGb = I −H(0,q) on Dom(¤b). GbH(0,q) = H(0,q)Gb = 0.
(3) Gb(W s

∗ (M)) ⊂ W s+2
∗ (M), s = −1, 0.

The Szegö projection S : L2(M) → L2(M) ∩ Ker(∂̄b) on M is given by S =
I − ∂̄∗b Gb∂̄b and satisfies

‖Sf‖W 1∗ (M) ≤ C‖f‖W 1∗ (M)

These maximal estimates were obtained in Folland-Stein [FS], Rothschild-
Stein [RS] for smooth CR manifolds. From the maximal estimates, we can derive
similar estimates in the nonisotripic Hölder spaces ( see [SW1] or [SW2]). First
we recall some definitions.

Suppose that M is a strongly pseudoconvex CR manifold of class Ck,α, k ≥ 2
and 0 < α < 1. Let x0 be a point in a neighborhood U in M . Shrinking U

if necessary, we choose normal coordinates (z, t) = (z1, · · · , zn−1, z̄1, · · · , z̄n−1, t)
such that ∂/∂zj = Xj + iXn+j−1, 1 ≤ j ≤ n − 1 at the point x0 = 0. A
polynomial in (z, t) is said to be of nonisotropic order m if

P (z, t) =
∑

|I|+|J|+2l≤m

aIJkzI z̄J tl,

where I = (i1, · · · , in−1), J = (j1, · · · , jn−1) are multiindices and l ≥ 0. A
polynomial of degree 1 is a polynomial of order 1 in the z variables.

We define the nonisotropic Hölder spaces at a point.
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Definition 3.4. A function u ∈ Cm,α
∗ (x0) for m ∈ N ∪ {0}, 0 ≤ α < 1 and

1 ≤ p ≤ ∞, if and only if u ∈ C(U) for some open neighborhood U of x0 and
there exists a nonisotropic m-th order polynomial Px0 such that

(3.4) sup
Bρ(x0)

|u− Px0 | ≤ Cρm+α for every Bρ(x0) ⊂ U.

A function u is said to be in Cm,α
∗ (U) if u ∈ Cm,α

∗ (x0) for every x0 ∈ U and the
constant C in (3.4) can be chosen independent of x0.

We also define the function space C−1,α
∗ (x0). A function u ∈ C−1,α

∗ (x0) if it
can be written as a finite sum

∑
Xifi for some fi ∈ Cα

∗ (x0).

Theorem 3.5. Let M be a compact strongly pseudoconvex CR manifold of class
C3,α with real dimension 2n− 1, n ≥ 3. Let u and f be locally integrable (0, q)-
forms, 1 ≤ q ≤ n − 2 which satisfy ¤bu = f on an open set U ⊂ M . If
f ∈ Ck,α

∗ (x0), then u ∈ Ck+2,α
∗ (x0) for k = −1, 0, 1 and 0 < α < 1,

Corollary 3.6. Let M be the same as in Theorem 3.5. The Szegö projection S
is bounded from Ck,α

∗ (M) to itself, where 0 ≤ k ≤ 2.

4. Embedding compact strongly

pseudoconvex CR manifolds of class C3,α

In this section we first extend the embedding theorem of Boutet De Monvel
[Bou] to CR manifolds of class C3,α.

Theorem 4.1. Let (M, T 1,0) be a compact strongly pseudoconvex CR manifold
with real dimension 2n + 1, n ≥ 2, of class C3,α, where 0 < α < 1. Then there
exist global CR functions h1, · · · , hN ∈ C2,α

∗ (M) such that ∂̄bhi = 0 for every
i = 1, · · · , N and Φ = (h1, · · · , hN ) : M → CN is an embedding.

Proof. The arguments are similar to the smooth case used in [Bou]. Since
T 1,0(M) is of class C3,α, we equip M with a metric which is of class C3,α.
For each point p ∈ M , using a polynomial change of coordinates, we can choose
C3 coordinates x = (z, t) = (z1, · · · , zn−1, t) near a neighborhood U of p = 0
such that a basis for T 1,0 vector fields is given by

Lj =
∂

∂z̄j
+

n−1∑

i=1

Aji
∂

∂zi
+ (−√−1zj + Bj)

∂

∂t
, j = 1, · · · , n− 1
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where both Aji = O(|x|2) and Bj = O(|x|2). We choose

Z(z, t) = Z(x) = (z1, · · · , zn),

where z = (z1, · · · , zn−1) and zn = t + i|z|2. Then Z : U → Cn Then we have

(4.1) Ljzi = O(|x|2), j = 1, · · · , n− 1, i = 1, · · · , n.

Thus the map Z gives an approximate embedding near p. Extending zj to be a C3

function φj on M , we have functions ϕ1, · · · , ϕn ∈ C3(M) such that ϕj(p) = 0,
dϕ1(p), · · · , dϕn(p) are linearly independent at p and ϕ = (ϕ1, · · · , ϕn) : M →
Cn is a C3 diffeomorphism of a small neighborhood of p on M into Cn with
ϕ(p) = 0 and ϕ(M) is strongly pseudoconvex at the origin.

Let g be a polynomial g(z, t) = −izn + z2
n. Then g satisfies dg(p) 6= 0 and

∂bg(p) = O(|x|2). Choosing U small, we have

(4.2) Reg = |z|2 + t2 − (|z|2)2 ≥ c|x|2,

where c is a positive constant. Extend g to M such that g ∈ C3(M) and g

satisfies Reg > 0 on M \ p.
Let η be a cut-off function such that η = 1 near a neighborhood V ⊂⊂ U

of p and η is supported in U . To construct CR embedding functions, we set
zλ
j = ηϕje

−λg for sufficiently large λ > 0. Notice that Theorems 3.1, 3.2 and
Corollary 3.3 hold for any metric of class C3, not necessarily the pseudo-hermitian
Levi metric. Let Gb be the inverse of ¤b. Set

hj = S(zλ
j ) = zλ

j − ϑbGb∂̄bz
λ
j for j = 1, · · · , n,

where S is the Szegö projection on M . We have ∂bh
j = 0 in M for j = 1, · · · , n.

Since zλ
j is in C3(M) ⊂ C2,α

∗ (M), from Corollary 3.6 we have hj ∈ C2,α
∗ (M) for

any 0 < α < 1.
Using (4.1) and (4.2), it follows that in a neighborhood U near p

|∂bz
λ
j | = |∂̄b(ηϕj)e−λg − ληϕje

−λg(∂bg)|
≤ C(|x|2 + λ|x|3)e−λ|x|2

≤ C(λ−1 + λ−
1
2 )sup

v>0
(|v|1e−v + |v|1+ 1

2 e−v) ≤ Cλ−
1
2 → 0, λ →∞.
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This gives that ‖∂bz
λ
j ‖ → 0 as λ → ∞. Since ∂̄bz

λ
j → 0 in C1,α(0) as λ → ∞,

we have ϑbGb∂̄bz
λ
j in C2,α

∗ (0) can be made arbitrarily small as λ → ∞. This
gives dh1(0), · · · , dhn(0) are linearly independent for large λ. The map Φ =
(h1, · · · , hn) forms a local embedding of M into Cn by global C2,α

∗ CR functions.
From the same arguments as in [Bou], we also have that global CR functions
separating points. From the compactness of M and a partition of unity, there
exists a global embedding map consisting of CR functions. This proves the
theorem.

Theorem 4.2. Let (M, g) be a complete Kähler manifold of complex dimension
n ≥ 3 with nonpositive sectional curvature. Suppose that the boundary ∂M ad-
mits a C3,α CR structures. Then there exist bounded holomorphic functions on
M .

The proof follows the same arguments used in Bland (see Theorem 2.7 in
[Bla]) and Theorem 4.1. If we use Hölder regularity for elliptic systems, then we
can obtain the following version of the Newlander-Nirenberg theorem (see [NW,
We2, NW]).

Theorem (Newlander-Nirenberg). Let (M, T 1,0) be an almost complex man-
ifold of class Ck(U) ∩ Ck,α(x0) in a neighborhood U of a point x0 in M where
k ≥ 1 and 0 < α < 1. Assume that the almost complex structure T 1,0 is (for-
mally) integrable. Then there exist a neighborhood V ⊂ U of x0 and holomorphic
coordinates of class Ck(V ) ∩ Ck+1,α(x0) in V which embed V into Cn.

Proof. The proof is exactly as in [Ko1] combined with the pointwise interior
Hölder regularity for elliptic operators.

Let L1, · · · , Ln be a local basis for smooth sections of T 1,0(M). Let x1, · · · , x2n

be the real coordinates for M and we write zj = xj + ixn+j . We can using
compatibility condition, after a quadratic change of coordinates, assume that

Li =
∂

∂zi
+

n∑

j=1

aij
∂

∂z̄j
, i = 1, · · · , n,

where the aij ’s are Ck functions and aij(0) = 0 for all i, j = 1, · · · , n. At the ori-
gin, Li is the constant coefficient operator ∂/∂zi. Let Lε

i = ∂
∂zi

+
∑n

j=1 aij(εx) ∂
∂z̄j

, i =
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1, · · · , n, where ε > 0 is small. Then T 0,1
ε = 〈Lε

1, · · · , Lε
n〉 defines an almost com-

plex structure that is integrable for each ε < ε0 for some sufficiently small ε0 > 0.
Let ∂̄ε denote the Cauchy-Riemann complex associated with the almost com-

plex structure T 0,1
ε equipped with a Hermitian metric. Then the existence and

regularity theory developed for ∂̄ in the previous section on any complex mani-
fold can be applied to M with ∂̄ substituted by ∂̄ε. Let φ =

∑n
i=1 |zi|2 = |x|2, φ

is a strictly plurisubharmonic function near 0. Choosing ε0 sufficiently small, we
may assume that Ω = {x ∈ R2n | |x|2 < 1} = B1 and Ω is strongly pseudoconvex
with respect to the almost complex structure T 0,1

ε (M). Using the L2 existence
results for ∂̄ (see [Ko1] or [Hö2]), the ∂̄-Neumann operator Nε exists on Ω and
there exists a solution uε

i = ∂̄∗ε Nε∂̄εzi on Ω such that ∂̄εu
ε
i = ∂̄εzi and

(4.3) ‖ uε
i ‖Ω ≤ C ‖ ∂̄εzi ‖Ω

where C can be chosen uniformly for ε < ε0. Since

L
ε

izj = āij(εx),

we have
DI ∂̄εzi = O(ε)

for any DI = (∂/∂x1)i1 · · · (∂/∂x2n)i2n , where the iν ’s are nonnegative integers
with |I| = i1 + · · ·+ i2n ≤ k. It is easy to check that

|∂̄εzi|Ck,α(0) → 0 if ε → 0.

Let ζε
i = zi − uε

i . From the interior Hölder regularity for Nε and (4.3), we have

|uε
i |Ck+1,α(0) ≤ ≤ C(|∂̄εzi|Ck,α(0)+ ‖ uε

i ‖) → 0 if ε → 0.

We have that ∂̄εζ
ε
i = 0 in Ω and also dζε

i (0) = dzi−duε
i(0) are linearly independent

if ε is sufficiently small. If we pull back ζε
i to εΩ by setting ζi = ζε

i (x/ε), then we
have that ∂̄ζi = 0 and dζi are linearly independent in εΩ provided we choose ε

sufficiently small. This proves the theorem.

Remarks (1) In the Newlander-Nirenberg Theorem above, we only need the
assumption on Hölder condition Ck,α to be just at one point x0.

(2) If (M, T 1,0) is of real dimension 2, then we can relax the assumption by
requiring only k ≥ 0 since there is no compatibility condition to be satisfied.
This is the result obtained in Bers and Chern (see [Ber, Che]). Again, the
assumption on Hölder condition Cα is only required at one point.
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