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Analytic Continuation in Mapping Spaces

László Lempert

Abstract: We consider a Stein manifold M of dimension ≥ 2 and a
compact subset K ⊂ M such that M ′ = M\K is connected. Let S be
a compact differential manifold, and let MS, resp. M ′

S stand for the
complex manifold of maps S → M , resp. S → M ′, of some specified
regularity that are homotopic to constant. We prove that any holo-
morphic function on M ′

S continues analytically to MS (perhaps as a
multivalued function).
Keywords: Analytic continuation, Stein manifolds, Serre fibrations

1. Introduction.

A fruitful idea in geometry is to study a space M by considering maps from
a fixed space S to M , and relating properties of the resulting mapping space to
those of M . For example, homotopy groups of M are defined in terms of the space
of continuous maps Si → M . If M is a complex manifold, so will be its mapping
space(s); motivated by a theorem of Hartogs and Serre on analytic continuation
in Stein manifolds, in this paper we shall investigate analytic continuation in
mapping spaces. Let M be a Stein manifold of dimension m ≥ 2, and K ⊂ M a
compact subset such that M ′ = M\K is connected. The Hartogs–Serre theorem
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then says that any holomorphic function on M ′ continues to a holomorphic func-
tion on M , see [H, Se]. (Hartogs was the first to discover this phenomenon and
prove its first instances; he also formulated a general theorem on analytic con-
tinuation in domains in Cn. However, he seems to have worked with multivalued
functions, and even with this interpretation his proof is not quite convincing.
The general result for Stein manifolds was first given by Serre.)

We shall consider a mapping space version of this result, and prove an anal-
ogous theorem, but there will be a difference. Let S be a compact differen-
tial manifold, possibly with boundary, and A ⊂ S closed. Fix furthermore a
regularity class Ck (k = 0, 1, 2, . . . ) or Sobolev W k,p (k = 1, 2, . . . , 1 ≤ p <

∞, kp > dimS)∗, and also a point 0 ∈ M ′. Denote by MS,A the space of maps
x: (S,A) → (M, 0), of the given regularity, that are homotopic to the constant
map; and define M ′

S,A similarly. It turns out that MS,A has a natural structure
of a complex Banach manifold—in fact this is true for any complex manifold M ,
see [L2],—and M ′

S,A ⊂ MS,A is open. Our main result is

Theorem 1.1. In addition to the assumptions and notation above, if A 6= ∅
assume also that there is a proper holomorphic map ∆ → M of the unit disc
∆ ⊂ C that passes through 0 ∈ M and avoids K. If Y is a complex Banach
space, then any holomorphic function f :M ′

S,A → Y can be continued analytically
along any curve in MS,A, starting at x0 ≡ 0.

The problem of analytic continuation in mapping spaces was first considered
in 1972 by Greenfield, who obtained a variant of the above theorem in the special
case when (M, K) = (Cn, {0}) and A = ∅, see [Gr]. He focused on the space of
continuous maps, and allowed S to be a compact metric space.

In Section 3 we shall recall notions surrounding analytic continuation. In
Theorem 1.1 the condition on the proper map ∆ → M is not very restrictive.
Loosely speaking, it is satisfied if 0 is sufficiently far from K.—When S\A is a
singleton, the pair (MS,A,M ′

S,A) is biholomorphic to the pair (M, M ′), so that
the Hartogs–Serre theorem applies: the analytic continuation along curves gives
rise to a single valued holomorphic function MS,A → Y , extending f . This
is also true for the mapping spaces considered in [Gr]. However, in general

∗The Sobolev embedding theorem thus will guarantee that elements of W k,p(S) are repre-

sented by continuous functions.
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the situation is more complicated. Whether f has a single valued holomorphic
extension MS,A → Y depends on whether its analytic continuation along closed
curves is single valued. One is led to consider closed curves through x0, along
which any holomorphic f :M ′

S,A → C has a single valued analytic continuation.
The homotopy classes of such curves constitute a subgroup Γ = Γ(MS,A,M ′

S,A) ⊂
π1(MS,A, x0), that we call the monodromy group. If Γ = π1(MS,A, x0) then
any holomorphic f :M ′

S,A → C extends holomorphically to MS,A (and the same
will be true for Banach space valued f , as a straightforward application of the
Banach–Hahn theorem shows). We have been able to identify Γ for mapping
spaces based on most, but not all, regularity classes.

Theorem 1.2. Suppose our mapping spaces are defined using a Hilbertian Sobolev
regularity class W k,2 (2k > dimS), or any other regularity class Cl or W l,p con-
tained in it. If A 6= ∅, also suppose that there is a proper holomorphic map
∆ → M through 0 ∈ M that avoids K. Then the monodromy group Γ is the im-
age of the homomorphism π1(M ′

S,A, x0) → π1(MS,A, x0) induced by the inclusion
M ′

S,A → MS,A.

The same is true for certain other regularity classes, but we cannot deal with
mapping spaces defined by continuous maps. The reason is that the proof of
Theorem 1.2 depends on certain recent results in infinite dimensional complex
geometry that are currently available only in Banach spaces which have an un-
conditional basis; yet (for positive dimensional S) the space C(S) does not have
an unconditional basis.

For a while I was in the mistaken belief that Γ = π1(MS,A, x0), and, as a
result, π1(M ′

S,A, x0) → π1(MS,A, x0) is onto. However, Gompf pointed out that
this is not always so (and I am grateful to Gong, who told me about Gompf’s
example). Theorem 1.2 is still of interest. It provides a new instance of how
topological and complex analytic properties determine each other in the theory
of Stein spaces.

2. Background.

In this section we collect a few general results about complex Banach mani-
folds, in particular, about mapping spaces. For the notion of holomorphic maps
in (always complex) Banach spaces, complex Banach manifolds, and holomor-
phic maps between them, we refer to [L1, Section 2]. In this paper we shall only
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consider what we termed in [L1] rectifiable complex Banach manifolds, i.e. those
that are locally biholomorphic to open subsets of Banach spaces (and we shall
drop the adjective “rectifiable”). We denote the set of holomorphic maps between
complex Banach manifolds by O(M ;N).

Consider an open Ω ⊂ Cn and a complex submanifold N ⊂ Ω. For the sake of
simplicity, we assume that N contains the origin 0 ∈ Cn. Suppose that ρ: Ω →
N is a holomorphic retraction, i.e. ρ|N = idN . Let S be a compact smooth
manifold, possibly with boundary; and A ⊂ S closed. As in the Introduction,
fix a regularity class C0, Ck, or W k,p, k = 1, 2, . . . , kp > dimS, and define
the mapping space NS,A to consist of those maps (S,A) → (N, 0) of the given
regularity that are homotopic to the constant map x0 ≡ 0. In particular, Cn

S,A

is a Banach space and ΩS,A ⊂ Cn
S,A is open.

Proposition 2.1. NS,A ⊂ ΩS,A is a direct complex submanifold, and the map

(2.1) ΩS,A 3 x 7→ ρ ◦ x ∈ NS,A

is a holomorphic retraction on it.

Recall that a closed subset P of a complex Banach manifold Q is a complex
submanifold if for every x ∈ P there are a neighborhood U ⊂ Q of x, a Banach
space X, a closed subspace Y ⊂ X, an open V ⊂ X, and a biholomorphic map
Φ:U → V such that Φ(P ∩U) = Y ∩V. If Y has a closed complement in X, then
P is called a direct submanifold.

Proof. Let g:Cn × N → TCn|N denote the standard trivialization: g(ζ, z) ∈
TzCn is the velocity vector of the curve r(t) = z + tζ at t = 0. The kernel of dρ

along N defines a normal bundle to N , i.e. a holomorphic subbundle E → N of
TCn|N such that TCn|N = E ⊕ TN . With the projections

πE :TCn|N → E and πT :TCn|N → TN

define a holomorphic map f :N × Cn → TCn|N by

f(ζ, z) = πT g(ζ, z) + πEg(ζ + z − ρ(ζ + z), z).

Thus f is a fiberwise map, and f(0, ·) is the zero section of TCn|N . The difference

f(ζ, z)− g(ζ, z) = πEg(ζ + z − ρ(ζ + z), z)− πEg(ζ, z)
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vanishes to second order along {0} ×N , as one checks separately along tangent
vectors to Cn × {z} parallel to TzN , resp. Ez. Hence df = dg is an isomor-
phism at points of {0} ×N , and the inverse function theorem (plus an exercise
in paracompactness, see e.g. [DG, or L3, p. 84]) implies that f is a fiberwise bi-
holomorphism between neighborhoods U ⊂ Cn×N of {0}×N and V ⊂ TCn|N
of the zero section. We choose U so that ζ + z ∈ Ω if (ζ, z) ∈ U .

We are now ready to show that NS,A ⊂ ΩS,A is a direct submanifold. Indeed,
it is clearly closed. If x ∈ NS,A, define X to be the Banach space of those Ck,
resp. W k,p sections of the induced bundle x∗TCn → S that vanish on A. Let
Y, Z ⊂ X be the spaces of sections valued in x∗TN , resp. x∗E. Thus X = Y ⊕Z.
Let furthermore

U = {y ∈ ΩS,A : (y(s)− x(s), x(s)) ∈ U for all s ∈ S},
V = {σ ∈ X:σ(s) ∈ V for all s ∈ S}.

One easily checks that

Φ:U 3 y 7→ f(y − x, x) ∈ V

is a biholomorphism and Φ(NS,A∩U) = Y ∩V; which means that NS,A is a direct
submanifold.

The second part of the proposition is obvious.

Further down we shall need an analogous result about a space of mappings of
another type, this time into a manifold that itself may be infinite dimensional.
Consider a Banach space (X, ‖ ‖), an open Ω ⊂ X, and a holomorphic retraction
ρ: Ω → N on a complex submanifold N ⊂ Ω. Let ∆ be a finite dimensional
compact complex manifold, possibly with boundary, and interior ∆ (the only case
we shall later need is ∆ ⊂ C the closed unit disc). Continuous maps x:∆ → X

that are holomorphic on ∆ constitute a Banach space X∆, with norm given by
sups∈∆ ‖x(s)‖, x ∈ X∆. Consider the space Ω∆, resp. N∆ of those x ∈ X∆ that
map into Ω, resp. N . Then Ω∆ ⊂ X∆ is open.

Proposition 2.2. N∆ ⊂ Ω∆ is a direct complex submanifold and the map

Ω∆ 3 x 7→ ρ ◦ x ∈ N∆

is a holomorphic retraction on it.
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This is proved the same way as Proposition 2.1.

Finally, we shall need an approximation result for curves in manifolds. Let
again X be a Banach space, Ω ⊂ X open, ρ: Ω → N a holomorphic retraction on
a submanifold.

Proposition 2.3. If I ⊂ R is a compact interval, any continuous map f : I → N

can be uniformly approximated by analytic maps g: I → N .

That g is analytic means that I ⊂ C has a neighborhood U to which g extends
as a holomorphic map with values in N .

Proof. By a slight extension of Weierstrass’ approximation theorem, there are
polynomials Pν :C → X such that Pν → f uniformly on I. (Most proofs of
the original theorem give this vector valued version as well, e.g. the one in [Ru,
pp. 159–160] does.) The maps gν = ρ ◦ Pν |I are then analytic for ν > ν0 and
converge to f uniformly.

3. Generalities on analytic continuation.

One ingredient in the proof of Theorem 1.1 is the method of sliding discs, an
idea that goes back to Hartogs. We shall employ it in the following setting. Let
X, Y be Banach spaces, O ⊂ X open, r:O → N a holomorphic retraction on a
complex submanifold N ⊂ O, and N ′ ⊂ N open. In what follows, by a curve we
shall mean a continuous map of [0, 1] in some space.

Definition 3.1. We say that an f ∈ O(N ′;Y ) can be continued analytically
along a curve [0, 1] 3 t 7→ xt ∈ N , starting at x0 ∈ N ′, if for each t ∈ [0, 1] a
neighborhood Vt ⊂ N of xt and ft ∈ O(Vt;Y ) can be given so that f0 = f near
x0, and with some δ > 0, ft = fs on Vt ∩ Vs whenever |t− s| < δ.

Equivalently, if OY → N denotes the sheaf of Y –valued holomorphic germs,
one can define analytic continuation as a continuous map ϕ: [0, 1] → OY that
covers t 7→ xt, and ϕ(0) is the germ of f at x0. Analytic continuation is unique
in the sense that if {V ′

t , f ′t} define another analytic continuation of f along the
same curve, then ft = f ′t near xt. The identity theorem implies that if the curve
t 7→ xt is deformed, with the endpoints kept fixed, and f can be continued along
each of the deformed curves, then the germ of the continuation f1 at x1 will not
change.
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Let ∆ ⊂ C be the unit disc, and N∆ the complex Banach manifold of continu-
ous maps ξ:∆ → N that are holomorphic on ∆, as in Proposition 2.2. Elements
of N∆ will be called (analytic) discs. The distance between two discs ξ, η is

‖ξ − η‖∆ = sup
σ∈∆

‖ξ(σ)− η(σ)‖,

where ‖ ‖ stands for the norm on X.

Definition 3.2. A curve [0, 1] 3 t 7→ ξt ∈ N∆ is called regular, if ξt(∂∆) ⊂ N ′

for all t ∈ [0, 1], and ξ0(∆) ⊂ N ′. It is a regular lift of a curve [0, 1] 3 t 7→ xt ∈ N

if, in addition, ξt(0) = xt for t ∈ [0, 1].

Lemma 3.3. For any regular curve t 7→ ξt ∈ N∆ there is an ε > 0 with the
following property. If [0, 1] 3 t 7→ ηt ∈ N∆ and [0, 1] 3 t 7→ ζt ∈ N∆ are curves
that satisfy ‖ξt − ηt‖∆ < ε, ‖ξt − ζt‖∆ < ε (0 ≤ t ≤ 1), and ηu(0) = ζu(0) with
some u ∈ [0, 1], then t 7→ ηt, ζt are regular, and for every f ∈ O(N ′;Y )

(3.1)
∫ 1

0

f(ηu(e2πiτ ))dτ =
∫ 1

0

f(ζu(e2πiτ ))dτ.

Proof. Let
K = ξ0(∆) ∪

⋃

0≤t≤1

ξt(∂∆) ⊂ N ′,

a compact set. Choose ε > 0 so that the distance between
⋃

0≤t≤1 ξt(∆) and ∂O

is > 3ε; and for any x ∈ K and y ∈ X with ‖y‖ < 3ε we have r(x + y) ⊂ N ′.
This guarantees that t 7→ ηt, ζt are regular. To show (3.1), approximate ηt, ζt

by analytic curves t 7→ η∗t , t 7→ ζ∗t (cf. Proposition 2.3), and define the analytic
curve

[0, 1] 3 t 7→ ωt = r(η∗t − η∗t (0) + ζ∗t (0)) ∈ N∆.

If the approximation is close enough, t 7→ ζ∗t , ωt will be regular curves. As ζ∗t (∆),
ωt(∆) ⊂ N ′ for t in some neighborhood of 0, for such t f is holomorphic on ζ∗t (∆),
ωt(∆), whence

(3.2)
∫ 1

0

f(ζ∗t (e2πiτ ))dτ = f(ζ∗t (0)) = f(ωt(0)) =
∫ 1

0

f(ωt(e2πiτ ))dτ.

Since both integrals here depend analytically on t ∈ [0, 1], it follows that they
agree for t = u as well. Letting η∗t and ζ∗t go to ηt, resp ζt, we obtain (3.1).
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Lemma 3.4 (of sliding discs). Any f ∈ O(N ′;Y ) can be analytically continued
along a curve [0, 1] 3 t 7→ xt ∈ N starting at x0 ∈ N ′, that has a regular lift.

Proof. Let ξt be a regular lift of xt. Fix ε > 0 as in Lemma 3.3. There is a δ1 > 0
such that whenever y ∈ N is at distance < δ1 to some xt, there is a regular curve
[0, 1] 3 u 7→ ηu ∈ N∆, at distance < ε/2 to ξu, such that ηt(0) = y (for example,
we can take

(3.3) ηu = r(ξu − xt + y), 0 ≤ u ≤ 1).

Next choose δ > 0 so that

(3.4) ‖ξt − ξs‖∆ < ε/2, if |t− s| < δ.

To continue f analytically, let

Vt = {y ∈ N : ‖xt − y‖ < δ1},

and for y ∈ Vt define ft(y) in the following way. Construct a regular curve
[0, 1] 3 u 7→ ηu ∈ N∆ at distance < ε/2 to the curve u 7→ ξu, such that ηt(0) = y,
and put

(3.5) ft(y) =
∫ 1

0

f(ηt(e2πiτ ))dτ ∈ Y.

By Lemma 3.3 ft(y) does not depend on which curve ηu we choose. Now ft is
holomorphic. Indeed, if we use the lift (3.3), the integral in (3.5) is manifestly a
holomorphic function of y ∈ Vt.

Next suppose that we use the lift (3.3) to compute f0(y). Since f is holomor-
phic on η0(∆), (3.5) gives f0(y) = f(y). Finally, suppose |t − s| < δ, and let
y ∈ Vt ∩ Vs. We compute ft(y) by choosing a curve u 7→ ηu ∈ N∆ as described
above. To compute fs(y) we use the curve u 7→ ζu = ηu+t−s ∈ N∆. (To make
sense of this, we extend ηu constant for u ≤ 0 and for u ≥ 1.) Then with ξu

similarly extended

‖ζu − ξu‖∆ ≤ ‖ζu − ξu+t−s‖∆ + ‖ξu+t−s − ξu‖∆ < ε,
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in view of (3.4). Also ζs(0) = y. The upshot is that fs(y) can be computed as

fs(y) =
∫ 1

0

f(ζs(e2πiτ ))dτ =
∫ 1

0

f(ηt(e2πiτ ))dτ = ft(y),

which completes the proof.

The Lemma of sliding discs allows one analytically to continue holomorphic
functions on N ′ along any curve in N that starts at a fixed x0 ∈ N ′, provided
one can show all such curves have regular lifts. However, analytic continuation
along curves does not guarantee that an f ∈ O(N ′;Y ) can be continued to a
holomorphic function on N , because continuations along curves will, in general,
give rise to a multivalued function. The rest of the section will be devoted to
this issue.

We shall say that an analytic continuation {(Vt, ft): 0 ≤ t ≤ 1} along a closed
curve t 7→ xt is single valued if f0 = f1 in a neighborhood of x0 = x1. Assuming
that f can be analytically continued along any such curve, whether the analytic
continuation is single valued depends only on the homotopy class of the curve.
We fix x0 ∈ N ′, and define the monodromy group Γ = Γ(N, N ′) ⊂ π1(N, x0) to
consist of those homotopy classes along which analytic continuation of any f ∈
O(N ′;C) is single valued. In fact, for any Banach space Y , analytic continuation
of any f ∈ O(N ′;Y ) along a homotopy class in Γ will be single valued (since for
any linear form ϕ : Y → C the analytic continuation of ϕf is such).

Proposition 3.5. Suppose that every f ∈ O(N ′;C) can be analytically continued
along every curve [0, 1] 3 t 7→ xt ∈ N starting at a fixed x0 ∈ N ′. Then the
monodromy group Γ contains the image of π1(N ′, x0) → π1(N, x0).

Proof. Any homotopy class in the image is represented by a closed curve t 7→
xt ∈ N ′, and analytic continuation along the latter is obviously single valued.

Often much more can be said:

Theorem 3.6. Suppose that X has an unconditional basis and O ⊂ X is pseudo-
convex (see e.g. [LP 1.4, 1.5]). If for every Banach space Y every f ∈ O(N ′, Y )
can be analytically continued along every curve in N , starting at x0 ∈ N ′, then
the monodromy group Γ is the image of π1(N ′, x0) → π1(N, x0).

To verify this we need the following result, generalizing K. Stein’s theorem
that coverings of Stein manifolds are Stein [St].
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Theorem 3.7. Let X, O be as in Theorem 3.6, P ⊂ O a direct complex sub-
manifold, and π:Q → P a holomorphic covering. Then Q can be embedded in
some Banach space Y as a direct complex submanifold. If π has countably many
sheets, then Y can be taken to have an unconditional basis.

Proof. By Zerhusen’s theorem in [Z], O can be embedded as a direct complex
submanifold in a Banach space X1 with unconditional basis. Since this embed-
ding sends P to a direct complex submanifold of X1, we can assume right away
that O = X and so P is a submanifold of X. We also assume P is connected.

First we construct a holomorphic Banach bundle E → P out of Q. Its fibers
Ex are the Banach spaces l1(π−1x), x ∈ P . If π|π−1U is trivial for some open
U ⊂ P , i.e. it is isomorphic to the projection Σ× U → U with some set Σ, then
this isomorphism induces a bijection

∐

x∈U

Ex → l1(Σ)× U.

We endow the set theoretical vector bundle E =
∐

x∈P Ex → P with the holomor-
phic Banach bundle structure for which these bijections are local trivializations.

There is another holomorphic Banach bundle E′ → P such that E⊕E′ = F is
trivial, see [Pa1, Theorem 1.3b and Pa2, Theorem 11.1a]. The former reference
is about holomorphic Banach bundles over pseudoconvex open sets Ω ⊂ X; in
the latter the bundles are over submanifolds. This more general result follows
from the former and from the existence of holomorphic neighborhood retractions,
[LP, Theorem 12.3 or Pa2, Theorem 1.4f]. In fact, the fibers of (E′ and) F are
countable sums of the fibers Ex, completed with respect to the l1 norm. If π has
countably many sheets, it follows that the fibers of F also have unconditional
bases.

There is an obvious holomorphic embedding

d:Q → E ⊂ F

that associates with q ∈ Q the element d(q) ∈ l1(π−1πq) that is 1 on q and 0
everywhere else. It is easy to check that d(Q) is a direct complex submanifold
of F . Finally, F can be extended to a trivial bundle F ′ → X, whose total space
is biholomorphic to a Banach space Y ; then d(Q) becomes a direct complex
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submanifold of F ′, and so Q has the required embedding into Y . Since Y ≈ Fx×
X, it also follows that Y has an unconditional basis, provided π has countably
many sheets.

Proof of Theorem 3.6. Let the image of π1(N ′, x0) → π1(N, x0) be G; it deter-
mines a covering π:Q → N . As a topological space Q is the quotient of the space
of paths in N starting at x0, two paths γ1, γ2 being equivalent if they have the
same endpoint, and the loop obtained by concatenating γ1 and −γ2 has homo-
topy class in G. The projection π associates with any q ∈ Q the endpoint of (a
representative of) q. Note that a closed curve t 7→ xt in N lifts to a closed curve
in Q precisely when its homotopy class is in G. Since π is a local homeomor-
phism, the complex structure of N lifts to Q. Theorem 3.7 shows that Q can be
considered a submanifold of a Banach space Y . Observe that π has a holomor-
phic section f over N ′, associating with x ∈ N ′ the class q = f(x) ∈ π−1x of a
curve from x0 to x that runs in N ′.

Suppose a closed curve [0, 1] 3 t 7→ xt ∈ N represents a homotopy class γ ∈ Γ.
This implies that along it f :N ′ → Q ⊂ Y has single valued analytic continuation
{Vt, ft}, ft ∈ O(Vt, Y ). In fact, ft will map some neighborhood of xt ∈ Vt into
Q, and π◦ft = id will hold there for all t ∈ [0, 1]. This can be verified by showing
that those t for which this is true constitute a closed and open subset of [0, 1].
But then t 7→ ft(xt) ∈ Q is a closed curve that lifts t 7→ xt; and as we have
noted, this means that γ ∈ G. Therefore Γ ⊂ G, and, in light of Proposition 3.5,
in fact Γ = G.

Our final result also belongs to a section about analytic continuation, even
though it is not applicable in the context of Theorem 1.1.

Theorem 3.8. Suppose that H1(N,OY ) = 0, and that there is a g ∈ O(N ;C)
vanishing at a fixed x0 ∈ N ′, such that infN\N ′ |g| > 0. If every f ∈ O(N ′;Y )
can be analytically continued along every curve starting at x0, then the analytic
continuations form a single valued continuation f̃ ∈ O(N ;Y ) of f .

Proof. All we have to show is that the analytic continuation of f along any closed
curve [0, 1] 3 t 7→ xt ∈ N is single valued. Suppose the continuation is given by a
family Vt of open sets and ft ∈ O(Vt;Y ). We can assume that [0, 1] is partitioned
in finitely many intervals Ij such that for each j, Vt does not depend on t ∈ Ij ;
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and that Vt ⊃ x(Ij) for t ∈ Ij . In this case the analytic continuation of f along
any curve t 7→ yt, sufficiently close to t 7→ xt, can also be given by the family
(Vt, ft). We choose this nearby curve t 7→ yt to start at x0, go inside V0 to some
y, and eventually end at y. For points y in some neighborhood of x0 such a curve
will exist. If, in addition, |g(y)| < infN\N ′ |g|, we shall show that f0(y) = f1(y).

To this end let N ′′ = {x ∈ N : g(x) 6= g(y)}, and

h = f/(g − g(y)) ∈ O(N ′ ∩N ′′;Y ).

Since N ′ ∪N ′′ = N , by our cohomological assumption we can write h = h′ + h′′

with h′ ∈ O(N ′;Y ) and h′′ ∈ O(N ′′;Y ). In other words

f = (g − g(y))h′ + (g − g(y))h′′ on N ′ ∩N ′′.

This formula defines a holomorphic extension f ′′ of the last term to N ′∪N ′′ = N .
On the other hand, continue h′ analytically along the curve t 7→ yt. The identity
f = (g − g(y))h′ + f ′′ will be preserved in the process, and we obtain

f1(y) = (g(y)− g(y))h′1(y) + f ′′(y) = f ′′(y) = f0(y).

Therefore the analytic continuation of f along the curve t 7→ xt is indeed single
valued, which proves the theorem.

4. Analytic discs in Stein Manifolds.

To apply the results of Section 3 in mapping spaces, we will study the space
of analytic discs in Stein manifolds. Consider a Stein manifold M of dimension
≥ 2, properly embedded in Cn. According to Docquier and Grauert [DG], M

has a pseudoconvex neighborhood Ω ⊂ Cn that admits a holomorphic retraction
ρ: Ω → M . Let u:M → R be a smooth, strongly plurisubharmonic exhaustion
function, and for real numbers a < b define

M(a) = {z ∈ M :u(z) < a},
M(a, b) = {z ∈ M : a < u(z) < b},
M [a, b] = {z ∈ M : a ≤ u(z) ≤ b}.

We fix a < b so that u has no critical value on [a, b]. As in Section 3, ∆ will
denote the unit disc in C, and M∆ the complex manifold of continuous maps



ANALYTIC CONTINUATION IN MAPPING SPACES 1063

∆ → M that are holomorphic on ∆. Finally, let

D(a, b) = {x ∈ M∆ : x(0) ∈ M(a), x(∂∆) ⊂ M(a, b)}, and

π:D(a, b) 3 x 7→ x(0) ∈ M(a).

By the maximum principle x(∆) ⊂ M(b) for x ∈ D(a, b). —That we can apply
the method of sliding discs in mapping spaces MS,A depends on the following
result.

Theorem 4.1. π:D(a, b) → M(a) is a Serre fibration.

This means that for any cube Q = [0, 1]d, maps Q → M(a) have the homotopy
lifting property: given continuous maps

h: [0, 1]×Q → M(a) and H0:Q → D(a, b)

such that π ◦H0 = h(0, ·), there is a continuous map H: [0, 1]×Q → D(a, b) such
that H(0, ·) = H0 and π ◦H = h.

It is not even obvious that π of Theorem 4.1 is surjective, but this, and certain
more precise results about discs in Stein manifolds were proved by Forstnerič and
Globevnik in [FG,G]. Our proof was largely inspired by their work. This proof
will be given in Section 6; here and in the next section we present a few auxiliary
results.

We denote by E → M [a, b] the smooth complex subbundle of TM [a, b], of
corank 1, consisting of vectors in the kernel of ∂u. Let ν:M [a, b] → TM [a, b] be
the zero section.

Lemma 4.2. There are a fiberwise convex open neighborhood V ⊂ E of ν(M [a, b])
and a smooth map ϕ:V → M , holomorphic on the fibers Vz = V ∩Ez, such that
ϕ ◦ ν = idM [a,b], and for any z ∈ M [a, b] and real line l ⊂ Ez through ν(z) the
function u ◦ ϕ|l ∩ Vz has a unique critical point at ν(z), a minimum.

Proof. For brevity, we write N = M [a, b] and v = u◦ρ: Ω → R. Using coordinates
in Cn, for ζ, z ∈ N let

q(ζ, z) = 2
n∑

i=1

∂v(z)
∂zi

(ζi − zi) +
n∑

i,j=1

∂2v(z)
∂zi∂zj

(ζi − zi)(ζj − zj).
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Since ∂ζq(ζ, z) = ∂v(ζ) 6= 0 when ζ = z, the implicit function theorem gives a
neighborhood U ⊂ N ×N of the diagonal such that L = {(ζ, z) ∈ U : q(ζ, z) = 0}
is a smooth submanifold of real codimension 2. Also, Lz = {ζ ∈ N : (ζ, z) ∈ L} is
a complex submanifold of Uz = {ζ ∈ N : (ζ, z) ∈ U}, of codimension 1. Clearly,
TzLz = Ez. By Taylor expansion, as N 3 ζ → z

u(ζ) = v(ζ) = v(z) + Re q(ζ, z) +
n∑

i,j=1

∂2v(z)
∂zi∂zj

(ζi − zi)(ζj − zj) + O(|ζ − z|3)

Since (∂2v/∂zi∂zj) is positive definite on TzN , it follows that u|Lz has a nonde-
generate local minimum at z.

Now choose a hermitian metric on TCn, and let πE :TCn|N → E be the
orthogonal projection. As in the proof of Proposition 2.1 we consider the trivi-
alization g:Cn ×N → TCn|N , but this time define a smooth map

f :L 3 (ζ, z) 7→ πEg(ζ − z, z) ∈ E.

One checks that f maps Lz holomorphically to Ez, f(z, z) = ν(z), and—since
f − g vanishes to second order at (z, z)—df defines an isomorphism between
T(z,z)Lz and Tν(z)Ez for z ∈ N . It follows that f is a diffeomorphism between
a neighborhood of {(z, z): z ∈ N} in L and a neighborhood V ⊂ E of ν(N).
Composing its inverse V → L ⊂ N × N with the projection N × N → N on
the first factor we obtain a map ϕ with ϕ ◦ ν = idM [a,b], and the restrictions
u ◦ ϕ|Vz have nondegenerate local minima at ν(z). If V is now suitably shrunk,
then u◦ϕ|l∩Vz will have a unique critical point at ν(z) for every real line l ⊂ Ez,
as needed.

Lemma 4.3. There is a δ0 > 0 with the following property. Let t0 < t1 be real
numbers, and Q a compact cube. Suppose κ:Q ×∆ → M is a continuous map,
that is holomorphic on each slice {q} ×∆, q ∈ Q, and maps Q× ∂∆ in M(a, b);
α:Q × ∂∆ → (0, δ0] is continuous; and η is a positive number. Then there is a
continuous map λ: [t0, t1]×Q×∆ → M , holomorphic on each slice {(t, q)}×∆,
such that

(i) κ(q, s) = λ(t0, q, s) for (q, s) ∈ Q×∆;
(ii) κ(q, 0) = λ(t, q, 0) for (t, q) ∈ [t0, t1]×Q;
(iii) α(q, s)− η < u(λ(t1, q, s))− u(κ(q, s)) < α(q, s) + η for (q, s) ∈ Q× ∂∆;
(iv) −η < u(λ(t, q, s))−u(κ(q, s)) < α(q, s)+η for (t, q, s) ∈ [t0, t1]×Q×∂∆.
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This is a variant of [G, Lemma 5.2] and of [FG, Main Lemma]. The punchline,
formulae (4.5), (4.6), is the same as there. The underlying idea made its first
appearance in several complex variables in Poletsky’s papers, see e.g. [Po, p. 168];
but, according to Poletsky, in one variable it had been used earlier by Lavrentiev.

Proof. Let E, V, ϕ be as in Lemma 4.2, and assume t0 = 0, t1 = 1. Choose
δ0 > 0 so that for every z ∈ M [a, b]

{w ∈ Vz:u(ϕ(w)) < u(z) + δ0} ⊂⊂ Vz.

Set κ1 = κ|Q×∂∆. Since Q×∂∆ is homotopically equivalent to the circle, and
over the circle every complex vector bundle of finite rank is trivial, the induced
bundle κ∗1E is trivial, and has a nonvanishing section. This section gives rise to
a continuous map g:Q× ∂∆ → E that covers κ1, and avoids the zero section. It
follows that for (q, s) ∈ Q× ∂∆

(4.1) Γqs = {σ ∈ C : u(ϕ(σg(q, s))) = u(κ(q, s)) + α(q, s)}

is a smooth Jordan curve, that depends continuously on (q, s). Let fqs denote
the biholomorphic map of ∆ on the inside

(4.2) {σ ∈ C : u(κ(q, s)) ≤ u(ϕ(σg(q, s))) < u(κ(q, s)) + α(q, s)}

of Γqs, normalized by fqs(0) = 0, f ′qs(0) > 0. These maps extend to homeomor-
phisms of ∆, and the extended maps, also denoted fqs, depend continuously on
q, s (see [C, Ra]). Consider the continuous map

(4.3) ψ:Q× ∂∆×∆ 3 (q, s, σ) 7→ ϕ
(
fqs(σg(q, s))

) ∈ M ⊂ Cn,

holomorphic in σ ∈ ∆. It can be uniformly approximated by continuous Cn

valued maps of form

χ(q, s, σ) = κ(q, s) +
∑

|i|<J

J∑

j=1

aij(q)siσj .

Indeed, viewing ψ as a function of arg s, arg σ, and expanding it in a Fourier
series, the (iterated) Cesàro means of the partial sums will be of the above form,
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and converge uniformly to ψ, according to Fejér’s theorem. Choose χ so that it
maps into Ω and

(4.4) |u ◦ ψ − u ◦ ρ ◦ χ| < η on Q× ∂∆×∆.

Observe that

(4.5) χ(q, s, (ts)J) = κ(q, s) +
∑

|i|<J

J∑

j=1

aij(q)si+jJ tjJ ;

the right hand side is holomorphic in s ∈ ∆, and maps s ∈ ∂∆ in Ω. Since when
t = 0, it maps any s ∈ ∆ in Ω, the Kontinuitätsatz (see e.g. [K, Theorem 3.3.5])
implies it maps any (t, q, s) ∈ [0, 1]×Q×∆ in Ω. In particular,

(4.6) λ(t, q, s) = ρ
(
κ(q, s) +

∑

|i|<J

J∑

j=1

aij(q)si+jJ tjJ
)

is holomorphic in s ∈ ∆ and satisfies (i), (ii). It also follows from (4.1), . . . , (4.6)
that (iii), (iv) hold, q.e.d.

5. Harmonic measure.

In this section we discuss a few facts about harmonic measure in the complex
plane, that will be used in the proof of Theorem 4.1.

Definition 5.1. Let G ⊂ C be a bounded domain, 0 ∈ G, and Γ ⊂ ∂G a Borel
set. Given a positive number δ, we say that the harmonic measure of Γ relative
to G is > δ if there is a harmonic function ω:G → R such that

(5.1) ω(0) = δ, and lim
s→s0

ω(s) <

{
1, if s0 ∈ Γ
0, if s0 ∈ ∂G\Γ.

Loosely speaking, harmonic measure is a holomorphically invariant way of
measuring length on boundaries surrounding 0. More formally, if ψ:G

′ → G is
continuous, ψ|G′:G′ → G is biholomorphic, and ψ(0) = 0, then relative to G a
set Γ ⊂ ∂G has harmonic measure > δ precisely when ψ−1(Γ) has, relative to
G′. —We shall write

(5.2) ∆(ε) = {s ∈ C: |s| < ε},

with ∆ = ∆(1) as before.
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Proposition 5.2. If a relatively open Γ ⊂ ∂∆ has harmonic measure > δ (rel-
ative to ∆), then there is a complex polynomial θ such that

θ(0) = δ, Re θ <

{
1 on ∆
0 on ∂∆\Γ.

Proof. Let ω be as in Definition 5.1, and extend it to ∂∆ by the lim in (5.1).
This extension, also denoted ω, is upper semicontinuous; on the other hand, the
characteristic function χΓ: ∂∆ → R is lower semicontinuous. Hence by Hahn’s
insertion theorem there is a continuous function, even a (trigonometric) polyno-
mial ω1: ∂∆ → R, such that ω < ω1 < χΓ on ∂∆. Let θ1 be a complex polynomial
on C with Re θ1|∂∆ = ω1. By the mean value theorem δ = ω(0) < Re θ1(0);
therefore θ = θ1 − θ1(0) + δ is the required polynomial.

Lemma 5.3. For every ε ∈ (0, 1) there is a δ > 0 with the following property.
Let σ0 ∈ ∂∆, η < 1, and

Σj = {s ∈ ∆\{0}: (j − 1)ε < arg s/σ0 < jε}, j = 0, 1.

Let furthermore G ⊂ ∆ be a simply connected domain,

G ⊃ ∆(ε) ∪ Σ0 ∪ {s ∈ Σ1: |s| > η}.

If ∂G intersects the open segment 0σ0, then relative to G the harmonic measure
of Σ1 ∩ ∂G is > δ.

Proof. Consider the open set U = ∆(ε) ∪ {s ∈ C : 0 < arg s < ε} and its
image V under the biholomorphic map g(s) = 1 − √

1− s; we use the branch
for which g(0) = 0. Both U and V are unbounded and connected, hence so is
(V \{0}) ∪ (C\∆(3/ε)). We can apply Runge’s approximation theorem on the
complement {0}∪ (∆(3/ε)\V ), to obtain a polynomial θ on C such that θ(0) = 1
and Re θ < 0 on ∆(3/ε)\V . We claim that any δ < 1/ sup∆(3/ε) Re θ will do.

To verify this, let σ0, G be as in the Lemma. By symmetry we can assume
σ0 = 1, so that there is a σ ∈ (ε, 1) ∩ ∂G. Define

gσ(s) = g(s/σ) = 1−
√

1− s/σ, s ∈ U ;
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then gσ(U) ⊃ V . On the other hand, consider the single valued branch f(s) of
1 −

√
1− s/σ on G, chosen so that f(0) = 0. Then G′ = f(G) ⊂ ∆(3/ε). The

inverse of f is given by f−1(t) = σt(2 − t), hence it extends to a continuous
function ψ:G

′ → G. We will show that the harmonic measure of Γ′ = ψ−1(Σ1 ∩
∂G) relative to G′ is > δ; this will then imply the Lemma since harmonic measure
is holomorphically invariant.

The point is that V ∩ ∂G′ ⊂ Γ′, or, equivalently, that ψ(V ∩ ∂G′) ⊂ Σ1 ∩ ∂G.
Indeed, if t ∈ V ∩ ∂G′, then ψ(t) ∈ ∂G. Further, ψ(t) = g−1

σ (t) ∈ U , since
the functions ψ and g−1

σ agree where both are defined. Now U ∩ ∂G consists
of Σ1 ∩ ∂G and of an arc of ∂∆. Suppose ψ(t) = g−1

σ (t) = s were on this arc.
Consider a closed curve γ ⊂ ∆, starting at s, going to e−iε/2 along the shorter
arc I of ∂∆, then straight to 0, and finally straight to s. Now f can be extended
across I, and along γ, f so extended and g are analytic continuations of one
another. They would map γ to a closed curve if f(s) = gσ(s)(= t). However,
this is impossible because γ surrounds the branch point σ precisely once. We
conclude that ψ(t) ∈ Σ1 ∩ ∂G, i.e., ψ(V ∩ ∂G′) ⊂ Σ1 ∩ ∂G1, and V ∩ ∂G′ ⊂ Γ′

as claimed.

It now follows that the harmonic function ω = δ Re θ satisfies ω(0) = δ and

ω <

{
1 on G′ ⊂ ∆(3/ε)

0 on ∂G′\Γ′ ⊂ ∆(3/ε)\V .

Therefore the harmonic measure of Γ′ relative to G′ is > δ, and so is the harmonic
measure of Σ1 ∩ ∂G relative to G.

6. The Proof of Theorem 4.1.

We start with a simple topological result:

Lemma 6.1. Let T = P0P1P2 be a closed triangle in the plane, covered by
relatively open subsets G1, G2. If Gi ⊃ P0Pi for i = 1, 2, then P0 can be connected
with the side P1P2 by a simple polygon running in G1 ∩G2.

Proof. There are closed Fi ⊂ Gi containing the sides P0Pi in their relative interior
that still cover T ; in fact, we can arrange that they are bounded by finitely many
simple closed polygons. Consider the boundary component of F1 that contains
P0P1; removing P0P1 from it, we obtain a simple polygon Π running from P0 to
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P1, but otherwise avoiding the side P0P1. Let P be the first point on Π that is
also on P1P2, and Γ the part of Π between P0 and P . Obviously, Γ ⊂ F1 ⊂ G1;
but also Γ ⊂ F2 ⊂ G2. Indeed, let R ∈ Γ. If R ∈ P0P2 then of course R ∈ F2.
Otherwise arbitrarily close to R there are points in T\F1 ⊂ F2, which again
implies R ∈ F2. Hence Γ is the polygon sought.

Now we resume the notation and assumptions of Theorem 4.1. To prove the
theorem, we have to consider a cube Q = [0, 1]d ⊂ Rd, a homotopy h: [0, 1]×Q →
M(a), and a lift H0:Q → D(a, b) of h(0, ·); and we have to construct a lift
H: [0, 1]×Q → D(a, b) of h so that H(0, ·) = H0. We fix h, and in Propositions
6.2, 6.3, 6.4 all constants that occur may depend on h.

Proposition 6.2. There is a δ1 > 0 such that if x ∈ D(a, b) and x(0) ∈ h([0, 1]×
Q), then x(∆(δ1)) ⊂ M(a), cf. (5.2).

Proof. If M(a, b) ⊂ Cn is contained in a ball of radius r and x ∈ D(a, b), then
|x(s) − x(0)| ≤ 2r|s| by Schwarz’s lemma. Therefore δ1 will do if the distance
between h([0, 1]×Q) and M\M(a) is > 2rδ1.

Proposition 6.3. There is a δ2 > 0 with the following property. Suppose that,
with some τ ∈ [0, 1) and a < a′ < c < b′ < b, h(τ, ·) has been lifted to Kτ :Q →
D(a′, b′). Then there are τ ∈ (τ, 1), arbitrarily close to τ , and a lift K: [τ, τ ] ×
Q → D(a′, b′) of h|[τ, τ ] × Q, such that K(τ, ·) = Kτ , and for any q ∈ Q,
x = K(τ , q) maps a set Γ ⊂ ∂∆ of harmonic measure > δ2 (relative to ∆) into
M(c).

Proof. Fix δ1 as in Proposition 6.2, and with ε = min(δ1, 2−d), let δ be as in
Lemma 5.3. We shall show that δ2 = δ is a possible choice. To construct the lift
K we shall compose Kτ (q) with certain holomorphic maps ftq:∆ → ∆, q ∈ Q,
t ∈ [τ, τ ], to obtain a map like K, except it will not lift h|[τ, τ ]×Q; but this map
can be perturbed to a lift, provided τ is sufficiently close to τ .

The maps ftq will in fact map ∆ biholomorphically on certain domains Gtq ⊂
∆, and will be obtained as follows. Let q ∈ Q and x = Kτ (q). Consider the
sectors

Σj = {s ∈ ∆\{0}: j2−d < arg s < (j + 1)2−d}, j = 0, 1, . . . , 3 · 2d − 1,
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with vertices 0, sj = exp(ij2−d) and sj+1. Topologically Σ3j+1 ∪ Σ3j+2 is a
triangle T with vertices 0, s3j+1, s3j+3. We cover it by relatively open sets

G1 = {s ∈ T : x(s) ∈ M(a′, b′)},
G2 = {s ∈ T : x(s) ∈ M(c) or s 6∈ Σ3j+1}.

We are in the situation of Lemma 6.1: the side s3j+1s3j+3 is covered by G1,
the side 0s3j+3 by G2. We conclude that there is a simple polygon Γjq ⊂ G1 ∩
G2 connecting s3j+3 with a point on the side 0s3j+1. We can arrange that
Γjq\{s3j+3} is in ∆. Thus

(6.1) x(s) ∈
{

M(a′, b′), if s ∈ Γjq

M(c), if s ∈ Γjq ∩ Σ3j+1.

Given τ ∈ (τ, 1) and an η > 0, parametrize each Γjq with t ∈ [0, τ − τ ], starting
at s3j+3; let Γjq(t) ⊂ Γjq denote the arc corresponding to [0, t], and Fqt(t) the
closed neighborhood of Γjq(t) in Σ3j+1 ∪ Σ3j+2, of radius min(t, η). We write
Fjq = Fjq(τ − τ), so that Fjq(t) ⊂ Fjq. If we choose η = ηjq sufficiently small,
then ∆ ∩ ∂Fjq(t) will be a Jordan arc, Σ3j+1 ∩ Fjq ∩ ∂∆ = ∅, and, by (6.1),

(6.2) x(s) ∈
{

M(a′, b′), if s ∈ Fjq

M(c), if s ∈ Fjq ∩ Σ3j+1.

Since by Proposition 6.2 x(∆(ε)) ⊂ x(∆(δ1)) ⊂ M(a), (6.2) implies Fjq ∩∆(ε) =
∅. We also record that Fjq(0) = {s3j+3}.

By continuity, each r ∈ Q has a neighborhood Ur ⊂ Q such that for q ∈ Ur

(6.3) Kτ (q)(s) ∈
{

M(a′, b′), if s ∈ Fjr

M(c), if s ∈ Fjr ∩ Σ3j+1.

Let {Ur: r ∈ R} be a finite subcover, where R ⊂ Q. At the price of refining,
we can assume that the Ur come from a rectangular grid, by slightly enlarging
the cells of the grid. In this case we can partition {Ur: r ∈ R} in 2d families
{Ur: r ∈ Rj}, j = 0, . . . , 2d−1, each consisting of disjoint sets. Choose continuous
functions χr:Q → [0, 1], supported in Ur, so that supr∈R χr ≡ 1, and define for
(t, q) ∈ [τ, τ ]×Q

(6.4) Gtq = ∆\
⋃
{Fjr

(
(t− τ)χr(q)

)
: q ∈ Ur, r ∈ Rj}.
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Given j (and q), there will be at most one r ∈ Rj with q ∈ Ur, which ensures
that the sets Fjr((t − τ)χr(q)) ⊂ Σ3j+1 ∪ Σ3j+2\{0} in (6.4) are disjoint for
j = 0, 1, . . . , 2d−1. It follows that Gtq are Jordan domains, and their boundaries
depend continuously on t, q. (For fixed q, Gtq can be described as ∆ = Gτq minus
a family of tentacles issued from finitely many points on ∂∆; with increasing t

the tentacles grow until, when t = τ , at least one of them becomes so large that it
bridges some sector Σ3j+1∪Σ3j+2.) Note that ∆(ε) ⊂ Gtq, since Fjr ∩∆(ε) = ∅.

Let ftq:∆ → Gtq be the homeomorphism that is holomorphic on ∆ and sat-
isfies ftq(0) = 0, f ′tq(0) > 0. By the Carathéodory–Radó theorem [C, Ra], the
map

[τ, τ ]×Q×∆ 3 (t, q, s) 7→ ftq(s) ∈ C

is continuous. For (t, q, s) as above, define

(6.5) K(t, q)(s) = ρ{Kτ (q)(ftq(s))− h(τ, q) + h(t, q)}.

The first term within the braces is contained in Kτ (q)(∆), hence in some compact
subset of M(b′) that is independent of τ , t, q, s; and the balance of the remaining
terms is small if τ is sufficiently close to τ . Hence K(t, q)(s) ∈ M(b′) is well de-
fined, depends continuously on (t, q, s) and holomorphically on s ∈ ∆. Similarly,
(6.3) shows that for q ∈ Ur

Kτ (q)(ftq(s)) ∈
{

M(a′, b′), if s ∈ f−1
tq (Fjr ∪ ∂∆)

M(c), if s ∈ f−1
tq (Fjr ∩ Σ3j+1);

in fact, in each case Kτ (q)(ftq(s)) is contained in a fixed compact subset of
M(a′, b′), resp. M(c), independent of τ , t, q, r, s, j. Hence, again for τ close to τ ,

(6.6) K(t, q)(s) ∈
{

M(a′, b′), if s ∈ f−1
tq (Fjr ∪ ∂∆)

M(c), if s ∈ f−1
tq (Fjr ∩ Σ3j+1).

In particular, K(t, q)(∂∆) ⊂ M(a′, b′), since by (6.4)

ftq(∂∆) = ∂Gtq ⊂ ∂∆ ∪
2d−1⋃

j=0

⋃

q∈Ur,r∈Rj

Fjr.

As K(t, q)(0) = h(t, q), K is indeed a continuous lift of h|[τ, τ ]×Q to D(a′, b′).
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To finish the proof we consider x = K(τ , q), and estimate the harmonic
measure of x−1(M(c)) ∩ ∂∆, using Lemma 5.3. We have already noted that
Gtq ⊃ ∆(ε). Since Fjr ⊂ Σ3j+1 ∪Σ3j+2 and Σ3j+1 ∩Fjr ∩ ∂∆ = ∅, Gtq also con-
tains Σ3j and a one sided neighborhood of the arc of Σ3j+1, for every j. Choose
j and r ∈ Rj so that χr(q) = 1. By (6.4) Σ3j+1 ∩ ∂Gτq = Σ3j+1 ∩ ∂Fjr, and this
latter contains the endpoint of Γjr, a point on the open segment 0s3j+1. Thus
we are in the situation of Lemma 5.3, and conclude that the harmonic measure
of Σ3j+1 ∩ ∂Gτq, relative to Gτq, is > δ2. By invariance, the harmonic measure
of

Γ = f−1
τq (Σ3j+1 ∩ ∂Gτq) = f−1

τq (Σ3j+1 ∩ ∂Fjr),

relative to ∆, is > δ2; but then we are done since (6.6) implies x(Γ) ⊂ M(c).

Proposition 6.4. Assume that h is smooth. Given a < a0 < b0 < b and ε > 0,
there is a δ > 0 with the following property. Suppose with some τ ∈ [0, 1 − δ]
and a < a′ < a0, b0 < b′ < b, h(τ, ·) has been lifted to Kτ :Q → D(a′, b′). If
τ < τ ≤ τ + δ, then h|[τ, τ ]×Q has a lift K: [τ, τ ]×Q → D(a′ − ε, b′ + ε) such
that K(τ, ·) = Kτ and K(τ , ·) maps into D′(a′, b′ + ε(τ − τ)).

Proof. We can assume ε < (b0 − a0)/2. Pick δ0 < (b0 − a0)/4 as in Lemma 4.3,
δ2 as in Proposition 6.3, and choose constants c1, c2 > 1, c3, c4, δ > 0 so that

|h(t, q)− h(t′, q)| ≤ c1|t− t′|, t, t′ ∈ [0, 1];(6.7)

|u(z)− u(ρ(w))| ≤ c2|z − w|, z ∈ M(b), |z − w| < c3;(6.8)

c1c2e
−c4δ2 < ε and δc1c2e

c4 < min(ε, δ0, c3).(6.9)

Such a δ will do, as we now demonstrate.
By first lifting h as in Proposition 6.3, but only over [τ, τ ′] × Q with some

τ ′ ∈ (τ, τ), we can reduce the proof to the situation where for every r ∈ Q the
initial lift Kτ (r) maps a set Γr ⊂ ∂∆ of harmonic measure > δ2 (relative to ∆)
into M(a0). Choose complex polynomials θr:C→ C as in Proposition 5.2, i.e.

θr(0) = δ2, Re θr <

{
1 on ∆
0 on ∂∆\Γr.

Set c = (a0 + b0)/2. Each r ∈ Q has a neighborhood Ur ⊂ Q such that

Kτ (q)(Γr) ⊂ M(c) for q ∈ Ur.
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With a continuous partition of unity {χr} subordinate to {Ur}, r ∈ Q, let

θ(q, s) =
∑

r∈Q

χr(q)θr(s), (q, s) ∈ Q×∆.

Thus θ(q, 0) = δ2, Re θ < 1 everywhere, and for s ∈ ∂∆, Re θ(q, s) < 0 or
Kτ (q)(s) ∈ M(c).

Now we apply Lemma 4.3 with κ(q, s) = Kτ (q)(s) and suitable α, η to obtain
a continuous λ: [τ, τ ]×Q×∆ → M , holomorphic on each slice {(t, q)}×∆, such
that λ(τ, ·) = Kτ , λ(t, q, 0) = Kτ (q)(0) = h(τ, q), and when t ∈ [τ, τ ], q ∈ Q,
s ∈ ∂∆

(6.10)
a′ < u(λ(t, q, s)) < c + δ0, if Kτ (q)(s) ∈ M(c);

a′ + δ0 < u(λ(t, q, s)) < b′, if Kτ (q)(s) 6∈ M(c) or t = τ .

Define for (t, q, s) ∈ [τ, τ ]×Q×∆

(6.11) K(t, q)(s) = ρ
(
λ(t, q, s) + ec4(θ(q,s)−δ2)(h(t, q)− h(τ, q))

)
.

Since by (6.7), (6.9),

(6.12) ec4Re θ(q,s)|h(t, q)− h(τ, q)| ≤ ec4Re θ(q,s)c1|t− τ | < c1e
c4δ < c3,

(6.8) implies that K is indeed well defined and holomorphic in s ∈ ∆. Also
K(t, q)(0) = h(t, q), so that K lifts h|[τ, τ ]×Q; and

K(τ, q)(s) = λ(τ, q, s) = Kτ (q)(s).

To see where K(t, q) maps s ∈ ∂∆, observe that by (6.11), (6.8), (6.12), (6.9)

(6.13) |u(λ(t, q, s))− u(K(t, q)(s))| ≤ c1c2e
c4Re θ(q,s)|t− τ | < ε.

Hence (6.10) implies that K maps into D(a′ − ε, b′ + ε), and that

u(K(τ , q)(s)) ≥ u(λ(τ , q, s))− δc1c2e
c4 > a′ + δ0 − δ0 = a′.

Further, in view of (6.13), (6.10), and (6.9) u(K(τ , q)(s)) can be estimated above
by

{
u(λ(τ , q, s)) + δc1c2e

c4 < c + 2δ0 < b′, if Kτ (q)(s) ∈ M(c)
u(λ(τ , q, s)) + c1c2e

−c4δ2(τ − τ) < b′ + ε(τ − τ), if Kτ(q)(s) /∈ M(c).



1074 LÁSZLÓ LEMPERT

These estimates show that K(τ , q) ∈ D(a′, b′ + ε(τ − τ)), and the proof is com-
plete.

Proof of Theorem 4.1. First we show that given a smooth homotopy h: [0, 1] ×
Q → M(a) and a lift H0:Q → D(a, b) of h(0, ·), there is a lift H: [0, 1] × Q →
D(a, b) of h such that H(0, ·) = H0. Choose ε > 0 so that H0(Q) ⊂ D(a+3ε, b−
3ε), set

a∗ = a + 2ε, a0 = a + 3ε, b0 = b− 3ε, b∗ = b− 2ε,

and let δ = 1/l, l ∈ N, be as in Proposition 6.4. We inductively construct lifts

Hj : [0, j/l]×Q → D(a, b), j = 0, 1, . . . , l

of h, with the extra property that

(6.14) Hj(j/l, q) ∈ D(a∗, b∗ + jε/l), q ∈ Q.

We are already given H0. Suppose Hj−1 has been constructed for 0 < j ≤ l.
Proposition 6.4, applied with τ = (j − 1)/l, τ = j/l, a′ = a∗, and b′ = b∗ + (j −
1)ε/l, allows us to continue Hj−1 to a lift Hj : [0, j/l] × Q → D(a, b), satisfying
(6.14). Proceeding in this manner we obtain the lift H = Hl sought.

If h is just continuous, we first choose a < a∗ < b∗ < b so that H0(Q) ⊂
D(a∗, b∗). We uniformly approximate h, H0 by smooth maps h′: [0, 1] × Q →
M(a∗), H ′

0:Q → D(a∗, b∗) satisfying π ◦H ′
0 = h′. By what we have proved, h′

has a continuous lift H ′ : [0, 1]×Q → D(a∗, b∗) such that H ′(0, ·) = H ′
0. We set

H ′′(t, q) = H ′(t, q)−H ′
0(q) + H0(q) and

H(t, q)(s) = ρ
(
H ′′(t, q)(s)−H ′′(t, q)(0) + h(t, q)

)
.

If the approximations were close enough, H will be the lift we needed.

7. Analytic Continuation in Mapping Spaces.

Proof of Theorem 1.1. We take M to be a closed submanifold of Cn and 0 ∈ M ′

the origin in Cn. Define a smooth strongly plurisubharmonic exhaustion function
u:M → R by u(z) = |z|2. By the Docquier–Grauert theorem [DG] there are a
pseudoconvex neighborhood Ω ⊂ Cn of M and a holomorphic retraction ρ: Ω →
M . Thus, according to Proposition 2.1 N = MS,A ⊂ ΩS,A is a direct complex
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submanifold, in fact a holomorphic retract of ΩS,A; and N ′ = M ′
S,A ⊂ N is an

open subset. We shall employ the method of sliding discs, Lemma 3.4, so that
we have to consider a curve [0, 1] 3 t 7→ xt ∈ N starting at x0 = 0, and show it
has a regular lift [0, 1] 3 t 7→ ξt ∈ N∆. Choose real numbers a < b so that

(7.1) max
z∈K

|z|2 < a, max
0≤t≤1

max
s∈S

|xt(s)|2 < a,

and u has no critical value on [a, b]. In particular M [a, b] ⊂ M ′.
Suppose first θ:∆ → M is a proper holomorphic map such that θ(0) = 0 and

θ(∆) ⊂ M ′. For any c ∈ (a, b) the level set {u◦θ < c} ⊂ ∆ has simply connected
components by the maximum principle. We choose c so that the boundaries of
these components are smooth curves, and consider a biholomorphic map of ∆ on
the component of 0. Composing θ with this map we obtain a proper holomorphic
map ∆ → M(c), that extends to a smooth map θ0:∆ → M ′. We can arrange
that θ0(0) = θ(0) = 0.

We want to construct a continuous map Ξ: [0, 1]× S ×∆ → M , holomorphic
on slices {(t, s)} ×∆, that satisfies

Ξ(0, s, σ) ⊂ M ′, if (s, σ) ∈ S ×∆,(7.2)

Ξ(t, s, 0) = xt(s), if (t, s) ∈ [0, 1]× S,(7.3)

Ξ([0, 1]×A×∆) = 0, Ξ([0, 1]× S × ∂∆) ⊂ M ′.(7.4)

To this end we fix an ε > 0 so that if a z ∈ M satisfies |z| < ε, then ρ(z + θ0)
defines a smooth map θz:∆ → M(b)∩M ′, holomorphic on ∆. Clearly θz(0) = z.
There are a δ > 0 and a neighborhood U ⊂ S of A so that |xt(s)| < ε if 0 ≤ t ≤ δ

or s ∈ U . We triangulate S and choose U to be the union of simplices of the
triangulation. With a smooth function χ: [0, 1]× S → [0, 1] satisfying

χ(t, s) =
{

0 if t = 0 or s ∈ A

1 if t ≥ δ and s /∈ U,

we let, for (t, s) ∈ ([0, 1]× U) ∪ ([0, δ]× S), σ ∈ ∆

Ξ(t, s, σ) = θxt(s)(χ(t, s)σ).

The function Ξ so far defined satisfies (7.2), (7.3), (7.4). We now extend Ξ to
[δ, 1]× (S \ U)×∆, using Theorem 4.1. Let

h(t, s) = xt(s), t ∈ [δ, 1], s ∈ S\U,
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a continuous map into M(a). We consider closed simplices T ⊂ S\U in the
triangulation of S, and over [δ, 1] × T we lift the homotopy h to a continuous
HT : [δ, 1] × T → D(a, b), making sure that HT |T ′ = HT ′ if T ′ ⊂ T . We do
this inductively on the dimension of T . Suppose we have already lifted h to all
simplices of dimension < dimT = d. If T ⊂ ∂U , define

HT (t, s) = Ξ(t, s, ·), (t, s) ∈ [δ, 1]× T.

If T 6⊂ ∂U , we let Q = [0, 1]d, and observe that the pair

(
[δ, 1]× T, ([δ, 1]× ∂T ) ∪ ({δ} × T )

)

is homeomorphic to the pair ([0, 1] × Q, {0} × Q). The maps HT ′ for T ′ ⊂ ∂T

and Ξ(δ, ·, ·) together define a continuous map

([δ, 1]× ∂T ) ∪ ({δ} × T ) → D(a, b),

which by Theorem 4.1 has a continuous extension

HT : [δ, 1]× T → D(a, b), with π ◦HT = h|[δ, 1]× T.

Having constructed HT for all simplices in S\U , we let

Ξ(t, s, ·) = HT (t, s), if (t, s) ∈ [δ, 1]× T ;

then (7.2), (7.3), (7.4) are satisfied.
If the mapping space MS,A was defined using continuous maps (S,A) →

(M, 0), then the regular lift of xt sought is given by

ξt(σ) = Ξ(t, ·, σ), t ∈ [0, 1], σ ∈ ∆.

To deal with spaces of Ck or W k,p maps, we approximate Ξ with a smooth map

Ξ∗: [0, 1]× S ×∆ → Cn,

holomorphic on slices {(t, s)} ×∆, and vanishing on a neighborhood of [0, 1] ×
A×∆. If the approximation is close enough,

ξt(σ) = ρ(Ξ∗(t, ·, σ)− Ξ∗(t, ·, 0) + xt)
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will define the required regular lift. Theorem 1.1 now follows from Lemma 3.4.
On the other hand, if the map θ above does not exist, then A = ∅, and

so MS,A is independent of the choice of 0 ∈ M ′. We choose a so that (in
addition to earlier requirements, see (7.1)), K does not separate 0 from ∂M(a).
Let P ⊂ M(a) be the component of 0. Since the boundary of P is strongly
pseudoconvex, there is a proper holomorphic map θ:∆ → P , mapping in a small
neighborhood of a boundary point; in particular we can choose θ to avoid K.
Let a curve [0, 1] 3 t 7→ zt ∈ P\K connect z0 = θ(0) with z1 = 0, and define a
curve [0, 2] 3 t 7→ yt ∈ PS,A by

yt

{ ≡ zt, if 0 ≤ t ≤ 1
= xt−1, if 1 ≤ t ≤ 2.

We are in the situation of the first case of this proof, so f has an analytic
continuation along t 7→ yt; which then provides the analytic continuation along
t 7→ xt as well.

Proof of Theorem 1.2. Again we assume M ⊂ Cn is a submanifold, and Ω ⊂ Cn is
a pseudoconvex neighborhood that holomorphically retracts on M . By Proposi-
tion 2.1 MS,A ⊂ ΩS,A is a direct complex submanifold, and ΩS,A holomorphically
retracts on MS,A. Furthermore, ΩS,A ⊂ Cn

S,A is pseudoconvex. Indeed, if v is a
plurisubharmonic exhaustion function of Ω, then

w(x) = sup
s∈S

v(x(s)), x ∈ ΩS,A,

is plurisubharmonic and w(x) →∞ as x tends to a point in ∂ΩS,A.
First suppose that the mapping spaces are defined using Sobolev maps of class

W k,2. Then X = Cn
S,A is a Hilbert space, hence has an unconditional basis, and

the theorem follows from Theorems 1.1 and 3.6.
Second, if MS,A,M ′

S,A are built with another regularity class, permitted by
Theorem 1.2, choose k > (dimS)/2 so that W k,2 contains this class. We denote
by P , P ′ the versions of MS,A, M ′

S,A built with W k,2 maps. The inclusions

MS,A ↪→ P, M ′
S,A ↪→ P ′

have dense image; also, they are homotopy equivalences by [P, Theorem 13.14],
and so induce isomorphisms

π1(MS,A, x0)
≈→ π1(P, x0), π1(M ′

S,A, x0)
≈→ π1(P ′, x0).
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We claim that the first of these isomorphisms maps Γ = Γ(MS,A,M ′
S,A) into

Γ(P, P ′). Indeed, let a closed curve [0, 1] 3 t 7→ xt ∈ MS,A have homotopy class in
Γ, and consider an f ∈ O(P ′;C) together with its analytic continuation {Vt, ft}
along this curve. The restriction f |M ′

S,A ∈ O(M ′
S,A;C) has analytic continuation

{Vt ∩ MS,A, ft|MS,A} along the same curve. Since this latter continuation is
single valued, f1(x) = f0(x) for x ∈ MS,A near x0; which, by density, implies
f1(x) = f0(x) for x ∈ P near x0. Thus the analytic continuation of f along
t 7→ xt is single valued, and so the homotopy class of this curve is in Γ(P, P ′) as
claimed.

In view of Proposition 3.5 (and Theorem 1.1), the homomorphisms considered
therefore make up a commutative diagram

π1(M ′
S,A, x0)

ϕ−−−−→ Γ(MS,A,M ′
S,A) −−−−→ π1(MS,A, x0)

≈
y

y ≈
y

π1(P ′, x0)
ψ−−−−→ Γ(P, P ′) −−−−→ π1(P, x0),

in which the horizontal arrows on the right are inclusions. Since ψ is onto by the
first case of the proof, so is ϕ, q.e.d.

Now Gompf pointed out the following example. If S2 is embedded in TS2 as
the zero section, then

(7.5) 0 = π2(TS2\S2) → π2(TS2) ≈ Z

is not onto. This is relevant to Theorem 1.2 because TS2 can be endowed with
the structure of a Stein manifold M . Letting M ′ = TS2\S2, S = S1, and A ⊂ S1

a singleton, the homotopy groups in (7.5) are isomorphic to π1(M ′
S,A), π1(MS,A),

and so π1(M ′
S,A) → π1(MS,A) is not onto. As a result, there is a holomorphic

function on M ′
S,A that does not extend to a holomorphic function on MS,A. We

conclude this paper by explicitly defining such a function.
Consider the quadric

M = {z ∈ C3:
3∑

j=1

z2
j = 1} and K = M ∩ R3.

It is known that M ′ = M \ K is diffeomorphic to W = (C2\{0})/w ∼ ±w,
hence π2(M ′) ≈ π2(C2\{0}) = 0. The diffeomorphism W → M ′ is obtained by
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observing that the map

C2\{0} 3 w 7→ (i(w2
1 + w2

2), w2
1 − w2

2, 2w1w2) ∈ C3

induces a biholomorphism W → W0 = {z ∈ C3\{0}:∑3
1 z2

j = 0}, and then
composing this latter with the diffeomorphism

W0 3 z 7→ (1 + |Re z|−2)1/2 Re z + i Im z ∈ M ′.

We now take S = ∂∆ and for simplicity A = ∅. We define the mapping spaces
MS,A, M ′

S,A using any regularity class Ck (k ≥ 1) or W k,p (k ≥ 2); this ensures
that elements of MS,A are C1 maps. The closed holomorphic 2–form

ω = z1dz2 ∧ dz3 − z2dz1 ∧ dz3 + z3dz1 ∧ dz2|M

induces a holomorphic function f :M ′
S,A → C as follows. Given x ∈ M ′

S,A, i.e., a
map x: ∂∆ → M ′ homotopic to a constant, extend it to a C1 map ξ:∆ → M ′,
and put

f(x) =
∫

∆

ξ∗ω.

Since π2(M ′) = 0, the integral above is independent of the choice of ξ by Stokes’
theorem. One checks that f is holomorphic by computing its differential. To
this end, let v ∈ TxM ′

S,A. If, as customary, we identify elements of TxM ′
S,A

with sections of the induced bundle x∗TM , of the given regularity (see e.g., [L2,
Proposition 2.2]), we find

(7.6) df(v) =
∫

∂∆

ω(v(s), dx(s)/ds) ds.

This is complex linear in v, and f is indeed holomorphic. Now f extends to a
multivalued function f̃ on MS,A, defined by the same recipe: if x ∈ MS,A has
a C1 extension ξ:∆ → M , put f̃(x) =

∫
∆

ξ∗ω. However, this time the choice
of ξ matters, and in fact f̃ has no single valued branch. Indeed, consider a
smooth ξ:∆ → K = S2 that maps ∂∆ to a point, and is diffeomorphic on ∆.
Let ξt(σ) = ξ(1 − t + σt), 0 ≤ t ≤ 1, σ ∈ ∆, and xt = ξt|∂∆. Thus x0 = x1.
However, as t increases from 0 to 1, the values f̃(xt) =

∫
∆

ξ∗t ω change from 0 to∫
∆

ξ∗1ω = ± ∫
K

ω, and this latter is not zero since ω|K is an area form on K. As
the possible values of f̃ at any x ∈ MS,A differ by a period of ω, we see that f̃

has no single valued branch along the curve t 7→ xt.
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