Pure and Applied Mathematics Quarterly

Volume 6, Number 4

(Special Issue: In honor of Joseph J. Kohn, Part 2 of 2)

1027—1033, 2010

Formal Meromorphic Functions on Manifolds of Finite Type

Robert Juhlin, Bernhard Lamel and Francine Meylan

Dedicated to Professor J.J.Kohn on the occasion of his 75th birthday

Abstract: It is shown that a real-valued formal meromorphic function on a formal generic submanifold of finite Kohn-Bloom-Graham type is necessarily constant.

1. Introduction

It is easy to see (and known, see [1]) that if $M \subset \mathbb{C}^N$ is a connected generic real-analytic CR manifold which is of finite type in the sense of Kohn [5] and Bloom-Graham [4] at some point $p \in M$, then any meromorphic map $H: U \to \mathbb{C}^m$ defined on a connected neighbourhood of M which satisfies $H(M) \subset E$, where $E \subset \mathbb{C}^m$ is a totally real real-analytic submanifold, is necessarily constant.

Let us give a short proof of this fact. First, we recall the definition of the Segre sets S_p^j . These are defined inductively. First, we define the Segre variety $S_p = S_p^1$

The authors were supported by the Austrian Science Fund FWF, project P19667; the third author was partially supported by Swiss NSF grant 2100-063464.00/2. This paper was written during the third author's visit to Vienna; she wishes to express her gratitude for the hospitality of the faculty of mathematics at the University of Vienna.

Received December 11, 2007

for $p \in M$. Let $\rho(Z, \bar{Z}) = (\rho_1(Z, \bar{Z}), \dots, \rho_d(Z, \bar{Z}))$ be a (vector-valued) defining function for M defined in a neighbourhood $U \times \bar{U}$ of (p, \bar{p}) , i.e.

$$M \cap U = \{Z \in U : \rho(Z, \bar{Z}) = 0\}, \quad d\rho_1 \wedge \cdots d\rho_d \neq 0 \text{ on } U, \quad \rho(Z, \bar{Z}) = \bar{\rho}(\bar{Z}, Z).$$

Then if S_q^1 is defined by

$$S_q^1 = \{ Z \in U : \rho(Z, \bar{q}) = 0 \}, \quad q \in U,$$

the j-th Segre set S_p^j , $j \in \mathbb{N}$, is defined inductively by

$$S_p^j = \bigcup_{q \in S_p^{j-1}} S_q^1.$$

We are using the following Theorem, which characterizes finite type in terms of properties of the Segre sets:

Theorem 1 (Baouendi, Ebenfelt and Rothschild [1]). Let $M \subset \mathbb{C}^N$ be a generic real-analytic CR manifold. Then M is of finite type at $p \in M$ if and only if there exists an open set $V \subset \mathbb{C}^N$ with $V \subset S_n^{d+1}$.

Now assume that $H: U \to \mathbb{C}^m$ is a meromorphic map which satisfies $H(M) \subset E$, where E is totally real. First note that since M is of finite type at some point p, it is of finite type on the complement of a proper real-analytic subvariety $F \subset M$. So there exists a point $p \in M$ with the property that M is of finite type at p and M is holomorphic in some neighbourhood of p (because M is generic, it is a set of uniqueness for holomorphic functions). We shall prove that in this situation, M is constant on an open set in \mathbb{C}^N , and thus constant.

We can find coordinates η in \mathbb{C}^m such that near H(p), E is given by an equation of the form $\eta = \varphi(\bar{\eta})$. Thus, $H(Z) = \varphi(\bar{H}(\bar{Z}))$, whenever $Z \in M$, and from this we have that $H(Z) = \varphi(\bar{H}(\zeta))$ whenever $Z \in S_{\zeta}$ (restricting to a suitable neighbourhood U of p). Thus, $H(Z) = \varphi(\bar{H}(p))$ for $Z \in S_p$; since $p \in S_p$, H(Z) = H(p) for $Z \in S_p$. Now we consider $Z \in S_p^2$. For each such Z, there is $\zeta \in S_p^1$ with $Z \in S_{\zeta}^1$. Our equation tells us that $H(Z) = \varphi(\bar{H}(\zeta)) = \varphi(\bar{H}(p))$, and again, since $p \in S_p^2$, H(Z) = H(p) for $Z \in S_p^2$.

Continuing the iteration process like this, we see that H(Z) = H(p) for $Z \in S_p^j$ for $j \in \mathbb{N}$. Since S_p^{d+1} contains an open subset of \mathbb{C}^N by Theorem 1, the identity principle implies that H(Z) = H(p) on U. This proves the constancy of such an H.

Our main point in this paper is the extension of this result to the formal category. Here we cannot "move to a good point". In this setting, a formal meromorphic map is given by $H = \frac{N}{D}$, where D is a (nonvanishing) formal power series and $N: (\mathbb{C}^N, 0) \to (\mathbb{C}^m, 0)$ is a formal holomorphic map. Note that if $E \subset \mathbb{C}^m$ is a formal totally real manifold, then in suitable coordinates $\eta \in \mathbb{C}^m$, E is given by $\text{Im } \eta = 0$. We say that H = N/D maps M into E if for any formal map $\gamma(t) = (\gamma_1(t), \gamma_2(t))$ satisfying $\rho(\gamma_1(t), \gamma_2(t)) = 0$ for every defining function ρ of M we have

$$N_i(\gamma_1(t))\bar{D}(\gamma_2(t)) - \bar{N}_i(\gamma_2(t))D(\gamma_1(t)) = 0$$

for every j = 1, ..., m. We shall freely use the terminology of formal real submanifolds as explained in e.g. [2]. We show the following:

Theorem 2. Let $M \subset \mathbb{C}^N$ be a formal generic manifold of finite type, $H: (\mathbb{C}^N, 0) \to (\mathbb{C}^m, 0)$ a formal meromorphic map which satisfies $H(M) \subset E$, where E is a formal totally real manifold. Then H is formal holomorphic, and thus, constant.

We note that the finite type assumption is necessary. Indeed, every manifold of the form $M = \tilde{M} \times E$ where \tilde{M} is some CR manifold and E is totally real has nonconstant CR maps onto a totally real manifold (the projection onto its second coordinate). On the other hand, here is another example, due to J. Lebl:

Example 1. Let $M \subset \mathbb{C}^3$ be given by

$$w_1 = \overline{w_1}e^{ip|z|^2}, \quad w_2 = \overline{w_2}e^{iq|z|^2},$$

for some integers p and q. Then the function

$$H(z, w_1, w_2) = \frac{w_1^q}{w_2^p}$$

maps M into \mathbb{R} and is not the restriction of a holomorphic function. Also note that this function is not even continuous on M. Our results imply that no nonconstant holomorphic choice of projection onto \mathbb{R} can be made.

2. Reflection Identities and Consequences

We shall first show that we can simplify our situation somewhat by choosing "normal" coordinates. Recall that normal coordinates for a formal generic

submanifold $(M,0) \subset (\mathbb{C}^N,0)$ means a choice of coordinates $(z,w) \in \mathbb{C}^n \times \mathbb{C}^d$ (d being the real codimension of (M,0)) together with formal functions $Q_j(z,\chi,\tau) \in \mathbb{C}[[z,\chi,\tau]], j=1,\ldots,d$, satisfying

$$Q_i(z, 0, \tau) = Q_i(0, \chi, \tau) = \tau_i, \quad j = 1, \dots, d,$$

such that $w_j - Q_j(z, \chi, \tau)$ generate the manifold ideal associated to (M, 0) in $\mathbb{C}[[z, w, \chi, \tau]]$. We will write $Q = (Q_1, \ldots, Q_d)$, and abbreviate the generating set with $w - Q(z, \chi, \tau)$.

We will show that in normal coordinates, a formal meromorphic function H which maps (M,0) into $(\mathbb{R},0)$ actually only depends on the transverse variables w. To do this, we first give a reflection identity which we will use.

Proposition 1. If $(M,0) \subset (\mathbb{C}^N,0)$ is a formal generic submanifold, and (z,w) are normal coordinates for (M,0) with corresponding generators $w-Q(z,\chi,\tau)$. If $H = \frac{N}{D} \colon (M,0) \to (\mathbb{R},0)$ is formal meromorphic, and N and D do not have any common factors, then there exists a formal holomorphic function $a(z,\chi,z^1,w)$, with a(0,0,0,0)=1, such that

(1)
$$N\left(z, Q\left(z, \chi, \bar{Q}\left(\chi, z^{1}, w\right)\right)\right) = a(z, \chi, z^{1}, w)N\left(z^{1}, w\right),$$
$$D\left(z, Q\left(z, \chi, \bar{Q}\left(\chi, z^{1}, w\right)\right)\right) = a(z, \chi, z^{1}, w)D\left(z^{1}, w\right).$$

Proof. The conclusion is clear if N is identically zero, so we assume that this is not the case. By definition, we have

(2)
$$\bar{D}(\chi,\tau)N(z,Q(z,\chi,\tau)) = \bar{N}(\chi,\tau)D(z,Q(z,\chi,\tau)).$$

Taking the complex conjugate of the series and replacing χ by z^1 , τ by w, and z by χ in this equation, we also have that

(3)
$$D(z^1, w)\bar{N}(\chi, \bar{Q}(\chi, z^1, w)) = N(z^1, w)\bar{D}(\chi, \bar{Q}(\chi, z^1, w)).$$

We now substitute $\tau = \bar{Q}(\chi, z^1, w)$ into (2) to obtain

(4)
$$\bar{D}(\chi, \bar{Q}(\chi, z^1, w)) N(z, Q(z, \chi, \bar{Q}(\chi, z^1, w))) \\
= \bar{N}(\chi, \bar{Q}(\chi, z^1, w)) D(z, Q(z, \chi, \bar{Q}(\chi, z^1, w))).$$

We now multiply the left (and right, respectively) hand sides of (3) and (4) with each other, and after cancelling the (nonvanishing) common factor $\bar{N}(\chi, \bar{Q}(\chi, z^1, w))\bar{D}(\chi, \bar{Q}(\chi, z^1, w))$ we obtain

(5)
$$D(z^1, w)N(z, Q(z, \chi, \bar{Q}(\chi, z^1, w))) = D(z, Q(z, \chi, \bar{Q}(\chi, z^1, w)))N(z^1, w).$$

Now, using the fact that N and D do not have any common factors, unique factorization in the ring $\mathbb{C}[[z,\chi,z^1,w]]$ implies that there exists a unit $a(z,\chi,z^1,w)$ such that (1) holds. By evaluating (1) at $z=z^1$, and using the reality property $Q(z,\chi,\bar{Q}(\chi,z,w))=w$, we have that $a(z,\chi,z,w)=1$, so in particular, a(0,0,0,0)=1.

Lemma 2. Let $(M,0) \subset (\mathbb{C}^N,0)$ be a formal generic submanifold. Assume that $H(Z) = \frac{N(Z)}{D(Z)}$ is a formal meromorphic map sending (M,0) into $(\mathbb{R},0)$. Then for any choice of normal coordinates (z,w) for (M,0), we have that H(z,w) = H(0,w); i.e., there exist formal functions $\tilde{N}(w)$ and $\tilde{D}(w)$ such that $H(z,w) = \frac{\tilde{N}(w)}{\tilde{D}(w)}$.

Proof. We use Proposition 1. Setting $\chi = z^1 = 0$, we see that

$$N(z, w) = a(z, 0, 0, w)N(0, w), \quad D(z, w) = a(z, 0, 0, w)D(0, w).$$

The Lemma follows. \Box

3. Prolongation of the reflection along Segre maps and proof of Theorem 2

We will denote by

$$v^1(z,\chi,z^1;w)=Q(z,\chi,\bar{Q}(\chi,z^1,w));$$

in the usual Segre-map terminology, $v^1(z, \chi, z^1; 0)$ is the transversal component of the second Segre map of (M, 0). We define $S^{(0)} = z$, and for $j \ge 1$

$$S^{(j)} = (z, \chi, z^1, \chi^1, \dots, z^j),$$

and write $S_k^{(j)} = (z^k, \chi^k, \dots, z^j)$ for $k \leq j$. With that notation and our simplification from Lemma 2, our reflection identity (1) now reads

(6)
$$N\left(v^{1}(S^{(1)}; w)\right) = a(S^{(1)}, w)N(w),$$
$$D\left(v^{1}(S^{(1)}; w)\right) = a(S^{(1)}, w)D(w).$$

For $j \geq 2$, we define inductively

$$v^{j}\left(S^{(j)};w\right) = v^{1}(z,\chi,z^{1};v^{j-1}(S_{1}^{(j)};w)).$$

We can now state the finite type criterion of Baouendi, Ebenfelt and Rothschild [3], for later reference, as follows:

Theorem 3. If (M,0) is of finite type in the sense of Kohn-Bloom-Graham, then there exists a $j \geq 1$ such that

$$S^{(j)} \mapsto v^j \left(S^{(j)}; 0 \right), \quad (\mathbb{C}^{(2j-1)n}, 0) \to (\mathbb{C}^d, 0),$$

is of generic full rank d.

Thus, if we for $j \geq 2$ replace w by $v^{j-1}(S_1^{(j)}; w)$ in (6), we obtain

$$\begin{split} N\left(v^{j}(S^{(j)};w)\right) &= N\left(v^{1}(S^{(1)};v^{j-1}(S^{(j)}_{1};w))\right) \\ &= a(S^{(1)};v^{j-1}(S^{(j)}_{1};w))N\left(v^{j-1}(S^{(j)}_{1};w)\right). \end{split}$$

Applying induction, we see that the following holds:

Lemma 3. For every $j \ge 1$, there exists a unit $a_j(S^{(j)}, w)$ such that

(7)
$$N\left(v^{j}(S^{(j)};w)\right) = a_{j}(S^{(j)},w)N(w), \quad D\left(v^{j}(S^{(j)};w)\right) = a_{j}(S^{(j)},w)D(w).$$

We can now prove Theorem 2: By Theorem 3, there exists a j such that $v^j(S^{(j)};0)$ is of generic full rank. Assuming that D(0)=0, we see that $D(v^j(S^{(j)};0))=0$. Since v^j is of generic full rank, this implies that D(w)=0; this contradiction shows that $D(0)\neq 0$. Hence, we can assume that H(w)=N(w) is holomorphic, and without loss of generality, N(0)=0. Now the same argument as before shows that N(w)=0, and so, H is constant.

Remark 1. More generally, if we do not assume that (M,0) is of finite type, then we can define the formal variety

$$V_j = \overline{\mathrm{image}(v^j(S^{(j)};0))} \cong \{ f \in \mathbb{C}[[w]] \colon f \circ v^j(S^{(j)};0) = 0 \},$$

and $V = \bigcup_j V_j$ (which is again a formal variety). The same arguments as above show that D, as well as N, are constant on V. This corresponds to the statement that a real-valued CR meromorphic function is constant along the CR-orbits of M.

References

- [1] M. S. Baouendi, P. Ebenfelt, and L. P. Rothschild. Algebraicity of holomorphic mappings between real algebraic sets in \mathbb{C}^n . Acta Math., 177(2):225–273, 1996.
- [2] M. S. Baouendi, P. Ebenfelt, and L. P. Rothschild. Rational dependence of smooth and analytic CR mappings on their jets. *Math. Ann.*, 315:205–249, 1999.

- [3] M. S. Baouendi, P. Ebenfelt, and L. P. Rothschild. Dynamics of the Segre varieties of a real submanifold in complex space. *J. Algebraic Geom.*, 12:81–106, 2003.
- [4] T. Bloom and I. Graham. On "type" conditions for generic real submanifolds of \mathbb{C}^n . *Invent.* Math., 40(3):217-243, 1977.
- [5] J. J. Kohn. Boundary behavior of $\bar{\partial}$ on weakly pseudo-convex manifolds of dimension two. J. Differential Geometry, 6:523–542, 1972.

Robert Juhlin Universität Wien, Fakultät für Mathematik, Nordbergstrasse 15, A-1090 Wien,

E-mail: robert.juhlin@univie.ac.at

Österreich

Bernhard Lamel Universität Wien, Fakultät für Mathematik, Nordbergstrasse 15, A-1090 Wien, Österreich E-mail: bernhard.lamel@univie.ac.at

Francine Meylan University of Fribourg, Department of Mathematics, CH 1700 Perolles, Fribourg, Suisse E-mail:francine.meylan@unifr.ch