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Abstract: We show that the reduced spaces of the special unitary group
SU(n) and the symmetric space SU(2n)/Sp(n), with n > 3, possesses non-
trivial infinitesimal isospectral deformations. For the reduced space X of the
unitary group SU(n), we also prove a related result: in all degrees p > 2,
there exist symmetric p-forms on X which satisfy the Guillemin condition
and are not symmetrized covariant derivatives of symmetric (p — 1)-forms,
unless n =p = 3.
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INTRODUCTION

In this paper, we pursue our study of the infinitesimal deformations of the
symmetric spaces of compact type, which are both irreducible and reduced, un-
dertaken in [3], [4] and [5]. Motivated by a result due to Guillemin [7], we intro-
duced the space I(X) of infinitesimal isospectral deformations of a Riemannian
symmetric space (X, g) of compact type. If I(X) vanishes, we say that (X, g) is
rigid in the sense of Guillemin; in this case, we know that every isospectral de-
formation of the metric g is trivial to first-order, and so the space X is spectrally
rigid to first-order.
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The homogeneous polynomials of degree 3 on the Lie algebra of the unitary
group SU(n) allow us to construct non-trivial infinitesimal isospectral deforma-
tions of the reduced Lagrangian Grassmannian, which is a quotient of the sym-
metric space SU(n)/SO(n). The same method is used here to produce such
deformations of a symmetric space belonging to one of the two other classes of
irreducible symmetric spaces of compact type, which are irreducible, reduced and
quotients of the unitary group, namely the following families, where the integer n
is > 3:

(i) the reduced space of the special unitary group G = SU(n);
(ii) the reduced space of the symmetric space SU(2n)/Sp(n).

The reduced space of the special unitary group G = SU(n), with n > 3, viewed
as a symmetric space is the quotient group G/S, where S is the center of G. The
latter group is isomorphic to the adjoint group of su(n) and is called the reduced
unitary group. The reduced space of the symmetric space X = SU(2n)/Sp(n),
with n > 3, is the quotient of X by the action of the center of the group SU(2n)
on X.

As in [3], we say that a symmetric p-form u on a symmetric space (X, g)
satisfies the Guillemin condition if, for every maximal flat totally geodesic torus
Z contained in X and for all parallel vector fields ( on Z, the integral

/U(Ca<7aC)dZ
Z

vanishes, where dZ is the Riemannian measure of Z. The kernel N, of the Radon
transform for p-forms consists precisely of those forms satisfying the Guillemin
condition.

Let {g¢} be a family of Riemannian metrics on X, with gy = g; assume that
{g:} is an isospectral deformation of g (i.e., that the spectrum of the Laplacian
of the metric g; is independent of ¢). Guillemin proved, using the methods he
introduced in [7], that the corresponding infinitesimal deformation h = %gt\tzo
of the metric g belongs to the kernel N5. If ¢; is a one-parameter family of
diffeomorphisms of X, the family {p}g} is a trivial isospectral deformation; in
fact, the space Lo of Lie derivatives of the metric g is a subspace of N5. This
leads us to define the space I(X) of infinitesimal isospectral deformations as the
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orthogonal complement of L5 in AVs. Thus we have the orthogonal decomposition
No =Ly I[(X),

and we denote by P the orthogonal projection of Ny onto I(X). If I(X) van-
ishes, the infinitesimal deformation h is a Lie derivative of the metric and the
deformation {g;} is trivial to first-order.

Let X be a symmetric space belonging to one of the families (i) or (ii). Its uni-
versal cover is the symmetric space corresponding to the Riemannian symmetric
pair (G, K), which is either (G x G, G*) or (G, Sp(n)), where G = SU(n) for the
first pair and G = SU(2n) for the second one, with n > 3, and where G* is the
diagonal of G x G. For p > 2, the symmetric space X carries a natural sym-
metric G-invariant p-form op which is induced by the G-invariant homogeneous
polynomial @, on the Lie algebra go of G defined by

Qp(A) = (—4)" Tr AP,

for all A € gg. In fact, the form o9 is equal to the Riemannian metric g of X
and the form o3 is up to a constant the only G-invariant symmetric 3-form on X
(see [4, §2]).

The form o, induces an injective mapping 7, from the space of 1-forms on X
to the space of symmetric (p — 1)-forms on X. We show that a 1-form 6 on X
satisfies the Guillemin condition if and only if the symmetric (p — 1)-form &,(0)
satisfies the Guillemin condition. In particular, the mapping 63 sends the space
of 1-forms on X into the space of symmetric 2-forms on X. We consider the
G-module C°(X) of real-valued functions on X; if f is an element of CR°(X),
the symmetric 2-form &3(df) satisfies the Guillemin condition. We prove that the
space F’ of functions f € Cg°(X) for which the symmetric 2-form 63(df) is a Lie
derivative of the metric g is the sum of two irreducible G-submodules of CR°(X),
one of which is the space of constant functions. Thus if Fx is the orthogonal
complement of F% in Cg°(X), the sum

Lo @ 53(dfx)

is direct. The mapping
P-63-d: Fx — I(X)

is therefore injective, and we have thus constructed an explicit infinite-dimensional
subspace of I(X).
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Here we also examine a generalization of our problem, which is not related to
isospectral deformations and involves symmetric forms of arbitrary degree on a
reduced symmetric space of compact type X. A symmetric p-form on X which
is the symmetrized covariant derivative of a symmetric (p — 1)-form satisfies the
Guillemin condition. Verifying that the only symmetric p-forms which satisfy
the Guillemin condition are precisely the symmetrized covariant derivatives of
symmetric (p — 1)-forms is an injectivity question for Radon transforms which
generalizes the Guillemin rigidity problem for X. Indeed, for p = 2, a positive
answer to this question is equivalent to the Guillemin rigidity of X. For the
real projective spaces, this verification was carried out in all degrees (see §3,
Chapter III of [3]). In [3] and [4], we showed that the answer to this question
is also positive for 1-forms on the reduced space of an irreducible Grassmannian

and on the reduced space of the Lagrangian Grassmannian SU(4)/SO(4).

We show that the answer to this question is negative for the reduced space
X = 8U(n)/S, with n > 3, in all degrees p > 2 unless n = p = 3. We intro-
duce explicit subspaces F; and F> of the space of real-valued functions on X
which are infinite-dimensional and orthogonal to the subspace of constant func-
tions. Let p > 2 be a given integer and suppose that (n,p) # (3,3); if p is
even (resp. odd) and f is an element of the space Fj (resp. the space F3), the
symmetric p-form Gp41(df), which satisfies the Guillemin condition, is not the
symmetrized covariant derivative of a symmetric (p — 1)-form. When p = 2, we
recover the fact that the space I(X) does not vanish; in fact, the space F is
a subspace of Fx. When n = 3, the symmetric form o4 is a multiple of the
symmetric product g - g; thus in this case, if f is an arbitrary function on X, it
is easily seen that the 3-form &4(df) is a multiple of the symmetrized covariant
derivative of the 2-form fg. Therefore when n = p = 3, our methods do not give
an answer to our question. It is precisely for this reason that we are obliged to

distinguish between the cases when p is even or odd.

The harmonic analysis of the special unitary group plays an important role in
the proofs of all our results. As above we view the symmetric space G = SU(n)
as a homogeneous space of the product G = G x G by its diagonal subgroup G*.
We endow the space C°°(G) of complex-valued functions on G with the G-module
structure induced by the action of G on its homogeneous space G and with the
G-module structure induced by the left action of G on itself. We determine the
highest weight vectors of certain isotypic components of C*°(G) with respect to
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its two module structures and also find expressions for the highest weight vectors
of certain isotypic components of the space of 1-forms viewed as a G-module.
These descriptions are one of the main ingredients of the proofs of our results for
the spaces of the family (i).

The proofs of our results concerning the spaces of the family (ii) follow the
same lines as those found in [5] for the Lagrangian Grassmannians. However
some differences arise from the fact that the rank of X is not equal to the rank

of G.

We now briefly describe the contents of the various sections of this paper.
Chapter I is devoted to all our results concerning the special unitary group
G = SU(n) and the symmetric space X which is equal to the reduced space
of G. In §1, we introduce objects, notation and terminology associated with Rie-
mannian manifolds and symmetric spaces. In §2, we present properties of the
mapping 6;,, induced by the invariant polynomial ), on the Lie algebra of G,
from the space of 1-forms to the space of symmetric (p — 1)-forms on G. In §3,
we define the explicit functions on GG which are required for our results on the
harmonic analysis of the group G; Lemma 3.2 provides us with a crucial relation
involving the mapping &3 and some of these functions. In §4, we undertake a
study of the harmonic analysis of the group G and, in particular, of the isotypic
components of the space C*°(G) of functions and the space of complex symmetric
p-forms on GG. An analysis of the isotypic components of the space of 1-forms
on G and their weight spaces allows us to demonstrate Lemmas 5.5 and 5.7; on
the other hand, Lemma 3.2 gives us Lemma 5.6. The proofs of our main results
(Propositions 6.1-6.3) concerning symmetric p-forms on the group G require both
Proposition 8.1 of [5] and Lemmas 5.6, 5.7 and 6.5. The main results concerning
isospectral deformations and symmetric p-forms on X described above (Theo-
rems 7.4 and 7.5) are consequences of these propositions.

In Chapter II, we study the symmetric space Y = SU(2n)/Sp(n) and its re-
duced space. In §8, we present a branching law and the decomposition of a
space of tensors into irreducible Sp(n)-modules. In §9, we examine properties of
the mapping &, induced by the polynomial @), on the Lie algebra of the group
G = SU(2n), from the space of 1-forms to the space of symmetric (p — 1)-forms
on Y'; here, we introduce an explicit maximal flat totally geodesic torus of this
symmetric space. In §10, we define Sp(n)-invariant functions on the group G
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which give rise to highest weight vectors of the space C*°(Y) of functions on Y
viewed as a G-module. The proofs of our results concerning Y and its reduced
space are carried out in §§11-12 in a way which is completely parallel to the one
used in [5] to prove the analogous results for the special Lagrangian Grassmannian
SU(n)/SO(n) and its reduced space. Lemmas 11.2-11.4 are crucial ingredients
for our proof of the non-triviality of the space of infinitesimal isospectral defor-
mations of the reduced space of Y (Theorem 12.2); we note that the proof of

Lemma 11.2 requires Proposition 8.1 of [5].

This paper may be considered as the continuation of [5]. It can be read in-

dependently of [5], although, as we have seen above, we use certain results from

that paper.
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CHAPTER I: THE SPECIAL UNITARY GROUP
1. RIEMANNIAN MANIFOLDS

Let X be a differentiable manifold, whose tangent and cotangent bundles we
denote by T' = Tx and T* = T%, respectively. Let C°(X) (resp. CR°(X)) be
the space of complex-valued (resp. real-valued) functions on X. Let R(X) denote
the subspace of Cg°(X) consisting of the constant functions on X. Let E be a
vector bundle over X; we denote by F¢ its complexification, by £ the sheaf of
sections of F over X and by C°°(F) the space of global sections of E over X. By
®kE , S'E and /\j E, we shall mean the k-th tensor product, the I-th symmetric
product and the j-th exterior product of the vector bundle F, respectively. We
shall identify S*T™* and /\kT * with sub-bundles of ®kT* as in §1, Chapter I
of [3]. In particular, if o, 5 € T™, the symmetric product « - (3 is identified with
the element a ® 6+ 8 ® a of ®2T*. If w is a section of SPT™ over X, we consider
the morphism of vector bundles

W T — SPiT
defined by

(@), 1) = (€11, p-1),

for &mi, .o mp—1 €T

Let g be a Riemannian metric on X. We denote by g% : T* — T the inverse of
the isomorphism ¢” : T — T*. If u is a section of SPT* over X, we consider the
morphism of vector bundles

=gt T* — SPIT*,

We also consider the scalar products on the spaces of sections C*°(X), C(T)
and C*(S%T*), defined in terms of the Riemannian measure of X and the scalar
products on the vector bundles 7' and S?T* induced by the metric g. We denote
by Cg’(X) the orthogonal complement of the subspace R(X) of Cg°(X).

Let V be the Levi-Civita connection of (X, g). For p > 0, we consider the

symmetrized covariant derivative

DP . SPT* — SpHip™
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which is the first-order differential operator defined by

1 p+1 A
(D)€, &) = g 2L (VG560 , 6o o),
Jj=1

for u € SPT* and &1,...,§+1 € T. If p> 1 and wy,...,w, are elements of T~
satisfying Dlw]- =0, for 1 < j < p, we easily verify that

(1.1) DP(wy-...-wp) =0.

The operator D? is equal to the exterior differential operator d on functions. The
Hessian Hess f of a real-valued function f on X is equal to D'df = Vdf. On the
other hand, the Killing operator

Dy:T — S*T*

of (X, g), which sends a vector field § into the Lie derivative L¢g of g along &,
and the operator D' are related by the formula

(1.2) 3 Do& = D'g’(€),
for £ € 7. We easily see that
1
P — ) P
(1.3) DP(fu) P df -u+ fDPu,

for all f € CR°(X) and u € C™°(SPT*). We consider the symmetric 4-form
0 =g-gon X and the morphism & : T* — S3T* which it determines; we have

20(81,69,63,80) = 9(61,€2) (&3, &a) + 9(€1,63) 9(&2, &) + 9(&1, &) 9(E2, &),
for all £1,&2,&3,&4 € T. Hence for all ¢ € C°(T*), we obtain

a(p) =2¢-g;
then for all f € CR°(X), by means of formula (1.3) we easily see that
(1.4) 6 D*(fg) = 6(df).

We also consider the divergence operator
div: S?T* — T*,
as defined in §1, Chapter I of [3]; we recall that the formal adjoint of Dy is equal

to 2¢% - div : S27* — 7. When X is compact, since the operator Dy is elliptic,
we therefore have the orthogonal decomposition

(1.5) C™(S*T*) = DoC™(T) @ { h € C=(S°T*) | divh =0}



Infinitesimal Isospectral Deformations of Symmetric Spaces... 923

given by the relation (1.11) of [3]; we denote by
P:C®(S*T*) — {h € C>®(S°T*) | divh =0}
the projection determined by the decomposition (1.5).

We now suppose that X is a symmetric space of compact type. We know
that there is a Riemannian symmetric pair (G, K) of compact type, where G is a
compact, semi-simple Lie group and K is a closed subgroup of GG, such that the
space X is isometric to the homogeneous space G/K endowed with a G-invariant
metric. We shall identify X with G/K. The spaces Cg°(X) and C*°(X) and the
spaces C*°(SPT*) and C*°(SPT{) of symmetric p-forms on X inherit structures
of G-modules from the action of G on X. Let I denote the dual of the group G,
that is, the set of equivalence classes of irreducible G-modules over C and let
F be a G-invariant complex sub-bundle of SPT{. If « is an element of I', we
denote by C3°(X) and C3°(F) the isotypic components of the G-modules C*°(X)
and C'*°(F), respectively, corresponding to +.

We say that a symmetric p-form u on X satisfies the Guillemin condition if,
for every maximal flat totally geodesic torus Z contained in X and for all parallel
vector fields ¢ on Z, the integral

/u((,(,...,()dZ
z

vanishes, where dZ is the Riemannian measure of Z. For p > 0, we consider the
G-submodule N, of C°°(SPT*) consisting of all symmetric p-forms satisfying the
Guillemin condition; we recall that DoC>(T) is a G-submodule of N3 and, more
generally, we have

DPTIC(SPTIT™) C N,
for p > 1 (see Lemma 2.10 of [3]). In this paper, we are interested in knowing
when equality holds in the above inclusion, i.e., when we have the equality

(1.6) DPTLC(SPTIT™) = N,
We define the space of infinitesimal isospectral deformations of g by
I(X)={heN,|divh=0}.
From the decomposition (1.5), we obtain the orthogonal decomposition

N = DoC>(T) @ I(X);
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moreover, the orthogonal projection of Ny onto I(X) is equal to the restriction
of the projection P to N3. Thus the vanishing of the space I(X) is equivalent to
the fact that the space X is rigid in the sense of Guillemin; by (1.2), we see that
it is also equivalent to the fact that the equality (1.6) holds for p = 2. Moreover
if there exists a symmetric 2-form on X belonging to N5 which is not equal to a
Lie derivative of the metric g, the space I(X) does not vanish.

Let o be a G-invariant symmetric (p+ 1)-form on X, where p is an integer > 2;
clearly, o is parallel and so we have Vo = 0. The morphisms

o’ T — SPT™, o:T" — SPT*

induced by ¢ are G-equivariant; if X is irreducible and o is non-zero, they are
monomorphisms of vector bundles.

Assume moreover that the following is true: if a 1-form ¢ on X satisfies the
Guillemin condition, the symmetric p-form &(p) also satisfies the Guillemin con-
dition. Then if f is an element of Cg°(X), the symmetric p-form &(df) satisfies
the Guillemin condition. If there exists a non-zero subspace F of Cg7(X) such
that the relation

DPLC=(SPTIT* Y N adF = {0}
holds, then
DPLCoe(SP7IT) @ 5dF
is a subspace of NV, and the equality (1.6) does not hold.

We now suppose that p = 2. If P is the orthogonal projection corresponding
to the decomposition (1.5), the mapping

Py Pod: C(X) — I(X)

is well-defined. Clearly, if f is an element of Cg°(X), then &df is a Lie derivative
of the metric if and only if P, f = 0.

2. THE SPECIAL UNITARY GROUP

Let n > 3 be a given integer. Let X = G be the special unitary group SU(n).
If B denotes the Killing form of the Lie algebra gy = su(n), we endow X with
the bi-invariant Riemannian metric go induced by —B. As usual, we identify
the G-module gy with the tangent space of X at the identity element ey = I,
of G. We consider the involutive automorphism s of the group G = G x G which
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sends (g1,¢2) into (g2,91). The fixed point set of s is the diagonal subgroup
G* of G x G; thus the pair (@, G*) is a Riemannian symmetric pair. Since the
homogeneous space G /G* is diffeomorphic to the group G under the mapping
G/G* — G, sending (g1,92)G* into glggl, where ¢1,g92 € G, we may identify
X with the homogeneous space G /G*. Then the action of the group G on the
space X is given by
(91,92) - a = gragy "

for all g1,92,a € G; it induces G-module structures on the spaces C(G) and
C>®(SPTE). A symmetric form on X is G-invariant if and only if it is bi-invariant
under the action of G. Thus the metric gy on X is G-invariant and the manifold

X endowed with this metric is an irreducible symmetric space.

If £ > 1 is a given integer, we consider the space M} of all £ x k complex
matrices. For 1 < j,k < n, let Ej, = () be the element of M, determined
by ¢jr =1 and ¢, = 0 whenever (I,r) # (j,k). If 1 <jk<nand 1<I<n-1
are integers, with j # k, the matrices

Aji = Eji — Eyj, Bjr = i(Ej, + Ej), Cr=i(Ey — Ep1,041)

of M, belong to go; in fact, the set of all these matrices {Ajx, Bji, C;}, with
1<j<k<nandl1<[<n-—1, form a basis of gg. For 1 < j <n, we consider
the element

n—1 7—1

~ 1

Cj = n(Z(n—k)Ck —Z ka>
k=j k=1

of go.
For p > 2, the homogeneous polynomial @, on go defined by

@p(§) = (=1)P Tr e,

for all £ € go, is G-invariant, non-zero and real-valued; therefore it gives rise to
a non-zero bi-invariant symmetric p-form 01’3 on X. It is well-known that the
algebra of all G-invariant polynomials on gg is generated by the polynomials @),
with 2 < p < n, and that these polynomials are algebraically independent. We
know that the metric gy is equal to the symmetric 2-form 2n - o/ and that o is

up to a constant the unique bi-invariant symmetric 3-form on X (see [4, §2]).

We shall always consider the symmetric space X = SU(n), with n > 3, en-
dowed with the Riemannian metric ¢’ = o}. We easily verify that the product of
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matrices Cj - Cf is equal to 0, for all 1 < 5,k <n — 1, with j < £+ 1, and hence
that

(21) g/(CJ7 Cj) = 27 g/(Cl7Cl+1) = _17 g/(Ck,Cq) = 07
forall 1 <jk,g<n—1land1<[<n-—2, withq>k+2.

We identify an element of gg with the left-invariant vector field on G that
it determines. Throughout the remainder of this section, by Cj, Cy, Ay and
By we shall often mean the left-invariant vector fields on G determined by the
corresponding elements of gg. Let {wo,wj, wjk, @i}, with 1 < j, k < n, be the
left-invariant 1-forms on GG determined by

wo =wn =wj; =0,  Wjr= Wk, Wik = Tkj,
for 1 < j,k <n, and
w;(Ch) = dj1, wik(Cr) =0, @;k(C1) =0,

Wj(ArS) =0, ij(Ars) = 5jr5k5a wjk(Ars) =0,

wj(Brs) =0, wjk(Brs) = 0, @jk(Brs) = 0jrOkss

foralll1 <l <n-1and 1 < jk,r,s <n, with j < k and r < s. Then
{wi,wjk, wjr}, with 1 <1 <n—-1and 1 <j <k <mn,is a basis of the space A
of left-invariant 1-forms on G. If p is an integer > 1, we view the p-th symmetric
power SPA of A as a subspace of C*°(SPT™). Since the left-invariant vector fields
on G are Killing vector fields, by (1.2) we know that an arbitrary element w
of A satisfies D'w = 0. According to the relation (1.1), an element u of SP.A
satisfies DPu = 0. Therefore, if f is a real-valued function on G and wu is an
element of SP A, by (1.3) we see that

(2.2) (p+1)D"(fu) = df - u.

For p > 3, we consider the monomorphism

5, T* — SP=IT*
induced by the symmetric p-form o;,. We shall write 0’ = o3 and &' = 73,
According to [5, §3], if ¢ is an element of C*°(T™), we know that
(2.3) 5’;((,0)(0]'1,0]'2,...,0%_1) = O,

for 1 < ji,52,...,Jp—1 <n—1, with j; > jo + 1, and that
(2.4) p(9)(Cys -, C) = @(Cy) + (=1)P 1 p(Cjrn),
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forall 1 <j <n—1; moreover, forall1 <j<n-—2and 1<k <p-—1, we have

(2.5) 51()(Cy, .., Cy, Cign, .., Cipn) = (—=1)F0(Cj11),

if the vector field C; appears k times in the left-hand side of this equation.
Furthermore, if p is odd, for 1 < j < k < n, we also know that

(2.6) (@) (Ajks - Ajr) = G,(#)(Bjg, - - -, Bjx) = ¢(Cj + Ch).
The following lemma is a direct consequence of the definitions of the forms o}
and o}.
Lemma 2.1. Let A, B,C be elements of go and ¢ € R satisfying
(2.7) A-B+B-A=icC.

If A, B and C are the left-invariant vector fields on G corresponding to A, B
and C, respectively, then we have

5 (P)(A, B) = S ¢(0).

for all ¢ € C°(T™).

Let U be the set of vectors {Ajy, Bji} of go, with 1 < j <k <n. If A, B are
elements of U, with A # B, and 1 <[ < n — 1 is a given integer, then we easily
verify that the relation (2.7) holds, where C' is equal to an element of i and ¢ = 0
or +1, and that

A-Ci+C-A=icA
as elements of M,,, where ¢ = 0 or £1. By this remark, Lemma 2.1 and the
relations (2.3)—(2.6), we see that
n

(2.8) 26" (w1 + wp_1) =wi —w2_| + Z (w%j + w%j - wjzn - w?n)

j=1
For 1 < j <n —1, since we have

Cj-Ajj1+ Ajjt-Cj=0

as elements of M,,, by Lemma 2.1 we see that

(2.9) &' (9)(Cj, Ajj1) =0,



928 Jacques Gasqui and Hubert Goldschmidt

for all ¢ € C°°(T™). From Lemma 2.1 and the previous remarks, we also deduce
that

26’(wjk) = (Wj —Wwj—1 twg — Wk_1) - Wik

n
) (wji - @ — Wit @),
=1
(2.10)

25l(wjk) = (wj —Wwj—1 twg — Wk—1) - Wik

n
+ Z (wji - Wi + @51 - W),
=1

forall1 <j<k<n.

When n = 3, we know that the homogeneous polynomials Q2 and @3 are
algebraically independent generators of the algebra of G-invariant polynomials
on go; hence the symmetric 4-form o7 is a multiple of ¢}, - 0}, = ¢’ - ¢’. In fact, we
verify that

120y =g -¢.

From the preceding formula and (1.4), we deduce the following:

Lemma 2.2. When n = 3, we have
D*(f¢') = 25)(df),
for all f € CRR(X).

We now consider the mapping
/RS @
of [5, §3], which sends 6 = (61,...,60,_1) € R" ! into the diagonal matrix
J(0) = diag (e, ..., e"n)
of GG, where
(2.11) x1 = 64, rj=0; —0;_1, Ty = —0ph_1,

for2 <j<n-—1. 1If {e],...,e,_;} is the standard basis of R*~! and A’ is the
lattice of R"~! generated by the basis {2melbi<j<n—1 of R"~! the mapping ¢/
induces by passage to the quotient an imbedding

Vo Rn_l/A’ — Q.
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The image of the mappings ¢ is the maximal torus H of the group G which
consists of all diagonal matrices of G and is therefore a maximal flat totally
geodesic torus of G viewed as a symmetric space. Clearly we have (/(0) = eg.

We consider the standard coordinate system (61, ..., 6,_1) on R"~! and endow
this space with the Riemannian metric

n—2
g=>_db;-do;—>  db;-db; ;.
j=1

For 1 < j < n — 1, we consider the vector field £; = 9/96; on R"~1. In [5, §3],
we saw that the vector field CJ’- on H, determined by

(2.12) t(&(0)) = G((9)),
for # € R, is equal to the restriction of the vector field C; to H and that

the mapping ¢/ : R* ' — H is an isometric imbedding; moreover, we proved the
following result given by Lemma 3.1 of [5]:

Lemma 2.3. Let n,p > 3 be given integers and let X be the symmetric space
SU(n). A 1-form ¢ on X satisfies the Guillemin condition if and only if the
symmetric (p — 1)-form &,,(p) on X satisfies the Guillemin condition.

3. FUNCTIONS ON THE SPECIAL UNITARY GROUP

Let £ > 1 be a given integer. For 1 < j,1 < k, we denote by z;; the function
on the space of matrices My, which sends a matrix of My into its (j,1)-th entry.

)

We also consider the complex-valued function Ay; on M, defined as follows.

If £ = 1, the function Agll) is identically equal to 1; if & > 2, the value of the
S.];) at a matrix A € M, is the cofactor of the entry z;(A) in A, which
is equal to (—1)7*! times the determinant of the (k— 1) x (k — 1) matrix obtained
from A by deleting its j-th row and its [-th column. We note that, if A € M} is a
symmetric matrix, then we have A%) (A) = Al(f) (A). If dety, denotes the function
on M; which sends a matrix of M}, into its determinant, we recall that
k k
(3.1) S 2 AP =37 2 AY = 6 dety,
r=1 r=1

for all 1 < 5,1 < k. Thus we obtain the relation

function A

9 (k)
2 det, = Al
(3 ) azjl €ly gl
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forall 1 < 4,1 <k.

We consider the group G = SU(n), with n > 3, as a real submanifold of the
complex manifold M,,. The left action and the right action of the group G on
the manifold M, induce morphism ® and ®’, respectively, from go to the Lie al-
gebra of vector fields on M,, which are tangent to the submanifold G of M,,. The
mappings ® and @’ extend to C-linear morphisms from the complexification g
of go to the space of all complex vector fields on M,,. For £ € gg, the restric-
tion of —®(§) (resp. of ®'(§)) to G is the right-invariant (resp. left-invariant)
vector field on G whose value at e is the vector £ of go = T¢,(G); thus we have

®(&)(e0) = —"(£)(e0)-

The functions {z;,} on M, defined above, with 1 < j,k < n, form a holomor-
phic coordinate system for M,. For 1 < j, k < n, we consider the complex vector
fields

fjk:; Zjlafkl, f}kzé leafzk
on M,. For 1 <j k<mn,with j £k, and 1 <[ <n — 1, we verify that
O(Ajk) = &k — Ej + &k — &k P(Bjk) = ik + Erj — Eji — Ey)s
(1) = i€ — 11 + i — &),
‘I’/(Ajk) = f;‘k - fllcj + é;k - gllcj? (p/(Bjk) = Z(Sﬁk + §I/<:j - Z‘k - g;cj)’
'(Cr) =& — §11001 — &+ gl,+1,l+1)-

If 1 <4,k < n, with j # k, since Ej;, is equal to %(Ajk — iBjj), the complex
vector fields n;, = ®(Ejy) and 1}, = ®'(Ej) on M, are given by

nik = &k — &k Mg = i1 — Ehjs
and so we have
(3.3) Nk = —hj-

Let 1 <k <n—1 be a given integer. We denote by Ji the set of all sequences
{j1,-..,jr} of integers satisfying 1 < j; < ... <jr <n. If a={ji,...,jk} is an
element of Ji, we consider the Mp-valued functions

Fj e = (2, 1<tk Ff o = (Za)1<ir<k
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on M, and the complex-valued functions

(n)

on M,. For 1 < j,1 <n, we consider the function Aj; = Ajl on M,; clearly, we

have

¢ = 215, ¢; = Zjl, Pjrjp1 = (—l)n'HAnl, ¢.’jl--~jn71 - (‘DnHAln,

where j. =r ,for1 <r <l—1,and j, =r+1,forl <r <n-—1. For1 < j k < n,
by (3.1) we easily verify that the equality

(3.4) Ajk = Zjk,
holds on the group G.
For 1 <k <n-—1, we write
¢(k) = (bou ¢,(k;) = ¢:)u

where a = {n — k 4+ 1,...,n}; in particular, we have
(3.5) ¢(1) = Z1n, (ﬁl(l) = Znl-

It is easily seen that the exterior power of a special unitary matrix is again
special unitary; from the considerations of [1, §6, no. 3] and the formulas (9)
and (11) of [1, §6, no. 4], we then obtain the equality

(3.6) Fnry = (=D G

on the group G. We note that the preceding relation, with n = 1 or n — 1, is
given by (3.4).

Lemma 3.1. Let 1 < kK < n—1and 1 < j,1 < n be given integers. If
1 <71 <+ < Jkg < n are given integers, the equalilies

gjlqulmjk = gj,'lgbjlm]'k =0
hold on M, when I > k; the equalities
§i1Pir.gr = 051Pjr...jn Ei®s i = 0P i,

hold on M, when 1 < j,1 <k.
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Proof. The first set of equalities are immediate. If 1 < j,1 < k, according to (3.1)
and (3.2) we see that

k k
k k
Ebinde = 250 A (Fjoog) = 3 (AW 250) (Fio.j) = 8t
r=1 r=1

a similar computation gives us the last equality of the lemma. ([

Let 1<k<n—1and1<j<Il<n be given integers. The preceding lemma
implies that

(3.7) M Pireegn = —Ei1binin = NPy gy = € g = 0,
for all integers 1 < j; < --- < jr < n, and hence that
(3.8) (C)bjicji = —W0jrbjrge:  P(Ci)S), 4, = 10k, j,

whenever 1 < j <n—1.

Let1 <k <n—-landl<j <-- < jr <nbegivenintegers; let {r,...,r,_x}
be the integers which do not belong to the set {ji,...,jrx} and which satisfy
1<rm < <rpp <n. Let Pj 5
nant 1 whose j;-th column is equal to the I-th column of the identity matrix I,,,

be the unique matrix of M,, of determi-

for 1 <1 <k, and whose r4-th column is equal to the (k + ¢)-th column of the
identity matrix I, for 1 < ¢ <n —k — 1, and whose r,_g-th column is equal to
the n-th column of the matrix €1, where ¢ = £1; clearly, P;, j, is an element
of SU(n). Then we see that

(3'9) ¢j1---jk (‘Pllllc) = Oj1ly" 5jklk7
for all integers 1 <13 < --- <l < n.

Here and in subsequent sections, we shall consider the restrictions to G of the

functions ¢;,.j,, ¢a, qbglmjk and ¢!, on M, where o € Ji, and denote them also

bY @ji...jis Pas ¢, j, and ¢, respectively. From (3.9) it follows that the (%) func-
tions {¢q } on G, with « € J, are linearly independent; a similar argument shows
that the (}) functions {¢/,} on G, with « € Jj, are also linearly independent.

For 1 <j.k,r,s <n,withr <s,and 1 <[ <n—1, we have
'(C))zjk = 12k (6 — Ok—1,),
(3.10) D' (Ars)zjk = (&5 — o) 2k = 2jrOks — ZjsOkr

' (Bys)zj = i(&rs + &) Zj = i(2jrOks + 2jsOkr)-
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It follows that the relation

n

(3.11) dzj, = izjk(wk —wi—1) + Z Zjl(wlk + i)
=1

holds on G, for 1 < j, k < n.

By means of the formulas (2.2), (3.11), (2.8) and (2.10), we verify directly the
following result:

Lemma 3.2. We have

iDl(znldiln — glndznl) = 5’ld(zn1§1n).

4. HIGHEST WEIGHT VECTORS AND FUNCTIONS ON SU(n)

We consider the maximal torus H of the simple group G introduced in §2 and
its Lie algebra bhp, and also the complexification g = sl(n,C) of the Lie algebra
go of G. The complexification h of hy is equal to the Cartan subalgebra of the
simple Lie algebra g consisting of all diagonal matrices of g, and the matrices
{C1,...,Cp_1} form a basis of hy. For 1 < j < n, the linear form A; : h — C,
sending the diagonal matrix with ai,...,a, € C as its diagonal entries into a;, is
purely imaginary on hg. We write aj = A\j — Ajyq, for 1 <j <n —1. Then

(A~ M| 1<jk<nandj+#Fk}

is the system of roots of g with respect to h. As in [5, §5], we take {aq,...,an—1}
as a system of simple roots of g; the corresponding system of positive roots is

A+:{)\j—/\k|1§j<k§n}.

If o is the root A\j — Mg, with 1 < j,k < n and j # k, the root subspace g,
corresponding to o is generated by Ej;, (over C). We have the decomposition

(4.1) g=n @hon",

where

nt = @ o, no= @ J—a-

acAt acAt

The corresponding fundamental weights are

wj':)\l—i-"'—i-)\j,
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with 1 < j <n —1; in fact, w; is the highest weight of the irreducible G-module

A\’C", and we have

(4.2) @4(C)) = b,

for 1 < j,k <n — 1. The unique element wy of the Weyl group of g determined
wo(AT) = —AT

is the involutive automorphism satisfying

(4.3) wo(@;) = —@n—j,

for 1 <j<n—1. A dominant integral form A for G may be written in a unique

way
(44) >\ = ’77‘17...,7“”_1 =Trwi +---+ Tn—1Wn—-1,
where r1,...,r,_1 are non-negative integers. Thus the highest weight of an ir-

reducible (complex) G-module has a unique expression of this form and we may
identify the dual I' of G with the set of all linear forms on h which can be written
in the form (4.4).

If v =9 ry,. ., is an element of I', where r1,79,...,7,—1 are non-negative
integers, let E., be an irreducible G-module corresponding to 7. By (4.3), the
unique element 4 of I' determined by

wo(y) = =5

is equal to ¥, . r.m; in particular, if v is the element wy of I', we have
Y = @Wp—k- A linear form A on b is a weight of the G-module E, if and only if —\
is a weight of the contragredient G-module EJ of E,. Therefore the G-module
FEj5 is isomorphic to E7.

We consider the group G = G x G and its Lie algebra §o. We identify the
complexification g = g @ g of gg with a subalgebra of sl(2n,C) and consider the
Cartan subalgebra 6 of g consisting of all its diagonal matrices. For 1 < j < 2n,
we consider the linear form J\; : 6 — C which sends the diagonal matrix with
ai,...,az, € C as its diagonal entries into a;. We write a; = A\; — A\j41 and
Bj = Njgn — Ajgnt1, for 1 < j <n—1. We ta~ke {aq,...,an-1,01,---,PBn-1} as
a system of simple roots of g with respect to . We may then identify the dual
of the group G = G x G with the product T' x I'; in fact, if 1,72 are elements
of T, then E,, ® E,, is an irreducible G-module corresponding to (71, 72)-
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We now consider the G-module structures on C*°(G) and C*°(SPT) induced
by the action of G on X and the corresponding representations of G or the
Lie algebra g on these modules. According to the Peter-Weyl theorem, the iso-
typic component C, ) (G) of the G-module C*(G) corresponding to the element
(4',7y) of I' x I vanishes unless v/ = 7, and is equal to the image of the morphism
of G-modules

A,Y : E:; X E’Y — COO(G)
defined by
A (a®v)(g) = a(gv),

for a« € EJ, v € E, and g € G, when v = 4. Thus for v € T, the isotypic
component C¢7_(G) is an irreducible G-submodule of C**(G).

The spaces C*°(G) and C°°(SPT{) inherit structures of G-modules arising
from the left (resp. right) action of G on X. The corresponding represen-
tation 7 (resp. 7') of G on C*°(G) is the left (resp. right) regular represen-
tation; we shall also consider the corresponding representation (w, C*°(SPT{))
(resp. (7', C*°(SPTE))) of G or of the Lie algebra g on C*°(SPT{). If &1, & are
elements of go and u is an element of C*°(G) or C*°(SPT), we have

m(&)m (§2)u = 7' (&2)m(61)u.
Moreover, if £ € gg and f € C*°(G), we have

T f =2@)f,  TEf =¥ O)f

and so the relations

(4.5) m(&) f=2(&) f=-P() f=-7() f=-¢f

hold at the point eg; in the expression & - f of these equalities, £ is considered as

a left-invariant vector field on G.

If v is an element of I', from the above remarks concerning the Peter-Weyl the-
orem it follows that the isotypic component C2°(G) of the G-module (7, C°°(G))
corresponding to v is equal to the irreducible G-module Co,jﬂ) (G); it is therefore
isomorphic to k copies of E., where the integer k is the dimension of E., (over C).
Thus the dimension of the weight subspace C, of the G-submodule C5°(G) cor-
responding to its highest weight 7 is equal to the dimension of E,. Clearly,

the space C°(G) = C&a) (G) and the weight subspace C, are G-submodules
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of (n',C>°(G)). The subspace C, of C°°(G) generated by the highest weight vec-
tors of weight 7 of the representation (7/,C*°(G)) is a G-submodule of C5°(G)
whose dimension is also equal to the dimension of E,. We also know that C, is
an irreducible G-module whose highest weight is 4 and that C% is an irreducible
G-submodule of CJ°(G). Moreover, the intersection

¢,=¢,nck

oo
()
to its highest weight (v, %), and is therefore one-dimensional.

is the weight subspace of the irreducible G-submodule C%°_. (@) corresponding

Asin §1,if (v,v') is an element of ' xT", we denote by C& (SPTY) the isotypic
component of the G-module C*°(SPT{:) corresponding to (7,7). We shall denote
by C5°(SPT¢) the isotypic component of the G-module (7, C*°(SPT¢)) corre-
sponding to vy and by C,(SPT¢) the weight subspace of the G-module C3°(SPT¢)
corresponding to its highest weight. The isotypic component C(O;”,y,)(SpTE) is a
G-submodule of C5°(SPT{) and the weight space C(, ) (SPTE) of the G-module
CE’;V/)(SPT &) corresponding to its highest weight (vy,~’) is contained in the weight
space of the G-submodule C,(SPT{) of (7', C5°(SPT¢)) corresponding to the

weight +'.

We now view the complexification Ac of the space A of left-invariant 1-forms
on G as a G-submodule of C>°(T¢); more generally, if p is an integer > 1, we
view the p-th symmetric power SPA of A and its complexification SPA¢ as
G-submodules of C>(SPT¢). Clearly, the space Ac is a trivial G-submodule
of (m, C*°(T¢)) and a G-submodule of (n/, C*°(T{%)) isomorphic to the irreducible
G-module g. Thus the space SPAc is a trivial G-submodule of (7, C*°(SPT))
and is also a G-submodule of (7", C*°(SPTY)).

Let v be an element of I" and p be an integer > 1. Since the cotangent bundle
T* of G is trivial, if V, is the G-module equal to the vector space SPg endowed
with the trivial action of G, the isotypic component C‘V’O(SPT ¢) is isomorphic
to C5°(G) ® Vp. Thus the weight space C,(SPT¢) is equal to C, - SPAc and the
weight space C(, 5)(SP1¢) is contained in the weight space of the G-submodule
Cy-SP Ac of (7', C5°(SPT)) corresponding to the weight 7. We shall denote by W,
the weight subspace of the G-submodule C, - Ac of (7', C°(T¢)) corresponding
to the weight 7.
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In the remainder of this section, if v is an element of I', we shall always consider
the G-module structures on C*°(G) and C5°(G) arising from the representation 7
and the G-module structure on C, arising from the representation .

If v € T, a linear form A on h is a weight of the G-module C3°(G) if and only if
—A is a weight of the complex conjugate C2°(G) of the space C3°(G). Therefore
we have the equalities

(4.6) C(G) = CX(G)

of G-modules. If r > 1 is a given integer, the element v = r(w; + wy—1) of T
satisfies 4 = v; thus according to (4.6), the G-module C$°(G) is invariant under
complex conjugation. In particular, if v is the element wy + w,_1 of I' the
G-module B' = C3°(G) = CF°

(v7)
is equal to the complexification of the G-submodule

Bp={feB|f=[}

(@) is invariant under complex conjugation and

of C°(G).
let 1 <k<n—-—1land1l<j < - < jr <n be given integers. From the
relations (3.7), (3.8) and (4.2), we infer that the equalities
(Cj)bjr.ji = =@k (Ci)Pjrgir P(Erj) i = 0,
(C) g = TR(CHE) i (Ejr) 5, 5, =0
hold on M,, for all integers 1 < j < r < n. From the relations (4.7) and (3.3), it
follows that

(4.7)

W(g)éjujk = wk(g)éjlmjk? W(U)&jrnjk =0,
77/(5)¢;‘1...jk = wk(§)¢;’1...jk7 7T/(77)¢;'1...jk =0,

for all £ € ho and 1 € n. Thus the function ¢;, j, (resp. ‘b;‘l...jk

the G-module Cy,, (resp. Cr,, ); moreover according to (4.6), we know that ¢j,

(@).

(4.8)
) is an element of

(resp. gE;”k) is an element of C37

We saw that the (Z’) functions ¢, (resp. ¢.,) on G, with a € Ji, are linearly
independent; since the dimension of the space Cg, (resp. Cfﬂk) is equal to the di-
mension of the irreducible G-module /\k C"™, which corresponds to the weight wy,
this set of functions is a basis of the space Cw, (resp. Cr, ).

Let v = Y1 ro,....rn_, be an element of I', where 71,...,7,_1 are non-negative
integers. We consider the subspace P, of C*°(G) generated (over C) by the
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functions
n—1 _ _
H ¢ak,1‘ : '¢06k,rk7
k=1
where oy 1,...,ak,, are elements of Ji, for 1 < k < n — 1. From the previous

observation, it follows that P, is a G-submodule of the irreducible G-module C,.
Since the module P, is non-zero, we therefore obtain the equality

c, =P,

The next proposition is a direct consequence of the above remarks and the
relation (3.6). Here we shall only use this result for elements of I' of the form
sw1 + rwp—1, with r, s > 0; the corresponding statement is given by Lemma 4.2
and we remark that the proof of this lemma requires only the relations (3.4).

However, for the sake of completeness, we present the most general assertion.

Proposition 4.1. For 1 < k < n — 1, the function gg(k) s a generator of the

one-dimensional space
5 _ /
Cop =Cr), NCqp -
More generally, if ¥ = Vriro,....rn_y @5 an element of I, where r1,...,r,—1 are
non-negative integers, then the function

n—1 —
¢7 = H ¢(z)
k=1
on G is a generator of the one-dimensional space C}.

According to (3.6), the function ¢, to G is equal to the product
nﬁl (Zslrn—k
oy | (R)
up to a sign.

According to Proposition 4.1 and (3.5), the one-dimensional spaces

Cow; = Co, NC. Copy = Cop_, NCL,

TWn—1"

are generated by the functions Z1, and z,1, respectively. By (3.4), the functions
{Z1jh1<j<n (resp. {znj}i<j<n) on G form a basis of the space Cw, (resp. Ce,_,);
moreover, the functions {zj1 }i<j<n (resp. {Zjn}i<j<n) on G form a basis of the
space C,, (resp. CL, ). Thus from the above discussion, we obtain the following:
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Lemma 4.2. Let v be the element swy + rwyp—1 of I', where r,s > 0 are integers.
The irreducible G-module C is generated (over C) by the functions

{2njr Znjs =+ * Znje 21k Ziks *  * Zlks b

with 1 < j1,52,...,9r k1, k2,..., ks < n and the function z],z;, is a highest
weight vector of this G-module and of the G-module C(O,;’,_Y)(G).

5. HIGHEST WEIGHT VECTORS AND FORMS OF DEGREE ONE ON SU(n)

We consider the group X = G = SU(n), with n > 3. In this section, we
shall consider the spaces C*°(G) and C*°(SPT{) endowed with their G-module
structures arising from the right action of G on X. For v € I', we view the
weight space Cy as a G-submodule of C*°(G) and the weight space C,(SPT{) as
a G-submodule of C>°(SPT{).

Proposition 5.1. Let p > 2 be a given integer and let v be a non-zero element

of I'. Then the following assertions are equivalent:

(i) The equality
(5.1) DPTIC(SPTITE) N 6,41 dC°(X) = {0}
holds.

(ii) The equality
(5.2) DPIOR L (SPTITE) N 6y,,1dCS°(X) = {0}
holds.

(iii) If f is a highest weight vector of the G-module C., there does not exist a

highest weight vector u of the G-module Cﬁﬁ)(Sp_ng) satisfying the relation

DVl =6, (df).

Proof. We remark that the differential operators DP~! and 5’1’7 ,1d are G-invariant.

Since C3°(X) is equal to C&m) (X), we therefore see that assertions (i) and (ii) are

equivalent. Moreover the left-hand side M of the equality (5.2) is a G-submodule

of CE’;W)(SPT(E) . Suppose that the G-module M does not vanish and let w be a

highest vector of this module; then we may write w = DP~ 1y = &1/0 L 1df, where f
and u are highest vectors of the G-module C, and the G-module C(%ﬁ)(Sp*IT(E),
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respectively. The equivalence of assertions (ii) and (iii) is a direct consequence of
this last observation and the fact that &; 41 I8 a monomorphism. ([

For 1 < k < n, according to (3.10) we see that the elements z,; and Zij
of the G-module C*°(G) are vectors of weight \; and —\, respectively. Thus
ifry,...,7rn,S1,...,8, > 0 are given integers, the element

f— Tln-- ’I’n—Sl"‘—Sn
Ari,...;Tn,S1,050 — #nl Znn”11 “1n

of C*(G) is of weight (r1 — s1)A1 4+ -+ + (rn — Sn)An.

For 1 < j < k < n, we consider the elements

ij = Wjk — iwjk;, ij; = wjg + ink
of Ac; then the set of 1-forms
{wlvej/we_jk}a

with 1 <l <n—-—1and 1 < j < k < n, is a basis of the G-module Ac.
For 1 <1 < n — 1, the element w; is a vector of Ac of weight 0; on the other
hand, for 1 < j < k < n, the elements 6;;, and éjk are vectors of Ac¢ of weight
Aj — A and A\ — Aj, respectively.

In this section, we shall use the results given by Lemma 4.2 with »r = s > 1.
We also remark that
r(w1 + wp-1) = 1(A1 — An)-

The following result is a direct consequence of Lemma 4.2, with r = s.

Lemma 5.2. Letr > 1 and r1,...,7p,81,...,5, = 0 be given integers; suppose
that ri+---+1p =81+ +8, =1. If the element ¢ = Gr,....r,, 51,....5n 0f C°(G)
is of weight r(A1 — \p,), then r1 = s, = r and the function q is equal to (zp1Z1n)" -

We now give an alternate proof of Lemma 5.2. Let a1, ..., a, be elements of C
satisfying a1 + --- + a, = 0, and consider the element ¢ = Z?Zl a;Ej; of the
Cartan subalgebra . Then we have

Fl(g)q = (Tlal + o Frpay —s1a1 — 0 — Snan)q
=((ri—rn—s1+sp)ar+-+ (rpno1 —Tn — Sn—1 + Sp)an—1)q.
If the function q is of weight r(\; — \;,), we know that

7 (€)g=7r(2a1 +az + -+ an_1)q.
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Since a1, ...,a,—1 may be arbitrary elements of C, we deduce the relations
(5.3) T —Tp — 81+ S, = 2r, ri—Th— 8+ 8, =T,
for 2 < j <n — 1. By considering the sum of all the equalities (5.3), we see that
ri4 - Frn_1—(s1+ -+ Sp—1) — (n—1)(ry, — sp) = nr-.
As we supposed that ry +---+r, =81 +---+ s, = r, we obtain
Sp =Tp+T.

We deduce that 7, = 0 and s, = r. This last equality implies that s; = 0,
for 1 < j <n — 1. The first equation of the system (5.3) tells us that r; = r and
hence also that r; =0, for 1 < j <n —1.

By the methods which we just have used to prove Lemma 5.2 and by exam-
ining the action of the Cartan subalgebra h on the appropriate weight vectors
of C*°(T¢), we are also able to demonstrate the following lemma:

Lemma 5.3. Letr >1,r1,...,7y,81,...,8, > 0 be given integers; suppose that
ri+--+rp=81+---+5s, =r. Let q be the function g, r..s:,..s
1-form on G equal to one of of the forms 0, with 1 < j <k < n.

and ¢ be a

n

(i) The vector qp of C*(T¢) is of weight r(A — Ay) if and only if one of the

following three assertions holds:

(a) the function q is equal to znjzgflé’l"n and the 1-form ¢ is equal to 61,
where 2 < j < n.

(b) the function q is equal to zﬁlilkiﬁl and the 1-form ¢ is equal to Oy,
where 1 <k <n—1.

(c) the function q is equal to zpjz1;(2n1210)" L and the 1-form ¢ is equal
to 01, where 2 < j <n—1.

(ii) For 1 < j <k <n, the element q0j of C®(T}) is a weight vector whose
weight is not equal to (A1 — \p).
From Lemmas 4.2 and 5.3, we deduce the following result:

Proposition 5.4. Let 7 be the element r(wy + wp—1) of T', where r is a given
integer > 1. The 1-forms

r—1zr r oz zr—1 > 5. \r—1 > \T
{znjznl zlneljaznlzlk‘zln eknyznszls(znlzln) ana(znlzln) wl}
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on G, with2<j<n,1<k<n—-1,2<s<n—1and1<I1<n-—1, generate
the weight space W, of the G-submodule Cy - Ac of C°(1¢) corresponding to the
weight .

Lemma 5.5. Let v be the element r(wy + wn—1) of I', where r is an integer > 2.

Let u be a highest weight vector of the G-module CE’;’W) (T¢) and c be an element

of C satisfying the relation
D'u = c6'd(zp17210)"
Then the coefficient ¢ vanishes.
Proof. Throughout this proof, by C; and Aj;, we shall mean the left-invariant

vector fields on G determined by the corresponding elements of gg. We write
f = zn1Z1n. By means of (3.11), (2.8) and (2.10), we see that

(&' (df")(C1,Cr) = =(&"(df"))(Crn—1,Cp1) = ir f",
(&' (df")(Ck, C) =0, (26"(df"))(Cj, Arg) = = f" 2njZin,

forall 2 < j<n-1and 1<k, <n-—1, with (k,1) # (1,1),(n—1,n—1).
(T¢) is a subspace of W,, according to Proposition 5.4

(5.4)

Since we know that C(Ovoﬁ)

we may write

n—1
_ T
uw=1">" pw
=1
n—1 n—1

n
=+ fr_l < Z ajznjzlnelj + Z br2n1 21k 0kn + Z Clznl21l91n>>

j=2 k=1 1=2
with py, a;,b,, ¢; € C. By (2.2) and (3.11), we obtain
(D'u)(C1, Cr) = irpif*,  (D'u)(Coet1, Cni) = irpu—1 f7,
o (2D'u)(C1,Cy) = irpif",
for 2 <1 <mn—2. According to (5.4) and (5.5) and our hypothesis, we see that

pPL=-—pPn-1=¢  p=0,
for 2 <1 <mn—2. By (2.2), (3.11) and the preceding equalities, we see that
(2D'u)(Cy, Arg) = (iaj + bjn-rr(c+iay) [ 2 Z1m,

(5.6)
(2Dlu)(01, A12) = (Z(T' — 2)@2 — rc)fr_lzngéln,
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for 2 < j < n—1. According our hypothesis, from the relations (5.4) and (5.6),
with j = 2, we deduce that
iag + 03p7(c +iaz) = —rc;
on the other hand, by (2.9), with j = 1, and (5.6), we also have
iag(r —2) =re.

Hence we obtain
tag(r — 1)(1 + 263,) = 0.

Therefore since r > 2, the coefficient ao vanishes, and so does c. Il

Lemma 5.6. We have
&'dB c D'C™(T}).

Proof. By Lemma 4.2, with r = s = 1, the function f = 2,121, is a highest weight
vector of the irreducible G-module B’. According to Lemma 3.2, the 2-form &’df
belongs to D'C*(T¢), and so we obtain the desired inclusion. O

Lemma 5.7. Let r > 2 be a given integer and let vy be the element (w1 + wp—1)
of I'. Then we have

(5.7) D'C(T¢) N&'dC*(X) = {0}.
Proof. According to Lemma 4.2, the function (z,121,)" a highest weight vector

of the irreducible G-module C,. The lemma is a direct consequence of Proposi-
tion 5.1, with p = 2, and Lemma 5.5. U

6. ISOSPECTRAL DEFORMATIONS OF THE SPECIAL UNITARY GROUP

We consider the subset
I’ = {Yimm 1,1 €N, withrp 4+ -+ 1,1 >0}
of I' and its subset
Dy ={ Y, mm €T | rirp_1 =0}
Let I's be the subset of IV defined by

Co={Vvn €M |rna=rp1=00rr;=ra=0}
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when n > 4 and by
Lo ={vm€el|ri,r2>0and r #r2}

when n = 3. By (4.3), if v € T" belongs to I'y (resp. to I'z), then so does 7.
For j = 1,2, the G-submodule F; of C*°(G) equal to the closure of the subspace

D CF(G)

WEFJ-

in C*°(@) is infinite-dimensional. By (4.6), we know that F; is invariant un-
der conjugation; hence the G-module Fj is equal to the complexification of the
infinite-dimensional G-submodule

Fir={feFlf=1}
of CR°(G).

In this section, we suppose that the symmetric space X is the group G =
SU(n), with n > 3. Here we shall consider C*°(G) and C*°(SPT%) endowed with
their structures of G-module arising from the left action of G on X. Most of this
section is devoted to the proof of the following two propositions.

Proposition 6.1. Let X be the symmetric space SU(n), with n > 3. Let p > 2

be a given integer.
(i) If p is an even integer, the relation (5.1) holds for all elements v of T'y.

(ii) If either n > 4 orn = 3 and p is an odd integer > 5, the relation (5.1)
holds for all elements v of I's.

Proposition 6.2. Let X be the symmetric space SU(n), with n > 3. We have
DoC>®(T)N&'dC(X) = ¢'dBg.
We consider the orthogonal complement F of the finite-dimensional subspace
F' =R(G) @By of C(G). According to Lemma 2.3, we know that the mapping
P, = P&'d: CP(X) — I(X)

is well-defined. Proposition 6.2 tells us that the kernel of P,/ is the finite-
dimensional space F’ and that the mapping P, : F — I(X) is injective.

From Proposition 6.1, we deduce
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Proposition 6.3. Let X be the symmetric space SU(n), with n > 3. Let p > 2
be a given integer.

(i) If p is an even integer, we have

DP=IC(SPTIT*) M 6,y dFy ke = {0}
(ii) If either n > 4 orn =3 and p is an odd integer > 5, we have
DP=IC™(SPIT*) N 6,y 1 dFa ke = {0}

For the proof of Proposition 6.3,(ii), with n = 3, we shall require the following

lemma:

Lemma 6.4. Let p > 5 be a given odd integer and let a,b > 0 be given real
numbers satisfying a # b. Let {e1,...,ep+1} be the standard basis of RPTL. The
vectors {&1,. .., &pr1} of RPTL given by

&1 =pe1 — 3epta, & = pep — 3ept1,
&= (k—Dbep_1 + (p— k4 Dae + (=1)*(a — b)epi1,

for 2 < k < p, form a basis of RPT1,

Proof. Let ci1,...,cpy1 be real numbers and consider the vector

§=ci&1+ -+ cpriép

of RPT!. Then we have £ = vie1+- - ‘+Vp4+1€p+1, Where the coefficients v, . .., vp41
are given by

v1 = pcy + bea, v = (p— k + 1)acg + kbcgy1, Vp = acp + PCpy1,
P
vpt1 = =3(c1 + ¢pr1) + (e —b) Y (—DFey,
k=2

for 2 < k < p. We now suppose that ¢ vanishes. From the previous formulas, we
deduce that

(61) bk_lck = (_1)k_1 <k‘ pi 1> ak_2017 bp_leJrl = _ap—lcl’

for 2 < k < p; then we obtain

(6.2) Py, = (3(apl — P — (a - b) Zp: <k P 1) ak2bpk>cl.
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Since p > 5, we know that the integer

es()

is negative, for 1 < k < p; from the equality (6.2), it follows that

p—1
abPvpi1 = ci1(a —b) Z upaPFo,
k=1

Our hypothesis says that v, vanishes and so the previous equation implies
that ¢; also vanishes. According to the formulas (6.1), it follows that ¢, = 0,
for 2 < k <p+ 1. Thus the vectors {&1,...,&p4+1} are linearly independent. [

Throughout this section, by Cj, C; and Ay, we shall always mean the left-
invariant vector fields on G determined by the corresponding elements of gg.

Let r1,...,m,—1 > 0 be given integers which are not all zero, and let v be the
element v, .., of I'. We set

for 1 <k < n. We note that the sum d,,_1 + d, is always negative (see [5, §8]).

Let f be a highest weight vector of the G-module C5°(G). Then by (4.2)
and (4.5), we have

(6.3) (Cif)(eo) = —irif(en),  (Cjf)(eo) = —id;f(eo),
foral1<l<n—-1land1<j<n.
Lemma 6.5. Let p > 2 be a given integer. Let ri,...,rn—1 > 0 be given integers

which are not all zero and let v be the element v, . ., of I’. Suppose that one
of the following conditions holds:

(i) p is an even integer and rn—1 = 0;
(i) n >4 and rp—g = rp—1 = 0;
(iii) p=2 and (r1,...,rpn—1) # (r,0,...,0,7), with r > 1;

(iv) n is equal to 3 and p is an odd integer > 5, and r1,re are distinct positive
integers.
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Let f be a highest weight vector of the G-module C5°(G). Let u be an element of
the subspace C~ - SP~1 Ac of COO(SpflT({':‘) and ¢ be an element of C satisfying the
relation

(6.4) pDP Ly = &1 (df).

Then the coefficient ¢ vanishes.

Proof. There exists an element a € G such that f(a) # 0; we denote by R,
the right action of the element a on G. Replacing f by R} f, if necessary, we

may assume that f(eg) # 0. We choose a basis {f1,..., fq} of Cy, with f1 = f
and fs(eg) = 0, for all 2 < s < g. Then the element u of C*°(SP~1T%) can be

written in the form
q
u = Z fs Us,
s=1

where u1,...,u, are elements of SP~1Ac. From (6.4) and (2.2), we obtain the
relation
q
(6.5) Z dfs - us = Ca’;;—#l(df)
s=1

We first suppose that condition (i) holds. For 1 < s < ¢, by Lemma 5.1,(i) of [5],
we know that w(A4,,—1,,)fs = 0. Then by (4.5), we know that (A,—1,,fs)(e0) = 0;
thus the relation

(66) (dfs . us)(Anfl,na s 7An71,n) =0
holds at eg. According to (2.6) and (6.3), the equality
(6.7) Gy (df)(An—1p, - Apo1n) = —i(dn1 + dp) f

holds at ey. As we remarked above, the number d,,_1 + d,, is negative. Therefore
the equalities (6.5)—(6.7) imply that the coefficient ¢ vanishes. Next, we suppose
that condition (ii) holds. For 1 < s < ¢, by (6.3) we know that

(Cn-2fs)(e0) = (Cn-1fs)(€0) = 0;
thus the relation
(6.8) (dfs - us)(Cp—2,Cpn—1,...,Cpn_1) =0
holds at ey. According to (2.5) and (6.3), the equality
(6.9) Gpi1(df)(Cn2,Cn1,...,Cp1) = idn 1 f
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holds at eg. Under our hypotheses, we have

n—3
dp—1=— E jrja
j=1

and so the number d,,_; is negative. Therefore the equalities (6.5), (6.8) and (6.9)
imply that the coefficient ¢ vanishes. Next, we suppose that condition (iii) holds.
We may write

n—1

!/

Uy = E ajwj +u,
Jj=1

where a; € C and v/ is an element of Ac satisfying v/(C;) = 0, forall 1 < j < n—1.
Then by (6.3), for all 1 < j,k <n—1and 2 < s < ¢, the equalities

(dfy - w1)(Cj, Cr) = —ilajre + arry) f; (dfs -us)(Cy, Cg) = 0
hold at the point eg € G. By (2.3)—(2.5) and (6.3), we see that
5(df)(Cj, Cr)(e0) =0,
for all 1 < j,k <n— 1, whenever k > j 4 2, and that the equalities
a5(df)(Cy, Cj) = —i(d; + djt1)f,  5(df)(C, Cpy1) = idgi1 f

hold at eg, forall 1 < j < nmn—1and 1 < k < n —2. Since f(ey) # 0, the
integers r1,...,r,_1 and the complex numbers a1, ..., a,_1 satisfy the hypotheses
of Proposition 8.1 of [5]. Now Proposition 8.1,(i) of [5] gives us the vanishing of
the constant c. Finally, we suppose that condition (iv) holds. We may write

p—1
o ag k p—k—1 !
ul_kz_o Hp—k—1p““2 Tt

where ag, . ..,a,-1 € C and «/ is an element of SP~! A¢ satisfying
UI(Cl,...,Cl,CQ,...,CQ) = 0,

if the vector field C| appears k times in the left-hand side of the last equation,
with 0 < k <p—1. If ¢ is an element of T}

ep?

(p-u1)(Cry...,C1) =pap—190(Cr), (¢ u1)(Ca,...,C2) =pagp(Ca),

we easily verify that

(SO : ul)(cla . 701502) .. '702) - kak_lso(C]_) + (p - k)ak@(CQ),
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if the vector field C; appears k times in the left-hand side of the last equation,
with 1 <k <p— 1. Also according to (2.4) and (2.5), for j = 1,2, the equalities

Tpi1(9)(Cj, ..., C) = (Cy),

(-1t
3
hold at eg, if the vector field C'y appears k times in the left-hand side of the last

equation, with 1 <k <p— 1. For 2 < s < g, by (6.3) the equality

6-;)%»1(90)(017 R 7017027 .. ')02) -

p(C2 — Ch)

(dfs - us)(Ch,...,C1,Cs,...,Co) =0

holds at the point ey, if the vector field C appears k times in the left-hand side
of this equation, with 0 < k& < p. Since f(eg) is non-zero, from the relations (6.3)
and (6.5) and the preceding equalities we obtain

pap—17T1 = €1, paor = Cra,
(p—k)riap—k—1 + kroap_j = (—l)kJrl d(rg —r1),
for 1 < k < p—1, where ¢ = ¢/3. If {&,...,&+1} are the vectors of RPT!
associated in Lemma 6.4 with the integer p and the positive real numbers a = r;
and b = ry, the previous equalities say that the vector v = (ap—_1,...,a1,ao,c)
of RP*1 is orthogonal to & (with respect to the standard Euclidean scalar product
on RPH), for all 1 <k < p+ 1. Since the integers r; and ry are distinct positive
integers, by Lemma 6.4 the vector v vanishes and hence so does c. O

Let p > 2 be a given integer. We remind the reader that the weight space
C(%ﬁ)(Sp_lTE) is a subspace of Cy - SP"1 A¢. We now begin our proof of Propo-
sition 6.1. Let r1,...,7,—1 > 0 be given integers, which are not all zero, and
be the element v, ., of I'. If condition (i), (ii) or (iv) of Lemma 6.5 holds,
the equality (5.1) for v is a consequence of Proposition 5.1 and Lemma 6.5; by
means of the relation (4.6), we see that the equality (5.1) also holds for 4. Thus
by (4.3), we know that (5.1) is true when p is even and r; = 0, or when n > 4
and r; = ro = 0. This completes the proof of Proposition 6.1.

We now turn to the proof of Proposition 6.2. By formula (1.2), to prove this
proposition it suffices to show that

D'C>®(TE) N&'dC>™(X) = &'dB'.
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Since the differential operators D! and 6’d are homogeneous, according to Propo-
sition 2.1 of [3] and Lemma 5.6 the preceding equality holds if and only if the
relation (5.7) holds for all v € I', with v # 410,..01. If v € T is equal to 0, we
have dC3°(X) = {0}, and so the equality (5.7) holds. Let ry,...,7,—1 > 0 be
given integers, which are not all zero and satisfy

(riy...,rn—1) # (1,0,...,0,1),

and consider the element v = ~,, . of I'. When v # ~,0._0,, with r > 2,
the relation (5.7) is a direct consequence of Proposition 5.1, with p =2, and
Lemma 6.5,(iii). When v = 7,0, 0., With > 2, the equality (5.7) is given by
Lemma 5.7. Therefore the equality (5.7) holds for all v € T', with v # v10,..0.1,
and so we have completed the proof of Proposition 6.2.

When n = 3, according to Lemma 2.2, we have the inclusion
(6.10) GhdC (X) € D2C™(T™).

Therefore when n = p = 3, if v is an arbitrary element of I, the relation (5.1)
does not hold, and the assertion of Lemma 6.5 is not true.

7. THE REDUCED UNITARY GROUP

The center of G = SU(n) is the cyclic subgroup S of order n equal to
{eXFm/np 1 0<k<n—1}.

If E is a G-module, we denote by E° the G-submodule of E consisting of all
S-invariant elements of E. Let T’ be the subset of I' consisting of all elements
Vri,rn_a Of I', where r1, ..., 1,1 are non-negative integers satisfying the relation

(7.1) r1+2ra2+ -+ (n—1)rp,—1 = 0 mod n.

If v is an element of I', from Lemma 5.1,(ii) of [5] we deduce that C5°(G) is a
G-submodule of C*°(G)* if and only if v belongs to I.

The group G = G/S is a symmetric space of compact type, which is the
reduced space of the symmetric space G and which we call the reduced unitary
group; it is isomorphic to the adjoint group of su(n) (see §9, Chapter VII of [8]).
In this section, we suppose that the symmetric space X is the group G.
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We consider the natural projection 7 : G — G. If 4 is an element of T, we
know that the isomorphism 7* : C®(G) — C*°(G)“ induces an isomorphism of
G-modules

T Cso(é) — Cf(G)S
of G-modules; according to Lemma 5.1,(ii) of [5], we know that
00 S _ oo
Cr(G)” =CF(G)
if and only if v belongs to I

We consider the element v = w; + wy,—1 of . We just saw that
BS =75

Therefore B = Cﬁ’/o((}) is isomorphic to B’ and invariant under conjugation; thus
BB is equal to the complexification of the subspace

Be={feB|f=[}
of Cﬁo(é) and the mapping 7 induces an isomorphism 7* : Br — Bg.

For 7 = 1,2, we consider the subset fj =1I;n I of T; let .7:"j denote the

G-submodule of C*°(G) equal to the closure of the subspace

® (@)

vel;
in C%°(G). If f is an element of C*(G), then f belongs to F; if and only
if 7* f € Fj; thus the G-module .73] is equal to the complexification of the infinite-
dimensional G-submodule

Fir={feFlf=r}

of C2(&).

For p > 2, the G-invariant symmetric p-form o']’7 on G induces a G-invariant

symmetric p-form o, on G satisfying

We endow the symmetric space X = G with the metric ol. For p > 3, we
consider the monomorphism of vector bundles

Gy T — SPTIT
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induced by the symmetric p-form o,. We write 0" = o3 and 6" = 63. If ¢ is a

1-form on G, we have
(7.2) 5(0) = G ().
According to Lemma 1.1 of [4] and Lemma 2.3, for all p > 2, we see that a

1-form ¢ on G satisfies the Guillemin condition if and only if the symmetric
p-form 5,1 () on G satisfies the Guillemin condition.

If p > 2 is a given integer and ~ is an element of I', we consider the relation

(7.3) DPTIC(SPITE) N6y, 1 dC(X) = {0}

By Proposition 6.1 and the relation (7.2), we obtain the following result:

Proposition 7.1. Let X be the symmetric space SU(n)/S, withn > 3. Letp > 2
be a given integer.

(i) If p is an even integer, the relation (7.3) holds for all elements v of I';.

(ii) If either n > 4 orn = 3 and p is an odd integer > 5, the relation (7.3)
holds for all elements v of T.

From Proposition 7.1, we deduce

Proposition 7.2. Let X be the symmetric space SU(n)/S, withn > 3. Letp > 2
be a given integer.

(i) If p is an even integer, we have

DP=IC(SPTMT) N6y, dFy g = {0}

(ii) If either n >4 ormn =3 and p is an odd integer > 5, we have
DPIC®(SPTIT ) N6y, dFar = {0}

From Proposition 6.2 and the relation (7.2), we obtain the following result:
Proposition 7.3. Let X be the symmetric space SU(n)/S, withn > 3. We have
DoC>™(T) N &"dCR(X) = 5" dBg.

If P denotes the orthogonal projection corresponding to the decomposition

(1.5) on the space Y, according to Lemma 1.1 of [4] and Lemma 2.3 the mapping
(7.4) Py = P5"d: CR(X) — I(X)
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is well-defined. We denote by F the orthogonal complement of the finite-di-
mensional space F' = R(G) @ Bg in C°(G). From Proposition 1.2 of [4] and
Proposition 7.3, we obtain:

Theorem 7.4. The reduced unitary group X = G = SU(n)/S is not rigid in
the sense of Guillemin. If f is a non-zero element of F, then the symmetric
2-form &"(df) on X satisfies the Guillemin condition and is not a Lie derivative

of the metric. Moreover, the kernel of the mapping (7.4) is the finite-dimensional
space R(X) @ Bg.

According to the observations made in §1, we see that Proposition 7.2 implies
that the equality (1.6), with p > 2, does not hold when n > 4 or p is even. Thus

we have proved the following result:

Theorem 7.5. Let X be the symmetric space SU(n)/S, withn > 3, and let p > 2
be a given integer. The equality (1.6) does not hold whenever (n,p) # (3,3). If
f is a non-zero real-valued function on X which belongs to .7:"17]1{ (resp. to .7:"27]1@)
and p is an even integer (resp. n >4 orn =3 and p is an odd integer > 5), then

the symmetric p-form &;)’+1(df) on X satisfies the Guillemin condition and does
not belong to the space DP~1C°°(SP~1T™).

CHAPTER II: THE SYMMETRIC SPACE SU(2n)/Sp(n)
8. BRANCHING LAWS AND THE DECOMPOSITION OF A SPACE OF TENSORS

If V is a complex finite-dimensional vector space, we denote by ®kV, Sty
and /\j V' the k-th tensor product, the I-th symmetric product and the j-th exte-
rior product of V, respectively; we shall identify S¥V* and /\kV* with subspaces
of ®kV*. Let n > 3 be a given integer and let U be a complex vector space
of dimension 2n endowed with a non-degenerate skew-symmetric bilinear form g¢.
We consider the group SL(U) consisting of all automorphisms of U whose de-
terminants are equal to 1 and its subgroup Sp(U) consisting of those elements
of SL(U) which preserve the bilinear form g.

Let B(U) be the subspace of A\*U* @ A*U* consisting of those elements v
of N°U* ® \*U* which satisfy the first Bianchi identity

U(£1,£2,§3,§4) + U(§2a§37‘£17£4) + 1}({3,51,52,54) = 07
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for all &1,&2,&3,&4 € U, it is well-known that B(U) is an irreducible SL(U)-
submodule of S2(A2U*). The natural monomorphism

/\pU* _ /\QU* ® /\p—QU*

allows us to view APU* as an irreducible SL(U)-module of A*U* @ AP~2U*.
We view A\*U* is an irreducible SL(U)-submodule of S2(A?U*). In fact, it is
well-known that $2(A\*U*) admits the decomposition

(8.1) SYA*U*) = Bo \'U™.

Let 1 < k < n be a given integer. Let Gor be the group of permutations
of {1,2,...,2k}; we denote by sgn 7 the signature of an element 7 of Sgi. The
element ¢* of /\QkU *, which is the k-th power of ¢, satisfies

k
1
(82) qk(gh s a£2k‘) = 27 Z SgnT - H q(fT(Qj—l)v £T(2j))7

TEG 7=1
for all &1,...,&; € U.

If ¢” : U — U* is the natural isomorphism determined by ¢ and given by

(n.4’(€)) = a(&m),
for all £, € U, we define a mapping 7 : ®2U* — C by

(@ (&) ® (&) = 96, &),
for all £&1,&, € U. Let {v1,...,vp,w1,...,w,} be a basis of U satisfying
q(vj,vk) = q(wj,wi) =0,  q(vj,wg) = djk,

for 1 < j,k < n; we easily see that

n

T(B) = Z (6(vj7wj) - ﬂ(wjvvj))a

j=1
for all 8 € ®*U*; it follows that 7(q) = 2n.
The restriction
7 NPU* — AP2U*
of the morphism

(8.3) T@id: XU @ N'T2UT — NPTPUT
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to APU* is an epimorphism of Sp(U)-modules; for 1 < p < n, its kernel AJU*
is an irreducible Sp(U)-module (see [2, Theorem 17.5]). The one-dimensional
subspace {q} of /\QU * generated by ¢ is a trivial Sp(U)-module and we have the

decomposition

(8.4) N'U* = NoU™ @ {q}
of A?U* into irreducible Sp(U)-modules. We also see that /\g U* is an irreducible
Sp(U)-submodule of 52(/\(2)U*).

We denote by 71 the morphism (8.3) with p = 4 and we consider the morphism
¢: N’U* — SA(N*U™)
of Sp(U)-modules defined by
(¢u) (&1, €2, &3, €4) = n(q(r, Ea)u(€a, &3) — q(&a, Ea)ulén, &)
—q(&1, &)u(&e, &) + q(&2, &3)u(ér, &)
+ 2(q(&, &2)u(s, &) + q(&s, &a)u(&r, £2)),
for all u € A\*U* and &1, &, &3,&4 € U. We easily verify that

(8.5) ¢ () (Vk, W, Vi, wi) = (4 — 2n)q(vk, wi)u(vk, W),

(8.6) n1¢(u) = 27(u) - q,

for all u € A\*U* and 1 < k < n. From (8.6), we deduce that
S(AGU™) € S*(AGU™).

Let {a1,...,an,01,...,0n} be the basis of U* dual to the basis of U considered
above. Then for 1 < k <n, by (8.5) we see that ¢(q) is non-zero and that
u=apA B — (1/2n)q
is an element of /\SU* which satisfies ¢(u)(vk, wg, vg, wx) # 0; thus qb(/\gU*) is
an irreducible Sp(U)-submodule of S2(AZU*).
The restriction
(8.7) m: B(U) — N*U*

of the morphism 71 to B(U) is an epimorphism of Sp(U)-modules. Indeed, for
1 < k < n, we see that up = (ax A Bk) @ (ax A Bk) is an element of B(U)
satisfying 7y (ux) = o A S; therefore the vector g = Z?Zl a; A (; and the
element ay, A B — (1/2n)q of AU* belong to the image of the mapping (8.7).
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From the decomposition (8.4) and the irreducibility of its summands, we deduce
that the morphism (8.7) is surjective. Thus the sequence
(8.8) 0— S2(AU*) — SHAU) 2 AU — 0
is exact. We denote by 1 and 7y the restrictions of the morphisms
ider: NU* @ N2U* — N2U*, dereid: U QU eU* - U @ U*
of Sp(U)-modules to B(U), respectively; we verify that
71 (u) = m2(u) = —270(u),

for all uw € B(U). Tt follows that the kernel BY(U) of the morphism (8.7) is an
irreducible Sp(U)-module whose dimension is equal to

1
dim B(U) = dim B(U) — dim \*U* = S +1)(2n +3)(2n - 1)
(see [2, Theorem 17.11]).

We know that /\g U* vanishes when n = 3 and is an irreducible Sp(U)-module
when n > 4. The one-dimensional subspace {¢(q)} of 52(/\§U *) generated
by ¢(q) is a trivial Sp(U)-submodule. According to the decomposition (8.1)
and the exactness of the sequence (8.8), we see that the sum of the dimensions
of the Sp(U)-modules {¢(q)}, /\(Q)U*, /\gU* and BY(U) is equal to the dimen-
sion of 52(/\8 U*). The Sp(U)-modules {¢(q)}, /\g U*, B°(U) are irreducible and
pairwise non-isomorphic; when n > 4, the irreducible Sp(U)-module /\éU * s
not isomorphic to any one of these modules. Thus we obtain the direct sum

decomposition

(8.9) SHASU™) = {8(@)} @ S(ASU™) & NoU™ & B°(U)
of 52(/\(2) U*) into Sp(n)-submodules.

In this section, we henceforth suppose that U = C?" and that ¢ is the standard
non-degenerate skew-symmetric bilinear form defined by

n

a(z,0) = (2,2) = Y (k2 = Znskh),
k=1

where 2z = (z1,...,20,) and 2’ = (2,...,25 ) are vectors of U = C**. We

I,
-1, 0

consider the 2n x 2n matrix
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where I, is the unit matrix of order n. Let G’ be the group SL(2n,C); its
subgroup K’ = Sp(n,C), which consists of all elements of G’ preserving the
bilinear form ¢, is the set of fixed points of the automorphism of SL(2n,C)
sending the matrix A into J,-(*A)~1-J 1.

For 1 < k < n, the [-th exterior power /\kCZ” of C?" is an irreducible

G’-module, and we saw above that its K'-submodule /\IS C?" is irreducible.

If E is an G’-module, we denote by EX' the subspace of E consisting of all the
K'-invariant elements of E. Then the multiplicity of an irreducible K’-module F'
in the decomposition of E viewed as an K'-module is equal to dim Homg/ (F, E).
Moreover, if F' is a G’'-module viewed as a K’-module, the K’-module F' is iso-

morphic to its contragredient module and so we have the equality

(8.10) dim Hom/ (F, E) = dim (E @ F)X'.

Throughout the remainder of this paper, for 1 < j, k < n, we shall denote
by Ejj the element (c;.) of Mo, determined by c;, = 016,. We consider the Lie
algebra g = sl(2n, C) of the group G’ and its Cartan subalgebra b, which consists
of all diagonal matrices of g. As in §4, let A; be the linear form on h which sends
the diagonal matrix of h, with aq,..., a2, € C as its diagonal entries, into a;. We
write a;j = A\j — Ajqq, for 1 < j <2n —1, and take {aq,...,a2,—1} as a system
of simple roots of g. If « is the root A\j — Ap, with 1 < j,k <2n —1 and j # k,
the root space g, corresponding to « is generated by Ej;; as in §4, we also have
the decomposition (4.1) of g. The corresponding fundamental weights are

@i = A+ + A,

with 1 < j < 2n — 1; we remark that @, is the highest weight of the irreducible
G'-module N\'C".

The highest weight of an irreducible G’-module is a linear form
(8.11) wW=a1@w1+ -+ Qpe1Tn—1

on b, where ay,...,a,—1 > 0 are integers. The equivalence class of such an G’'-
module is determined by this weight. We identify the dual IV of G’ with the set
of all such linear forms on b.
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Consider the set F6 of all elements w of IV which can be written in the form

n—1
w = E CiWw25,
J=1

where ¢1,...,¢,-1 are integers. In fact, the linear form (8.11) belongs to I, if
and only if as,—1 = 0 and agj_1 = ag;, for 1 <j <n—1.

We consider an irreducible G’-module E(w) corresponding to w € I'. Let
No(w) be the integer which is equal to 1 if w belongs to I') and 0 otherwise;
according to a result due to Cartan (see also [6, p. 550] and Theorem 3 of [9]),
we know that

(8.12) dim E(w)X = Ny(w).

A partition 7 = (71,...,m,—1) is an (2n — 1)-tuple of integers satisfying
T > Ty > > Top—1 > 0.
We associate with an element @ of I given by (8.11) the partition

TI'(W) = (7T17 o 77T2n—1)7
where
Tj=ai+ -+ am—j,

for 1 < j < n—1; in fact, this partition uniquely determines the element w of I/
and we shall write

E(r(w)) = E(w).

We denote by P the set of all partitions and by P, its subset consisting of all
partitions associated with elements of I'j.

Let w be an element of I"”; Pieri’s formula (see [2, Proposition 15.25,(ii)]) tells
us that the G’-module E(w) ® A*C™ admits a decomposition

(8.13) E@ o N\C"= @ E(n)
neL(w)

into irreducible G’-submodules, where ¥ (w) is a certain subset of P. Each factor
E(n) appears in the sum on the right-hand side of (8.13) with multiplicity 1. We
denote by N(w) the cardinality of the subset Xo(w) = X(w) N Py of ¥(w).
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From the relations (8.10) and (8.12) and the decomposition (8.13), we infer
that the integer

dim Homg/ (A\?C", E(w)) = dim (E(w) ® A\*C™)X’

is equal to N(w). Therefore the multiplicity M (w) of the irreducible K’-module
/\3 C™ in the decomposition of E(w) viewed as a K’-module is equal to

(8.14) dim Homg:(AsC", E(w)) = N(w) — No(w).

Thus we have

N(w) —1 if w belongs to Iy,
M(w) =
N(w) otherwise.

Suppose that @ belongs to I', and that
W = C1wW9y + C2Ty4 + -+ + Cn—-1T02n—2,
where ¢y, ...,c,—1 > 0 are integers, and that

m(w) = (71,...,Tapn—2,0)

is the partition associated with w. For 1 < j <n — 1, consider the sequences

gj = ( {’ s 75%717270)’
where &), =&, =myj+1land &, | =&, = my, for 1 <k < n—1, with k # j;
we also consider the sequence

'=(m —1,...,m,-2—1,0).

According to Pieri’s formula, we easily see that ¥o(w) is precisely the set of
all partitions contained in {¢!,...,&"}. In fact, ¢! always belongs to Yo(w);
moreover, for 2 < j < n — 1, the sequence &’ is an element of Yo(w) if and only if
Toj—2 > maj—1 + 1 (or equivalently if ¢;_; > 1). On the other hand, the sequence
€™ belongs to Yo(w) if and only if w9, > 1 (or equivalently if ¢,—1 > 1).

We have just proved the second assertion of the following proposition; on the
other hand, its first assertion is a direct consequence of the equalities (8.10)
and (8.12).

Proposition 8.1. Let G’ be the group SL(2n,C) and K’ be the group Sp(n,C),
with n > 3. Let @ be an element of I'. The multiplicity of the trivial K'-module
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in the decomposition of the G'-module E(w), viewed as a K'-module, is equal to 1
if @ belongs to I'y and to 0 otherwise. If w is equal to

1w + W4 + -+ + Cp—1W2n—2,

the multiplicity M (w) of the K'-module N\JC™ in the decomposition of the G-
module E(w), viewed as a K'-module, is equal to the number of non-zero coeffi-
cients ¢;.

9. THE SYMMETRIC SPACE SU(2n)/Sp(n)

Let n be a given integer > 3. We consider the 2n x 2n matrix

Jo=(" I
—1I, 0

Let G be the group SU(2n) and let K be the subgroup Sp(n) of G, which is
equal to the set of fixed points of the involution s of G sending an element A € G
into J, AJ,;!. Then (G,K) is a Riemannian symmetric pair. In the Cartan
decomposition

g0 =t @ po
of the Lie algebra gg of G corresponding to this involution, we know that £, is

the Lie algebra of K and that the K-submodule pg is the space of all 2n x 2n
matrices given by

{ Zjlz —Z2 ’ ( ) ( ) }
n), n, .
0 ] 1 2

We identify go with the tangent space of G at the identity element ey = I, of G
and consider the Riemannian metric ¢’ on G defined in §2. For 1 <[ < 2n — 1,
the element

Cr=i(Ey — Ep1041)

of My, belongs to go. For 1 <[ <n — 1, we verify that the element
Cl/ =C1+ Cphyy

of go belongs to po; in fact, the vectors {C7,...,C/,_;} form a basis for a maximal
abelian subspace ag of pg. For 1 < j < n, we easily see that the element
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of pg is also given by
n—l 7j—1
k:] k=1
By (2.1), we have
(9'1) g/(CJI” C;) =4, gl(ClI? Cl,—i-l) = -2, g/(cllw CZ]) =0

forall 1 <j k,g<n—1land1<[<n-—2, withqg>k+2.

Let p > 3 be a given integer and ¢ be an element of T¢; . According to the
relations (2.3)—(2.6), we easily see that

(9.2) a,(0)(C5,,Chyr - C5 ) =0,

for 1 < j1,72,--.,Jp—1 <n—1, with j1 > jo + 1, and that

(9.3) G1(0)(Cj, ..., C) = @(C)) + (=1)P (i),

forall 1 <7 <mn—1; moreover, forall1 <j<n—2and 1 <k <p-—1, we have
(9.4) G (@) (o O ity Cha) = (1) (Cl),

if the tangent vector C]’- appears k times in the left-hand side of this equation.

If B denotes the Killing form of the Lie algebra gg, the restriction of —B
to po induces a G-invariant Riemannian metric gg on the homogeneous space

= G/K. Endowed with this metric gg, the manifold X is an irreducible
symmetric space of type AIT (see §2, Chapter X of [8]). We identify the K-module
po with the tangent space of X at the coset zg of the identity element eqg = Io,
of G.

The restriction ¢, of the G-invariant polynomial @), on go defined in §2 to pg
is K-invariant and therefore gives rise to a G-invariant symmetric p-form o),
on X. It is well-known that the algebra of all K-invariant polynomials on g is
generated by the polynomials g,, with 2 < p < n, and that these polynomials are
algebraically independent. We know that the metric gg is equal to the symmetric
2-form 4n - o9 and that o3 is up to a constant the unique G-invariant symmetric
3-form on X (see [4, §2] and [6, p. 560]).

Throughout the remainder of this paper, we consider the symmetric space
X = SU(2n)/Sp(n), with n > 3, endowed with the Riemannian metric g = o9.
We consider the line bundle {g} generated by the section g of S?T*.
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For p > 3, we consider the G-equivariant monomorphism
Gp: T — SP7IT*
induced by the symmetric p-form o,. We shall write 0 = 03 and ¢ = 3.

We consider the vector space U = C?" endowed with the standard non-
degenerate skew-symmetric bilinear form ¢, the standard basis

{v1, ..., Up, w1, ..., Wy}

of U and the objects which we associated with U and ¢ in §8. The isomorphism
¢’ : U — U* induces an isomorphism

qb : /\QU—>/\2U*

of Sp(U)-modules. We shall denote by /\gU the Sp(U)-submodule of A?U which
isomorphic to /\g U* under this isomorphism. We identify the SL(U)-modules
Hom (U, U) and gl(2n,C) and we consider the monomorphism of Sp(U)-modules

A: A*U — Hom (U, U)

which is the restriction of the isomorphism ¢’ ® id : ®*U — Hom (U, U). Let u
be an element of /\2U ; we may write

n
U = Z (ajkvj A v + bjpwj AN wg + cjpvj A W),
Jk=1
where aji, bji, cji € C satisfy a;, = —ay; and bj, = —by;. We consider the n x n

matrices A = (aj;) and B = (b;) belonging to so(n,C) and the n x n matrix
C = (cji). Then in terms of our basis of U, the element A(u) of Hom (U, U) is

given by the 2n x 2n matrix
tC 24
—2BC )’

We verify that the trace of A(u) vanishes if and only if C' belongs to sl(n, C); thus
/\3U is equal to A™1(sl(2n,C)). Let W be the maximal real subspace A\~ *(su(n))
of the complex vector space /\gU . We see that A(u) belongs to su(2n) if and only
if C € su(n) and B = —A. Thus ) induces an isomorphism

AW — g
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of K-modules and the image of /\SU under the monomorphism A is equal to the
complexification p of pg. We consider the isomorphisms of K-modules

po— W, p— AU

which are equal to the inverses of the isomorphisms induced by A. The restriction
to /\g U* of the dual of the morphism p — AU is an isomorphism f : /\g U* — p*
of K-modules; we then consider the isomorphism

W SPNRUT) - SPTE,

of K-modules induced by p. By means of p/, the decomposition (8.9) give us
a decomposition of the fiber of the vector bundle SQT(E at xg into irreducible
K-submodules. The fibers at g of the G-invariant sub-bundles {g}c and &(7¢)
of SzTg are irreducible K-submodules of S2T57m0, which are isomorphic to C
and /\3U * respectively; the remarks made in §8 concerning the irreducible
Sp(n)-modules appearing in the decomposition (8.9) imply that the equalities

{gYea =W {8@)}),  5(I0)a = 1 (S(AGUY))

hold. Since a K-submodule E° of SQT(Em0 gives rise to a unique G-invariant
sub-bundle E of S?T¢ such that E,, = E°, we therefore obtain the G-invariant

decomposition
(9.5) S*T¢ ={g}c ® E1 ® By & 6(1¢)

of the bundle SQT(S, where Fq and E5 are the G-invariant sub-bundles of SQTG
satisfying Fy ., = i/ (A\gU*) and Fa o = p/(B°(U)). When n = 3, we know
that £y = {0}. We denote by S*p the k-th symmetric product of p; since the
K-modules p and p* are isomorphic, from the preceding observations and the
remarks made in §8 concerning the irreducible Sp(n)-modules appearing in the
decomposition (8.9), we obtain the following result:

Lemma 9.1. We have
dim Hompg (p, S?p) = dimHomK(p,S2T&xo) =1
The lattice A of R"~! generated by the basis {reibi<j<n—1 of R™~! contains
the lattice A’ of R"~! defined in §2. We consider the mapping

KR - @G
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which sends 6 = (01,...,0,-1) € R" ! into the diagonal matrix
k' () = diag (eixl, L, ettn gl eiw")

of G, where x1,...,x, are given by (2.11). We recall that the image H of the
mapping ¢/ : R?»~!1 — @G is a maximal torus of the group G; the image A of x/
is a subgroup of H. Clearly, the Lie algebra of A is equal to ag. We denote by
p : G — X the natural projection. Two elements a and b of G, which belong to
the image of «/, have the same image in X under p if and only if there exists an
element A € A such that a = bs/(\). Thus there is an injective mapping

k:RVLA S X

such that the diagram

/

Rn—l/A/ K

| g

R1/A —o X
is commutative. We also denote by x the mapping po ' : R® ! — X. The
subgroup A’ = AN K of A is equal to x’(A) and the image Z of the mappings

k is a maximal flat totally geodesic torus of X, which is equal to p(A) = A/A’.
Clearly we have x(0) = p(eg) = 0.

We consider the standard coordinate system (61,...,6,-1) on R 1 and endow
this space with the Riemannian metric 2§, where § is the metric on R”~! defined
in §2. For 1 < j < n — 1, we consider the vector field & = 8/90; on R"~1; the
vector field (; on Z, which is determined by

(9.6) K«(§5(0)) = G(k(0)),

for § € R*!, is invariant under the action of the group A on Z. The vector
field C]/' + Cj’-jm on H is tangent to A; its restriction éj to A is p-projectable and
we have p,(; = (. Since {C],...,C]_,} is a frame for the submanifold A of G,
by (9.1) and (9.6) we see that

(9.7) K'g = 2;

hence the mapping x : R*"!/A — Z is an isometric imbedding and, if f is a
function on X, we obtain the equality

(9.8) /Zde:2("1)/2\/ﬁ/0ﬂm/0ﬂ F(k(0))dby ... dbn_1,
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where 0 = (01, ...,0,_1) € R""1. Moreover, {(1,...,(,_1} is a basis for the space
of parallel vector fields on Z. When we identify T, with pg, by (2.12) we see
that

(9.9) Gj(wo) = C7,
and so fj(xo) is equal to the vector (j(zg) of po viewed as an element of go.

For 1 < j <mn, by (9.9) the parallel vector field

n—1 7—1
1
nj = n(Z(n—k)Ck—Z ka)

k=j k=1
on Z satisfies n;(z) = C’;, then we verify that
(9.10) G =1 = Mj+1
for 1 <j<mn-—1, and that
(9.11) > m=0.

j=1

Let ¢ be an element of T} ; then there is a unique element ¢ € po such that
© = ¢°(¢). Since we have ¢/(pg, &) = 0, the element p* of T4 ., 18 equal to g’ (¢),
where ¢’ is equal to the vector ¢ viewed as an element of go. If p > 3 is a given

integer, we therefore have the equalities

e(y1) = (P )W),  Fp(@) (W1, Yp—1) = (P Q) Wls- -, Yp_1),

for all y1,...,yp—1 € po, where y;- is equal to the vector y; considered as an
element of gg. Then from the equalities (9.2)—(9.4), we obtain the relation

(912) &P(QD)(le?Can s 7ij—1) = 07

for 1 < ji,52,...,Jp—1 <n—1, with j1 > jo + 1, and the relations

(9.13) Gp(@) (G5 G) = o(my) + (1P o(njg1),

forall 1 <j<mn—1; moreover, forall 1 <j<n—2and 1<k <p-—1, we have
(9.14) Gp(9)(Gs - -+ G Gt - - Gig1) = (=D (nj11),

if the vector field (; appears k times in the left-hand side of this equation. Because
the vector fields (; are invariant under the action of the group A, the relations
(9.12)—(9.14) hold for all ¢ € C>°(T*). Since {(1,...,(n—1} is a basis for the
space of parallel vector fields on Z, and since all maximal flat totally geodesic
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tori of X are conjugate under the action of G on X, from the relations (9.10)
and (9.12)—(9.14) we deduce the following result:

Lemma 9.2. Let n,p > 3 be given integers and let X be the symmetric space
SU((2n)/Sp(n). A 1-form ¢ on X satisfies the Guillemin condition if and only if

the symmetric (p — 1)-form &,(p) on X satisfies the Guillemin condition.

According to (9.11), (9.13) and (9.14), we easily see that an arbitrary element
h of the sub-bundle &(7*) of S?T* satisfies the relation

n—1 n—2
(9.15) D h(GG) Y (G Ga) = 0.
j=1 =1

If ¢ is a 1-form on X, since the mapping « is totally geodesic, by (9.6) and the
definition of the operator D' we have the equality

(9.16) 26" (D'9)(Gj, Ch) = &5+ (& K7) + &k (&, K7 )

of functions on R*1, for 1 < j,k <n — 1.

10. FUNCTIONS ON THE SYMMETRIC SPACE SU(2n)/Sp(n)

We consider the group G = SU(2n), with n > 3, and its Lie algebra go. We
also consider the Lie algebra hg of the maximal torus H of G; the complexification
b of by is equal to the Cartan subalgebra of the complexification g of gg consisting
of all diagonal matrices. We shall consider the objects associated with g in §4
or §8, namely the decomposition (4.1) of g and the fundamental weights w;,
with 1 < 7 < 2n — 1. We identify the dual I' of G with the set of all linear forms

Y= Yr1,ron_1 = M1@W1 + -+ T2p—1Won—1,
where r1,...,72,—1 are non-negative integers.

We consider the G-module structure on C*° (&) arising from the left action of G
on itself, the corresponding left regular representation 7 of G on C*°(G) and the
isotypic component C5°(G) of the G-module C*°(G) corresponding to v € T'.

As in §3, we consider the group G as a real submanifold of the complex man-
ifold Ma,. We shall consider the left and right action of the group G on the
manifold Ma,,. The left action of G on My, induces a morphism ® from g to the
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Lie algebra of complex vector fields on Ms,,, which are tangent to the submanifold
G of Mgn.

For 1 < j,k < 2n, we denote by z;;, the function on the space of matrices My,
which sends a matrix of My, into its (j, k)-th entry. For 1 < j < 2n, we consider
the C2"-valued functions Zj on My, which sends a matrix of My, into its j-th row;
then we have Z; = (2j1,...,%j2n). For 1 < j,k < 2n, the complex vector field
&jk on My, defined in §3 satisfies

(10.1) §ikZi = 02,
forall 1 <[ <2n.

We consider the group Sp(n,C) of automorphisms of C?" which preserve the
standard non-degenerate skew-symmetric bilinear form ¢ = (,) on C2". The
subgroup K = Sp(n) of G is equal to SU(2n) N Sp(n,C), and it is easily seen
that the transpose of an element of K belongs to Sp(n,C); it follows that, for
1 < j,k < 2n, the complex-valued function (Z;, Zi) on My, is invariant under
the right action of K on the space Ms,. Let 1 < k < n — 1 be a given integer;
the function Ay on Mo, defined by

A = ((Zj, Zi) )1<ji<ar;

takes its values in the space of skew-symmetric matrices of Msg. Clearly the
complex-valued function

on Ma,, which assigns to a point x of My, the Pfaffian of the skew-symmetric
matrix Ag(x), is also invariant under the right action of K. According to for-
mula (8.2), the function fj is given by

1
(10.2) fe = k;'2k Z sgn.T - H r(2j—1) Zr(25)) = K M2y, Za);

TEGo)

in particular, we have f; = (71, Zg> and
fo = (21, Z2)(Z3, Z4) — (Z1, Z3)(Za, Zs) + (Z1, Z4){Z2, Z3)

(see [6, pp. 627-628]). We consider the element

n—1

¢= Z (E2j-1j + E2jntj) + Ean—1n + (=1)"E2n 2,
7j=1
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of SO(2n); then if B is an element of My, whose j-th row is the vector B; of c?,
the k-th row By of the matrix B’ = ¢ - B is given by

Béj—l = B; Béj = Bnyj,

for 1 < j < n—1. Hence if {e1,...,69,} is the standard basis of C?" and

0= (01,...,0,_1) € R"! we have
Zoj 1(¢K'(0)) = €iej,  Zaj(or!(0)) = €%enyy,

for 1 < j <n-—1, where z1,...,x, are given by (2.13). For 1 <k <n — 1, the
function f; = ¢*fi on My, is also invariant under the right action of K; from
the previous relations, it follows that

(10.3) J('(6)) = 2%

Lemma 10.1. For 1 <k <n—1and 1 < j,1 < 2n be given integers. The
equalities

§itfk =0
hold on Ms,, whenever l > 2k, and the equalities
Ejtf = Otk
hold on Mo, whenever 1 < j,1 < 2k.
Proof. The first equalities are immediate. Suppose that 1 < j,1 < 2k and let
Wi, ..., Wa be the elements of C2" defined by
Wy = 6nZj+ (1 = 0n1) Zr,

for 1 < r < 2k. Since ¢* is an element of A?**U*, according to (10.1) and (10.2)
we see that

K ifr = "W, ..., War) = 6 ¢"(Z1,. .., Zar) = K\ 61 fi.
O

Let 1 <k <n-—1and 1< j<!l<2n be given integers; the preceding lemma
implies that the equalities

(10.4) O(Ch) fro = —w2k(Ch) [, D(Eyj) fe = —&ife =0,
hold on Ms,.
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Throughout the remainder of this paper, by f; we shall always often mean the
restriction of the function f; on My, to the submanifold G. From the relations
(10.4) and (3.3), it follows that

(10.5) (&) fx = wak(E) frs () fr =0,

for all £ € by and € nT. Thus the function f} is a highest weight vector of
the isotypic component Cg, (G); moreover according to (4.3) and (4.6), we know
that f is an element of C (G).

W2(n—k)

Let r1,...,7,—1 > 0 be given integers and v be the element

n—1
/
Yripermo1 — Z TETO2%k
k=1

of I'; we consider the complex-valued function f,, . .. , on G defined by

n—1
f?“h---ﬂ"nfl = H fl:k
k=1

Since fi is a highest weight vector of the G-module C° (G), we know that

W2k
fri...rn_ 18 @ highest weight vector of the G-module C3°(G).

If v is an element of I', we consider an irreducible G-module £, corresponding
to 7. We shall denote by T'g the subset of T' consisting of all elements 7, .
of I, where r1,...,7,—1 > 0 are integers. Since the group G is a real form
of the group SL(2n,C) and the subgroup K is equal to G N Sp(n,C), from

Proposition 8.1 we deduce the following result:

Proposition 10.2. Let G be the group SU(2n) and K be its subgroup Sp(n),
with n > 3. The multiplicity of the trivial K-module in the decomposition of the
G-module E., viewed as a K-module, is equal to 1 if v belongs to I'y and to 0
otherwise. If r1,...,mn_1 are given integers > 0 and vy is the element ~y,, . |

of L', the multiplicity of the K-module p in the decomposition of the G-module E.,,

viewed as a K-module, is equal to the number of non-zero integers r;.

We now consider the symmetric space X = G/K. For v € T', we recall that the
multiplicity of the G-module C3°(SPT{) is equal to the dimension of the weight
subspace of the G-module C3°(SPT{) corresponding to v (see §2, Chapter II
of [3]). A linear form A on b is a weight of the G-module C3°(SPT¢) if and only
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if —\ is a weight of the complex conjugate C3°(SPT{) of the space C°(SPTE);
therefore we have the equality

(10.6) C',SY’O(SPT&) = C,CY’O(SPT(E)
of G-modules.

If F is a G-submodule of C*®(G), we denote by EX the G-submodule of E
consisting of all functions of E which are invariant under the right action of K
on G. The natural projection p : G — X induces an isomorphism

prOF(X) — Co (@)
of G-modules, which sends a function f € C*°(X) into the function p*f on G.
If ~ is an element of I', this mapping p* induces a monomorphism

p* O (X) — CX(G)F.
A function f on GG which is invariant under the right action of K on G determines
a function f on X satisfying p*f = f.

For 1 < k < mn — 1, since the function f; on M, is invariant under the right
action of K on M,, its restriction to GG induces by passage to the quotient a
function fk on X. The complex conjugate fk of the function fk is equal to the
function on X induced by the function f, on G. The restriction of the function
fi. to G induces a function f,g on X which is equal to ¢*fi. If r1,...,rp_1 >0
are integers, the function

r T
f?"l,...,'l’n,1 — fkk

is equal to the function on X induced by the function f,, . .., on G; its com-
plex conjugate fAle-nJ'nfl is equal to the function on X induced by the function

fT1,~~-77'n—1 on G. If rq,...,r,_1 € Z, when at least one of the integers is < 0, we
set

f"’l,---ﬂ’n—l = 0
For r1,...,rpn—1 € Z, we consider the function fT,‘lyu-J‘nfl = ¢*fr1,...,7"n_1'

If v is an element of I', by the Frobenius reciprocity theorem the first asser-
tion of Proposition 10.2 tells us that the isotypic component C5°(X) of C*°(X)
corresponding to -y is irreducible if 7 belongs to I'y and vanishes whenever v does
not belong to I'y.
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If r1,...,7—1 > 0 are given integers and 7 is the element ~, .  of T,
since fy, . r,_, is a highest weight vector of the G-module C3°(G), the function
fri,...,rn_1 is a highest weight vector of the irreducible G-module C5°(X). In
particular, for 1 < k <n — 1, we know that f; is a highest weight vector of the

irreducible G-module C (X).

W2k

If v € Ty, according to (4.6) or (10.6) we have the equality

(10.7) C(X) = O (X)

of G-modules. Hence by (4.3), we see that fj is an element of Conny (X),
for 1 <k <n—1. Theelement v =7, ;= @2+ @2 of ['g satisfies 7 = ;
thus according to (10.7), the G-module B = C3°(X) is invariant under complex

conjugation, and hence is equal to the complexification of the G-submodule

Be={feB|f=f}

of CR°(X). Since the function fi-fn_1 is a highest weight vector of B, its complex
conjugate f~1‘ fn_l is also an element of B.

Let 71,...,7,—1 > 0 be given integers and 7 be the element v, . of T'o; by
the Frobenius reciprocity theorem and the second assertion of Proposition 10.2,
we see that the multiplicity of the isotypic component C3°(T¢) of C°°(T¢) is
equal to the number of non-zero integers ri,...,r,_1. Since f; is not a con-
stant function, we know that d fk is a highest weight vector of the G-module
Co (I¢). Therefore the section Frvvwn_1dfy is a highest weight vector of the

G-module C27 (1), where
r_ o /
T = %“17~--,Tk71,Tk+1ﬂ“k+1,~~~,7“n—1 = wak + Vrt et
We consider the sections ¢1,...,@,—1 of T¢: defined by

Pk = frlw-wrkfl’Tk_LTkJrlw-ﬂ'nfldfk’

for 1 < k < n—1. Note that ¢ is non-zero if and only if the integer ry is
non-zero. If ¢y is non-zero, we have just seen that the complex conjugate @y
of ¢y, is a highest weight vector of the G-module C5°(7¢). In the next section, we
shall verify that the non-zero elements of the family {¢1,...,p,—1} are linearly
independent. We know that the number of such elements of this family is equal
to the number of non-zero integers ri. On the other hand, we remarked above
that the latter number is equal to the multiplicity of the isotypic component
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C°(1¢) and hence also to the dimension of the weight subspace W, of C2°(7¢)
corresponding to its highest weight . Therefore we have the following result:

Lemma 10.3. Let r1,...,rp—1 > 0 be given integers and let v be the element
Yoy Of T Then the non-zero members of the family {@1,...,¢n—1} associ-
ated with the integers r1,...,r,—1 form a basis for the space W, .

By Lemma 10.3, we know that the G-module C (T¢) is irreducible and we
have the equality

(10.8) O (T) = dC (X).

The space U = C?" is a G-module, and so the k-th exterior products /\2U
and /\2U * inherit structures of G-modules. In fact, the highest weight of the
irreducible G-module /\2U is wy and this G-module viewed as a K-module is
isomorphic to /\2U *. If ¢ is the standard non-degenerate skew-symmetric bilinear
form on U, we know that (8.4) is the decomposition of the G-module A?U* into
irreducible K-modules; according to remarks made in §§8 and 9, we then see that

Hom (E1 4, c; N°U) = Hom (Ea 4o ¢, N°U) = {0}.
Therefore from the Frobenius reciprocity theorem, we obtain the following result:
Lemma 10.4. We have
oy (Brc) = CF, (Eaxc) = {0}
From Lemma 10.4, the equality (10.8) and the decomposition (9.5), we obtain
the decomposition
(10.9) CX (S°TE) = C2(X) - g ® 5dCX (X).

Thus the multiplicity of the isotypic component C%(SQT ¢) is equal to 2 and
the weight subspace of this G-module corresponding to its highest weight ws is
generated by the sections fig and &(df;).

11. ISOSPECTRAL DEFORMATIONS OF SU(2n)/Sp(n)

We pursue our study of the symmetric space X = SU(2n)/Sp(n), with n > 3.
This section is devoted to the proof of the following proposition:



Infinitesimal Isospectral Deformations of Symmetric Spaces... 973

Proposition 11.1. We have
DoC(T) N adCR°(X) = 6dBr, DoC>*(Ic)NadC™(X) = &dB.
We consider the orthogonal complement F of the finite-dimensional subspace
F'=R(X)®Bg of Cg°(X). According to Lemma 9.2, we know that the mapping
P, =Psd: CR(X) — I(X)

is well-defined. Proposition 11.1 tells us that the kernel of P, is the finite-
dimensional space F’ and that the mapping P, : F — I(X) is injective.

Let r1,...,m,—1 > 0 be given integers which are not all zero. We consider the
element v =1, . | of I'g and the subspace V, of C*°(T{) generated by the
1-forms {®1, ..., @n—1}, which we associated in §10 with the integers r1,...,7_1.

According to Lemma 10.3, the complex conjugate of the space V, is equal to the
highest weight subspace W, of C5°(T). We consider the section

n—1
¥ = Z ak Pk
k=1
of T¢, where ay, ..., a,—1 are given complex numbers, and the 1-form
n—1
U= dfrl,...,rn_1 = Z TPk
k=1

on X, which is also an element of V,. We also consider the 1-forms ¢’ = ¢*¢ and
¥ = ¢*9 on X. For our proof of Proposition 11.1, we shall require the following

result:
Lemma 11.2. Let r1,...,r,—1 > 0 be given integers which are not all zero, and
leta,...,an_1 be given complex numbers. Suppose that there is an element c € C

such that the 1-form
n—1
o= arer
k=1
satisfies the relation

(11.1) DY = ca(dfry..r )

Then either the coefficient ¢ vanishes or we have

rr=0, r=rno=1, @=a(for1dfi — fidfo-1), c=—2ia,

for2<k<n-—2, wherea=a1 = —an_1.
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We assume, without any loss of generality, that ay = 0 whenever r, = 0,
for 1 <k <n — 1. We consider the function 1) on R”~! defined by

1/}(9) — 2Z'€27:(T191+"'+7'n—19n—1)7

for = (61,...,0,_1) € R"L; then we have

(11.2) E-th = 2irpp,
for 1 <k <n—1. By (10.3), we see that

K v = %1/% (& w*df}) = 2i05k" fi,
for 1 < j,k <n—1. Thus we have
(11.3) (&, 57¢0") = art),
for 1 < k <n—1. By formulas (9.16), (11.2) and (11.3), we obtain
(11.4) K (DY) (G, G1) = i(arrs + ari) ¥,

for1 <k, l<n-—1.

If the 1-form ¢ vanishes, then according to formula (11.4), with k = [, we see
that apry = 0, for all 1 < k < n — 1; hence in this case all the coefficients ay,
vanish. In other words, the non-zero members of the family {¢1,...,pn—1} are
linearly independent. This fact entered into the proof of Lemma 10.3.

According to (9.6) and (11.3), we have

(11.5) K () = (&, K™Y = rpp,
for 1 <k <n — 1; thus we obtain
(11.6) K9 (n7) = dj,

for 1 < j < n, where the number d; is given by formula (8.1) of [5]. We also
consider the symmetric 2-form h = (). By (9.12), we have

(11.7) h(¢j5 Ck) =0,
for 1 < j,k <n—1, whenever k > j + 2. Also by (9.13) and (9.14), we see that
(11.8) MGG, G) =0y +mj41)s WG Ger1) = =9 (1),

foralll1<j<mn—land 1 <k<n-2
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We now begin the proof of Lemma 11.2. Let us suppose that there exists an
element ¢ € C such that the equality (11.1) holds; this implies that

Dlgal = C&(df;‘l,...,rnfl)‘

Since the function 1 is everywhere non-vanishing, from the equalities (11.4)
and (11.6)—(11.8), we infer that the coefficients ¢ and ay,...,an—1 satisfy the
relations (8.3)—(8.5) of [5]. Hence by Proposition 8.1 of [5], we infer that the
coefficient ¢ vanishes unless the integers r; and the coefficients a; vanish, for
all 2 < 7 <n — 2, and the relations

T ="Tpn—1 > 1, ay = —an_1, c = 2iaq
hold. Thus if we consider the element
B=fordfi — fidfo

of C*°(T¢), we know that the coeflicient ¢ vanishes unless ¢ is a multiple of the
1-form (fl-fn_l)rﬂ and ¥ = d(fl'fn_l)”“l, where r =71 — 1> 0.

By (11.4), (11.6) and (11.8), we see that the relations

K*(Hess f1)(C1,¢1) = —4, k*(Hess f1)(C1, G2) = 0,

w~/ 1 “ = 2i(n — 2
(11.9) RS (df)G ) = 1 (. dff) = 202,
*~ 3¢/ * £ 21
K O-(dfl)(C17<—2) =K <772,df1> = E
hold at the point 0 of R~
Lemma 11.3. (i) We have the relations
. 2 . -
(11.10) Hess f1 = - fig+2ic(dfr),
. 2 . L
(11.11) Hess f,—1 = - frno19 — 2i6(dfn_1),
(11.12) D'8 = 2i5(d(fi- fa-1))-

(ii) Fory =7} 01, we have the inclusion

(11.13) 5dC°(X) C D'C™(T¢).



976 Jacques Gasqui and Hubert Goldschmidt

Proof. Since the differential operator Hess is homogeneous and the G-module
Cx, (X) is irreducible, from the decomposition (10.9) we obtain the existence of
constants a,b € C such that

Hess f = afg + bo(df),

for all f € CZ,(X). Since the complex conjugate f1 of fi is an element of Cx (X)),
from the relations (9.1), (9.9) and (11.9) we deduce that a = —2/n and b = —2i,
and so we obtain formula (11.10). As f,_1 is an element of C2 (X), we have also
verified the identity (11.11). By (1.3), we have

D'8 = fu1Hess fi — fiHess fu1;
the relation (11.12) is now a direct consequence of (11.10) and (11.11). Next
the equality (11.12) implies that the symmetric 2-form &(d(f1 - fu—1)) belongs
to D'C>(T¢). We know that the function fi-fa_1 is a highest weight vector of

the irreducible G-module C’?O(X ), where v = wy + wa,—2, and so we obtain the
inclusion (11.13). O

We denote by I,,_s the identity matrix of order n — 2. For o € R, we consider
Ry = (c?s a —sin a)
sina coso
of SO(2) and the element R/, = (Ry, I—2) of the subgroup SO(2) x SO(n — 2)

of SO(n). We know that the element ¢, = (R.,R,,) of SO(n) x SO(n) be-
longs to K = Sp(n); thus we have ¢q(zg) = z9. We consider the functions

the element

{fjk,a}lgj,kSanQ on R" ! determined by

fi2.0 = cos® a - 2™ 4 sin? o - €272, f31.0 = sin? a - 21 4 cos® a - €272,
fla,a = f32,0 =cOsa -sina - (ezm1 — 621’12),
fika = —frjor  fa-121a =€,
for 1 < j,k<2n—2and 3<1<n-1, where § = (01,...,0,_1) € R* ! and
x1,..., 2T, are given by (2.13), and frsq =0, for 1 <7 < s < 2n — 2, whenever

(r,s) is not equal to one of the pairs
(1,2), (2,3), (1,4), (3,4), (20—1,2]),
with 3 <1 <n — 1. We also consider the function f, on R"~! defined by

fa(0) = (frzafsta — f11.0)(0) - e2i(n—1=02)
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for = (61,...,0,_1). Clearly the equalities
(11.14) df12.0 = 2i(cos* a-dfy +sin - (dfs — dby)),  dfs = 2idf, 1
hold at the point 0 € R"~!. We easily verify that

K 00?25, Zk) = Fikar

forall 1 < j,k <n —1; it follows that

(11.15) K Onfl = fiza, KO fo1 = far
and hence that
(11.16) (¢5f1)(z0) = (B4 fn_1)(x0) = 1.

Thus according to (9.6), (11.14) and (11.15), the symmetric 2-form
ha = O3(df1 - dff —dfiy-dfi 1)

on X satisfies

n—1 n—2
(11.17) (Z ha(Gr ) + D hal(G, 4j+1)> (z0) = 24 cos? a - sin® av.
=1 i=1

Clearly the function of a appearing on right-hand side of equation (11.17) is

non-zero.

Let r > 1 be a given integer. We consider the function f = fi-f/ _,, the 1-form

B = ¢*3 and the symmetric 2-form
(11.18) by = (Y df - )
on X, with a € R. Since we have
df -0 = fladfi-dfi = fPdfy g -dfi,
by (11.16) we see that the equality
(11.19) bl = hq
holds at xg.

Lemma 11.4. Ifr > 1 is a given integer, the symmetric 2-form Dl((fl-fn,l)rﬂ)
is not a section of (T¢).
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Proof. Suppose that the assertion of the lemma is not true for an integer r > 1;
then D!(f"3') is a section of (7). According to formulas (11.12) and (1.3), we
see that f"1df - 3’ is also a section of 5(7T%). Thus for all @ € R, the symmetric
2-form R/, defined by (11.18) satisfies the relation (9.15). The equalities (11.17)
and (11.19) now lead us to a contradiction. O

Finally, in order to finish the proof of Lemma 11.2, we suppose that ¢ is a mul-
tiple of the 1-form (fi-fn—1)"3 and that ¥ = d(fi-fn—1)"t*, where r =7, — 1 > 0.
When 7 > 1, Lemma 11.4 tells us that ¢ = 0; because the form () is non-zero,
the coefficient ¢ must also vanish in this case, and so we have completed the proof
of Lemma 11.2.

In order to prove Proposition 11.1, by formula (1.1) it suffices to show that
D'C®(TE) N6dC>®(X) = ¢dB.

Since the differential operators D! and &d are homogeneous, according to Propo-
sition 2.1 of [3] and Lemma 11.3,(ii) the preceding equality holds if and only
if

(11.20) D'C®(T¢) NadC(X) = {0},

for all v € T', with v # 71 ;- We now proceed to verify that (11.20) holds
and, in the process, complete the proof of Proposition 11.1.

If v € T is equal to 0 or does not belong to I'g, we know that
dC(X) = {0},

and so the equality (11.20) holds. Now let r1,...,7,—1 > 0 be given integers,
which are not all zero and satisfy (ry,...,7,—1) # (1,0,...,0,1), and consider
of I'g. Suppose that the equality (11.20) does not hold
for this element . Since the function f = fm,._,,?«nfl is a highest weight vector of
the irreducible G-module C5°(X), the inclusion

the element v = 77/"1,...,rn_1
5dC°(X) C D'C(T)
holds, and so there exists an element 1) of W, such that

DY = (df).
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Then the element ¢ = ) of V,, satisfies the relation (11.1), with ¢ = 1. Lemma 11.2
now leads us to a contradiction. Therefore the equality (11.20) holds for all y € T,
and so we have proved Proposition 11.1.

12. THE REDUCED SPACE OF SU(2n)/Sp(n)

Let n > 3 be a given integer. The center of G = SU(2n) is the cyclic subgroup
S of order 2n given by

S={e* /"L, |0<k<2n—1}.

If s is the involution of G considered in §8 sending an element A € G into J, AJ,; 1

the subgroup
Ks={AcG|A's(A) e S}
of G contains the subgroup K = Sp(n) and we easily verify that
Ks={AeG|A=¢e*/"B, with Be Sp(n)and k € Z}.

According to Corollary 9.3, Chapter VII of [8] (see also [5, §1]), we know that
Y = G/Kg is a symmetric space of compact type, which is the reduced space
of X =G/K.

We consider the generator Ay = €™/ I, of the center S; we easily see that Alg
belongs to K if and only if £ = 0 mod n. Thus we have
Ks=K-S= |J K-Af
0<k<n—1
and the isometry 7 of X induced by the action of the element Ag of G on X
generates a cyclic group X of isometries of X of order n. Clearly the group X acts
on freely on X and its action commutes with the action of G. The quotient of X
by ¥ is the symmetric space Y = G/Kg and the natural projection w : X — Y
is a n-fold covering; moreover, the action of the group G on X passes to the
quotient Y.

We consider the G-submodule C*°(X)* of C*°(X) consisting of all $-invariant
(or equivalently 7-invariant) functions on X. The action of G on Y induces
a G-module structure on the space C°°(Y), and the projection w induces an

isomorphism

w* : C®(Y) — C®(X)>



980 Jacques Gasqui and Hubert Goldschmidt

of G-modules. If v is an element of I', we denote by C‘f(Y) the isotypic compo-
nent of the G-module C*(Y") corresponding to v and we write

C2(X)” = C®(X)” NCP(X).
Then the isomorphism w induces an isomorphism of G-modules

* . Y00 00 P
@ OR(Y) — C2(X).

For p > 2, we know that
(12.1) TV op = Op.

Thus the symmetric p-form o, induces an G-invariant symmetric p-form oy,
on Y such that

_ *
Op =W Oyp.

We shall always consider the symmetric space Y = G/Kg endowed with the
G-invariant Riemannian metric gy = oy2. For p > 3, we consider the monomor-
phism of vector bundles

Gyyp: Ty — SPTITY
induced by the symmetric p-form oy,. We write oy = oy3 and oy = oy3. If ¢

is a 1-form on Y, we have
(12.2) Tov,() = Gp(@"p).

According to Lemma 2.1 of [4] and Lemma 9.2, we see that a 1-form ¢ on Y
satisfies the Guillemin condition if and only if the symmetric (p — 1)-form Gy, (¢)
on Y satisfies the Guillemin condition.

From the definition of fi, we directly see that
(12.3) T fio = 2y,

forall 1 <k <n-—1. Let r1,...,7,—1 > 0 be given integers and consider the
iy Of To. According to (12.3), the function frvvwn, on X is
invariant under the isometry 7 if and only if the relation (7.1) holds. Since the

element v = ;.

complex conjugate fm,...,rnq of the function J?m,...,rnq belongs to the irreducible
G-module C°(X), we infer that C3°(X) is a G-submodule of C>(X)* if and
only if the relation (7.1) holds. For 1 < j <n — 1, a section ¢; of T¢ associated
with the integers rq, ..., r,_1 is Y-invariant if and only if the integers rq,...,r,_1
satisfy the relation (7.1).
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We denote by I'; the subset of I'g consisting of all elements 7}17. of 'y,

where r,...,m,—1 > 0 are integers satisfying the relation (7.1). Then by Propo-

ey Tr—1
sition 2.1 of [3], we have the following result:

Lemma 12.1. (i) Let r1,...,r,—1 > 0 be given integers. The function fT17,,,,rn71
on the symmetric space X = G/K is induced by a function on the reduced space

Y = G/Kg of X if and only if the relation (7.1) holds.

(ii) The G-module . cr, C°(X) is a dense submodule of C>®(X)* and the

G-module @, cr, C5°(Y) is a dense submodule of C*°(Y).

We consider the element v =~ o, of I';; we know that
x_
Cr(X)” =B.

Therefore By = C3°(Y) is an irreducible G-module isomorphic to B and is invari-
ant under conjugation; thus By is equal to the complexification of the subspace

Byr={f€By|f=Ff}
of Cg°(Y) and the mapping w induces an isomorphism w* : By g — Bg.

If P denotes the orthogonal projection corresponding to the decomposition
(1.5) on the space Y, according to Lemma 1.1 of [4] and Lemma 9.2 the mapping

(12.4) Py, = Poyd: CX(Y) — I(Y)

is well-defined. We denote by Fy the orthogonal complement of the finite-
dimensional space Fy, = R(Y) @ By in Cg°(Y'). From Proposition 1.2 of [4]
and Proposition 11.1, we obtain:

Theorem 12.2. The reduced symmetric space Y = G/Kg is not rigid in the
sense of Guillemin. If f is a non-zero element of Fy, then the symmetric 2-form
oy (df) on Y satisfies the Guillemin condition and is not a Lie derivative of

the metric. Moreover, the relation
DQCOO<Ty) N &ydCf&O(Y) = oy dBy
holds and the kernel of the mapping (12.4) is the finite-dimensional space

f{z = R(Y) D BY,]R-
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