
Pure and Applied Mathematics Quarterly

Volume 6, Number 3

(Special Issue: In honor of

Joseph J. Kohn, Part 1 of 2 )

915—982, 2010

Infinitesimal Isospectral Deformations of Symmetric

Spaces: Quotients of the Special Unitary Group

Jacques Gasqui and Hubert Goldschmidt

To J. J. Kohn on his 75-th birthday

Abstract: We show that the reduced spaces of the special unitary group
SU(n) and the symmetric space SU(2n)/Sp(n), with n ≥ 3, possesses non-
trivial infinitesimal isospectral deformations. For the reduced space X of the
unitary group SU(n), we also prove a related result: in all degrees p ≥ 2,
there exist symmetric p-forms on X which satisfy the Guillemin condition
and are not symmetrized covariant derivatives of symmetric (p − 1)-forms,
unless n = p = 3.
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Introduction

In this paper, we pursue our study of the infinitesimal deformations of the
symmetric spaces of compact type, which are both irreducible and reduced, un-
dertaken in [3], [4] and [5]. Motivated by a result due to Guillemin [7], we intro-
duced the space I(X) of infinitesimal isospectral deformations of a Riemannian
symmetric space (X, g) of compact type. If I(X) vanishes, we say that (X, g) is
rigid in the sense of Guillemin; in this case, we know that every isospectral de-
formation of the metric g is trivial to first-order, and so the space X is spectrally
rigid to first-order.
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The homogeneous polynomials of degree 3 on the Lie algebra of the unitary
group SU(n) allow us to construct non-trivial infinitesimal isospectral deforma-
tions of the reduced Lagrangian Grassmannian, which is a quotient of the sym-
metric space SU(n)/SO(n). The same method is used here to produce such
deformations of a symmetric space belonging to one of the two other classes of
irreducible symmetric spaces of compact type, which are irreducible, reduced and
quotients of the unitary group, namely the following families, where the integer n

is ≥ 3:

(i) the reduced space of the special unitary group G = SU(n);

(ii) the reduced space of the symmetric space SU(2n)/Sp(n).

The reduced space of the special unitary group G = SU(n), with n ≥ 3, viewed
as a symmetric space is the quotient group G/S, where S is the center of G. The
latter group is isomorphic to the adjoint group of su(n) and is called the reduced
unitary group. The reduced space of the symmetric space X = SU(2n)/Sp(n),
with n ≥ 3, is the quotient of X by the action of the center of the group SU(2n)
on X.

As in [3], we say that a symmetric p-form u on a symmetric space (X, g)
satisfies the Guillemin condition if, for every maximal flat totally geodesic torus
Z contained in X and for all parallel vector fields ζ on Z, the integral

∫

Z
u(ζ, ζ, . . . , ζ) dZ

vanishes, where dZ is the Riemannian measure of Z. The kernel Np of the Radon
transform for p-forms consists precisely of those forms satisfying the Guillemin
condition.

Let {gt} be a family of Riemannian metrics on X, with g0 = g; assume that
{gt} is an isospectral deformation of g (i.e., that the spectrum of the Laplacian
of the metric gt is independent of t). Guillemin proved, using the methods he
introduced in [7], that the corresponding infinitesimal deformation h = d

dtgt|t=0

of the metric g belongs to the kernel N2. If ϕt is a one-parameter family of
diffeomorphisms of X, the family {ϕ∗t g} is a trivial isospectral deformation; in
fact, the space L2 of Lie derivatives of the metric g is a subspace of N2. This
leads us to define the space I(X) of infinitesimal isospectral deformations as the
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orthogonal complement of L2 in N2. Thus we have the orthogonal decomposition

N2 = L2 ⊕ I(X),

and we denote by P the orthogonal projection of N2 onto I(X). If I(X) van-
ishes, the infinitesimal deformation h is a Lie derivative of the metric and the
deformation {gt} is trivial to first-order.

Let X be a symmetric space belonging to one of the families (i) or (ii). Its uni-
versal cover is the symmetric space corresponding to the Riemannian symmetric
pair (G̃,K), which is either (G×G,G∗) or (G,Sp(n)), where G = SU(n) for the
first pair and G = SU(2n) for the second one, with n ≥ 3, and where G∗ is the
diagonal of G × G. For p ≥ 2, the symmetric space X carries a natural sym-
metric G̃-invariant p-form σp which is induced by the G-invariant homogeneous
polynomial Qp on the Lie algebra g0 of G defined by

Qp(A) = (−i)p TrAp,

for all A ∈ g0. In fact, the form σ2 is equal to the Riemannian metric g of X

and the form σ3 is up to a constant the only G̃-invariant symmetric 3-form on X

(see [4, §2]).

The form σp induces an injective mapping σ̃p from the space of 1-forms on X

to the space of symmetric (p − 1)-forms on X. We show that a 1-form θ on X

satisfies the Guillemin condition if and only if the symmetric (p− 1)-form σ̃p(θ)
satisfies the Guillemin condition. In particular, the mapping σ̃3 sends the space
of 1-forms on X into the space of symmetric 2-forms on X. We consider the
G-module C∞

R (X) of real-valued functions on X; if f is an element of C∞
R (X),

the symmetric 2-form σ̃3(df) satisfies the Guillemin condition. We prove that the
space F ′X of functions f ∈ C∞

R (X) for which the symmetric 2-form σ̃3(df) is a Lie
derivative of the metric g is the sum of two irreducible G-submodules of C∞

R (X),
one of which is the space of constant functions. Thus if FX is the orthogonal
complement of F ′X in C∞

R (X), the sum

L2 ⊕ σ̃3(dFX)

is direct. The mapping

P ·σ̃3 ·d : FX → I(X)

is therefore injective, and we have thus constructed an explicit infinite-dimensional
subspace of I(X).
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Here we also examine a generalization of our problem, which is not related to
isospectral deformations and involves symmetric forms of arbitrary degree on a
reduced symmetric space of compact type X. A symmetric p-form on X which
is the symmetrized covariant derivative of a symmetric (p− 1)-form satisfies the
Guillemin condition. Verifying that the only symmetric p-forms which satisfy
the Guillemin condition are precisely the symmetrized covariant derivatives of
symmetric (p − 1)-forms is an injectivity question for Radon transforms which
generalizes the Guillemin rigidity problem for X. Indeed, for p = 2, a positive
answer to this question is equivalent to the Guillemin rigidity of X. For the
real projective spaces, this verification was carried out in all degrees (see §3,
Chapter III of [3]). In [3] and [4], we showed that the answer to this question
is also positive for 1-forms on the reduced space of an irreducible Grassmannian
and on the reduced space of the Lagrangian Grassmannian SU(4)/SO(4).

We show that the answer to this question is negative for the reduced space
X = SU(n)/S, with n ≥ 3, in all degrees p ≥ 2 unless n = p = 3. We intro-
duce explicit subspaces F1 and F2 of the space of real-valued functions on X

which are infinite-dimensional and orthogonal to the subspace of constant func-
tions. Let p ≥ 2 be a given integer and suppose that (n, p) 6= (3, 3); if p is
even (resp. odd) and f is an element of the space F1 (resp. the space F2), the
symmetric p-form σ̃p+1(df), which satisfies the Guillemin condition, is not the
symmetrized covariant derivative of a symmetric (p− 1)-form. When p = 2, we
recover the fact that the space I(X) does not vanish; in fact, the space F1 is
a subspace of FX . When n = 3, the symmetric form σ4 is a multiple of the
symmetric product g · g; thus in this case, if f is an arbitrary function on X, it
is easily seen that the 3-form σ̃4(df) is a multiple of the symmetrized covariant
derivative of the 2-form fg. Therefore when n = p = 3, our methods do not give
an answer to our question. It is precisely for this reason that we are obliged to
distinguish between the cases when p is even or odd.

The harmonic analysis of the special unitary group plays an important role in
the proofs of all our results. As above we view the symmetric space G = SU(n)
as a homogeneous space of the product G̃ = G×G by its diagonal subgroup G∗.
We endow the space C∞(G) of complex-valued functions on G with the G̃-module
structure induced by the action of G̃ on its homogeneous space G and with the
G-module structure induced by the left action of G on itself. We determine the
highest weight vectors of certain isotypic components of C∞(G) with respect to
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its two module structures and also find expressions for the highest weight vectors
of certain isotypic components of the space of 1-forms viewed as a G̃-module.
These descriptions are one of the main ingredients of the proofs of our results for
the spaces of the family (i).

The proofs of our results concerning the spaces of the family (ii) follow the
same lines as those found in [5] for the Lagrangian Grassmannians. However
some differences arise from the fact that the rank of X is not equal to the rank
of G.

We now briefly describe the contents of the various sections of this paper.
Chapter I is devoted to all our results concerning the special unitary group
G = SU(n) and the symmetric space X which is equal to the reduced space
of G. In §1, we introduce objects, notation and terminology associated with Rie-
mannian manifolds and symmetric spaces. In §2, we present properties of the
mapping σ̃′p, induced by the invariant polynomial Qp on the Lie algebra of G,
from the space of 1-forms to the space of symmetric (p − 1)-forms on G. In §3,
we define the explicit functions on G which are required for our results on the
harmonic analysis of the group G; Lemma 3.2 provides us with a crucial relation
involving the mapping σ̃3 and some of these functions. In §4, we undertake a
study of the harmonic analysis of the group G and, in particular, of the isotypic
components of the space C∞(G) of functions and the space of complex symmetric
p-forms on G. An analysis of the isotypic components of the space of 1-forms
on G and their weight spaces allows us to demonstrate Lemmas 5.5 and 5.7; on
the other hand, Lemma 3.2 gives us Lemma 5.6. The proofs of our main results
(Propositions 6.1–6.3) concerning symmetric p-forms on the group G require both
Proposition 8.1 of [5] and Lemmas 5.6, 5.7 and 6.5. The main results concerning
isospectral deformations and symmetric p-forms on X described above (Theo-
rems 7.4 and 7.5) are consequences of these propositions.

In Chapter II, we study the symmetric space Y = SU(2n)/Sp(n) and its re-
duced space. In §8, we present a branching law and the decomposition of a
space of tensors into irreducible Sp(n)-modules. In §9, we examine properties of
the mapping σ̃p, induced by the polynomial Qp on the Lie algebra of the group
G = SU(2n), from the space of 1-forms to the space of symmetric (p− 1)-forms
on Y ; here, we introduce an explicit maximal flat totally geodesic torus of this
symmetric space. In §10, we define Sp(n)-invariant functions on the group G
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which give rise to highest weight vectors of the space C∞(Y ) of functions on Y

viewed as a G-module. The proofs of our results concerning Y and its reduced
space are carried out in §§11–12 in a way which is completely parallel to the one
used in [5] to prove the analogous results for the special Lagrangian Grassmannian
SU(n)/SO(n) and its reduced space. Lemmas 11.2–11.4 are crucial ingredients
for our proof of the non-triviality of the space of infinitesimal isospectral defor-
mations of the reduced space of Y (Theorem 12.2); we note that the proof of
Lemma 11.2 requires Proposition 8.1 of [5].

This paper may be considered as the continuation of [5]. It can be read in-
dependently of [5], although, as we have seen above, we use certain results from
that paper.
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CHAPTER I: The special unitary group

1. Riemannian manifolds

Let X be a differentiable manifold, whose tangent and cotangent bundles we
denote by T = TX and T ∗ = T ∗X , respectively. Let C∞(X) (resp. C∞

R (X)) be
the space of complex-valued (resp. real-valued) functions on X. Let R(X) denote
the subspace of C∞

R (X) consisting of the constant functions on X. Let E be a
vector bundle over X; we denote by EC its complexification, by E the sheaf of
sections of E over X and by C∞(E) the space of global sections of E over X. By⊗kE, SlE and

∧jE, we shall mean the k-th tensor product, the l-th symmetric
product and the j-th exterior product of the vector bundle E, respectively. We
shall identify SkT ∗ and

∧kT ∗ with sub-bundles of
⊗kT ∗ as in §1, Chapter I

of [3]. In particular, if α, β ∈ T ∗, the symmetric product α · β is identified with
the element α⊗β +β⊗α of

⊗2T ∗. If u is a section of SpT ∗ over X, we consider
the morphism of vector bundles

u[ : T → Sp−1T ∗,

defined by

(u[ξ)(η1, . . . , ηp−1) = u(ξ, η1, . . . , ηp−1),

for ξ, η1, . . . , ηp−1 ∈ T .

Let g be a Riemannian metric on X. We denote by g] : T ∗ → T the inverse of
the isomorphism g[ : T → T ∗. If u is a section of SpT ∗ over X, we consider the
morphism of vector bundles

ũ = u[ · g] : T ∗ → Sp−1T ∗.

We also consider the scalar products on the spaces of sections C∞(X), C∞(T )
and C∞(S2T ∗), defined in terms of the Riemannian measure of X and the scalar
products on the vector bundles T and S2T ∗ induced by the metric g. We denote
by C∞

R,0(X) the orthogonal complement of the subspace R(X) of C∞
R (X).

Let ∇ be the Levi-Civita connection of (X, g). For p ≥ 0, we consider the
symmetrized covariant derivative

Dp : SpT ∗ → Sp+1T ∗,
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which is the first-order differential operator defined by

(Dpu)(ξ1, . . . , ξp+1) =
1

p + 1

p+1∑

j=1

(∇u)(ξj , ξ1, . . . , ξ̂j , . . . , ξp+1),

for u ∈ SpT ∗ and ξ1, . . . , ξp+1 ∈ T . If p ≥ 1 and ω1, . . . , ωp are elements of T ∗
satisfying D1ωj = 0, for 1 ≤ j ≤ p, we easily verify that

(1.1) Dp(ω1 · . . . · ωp) = 0.

The operator D0 is equal to the exterior differential operator d on functions. The
Hessian Hess f of a real-valued function f on X is equal to D1df = ∇df . On the
other hand, the Killing operator

D0 : T → S2T ∗

of (X, g), which sends a vector field ξ into the Lie derivative Lξg of g along ξ,
and the operator D1 are related by the formula

(1.2) 1
2 D0ξ = D1g[(ξ),

for ξ ∈ T . We easily see that

(1.3) Dp(fu) =
1

p + 1
df · u + fDpu,

for all f ∈ C∞
R (X) and u ∈ C∞(SpT ∗). We consider the symmetric 4-form

σ = g · g on X and the morphism σ̃ : T ∗ → S3T ∗ which it determines; we have

1
2 σ(ξ1, ξ2, ξ3, ξ4) = g(ξ1, ξ2)g(ξ3, ξ4) + g(ξ1, ξ3)g(ξ2, ξ4) + g(ξ1, ξ4)g(ξ2, ξ3),

for all ξ1, ξ2, ξ3, ξ4 ∈ T . Hence for all ϕ ∈ C∞(T ∗), we obtain

σ̃(ϕ) = 2ϕ · g;

then for all f ∈ C∞
R (X), by means of formula (1.3) we easily see that

(1.4) 6D2(fg) = σ̃(df).

We also consider the divergence operator

div : S2T ∗ → T ∗,
as defined in §1, Chapter I of [3]; we recall that the formal adjoint of D0 is equal
to 2g] · div : S2T ∗ → T . When X is compact, since the operator D0 is elliptic,
we therefore have the orthogonal decomposition

(1.5) C∞(S2T ∗) = D0C
∞(T )⊕ {h ∈ C∞(S2T ∗) | divh = 0 }
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given by the relation (1.11) of [3]; we denote by

P : C∞(S2T ∗) → {h ∈ C∞(S2T ∗) | divh = 0 }
the projection determined by the decomposition (1.5).

We now suppose that X is a symmetric space of compact type. We know
that there is a Riemannian symmetric pair (G,K) of compact type, where G is a
compact, semi-simple Lie group and K is a closed subgroup of G, such that the
space X is isometric to the homogeneous space G/K endowed with a G-invariant
metric. We shall identify X with G/K. The spaces C∞

R (X) and C∞(X) and the
spaces C∞(SpT ∗) and C∞(SpT ∗C) of symmetric p-forms on X inherit structures
of G-modules from the action of G on X. Let Γ denote the dual of the group G,
that is, the set of equivalence classes of irreducible G-modules over C and let
F be a G-invariant complex sub-bundle of SpT ∗C. If γ is an element of Γ, we
denote by C∞

γ (X) and C∞
γ (F ) the isotypic components of the G-modules C∞(X)

and C∞(F ), respectively, corresponding to γ.

We say that a symmetric p-form u on X satisfies the Guillemin condition if,
for every maximal flat totally geodesic torus Z contained in X and for all parallel
vector fields ζ on Z, the integral

∫

Z
u(ζ, ζ, . . . , ζ) dZ

vanishes, where dZ is the Riemannian measure of Z. For p ≥ 0, we consider the
G-submodule Np of C∞(SpT ∗) consisting of all symmetric p-forms satisfying the
Guillemin condition; we recall that D0C

∞(T ) is a G-submodule of N2 and, more
generally, we have

Dp−1C∞(Sp−1T ∗) ⊂ Np,

for p ≥ 1 (see Lemma 2.10 of [3]). In this paper, we are interested in knowing
when equality holds in the above inclusion, i.e., when we have the equality

(1.6) Dp−1C∞(Sp−1T ∗) = Np.

We define the space of infinitesimal isospectral deformations of g by

I(X) = {h ∈ N2 | divh = 0 }.
From the decomposition (1.5), we obtain the orthogonal decomposition

N2 = D0C
∞(T )⊕ I(X);
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moreover, the orthogonal projection of N2 onto I(X) is equal to the restriction
of the projection P to N2. Thus the vanishing of the space I(X) is equivalent to
the fact that the space X is rigid in the sense of Guillemin; by (1.2), we see that
it is also equivalent to the fact that the equality (1.6) holds for p = 2. Moreover
if there exists a symmetric 2-form on X belonging to N2 which is not equal to a
Lie derivative of the metric g, the space I(X) does not vanish.

Let σ be a G-invariant symmetric (p+1)-form on X, where p is an integer ≥ 2;
clearly, σ is parallel and so we have ∇σ = 0. The morphisms

σ[ : T → SpT ∗, σ̃ : T ∗ → SpT ∗

induced by σ are G-equivariant; if X is irreducible and σ is non-zero, they are
monomorphisms of vector bundles.

Assume moreover that the following is true: if a 1-form ϕ on X satisfies the
Guillemin condition, the symmetric p-form σ̃(ϕ) also satisfies the Guillemin con-
dition. Then if f is an element of C∞

R (X), the symmetric p-form σ̃(df) satisfies
the Guillemin condition. If there exists a non-zero subspace F of C∞

R,0(X) such
that the relation

Dp−1C∞(Sp−1T ∗) ∩ σ̃dF = {0}
holds, then

Dp−1C∞(Sp−1T ∗)⊕ σ̃dF
is a subspace of Np and the equality (1.6) does not hold.

We now suppose that p = 2. If P is the orthogonal projection corresponding
to the decomposition (1.5), the mapping

Pσ : Pσ̃d : C∞
R (X) → I(X)

is well-defined. Clearly, if f is an element of C∞
R (X), then σ̃df is a Lie derivative

of the metric if and only if Pσf = 0.

2. The special unitary group

Let n ≥ 3 be a given integer. Let X = G be the special unitary group SU(n).
If B denotes the Killing form of the Lie algebra g0 = su(n), we endow X with
the bi-invariant Riemannian metric g0 induced by −B. As usual, we identify
the G-module g0 with the tangent space of X at the identity element e0 = In

of G. We consider the involutive automorphism s of the group G̃ = G×G which
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sends (g1, g2) into (g2, g1). The fixed point set of s is the diagonal subgroup
G∗ of G×G; thus the pair (G̃,G∗) is a Riemannian symmetric pair. Since the
homogeneous space G̃/G∗ is diffeomorphic to the group G under the mapping
G̃/G∗ → G, sending (g1, g2)G∗ into g1g

−1
2 , where g1, g2 ∈ G, we may identify

X with the homogeneous space G̃/G∗. Then the action of the group G̃ on the
space X is given by

(g1, g2) · a = g1ag−1
2

for all g1, g2, a ∈ G; it induces G̃-module structures on the spaces C∞(G) and
C∞(SpT ∗C). A symmetric form on X is G̃-invariant if and only if it is bi-invariant
under the action of G. Thus the metric g0 on X is G̃-invariant and the manifold
X endowed with this metric is an irreducible symmetric space.

If k ≥ 1 is a given integer, we consider the space Mk of all k × k complex
matrices. For 1 ≤ j, k ≤ n, let Ejk = (clr) be the element of Mn determined
by cjk = 1 and clr = 0 whenever (l, r) 6= (j, k). If 1 ≤ j, k ≤ n and 1 ≤ l ≤ n− 1
are integers, with j 6= k, the matrices

Ajk = Ejk − Ekj , Bjk = i(Ejk + Ekj), Cl = i(Ell − El+1,l+1)

of Mn belong to g0; in fact, the set of all these matrices {Ajk, Bjk, Cl}, with
1 ≤ j < k ≤ n and 1 ≤ l ≤ n− 1, form a basis of g0. For 1 ≤ j ≤ n, we consider
the element

C̃j =
1
n

( n−1∑

k=j

(n− k)Ck −
j−1∑

k=1

kCk

)

of g0.

For p ≥ 2, the homogeneous polynomial Qp on g0 defined by

Qp(ξ) = (−i)p Tr ξp,

for all ξ ∈ g0, is G-invariant, non-zero and real-valued; therefore it gives rise to
a non-zero bi-invariant symmetric p-form σ′p on X. It is well-known that the
algebra of all G-invariant polynomials on g0 is generated by the polynomials Qp,
with 2 ≤ p ≤ n, and that these polynomials are algebraically independent. We
know that the metric g0 is equal to the symmetric 2-form 2n · σ′2 and that σ′3 is
up to a constant the unique bi-invariant symmetric 3-form on X (see [4, §2]).

We shall always consider the symmetric space X = SU(n), with n ≥ 3, en-
dowed with the Riemannian metric g′ = σ′2. We easily verify that the product of
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matrices Cj · Ck is equal to 0, for all 1 ≤ j, k ≤ n− 1, with j < k + 1, and hence
that

(2.1) g′(Cj , Cj) = 2, g′(Cl, Cl+1) = −1, g′(Ck, Cq) = 0,

for all 1 ≤ j, k, q ≤ n− 1 and 1 ≤ l ≤ n− 2, with q ≥ k + 2.

We identify an element of g0 with the left-invariant vector field on G that
it determines. Throughout the remainder of this section, by Cj , C̃l, Akl and
Bkl we shall often mean the left-invariant vector fields on G determined by the
corresponding elements of g0. Let {ω0, ωj , ωjk, $jk}, with 1 ≤ j, k ≤ n, be the
left-invariant 1-forms on G determined by

ω0 = ωn = $jj = 0, ωjk = −ωkj , $jk = $kj ,

for 1 ≤ j, k ≤ n, and

ωj(Cl) = δjl, ωjk(Cl) = 0, $jk(Cl) = 0,

ωj(Ars) = 0, ωjk(Ars) = δjrδks, $jk(Ars) = 0,

ωj(Brs) = 0, ωjk(Brs) = 0, $jk(Brs) = δjrδks,

for all 1 ≤ l ≤ n − 1 and 1 ≤ j, k, r, s ≤ n, with j < k and r < s. Then
{ωl, ωjk, $jk}, with 1 ≤ l ≤ n − 1 and 1 ≤ j < k ≤ n, is a basis of the space A
of left-invariant 1-forms on G. If p is an integer ≥ 1, we view the p-th symmetric
power SpA of A as a subspace of C∞(SpT ∗). Since the left-invariant vector fields
on G are Killing vector fields, by (1.2) we know that an arbitrary element ω

of A satisfies D1ω = 0. According to the relation (1.1), an element u of SpA
satisfies Dpu = 0. Therefore, if f is a real-valued function on G and u is an
element of SpA, by (1.3) we see that

(2.2) (p + 1)Dp(fu) = df · u.

For p ≥ 3, we consider the monomorphism

σ̃′p : T ∗ → Sp−1T ∗

induced by the symmetric p-form σ′p. We shall write σ′ = σ′3 and σ̃′ = σ̃′3.
According to [5, §3], if ϕ is an element of C∞(T ∗), we know that

(2.3) σ̃′p(ϕ)(Cj1 , Cj2 , . . . , Cjp−1) = 0,

for 1 ≤ j1, j2, . . . , jp−1 ≤ n− 1, with j1 > j2 + 1, and that

(2.4) σ̃′p(ϕ)(Cj , . . . , Cj) = ϕ(C̃j) + (−1)p+1ϕ(C̃j+1),
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for all 1 ≤ j ≤ n− 1; moreover, for all 1 ≤ j ≤ n− 2 and 1 ≤ k ≤ p− 1, we have

(2.5) σ̃′p(ϕ)(Cj , . . . , Cj , Cj+1, . . . , Cj+1) = (−1)kϕ(C̃j+1),

if the vector field Cj appears k times in the left-hand side of this equation.
Furthermore, if p is odd, for 1 ≤ j < k ≤ n, we also know that

(2.6) σ̃′p(ϕ)(Ajk, . . . , Ajk) = σ̃′p(ϕ)(Bjk, . . . , Bjk) = ϕ(C̃j + C̃k).

The following lemma is a direct consequence of the definitions of the forms σ′2
and σ′3.

Lemma 2.1. Let A,B, C be elements of g0 and c ∈ R satisfying

(2.7) A ·B + B ·A = icC.

If Â, B̂ and Ĉ are the left-invariant vector fields on G corresponding to A, B

and C, respectively, then we have

σ̃′(ϕ)(Â, B̂) =
c

2
ϕ(Ĉ),

for all ϕ ∈ C∞(T ∗).

Let U be the set of vectors {Ajk, Bjk} of g0, with 1 ≤ j < k ≤ n. If A,B are
elements of U , with A 6= B, and 1 ≤ l ≤ n − 1 is a given integer, then we easily
verify that the relation (2.7) holds, where C is equal to an element of U and c = 0
or ±1, and that

A · Cl + Cl ·A = icA

as elements of Mn, where c = 0 or ±1. By this remark, Lemma 2.1 and the
relations (2.3)–(2.6), we see that

(2.8) 2σ̃′(ω1 + ωn−1) = ω2
1 − ω2

n−1 +
n∑

j=1

(ω2
1j + $2

1j − ω2
jn −$2

jn).

For 1 ≤ j ≤ n− 1, since we have

Cj ·Aj,j+1 + Aj,j+1 · Cj = 0

as elements of Mn, by Lemma 2.1 we see that

(2.9) σ̃′(ϕ)(Cj , Aj,j+1) = 0,
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for all ϕ ∈ C∞(T ∗). From Lemma 2.1 and the previous remarks, we also deduce
that

2σ̃′(ωjk) = (ωj − ωj−1 + ωk − ωk−1) · ωjk

+
n∑

l=1

(ωjl ·$kl − ωkl ·$jl),

2σ̃′($jk) = (ωj − ωj−1 + ωk − ωk−1) ·$jk

+
n∑

l=1

(ωjl · ωkl + $jl ·$kl),

(2.10)

for all 1 ≤ j < k ≤ n.

When n = 3, we know that the homogeneous polynomials Q2 and Q3 are
algebraically independent generators of the algebra of G-invariant polynomials
on g0; hence the symmetric 4-form σ′4 is a multiple of σ′2 · σ′2 = g′ · g′. In fact, we
verify that

12σ′4 = g′ · g′.
From the preceding formula and (1.4), we deduce the following:

Lemma 2.2. When n = 3, we have

D2(fg′) = 2 σ̃′4(df),

for all f ∈ C∞
R (X).

We now consider the mapping

ι′ : Rn−1 → G

of [5, §3], which sends θ = (θ1, . . . , θn−1) ∈ Rn−1 into the diagonal matrix

ι′(θ) = diag
(
eix1 , . . . , eixn

)

of G, where

(2.11) x1 = θ1, xj = θj − θj−1, xn = −θn−1,

for 2 ≤ j ≤ n − 1. If {e′1, . . . , e′n−1} is the standard basis of Rn−1 and Λ′ is the
lattice of Rn−1 generated by the basis {2πe′j}1≤j≤n−1 of Rn−1, the mapping ι′

induces by passage to the quotient an imbedding

ι′ : Rn−1/Λ′ → G.
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The image of the mappings ι′ is the maximal torus H of the group G which
consists of all diagonal matrices of G and is therefore a maximal flat totally
geodesic torus of G viewed as a symmetric space. Clearly we have ι′(0) = e0.

We consider the standard coordinate system (θ1, . . . , θn−1) on Rn−1 and endow
this space with the Riemannian metric

g̃ =
n−1∑

j=1

dθj · dθj −
n−2∑

j=1

dθj · dθj+1.

For 1 ≤ j ≤ n − 1, we consider the vector field ξj = ∂/∂θj on Rn−1. In [5, §3],
we saw that the vector field ζ ′j on H, determined by

(2.12) ι′∗(ξj(θ)) = ζ ′j(ι
′(θ)),

for θ ∈ Rn−1, is equal to the restriction of the vector field Cj to H and that
the mapping ι′ : Rn−1 → H is an isometric imbedding; moreover, we proved the
following result given by Lemma 3.1 of [5]:

Lemma 2.3. Let n, p ≥ 3 be given integers and let X be the symmetric space
SU(n). A 1-form ϕ on X satisfies the Guillemin condition if and only if the
symmetric (p− 1)-form σ̃′p(ϕ) on X satisfies the Guillemin condition.

3. Functions on the special unitary group

Let k ≥ 1 be a given integer. For 1 ≤ j, l ≤ k, we denote by zjl the function
on the space of matrices Mk which sends a matrix of Mk into its (j, l)-th entry.
We also consider the complex-valued function ∆(k)

jl on Mk defined as follows.

If k = 1, the function ∆(1)
11 is identically equal to 1; if k ≥ 2, the value of the

function ∆(k)
jl at a matrix A ∈ Mk is the cofactor of the entry zjl(A) in A, which

is equal to (−1)j+l times the determinant of the (k−1)× (k−1) matrix obtained
from A by deleting its j-th row and its l-th column. We note that, if A ∈ Mk is a
symmetric matrix, then we have ∆(k)

jl (A) = ∆(k)
lj (A). If detk denotes the function

on Mk which sends a matrix of Mk into its determinant, we recall that

(3.1)
k∑

r=1

zjr ∆(k)
lr =

k∑

r=1

zrj ∆(k)
rl = δjl detk,

for all 1 ≤ j, l ≤ k. Thus we obtain the relation

(3.2)
∂

∂zjl
detk = ∆(k)

jl ,
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for all 1 ≤ j, l ≤ k.

We consider the group G = SU(n), with n ≥ 3, as a real submanifold of the
complex manifold Mn. The left action and the right action of the group G on
the manifold Mn induce morphism Φ and Φ′, respectively, from g0 to the Lie al-
gebra of vector fields on Mn which are tangent to the submanifold G of Mn. The
mappings Φ and Φ′ extend to C-linear morphisms from the complexification g

of g0 to the space of all complex vector fields on Mn. For ξ ∈ g0, the restric-
tion of −Φ(ξ) (resp. of Φ′(ξ)) to G is the right-invariant (resp. left-invariant)
vector field on G whose value at e0 is the vector ξ of g0 = Te0(G); thus we have
Φ(ξ)(e0) = −Φ′(ξ)(e0).

The functions {zjk} on Mn defined above, with 1 ≤ j, k ≤ n, form a holomor-
phic coordinate system for Mn. For 1 ≤ j, k ≤ n, we consider the complex vector
fields

ξjk =
n∑

l=1

zjl
∂

∂zkl
, ξ′jk =

n∑

l=1

zlj
∂

∂zlk

on Mn. For 1 ≤ j, k ≤ n, with j 6= k, and 1 ≤ l ≤ n− 1, we verify that

Φ(Ajk) = ξ̄jk − ξ̄kj + ξjk − ξkj , Φ(Bjk) = i(ξ̄jk + ξ̄kj − ξjk − ξkj),

Φ(Cl) = i(ξ̄ll − ξ̄l+1,l+1 + ξl+1,l+1 − ξll),

Φ′(Ajk) = ξ′jk − ξ′kj + ξ̄′jk − ξ̄′kj , Φ′(Bjk) = i(ξ′jk + ξ′kj − ξ̄′jk − ξ̄′kj),

Φ′(Cl) = i(ξ′ll − ξ′l+1,l+1 − ξ̄′ll + ξ̄′l+1,l+1).

If 1 ≤ j, k ≤ n, with j 6= k, since Ejk is equal to 1
2(Ajk − iBjk), the complex

vector fields ηjk = Φ(Ejk) and η′jk = Φ′(Ejk) on Mn are given by

ηjk = ξ̄jk − ξkj , η′jk = ξ′jk − ξ̄′kj ,

and so we have

(3.3) η̄jk = −ηkj .

Let 1 ≤ k ≤ n− 1 be a given integer. We denote by Jk the set of all sequences
{j1, . . . , jk} of integers satisfying 1 ≤ j1 < . . . < jk ≤ n. If α = {j1, . . . , jk} is an
element of Jk, we consider the Mk-valued functions

Fj1...jk
= (zljr)1≤l,r≤k, F ′

j1...jk
= (zjrl)1≤l,r≤k
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on Mn and the complex-valued functions

φα = φj1...jk
= det Fj1...jk

, φ′α = φj1...jk
= det F ′

j1...jk

on Mn. For 1 ≤ j, l ≤ n, we consider the function ∆jl = ∆(n)
jl on Mn; clearly, we

have

φj = z1j , φ′j = zj1, φj1...jn−1 = (−1)n+l∆nl, φ′j1...jn−1
= (−1)n+l∆ln,

where jr = r , for 1 ≤ r ≤ l−1, and jr = r+1 , for l ≤ r ≤ n−1. For 1 ≤ j, k ≤ n,
by (3.1) we easily verify that the equality

(3.4) ∆jk = z̄jk,

holds on the group G.

For 1 ≤ k ≤ n− 1, we write

φ(k) = φα, φ′(k) = φ′α,

where α = {n− k + 1, . . . , n}; in particular, we have

(3.5) φ(1) = z1n, φ′(1) = zn1.

It is easily seen that the exterior power of a special unitary matrix is again
special unitary; from the considerations of [1, §6, no. 3] and the formulas (9)
and (11) of [1, §6, no. 4], we then obtain the equality

(3.6) φ′(n−k) = (−1)k(n+k) φ̄(k)

on the group G. We note that the preceding relation, with n = 1 or n − 1, is
given by (3.4).

Lemma 3.1. Let 1 ≤ k ≤ n − 1 and 1 ≤ j, l ≤ n be given integers. If
1 ≤ j1 < · · · < jk ≤ n are given integers, the equalities

ξjlφj1...jk
= ξ′jlφj1...jk

= 0

hold on Mn when l > k; the equalities

ξjlφj1...jk
= δjlφj1...jk

, ξ′jlφ
′
j1...jk

= δjlφ
′
j1...jk

hold on Mn when 1 ≤ j, l ≤ k.
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Proof. The first set of equalities are immediate. If 1 ≤ j, l ≤ k, according to (3.1)
and (3.2) we see that

ξjlφj1...jk
=

k∑

r=1

zjjr ∆(k)
lr (Fj1...jk

) =
k∑

r=1

(∆(k)
lr zjr)(Fj1...jk

) = δjlφj1...jk
;

a similar computation gives us the last equality of the lemma. ¤

Let 1 ≤ k ≤ n− 1 and 1 ≤ j < l ≤ n be given integers. The preceding lemma
implies that

(3.7) ηljφj1...jk
= −ξjlφj1...jk

= η′jlφ
′
j1...jk

= ξ′jlφ
′
j1...jk

= 0,

for all integers 1 ≤ j1 < · · · < jk ≤ n, and hence that

(3.8) Φ(Cj)φj1...jk
= −iδjkφj1...jk

, Φ′(Cj)φ′j1...jk
= iδjkφ

′
j1...jk

whenever 1 ≤ j ≤ n− 1.

Let 1 ≤ k ≤ n−1 and 1 ≤ j1 < · · · < jk ≤ n be given integers; let {r1, . . . , rn−k}
be the integers which do not belong to the set {j1, . . . , jk} and which satisfy
1 ≤ r1 < · · · < rn−k ≤ n. Let Pj1...jk

be the unique matrix of Mn of determi-
nant 1 whose jl-th column is equal to the l-th column of the identity matrix In,
for 1 ≤ l ≤ k, and whose rq-th column is equal to the (k + q)-th column of the
identity matrix In, for 1 ≤ q ≤ n− k − 1, and whose rn−k-th column is equal to
the n-th column of the matrix εIn, where ε = ±1; clearly, Pj1...jk

is an element
of SU(n). Then we see that

(3.9) φj1...jk
(Pl1...lk) = δj1l1· · · δjklk ,

for all integers 1 ≤ l1 < · · · < lk ≤ n.

Here and in subsequent sections, we shall consider the restrictions to G of the
functions φj1...jk

, φα, φ′j1...jk
and φ′α on Mn, where α ∈ Jk, and denote them also

by φj1...jk
, φα, φ′j1...jk

and φ′α, respectively. From (3.9) it follows that the
(
n
k

)
func-

tions {φα} on G, with α ∈ Jk, are linearly independent; a similar argument shows
that the

(
n
k

)
functions {φ′α} on G, with α ∈ Jk, are also linearly independent.

For 1 ≤ j, k, r, s ≤ n, with r < s, and 1 ≤ l ≤ n− 1, we have

Φ′(Cl)zjk = izjk(δkl − δk−1,l),

Φ′(Ars)zjk = (ξ′rs − ξ′sr)zjk = zjrδks − zjsδkr,

Φ′(Brs)zjk = i(ξ′rs + ξ′sr)zjk = i(zjrδks + zjsδkr).

(3.10)
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It follows that the relation

(3.11) dzjk = izjk(ωk − ωk−1) +
n∑

l=1

zjl(ωlk + i$lk)

holds on G, for 1 ≤ j, k ≤ n.

By means of the formulas (2.2), (3.11), (2.8) and (2.10), we verify directly the
following result:

Lemma 3.2. We have

iD1(zn1dz̄1n − z̄1ndzn1) = σ̃′d(zn1z̄1n).

4. Highest weight vectors and functions on SU(n)

We consider the maximal torus H of the simple group G introduced in §2 and
its Lie algebra h0, and also the complexification g = sl(n,C) of the Lie algebra
g0 of G. The complexification h of h0 is equal to the Cartan subalgebra of the
simple Lie algebra g consisting of all diagonal matrices of g, and the matrices
{C1, . . . , Cn−1} form a basis of h0. For 1 ≤ j ≤ n, the linear form λj : h → C,
sending the diagonal matrix with a1, . . . , an ∈ C as its diagonal entries into aj , is
purely imaginary on h0. We write αj = λj − λj+1, for 1 ≤ j ≤ n− 1. Then

{λj − λk | 1 ≤ j, k ≤ n and j 6= k }

is the system of roots of g with respect to h. As in [5, §5], we take {α1, . . . , αn−1}
as a system of simple roots of g; the corresponding system of positive roots is

∆+ = {λj − λk | 1 ≤ j < k ≤ n }.

If α is the root λj − λk, with 1 ≤ j, k ≤ n and j 6= k, the root subspace gα

corresponding to α is generated by Ejk (over C). We have the decomposition

(4.1) g = n− ⊕ h⊕ n+,

where

n+ =
⊕

α∈∆+

gα, n− =
⊕

α∈∆+

g−α.

The corresponding fundamental weights are

$j = λ1 + · · ·+ λj ,
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with 1 ≤ j ≤ n− 1; in fact, $j is the highest weight of the irreducible G-module∧jCn, and we have

(4.2) $k(Cj) = iδjk,

for 1 ≤ j, k ≤ n− 1. The unique element w0 of the Weyl group of g determined

w0(∆+) = −∆+

is the involutive automorphism satisfying

(4.3) w0($j) = −$n−j ,

for 1 ≤ j ≤ n− 1. A dominant integral form λ for G may be written in a unique
way

(4.4) λ = γr1,...,rn−1 = r1$1 + · · ·+ rn−1$n−1,

where r1, . . . , rn−1 are non-negative integers. Thus the highest weight of an ir-
reducible (complex) G-module has a unique expression of this form and we may
identify the dual Γ of G with the set of all linear forms on h which can be written
in the form (4.4).

If γ = γr1,r2,...,rn−1 is an element of Γ, where r1, r2, . . . , rn−1 are non-negative
integers, let Eγ be an irreducible G-module corresponding to γ. By (4.3), the
unique element γ̄ of Γ determined by

w0(γ) = −γ̄

is equal to γrn−1,...,r2,r1 ; in particular, if γ is the element $k of Γ, we have
γ̄ = $n−k. A linear form λ on h is a weight of the G-module Eγ if and only if −λ

is a weight of the contragredient G-module E∗
γ of Eγ . Therefore the G-module

Eγ̄ is isomorphic to E∗
γ .

We consider the group G̃ = G × G and its Lie algebra g̃0. We identify the
complexification g̃ = g⊕ g of g̃0 with a subalgebra of sl(2n,C) and consider the
Cartan subalgebra h̃ of g̃ consisting of all its diagonal matrices. For 1 ≤ j ≤ 2n,
we consider the linear form λj : h̃ → C which sends the diagonal matrix with
a1, . . . , a2n ∈ C as its diagonal entries into aj . We write αj = λj − λj+1 and
βj = λj+n − λj+n+1, for 1 ≤ j ≤ n− 1. We take {α1, . . . , αn−1, β1, . . . , βn−1} as
a system of simple roots of g̃ with respect to h̃. We may then identify the dual
of the group G̃ = G × G with the product Γ × Γ; in fact, if γ1, γ2 are elements
of Γ, then Eγ1 ⊗ Eγ2 is an irreducible G̃-module corresponding to (γ1, γ2).
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We now consider the G̃-module structures on C∞(G) and C∞(SpT ∗C) induced
by the action of G̃ on X and the corresponding representations of G̃ or the
Lie algebra g̃ on these modules. According to the Peter-Weyl theorem, the iso-
typic component C∞

(γ′,γ)(G) of the G̃-module C∞(G) corresponding to the element
(γ′, γ) of Γ×Γ vanishes unless γ′ = γ̄, and is equal to the image of the morphism
of G̃-modules

Aγ : E∗
γ ⊗ Eγ → C∞(G)

defined by

Aγ(α⊗ v)(g) = α(gv),

for α ∈ E∗
γ , v ∈ Eγ and g ∈ G, when γ′ = γ̄. Thus for γ ∈ Γ, the isotypic

component C∞
(γ̄,γ)(G) is an irreducible G̃-submodule of C∞(G).

The spaces C∞(G) and C∞(SpT ∗C) inherit structures of G-modules arising
from the left (resp. right) action of G on X. The corresponding represen-
tation π (resp. π′) of G on C∞(G) is the left (resp. right) regular represen-
tation; we shall also consider the corresponding representation (π, C∞(SpT ∗C))
(resp. (π′, C∞(SpT ∗C))) of G or of the Lie algebra g on C∞(SpT ∗C). If ξ1, ξ2 are
elements of g0 and u is an element of C∞(G) or C∞(SpT ∗C), we have

π(ξ1)π′(ξ2)u = π′(ξ2)π(ξ1)u.

Moreover, if ξ ∈ g0 and f ∈ C∞(G), we have

π(ξ)f = Φ(ξ)f, π′(ξ)f = Φ′(ξ)f

and so the relations

(4.5) π(ξ) · f = Φ(ξ) · f = −Φ′(ξ) · f = −π′(ξ) · f = −ξ · f

hold at the point e0; in the expression ξ · f of these equalities, ξ is considered as
a left-invariant vector field on G.

If γ is an element of Γ, from the above remarks concerning the Peter-Weyl the-
orem it follows that the isotypic component C∞

γ (G) of the G-module (π, C∞(G))
corresponding to γ is equal to the irreducible G̃-module C∞

(γ,γ̄)(G); it is therefore
isomorphic to k copies of Eγ , where the integer k is the dimension of Eγ (over C).
Thus the dimension of the weight subspace Cγ of the G-submodule C∞

γ (G) cor-
responding to its highest weight γ is equal to the dimension of Eγ . Clearly,
the space C∞

γ (G) = C∞
(γ,γ̄)(G) and the weight subspace Cγ are G-submodules
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of (π′, C∞(G)). The subspace C ′̄γ of C∞(G) generated by the highest weight vec-
tors of weight γ̄ of the representation (π′, C∞(G)) is a G-submodule of C∞

γ (G)
whose dimension is also equal to the dimension of Eγ . We also know that Cγ is
an irreducible G-module whose highest weight is γ̄ and that C ′̄γ is an irreducible
G-submodule of C∞

γ (G). Moreover, the intersection

C̃γ = Cγ ∩ C′γ̄

is the weight subspace of the irreducible G̃-submodule C∞
(γ,γ̄)(G) corresponding

to its highest weight (γ, γ̄), and is therefore one-dimensional.

As in §1, if (γ, γ′) is an element of Γ×Γ, we denote by C∞
(γ,γ′)(S

pT ∗C) the isotypic

component of the G̃-module C∞(SpT ∗C) corresponding to (γ, γ′). We shall denote
by C∞

γ (SpT ∗C) the isotypic component of the G-module (π, C∞(SpT ∗C)) corre-
sponding to γ and by Cγ(SpT ∗C) the weight subspace of the G-module C∞

γ (SpT ∗C)
corresponding to its highest weight. The isotypic component C∞

(γ,γ′)(S
pT ∗C) is a

G̃-submodule of C∞
γ (SpT ∗C) and the weight space C(γ,γ′)(SpT ∗C) of the G̃-module

C∞
(γ,γ′)(S

pT ∗C) corresponding to its highest weight (γ, γ′) is contained in the weight
space of the G-submodule Cγ(SpT ∗C) of (π′, C∞

γ (SpT ∗C)) corresponding to the
weight γ′.

We now view the complexification AC of the space A of left-invariant 1-forms
on G as a G̃-submodule of C∞(T ∗C); more generally, if p is an integer ≥ 1, we
view the p-th symmetric power SpA of A and its complexification SpAC as
G̃-submodules of C∞(SpT ∗C). Clearly, the space AC is a trivial G-submodule
of (π, C∞(T ∗C)) and a G-submodule of (π′, C∞(T ∗C)) isomorphic to the irreducible
G-module g. Thus the space SpAC is a trivial G-submodule of (π, C∞(SpT ∗C))
and is also a G-submodule of (π′, C∞(SpT ∗C)).

Let γ be an element of Γ and p be an integer ≥ 1. Since the cotangent bundle
T ∗ of G is trivial, if Vp is the G-module equal to the vector space Spg endowed
with the trivial action of G, the isotypic component C∞

γ (SpT ∗C) is isomorphic
to C∞

γ (G) ⊗ Vp. Thus the weight space Cγ(SpT ∗C) is equal to Cγ · SpAC and the
weight space C(γ,γ̄)(SpT ∗C) is contained in the weight space of the G-submodule
Cγ ·SpAC of (π′, C∞

γ (SpT ∗C)) corresponding to the weight γ̄. We shall denote byWγ

the weight subspace of the G-submodule Cγ · AC of (π′, C∞
γ (T ∗C)) corresponding

to the weight γ̄.
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In the remainder of this section, if γ is an element of Γ, we shall always consider
the G-module structures on C∞(G) and C∞

γ (G) arising from the representation π

and the G-module structure on Cγ arising from the representation π′.

If γ ∈ Γ, a linear form λ on h is a weight of the G-module C∞
γ (G) if and only if

−λ is a weight of the complex conjugate C∞
γ (G) of the space C∞

γ (G). Therefore
we have the equalities

(4.6) C∞
γ̄ (G) = C∞

γ (G)

of G-modules. If r ≥ 1 is a given integer, the element γ = r($1 + $n−1) of Γ
satisfies γ̄ = γ; thus according to (4.6), the G-module C∞

γ (G) is invariant under
complex conjugation. In particular, if γ is the element $1 + $n−1 of Γ the
G-module B′ = C∞

γ (G) = C∞
(γ,γ)(G) is invariant under complex conjugation and

is equal to the complexification of the G-submodule

B′R = { f ∈ B′ | f = f̄ }
of C∞

R (G).

Let 1 ≤ k ≤ n − 1 and 1 ≤ j1 < · · · < jk ≤ n be given integers. From the
relations (3.7), (3.8) and (4.2), we infer that the equalities

(4.7)
Φ(Cj)φj1...jk

= −$k(Cj)φj1...jk
,

Φ′(Cj)φ′j1...jk
= $k(Cj)φ′j1...jk

,

Φ(Erj)φj1...jk
= 0,

Φ′(Ejr)φ′j1...jk
= 0

hold on Mn for all integers 1 ≤ j < r ≤ n. From the relations (4.7) and (3.3), it
follows that

(4.8)
π(ξ)φ̄j1...jk

= $k(ξ)φ̄j1...jk
,

π′(ξ)φ′j1...jk
= $k(ξ)φ′j1...jk

,

π(η)φ̄j1...jk
= 0,

π′(η)φ′j1...jk
= 0,

for all ξ ∈ h0 and η ∈ n+. Thus the function φ̄j1...jk
(resp. φ′j1...jk

) is an element of
the G-module C$k

(resp. C′$k
); moreover according to (4.6), we know that φj1...jk

(resp. φ̄′j1...jk
) is an element of C∞

$n−k
(G).

We saw that the
(
n
k

)
functions φ̄α (resp. φ′α) on G, with α ∈ Jk, are linearly

independent; since the dimension of the space C$k
(resp. C′$k

) is equal to the di-
mension of the irreducible G-module

∧kCn, which corresponds to the weight $k,
this set of functions is a basis of the space C$k

(resp. C′$k
).

Let γ = γr1,r2,...,rn−1 be an element of Γ, where r1, . . . , rn−1 are non-negative
integers. We consider the subspace Pγ of C∞(G) generated (over C) by the
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functions
n−1∏
k=1

φ̄αk,1
. . . φ̄αk,rk

,

where αk,1, . . . , αk,rk
are elements of Jk, for 1 ≤ k ≤ n − 1. From the previous

observation, it follows that Pγ is a G-submodule of the irreducible G-module Cγ .
Since the module Pγ is non-zero, we therefore obtain the equality

Cγ = Pγ .

The next proposition is a direct consequence of the above remarks and the
relation (3.6). Here we shall only use this result for elements of Γ of the form
s$1 + r$n−1, with r, s ≥ 0; the corresponding statement is given by Lemma 4.2
and we remark that the proof of this lemma requires only the relations (3.4).
However, for the sake of completeness, we present the most general assertion.

Proposition 4.1. For 1 ≤ k ≤ n − 1, the function φ̄(k) is a generator of the
one-dimensional space

C̃$k
= C$k

∩ C′$n−k
.

More generally, if γ = γr1,r2,...,rn−1 is an element of Γ, where r1, . . . , rn−1 are
non-negative integers, then the function

φγ =
n−1∏
k=1

φ̄rk

(k)

on G is a generator of the one-dimensional space C̃γ.

According to (3.6), the function φγ to G is equal to the product

n−1∏
k=1

φ
′rn−k

(k)

up to a sign.

According to Proposition 4.1 and (3.5), the one-dimensional spaces

C̃$1 = C$1 ∩ C′$n−1
, C̃$n−1 = C$n−1 ∩ C′$1

are generated by the functions z̄1n and zn1, respectively. By (3.4), the functions
{z̄1j}1≤j≤n (resp. {znj}1≤j≤n) on G form a basis of the space C$1 (resp. C$n−1);
moreover, the functions {zj1}1≤j≤n (resp. {z̄jn}1≤j≤n) on G form a basis of the
space C′$1

(resp. C′$n−1
). Thus from the above discussion, we obtain the following:
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Lemma 4.2. Let γ be the element s$1 + r$n−1 of Γ, where r, s ≥ 0 are integers.
The irreducible G-module Cγ is generated (over C) by the functions

{znj1znj2 · · · znjr z̄1k1 z̄1k2 · · · z̄1ks},
with 1 ≤ j1, j2, . . . , jr, k1, k2, . . . , ks ≤ n and the function zr

n1z̄
s
1n is a highest

weight vector of this G-module and of the G̃-module C∞
(γ,γ̄)(G).

5. Highest weight vectors and forms of degree one on SU(n)

We consider the group X = G = SU(n), with n ≥ 3. In this section, we
shall consider the spaces C∞(G) and C∞(SpT ∗C) endowed with their G-module
structures arising from the right action of G on X. For γ ∈ Γ, we view the
weight space Cγ as a G-submodule of C∞(G) and the weight space Cγ(SpT ∗C) as
a G-submodule of C∞(SpT ∗C).

Proposition 5.1. Let p ≥ 2 be a given integer and let γ be a non-zero element
of Γ. Then the following assertions are equivalent:

(i) The equality

(5.1) Dp−1C∞
γ (Sp−1T ∗C) ∩ σ̃′p+1dC∞

γ (X) = {0}
holds.

(ii) The equality

(5.2) Dp−1C∞
(γ,γ̄)(S

p−1T ∗C) ∩ σ̃′p+1dC∞
γ (X) = {0}

holds.

(iii) If f is a highest weight vector of the G-module Cγ, there does not exist a
highest weight vector u of the G̃-module C∞

(γ,γ̄)(S
p−1T ∗C) satisfying the relation

Dp−1u = σ̃′p+1(df).

Proof. We remark that the differential operators Dp−1 and σ̃′p+1d are G̃-invariant.
Since C∞

γ (X) is equal to C∞
(γ,γ̄)(X), we therefore see that assertions (i) and (ii) are

equivalent. Moreover the left-hand side M of the equality (5.2) is a G̃-submodule
of C∞

(γ,γ̄)(S
pT ∗C) . Suppose that the G̃-module M does not vanish and let w be a

highest vector of this module; then we may write w = Dp−1u = σ̃′p+1df , where f

and u are highest vectors of the G-module Cγ and the G̃-module C(γ,γ̄)(Sp−1T ∗C),
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respectively. The equivalence of assertions (ii) and (iii) is a direct consequence of
this last observation and the fact that σ̃′p+1 is a monomorphism. ¤

For 1 ≤ k ≤ n, according to (3.10) we see that the elements znk and z̄1k

of the G-module C∞(G) are vectors of weight λk and −λk, respectively. Thus
if r1, . . . , rn, s1, . . . , sn ≥ 0 are given integers, the element

qr1,...,rn,s1,...,sn = zr1
n1 · · · zrn

nnz̄s1
11 · · · z̄sn

1n

of C∞(G) is of weight (r1 − s1)λ1 + · · ·+ (rn − sn)λn.

For 1 ≤ j < k ≤ n, we consider the elements

θjk = ωjk − i$jk, θ̄jk = ωjk + i$jk

of AC; then the set of 1-forms

{ωl, θjk, θ̄jk},
with 1 ≤ l ≤ n − 1 and 1 ≤ j < k ≤ n, is a basis of the G-module AC.
For 1 ≤ l ≤ n − 1, the element ωl is a vector of AC of weight 0; on the other
hand, for 1 ≤ j < k ≤ n, the elements θjk and θ̄jk are vectors of AC of weight
λj − λk and λk − λj , respectively.

In this section, we shall use the results given by Lemma 4.2 with r = s ≥ 1.
We also remark that

r($1 + $n−1) = r(λ1 − λn).

The following result is a direct consequence of Lemma 4.2, with r = s.

Lemma 5.2. Let r ≥ 1 and r1, . . . , rn, s1, . . . , sn ≥ 0 be given integers; suppose
that r1 + · · ·+ rn = s1 + · · ·+ sn = r. If the element q = qr1,...,rn,s1,...,sn of C∞(G)
is of weight r(λ1−λn), then r1 = sn = r and the function q is equal to (zn1z̄1n)r.

We now give an alternate proof of Lemma 5.2. Let a1, . . . , an be elements of C
satisfying a1 + · · · + an = 0, and consider the element ξ =

∑n
j=1 ajEjj of the

Cartan subalgebra h. Then we have

π′(ξ)q = (r1a1 + · · ·+ rnan − s1a1 − · · · − snan)q

=
(
(r1 − rn − s1 + sn)a1 + · · ·+ (rn−1 − rn − sn−1 + sn)an−1

)
q.

If the function q is of weight r(λ1 − λn), we know that

π′(ξ)q = r(2a1 + a2 + · · ·+ an−1)q.
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Since a1, . . . , an−1 may be arbitrary elements of C, we deduce the relations

(5.3) r1 − rn − s1 + sn = 2r, rj − rn − sj + sn = r,

for 2 ≤ j ≤ n− 1. By considering the sum of all the equalities (5.3), we see that

r1 + · · ·+ rn−1 − (s1 + · · ·+ sn−1)− (n− 1)(rn − sn) = nr.

As we supposed that r1 + · · ·+ rn = s1 + · · ·+ sn = r, we obtain

sn = rn + r.

We deduce that rn = 0 and sn = r. This last equality implies that sj = 0,
for 1 ≤ j ≤ n− 1. The first equation of the system (5.3) tells us that r1 = r and
hence also that rj = 0, for 1 ≤ j ≤ n− 1.

By the methods which we just have used to prove Lemma 5.2 and by exam-
ining the action of the Cartan subalgebra h on the appropriate weight vectors
of C∞(T ∗C), we are also able to demonstrate the following lemma:

Lemma 5.3. Let r ≥ 1, r1, . . . , rn, s1, . . . , sn ≥ 0 be given integers; suppose that
r1 + · · ·+ rn = s1 + · · ·+ sn = r. Let q be the function qr1,...,rn,s1,...,sn and ϕ be a
1-form on G equal to one of of the forms θjk, with 1 ≤ j < k ≤ n.

(i) The vector qϕ of C∞(T ∗C) is of weight r(λ1 − λn) if and only if one of the
following three assertions holds:

(a) the function q is equal to znjz
r−1
n1 z̄r

1n and the 1-form ϕ is equal to θ1j,
where 2 ≤ j ≤ n.

(b) the function q is equal to zr
n1z̄1kz̄

r−1
1n and the 1-form ϕ is equal to θkn,

where 1 ≤ k ≤ n− 1.

(c) the function q is equal to znj z̄1j(zn1z̄1n)r−1 and the 1-form ϕ is equal
to θ1n, where 2 ≤ j ≤ n− 1.

(ii) For 1 ≤ j < k ≤ n, the element qθ̄jk of C∞(T ∗C) is a weight vector whose
weight is not equal to r(λ1 − λn).

From Lemmas 4.2 and 5.3, we deduce the following result:

Proposition 5.4. Let γ be the element r($1 + $n−1) of Γ, where r is a given
integer ≥ 1. The 1-forms

{znjz
r−1
n1 z̄r

1nθ1j , z
r
n1z̄1kz̄

r−1
1n θkn, znsz̄1s(zn1z̄1n)r−1θ1n, (zn1z̄1n)rωl}
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on G, with 2 ≤ j ≤ n, 1 ≤ k ≤ n− 1, 2 ≤ s ≤ n− 1 and 1 ≤ l ≤ n− 1, generate
the weight space Wγ of the G-submodule Cγ · AC of C∞

γ (T ∗C) corresponding to the
weight γ.

Lemma 5.5. Let γ be the element r($1 + $n−1) of Γ, where r is an integer ≥ 2.
Let u be a highest weight vector of the G̃-module C∞

(γ,γ)(T
∗
C) and c be an element

of C satisfying the relation

D1u = cσ̃′d(zn1z̄1n)r.

Then the coefficient c vanishes.

Proof. Throughout this proof, by Cl and Ajk we shall mean the left-invariant
vector fields on G determined by the corresponding elements of g0. We write
f = zn1z̄1n. By means of (3.11), (2.8) and (2.10), we see that

(5.4)
(σ̃′(df r))(C1, C1) = −(σ̃′(df r))(Cn−1, Cn−1) = irf r,

(σ̃′(df r))(Ck, Cl) = 0, (2σ̃′(df r))(Cj , A1j) = −rf r−1znj z̄1n,

for all 2 ≤ j ≤ n − 1 and 1 ≤ k, l ≤ n − 1, with (k, l) 6= (1, 1), (n− 1, n− 1).
Since we know that C∞

(γ,γ)(T
∗
C) is a subspace of Wγ , according to Proposition 5.4

we may write

u = f r
n−1∑

l=1

plωl

+ f r−1

( n∑

j=2

ajznj z̄1nθ1j +
n−1∑

k=1

bkzn1z̄1kθkn +
n−1∑

l=2

clznlz̄1lθ1n

)
,

with pl, aj , bk, cl ∈ C. By (2.2) and (3.11), we obtain

(5.5)
(D1u)(C1, C1) = irp1f

r, (D1u)(Cn−1, Cn−1) = irpn−1f
r,

(2D1u)(C1, Cl) = irplf
r,

for 2 ≤ l ≤ n− 2. According to (5.4) and (5.5) and our hypothesis, we see that

p1 = −pn−1 = c, pl = 0,

for 2 ≤ l ≤ n− 2. By (2.2), (3.11) and the preceding equalities, we see that

(2D1u)(Cj , A1j) = (iaj + δj,n−1r(c + iaj))f r−1znj z̄1n,

(2D1u)(C1, A12) = (i(r − 2)a2 − rc)f r−1zn2z̄1n,
(5.6)
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for 2 ≤ j ≤ n− 1. According our hypothesis, from the relations (5.4) and (5.6),
with j = 2, we deduce that

ia2 + δ3nr(c + ia2) = −rc;

on the other hand, by (2.9), with j = 1, and (5.6), we also have

ia2(r − 2) = rc.

Hence we obtain

ia2(r − 1)(1 + 2δ3n) = 0.

Therefore since r ≥ 2, the coefficient a2 vanishes, and so does c. ¤

Lemma 5.6. We have

σ̃′dB′ ⊂ D1C∞(T ∗C).

Proof. By Lemma 4.2, with r = s = 1, the function f = zn1z̄1n is a highest weight
vector of the irreducible G̃-module B′. According to Lemma 3.2, the 2-form σ̃′df
belongs to D1C∞(T ∗C), and so we obtain the desired inclusion. ¤

Lemma 5.7. Let r ≥ 2 be a given integer and let γ be the element r($1 +$n−1)
of Γ. Then we have

(5.7) D1C∞
γ (T ∗C) ∩ σ̃′dC∞

γ (X) = {0}.

Proof. According to Lemma 4.2, the function (zn1z̄1n)r a highest weight vector
of the irreducible G-module Cγ . The lemma is a direct consequence of Proposi-
tion 5.1, with p = 2, and Lemma 5.5. ¤

6. Isospectral deformations of the special unitary group

We consider the subset

Γ′ = { γr1,...,rn−1 | r1, . . . , rn−1 ∈ N, with r1 + · · ·+ rn−1 > 0 }
of Γ and its subset

Γ1 = { γr1,...,rn−1 ∈ Γ′ | r1rn−1 = 0 }.
Let Γ2 be the subset of Γ′ defined by

Γ2 = { γr1,...,rn−1 ∈ Γ′ | rn−2 = rn−1 = 0 or r1 = r2 = 0 }
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when n ≥ 4 and by

Γ2 = { γr1,r2 ∈ Γ′ | r1, r2 > 0 and r1 6= r2 }

when n = 3. By (4.3), if γ ∈ Γ belongs to Γ1 (resp. to Γ2), then so does γ̄.
For j = 1, 2, the G-submodule Fj of C∞(G) equal to the closure of the subspace

⊕
γ∈Γj

C∞
γ (G)

in C∞(G) is infinite-dimensional. By (4.6), we know that Fj is invariant un-
der conjugation; hence the G-module Fj is equal to the complexification of the
infinite-dimensional G-submodule

Fj,R = { f ∈ Fj | f = f̄ }

of C∞
R (G).

In this section, we suppose that the symmetric space X is the group G =
SU(n), with n ≥ 3. Here we shall consider C∞(G) and C∞(SpT ∗C) endowed with
their structures of G-module arising from the left action of G on X. Most of this
section is devoted to the proof of the following two propositions.

Proposition 6.1. Let X be the symmetric space SU(n), with n ≥ 3. Let p ≥ 2
be a given integer.

(i) If p is an even integer, the relation (5.1) holds for all elements γ of Γ1.

(ii) If either n ≥ 4 or n = 3 and p is an odd integer ≥ 5, the relation (5.1)
holds for all elements γ of Γ2.

Proposition 6.2. Let X be the symmetric space SU(n), with n ≥ 3. We have

D0C
∞(T ) ∩ σ̃′dC∞

R (X) = σ̃′dB′R.

We consider the orthogonal complement F of the finite-dimensional subspace
F ′ = R(G)⊕B′R of C∞

R (G). According to Lemma 2.3, we know that the mapping

Pσ′ = P σ̃′d : C∞
R (X) → I(X)

is well-defined. Proposition 6.2 tells us that the kernel of Pσ′ is the finite-
dimensional space F ′ and that the mapping Pσ′ : F → I(X) is injective.

From Proposition 6.1, we deduce
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Proposition 6.3. Let X be the symmetric space SU(n), with n ≥ 3. Let p ≥ 2
be a given integer.

(i) If p is an even integer, we have

Dp−1C∞(Sp−1T ∗) ∩ σ̃′p+1dF1,R = {0}.

(ii) If either n ≥ 4 or n = 3 and p is an odd integer ≥ 5, we have

Dp−1C∞(Sp−1T ∗) ∩ σ̃′p+1dF2,R = {0}.

For the proof of Proposition 6.3,(ii), with n = 3, we shall require the following
lemma:

Lemma 6.4. Let p ≥ 5 be a given odd integer and let a, b > 0 be given real
numbers satisfying a 6= b. Let {ε1, . . . , εp+1} be the standard basis of Rp+1. The
vectors {ξ1, . . . , ξp+1} of Rp+1 given by

ξ1 = pε1 − 3εp+1, ξp = pεp − 3εp+1,

ξk = (k − 1)bεk−1 + (p− k + 1)aεk + (−1)k(a− b)εp+1,

for 2 ≤ k ≤ p, form a basis of Rp+1.

Proof. Let c1, . . . , cp+1 be real numbers and consider the vector

ξ = c1ξ1 + · · ·+ cp+1ξp+1

of Rp+1. Then we have ξ = v1ε1+· · ·+vp+1εp+1, where the coefficients v1, . . . , vp+1

are given by

v1 = pc1 + bc2, vk = (p− k + 1)ack + kbck+1, vp = acp + pcp+1,

vp+1 = −3(c1 + cp+1) + (a− b)
p∑

k=2

(−1)kck,

for 2 ≤ k ≤ p. We now suppose that ξ vanishes. From the previous formulas, we
deduce that

(6.1) bk−1ck = (−1)k−1

(
p

k − 1

)
ak−2c1, bp−1cp+1 = −ap−1c1,

for 2 ≤ k ≤ p; then we obtain

(6.2) bp−1vp+1 =
(

3(ap−1 − bp−1)− (a− b)
p∑

k=2

(
p

k − 1

)
ak−2bp−k

)
c1.
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Since p ≥ 5, we know that the integer

uk = 3−
(

p

k

)

is negative, for 1 ≤ k ≤ p; from the equality (6.2), it follows that

abpvp+1 = c1(a− b)
p−1∑

k=1

uka
p−kbk.

Our hypothesis says that vp+1 vanishes and so the previous equation implies
that c1 also vanishes. According to the formulas (6.1), it follows that ck = 0,
for 2 ≤ k ≤ p + 1. Thus the vectors {ξ1, . . . , ξp+1} are linearly independent. ¤

Throughout this section, by Cj , C̃l and Akl we shall always mean the left-
invariant vector fields on G determined by the corresponding elements of g0.

Let r1, . . . , rn−1 ≥ 0 be given integers which are not all zero, and let γ be the
element γr1,...,rn−1 of Γ. We set

dk =
1
n

( n−1∑

j=k

(n− j)rj −
k−1∑

j=1

jrj

)
,

for 1 ≤ k ≤ n. We note that the sum dn−1 + dn is always negative (see [5, §8]).

Let f be a highest weight vector of the G-module C∞
γ (G). Then by (4.2)

and (4.5), we have

(6.3) (Clf)(e0) = −irlf(e0), (C̃jf)(e0) = −idjf(e0),

for all 1 ≤ l ≤ n− 1 and 1 ≤ j ≤ n.

Lemma 6.5. Let p ≥ 2 be a given integer. Let r1, . . . , rn−1 ≥ 0 be given integers
which are not all zero and let γ be the element γr1,...,rn−1 of Γ′. Suppose that one
of the following conditions holds:

(i) p is an even integer and rn−1 = 0;

(ii) n ≥ 4 and rn−2 = rn−1 = 0;

(iii) p = 2 and (r1, . . . , rn−1) 6= (r, 0, . . . , 0, r), with r ≥ 1;

(iv) n is equal to 3 and p is an odd integer ≥ 5, and r1, r2 are distinct positive
integers.



Infinitesimal Isospectral Deformations of Symmetric Spaces... 947

Let f be a highest weight vector of the G-module C∞
γ (G). Let u be an element of

the subspace Cγ ·Sp−1AC of C∞(Sp−1T ∗C) and c be an element of C satisfying the
relation

(6.4) pDp−1u = cσ̃′p+1(df).

Then the coefficient c vanishes.

Proof. There exists an element a ∈ G such that f(a) 6= 0; we denote by Ra

the right action of the element a on G. Replacing f by R∗
af , if necessary, we

may assume that f(e0) 6= 0. We choose a basis {f1, . . . , fq} of Cγ , with f1 = f

and fs(e0) = 0, for all 2 ≤ s ≤ q. Then the element u of C∞(Sp−1T ∗C) can be
written in the form

u =
q∑

s=1

fsus,

where u1, . . . , uq are elements of Sp−1AC. From (6.4) and (2.2), we obtain the
relation

(6.5)
q∑

s=1

dfs · us = cσ̃′p+1(df).

We first suppose that condition (i) holds. For 1 ≤ s ≤ q, by Lemma 5.1,(i) of [5],
we know that π(An−1,n)fs = 0. Then by (4.5), we know that (An−1,nfs)(e0) = 0;
thus the relation

(6.6) (dfs · us)(An−1,n, . . . , An−1,n) = 0

holds at e0. According to (2.6) and (6.3), the equality

(6.7) σ̃′p+1(df)(An−1,n, . . . , An−1,n) = −i(dn−1 + dn)f

holds at e0. As we remarked above, the number dn−1 + dn is negative. Therefore
the equalities (6.5)–(6.7) imply that the coefficient c vanishes. Next, we suppose
that condition (ii) holds. For 1 ≤ s ≤ q, by (6.3) we know that

(Cn−2fs)(e0) = (Cn−1fs)(e0) = 0;

thus the relation

(6.8) (dfs · us)(Cn−2, Cn−1, . . . , Cn−1) = 0

holds at e0. According to (2.5) and (6.3), the equality

(6.9) σ̃′p+1(df)(Cn−2, Cn−1, . . . , Cn−1) = idn−1f
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holds at e0. Under our hypotheses, we have

dn−1 = −
n−3∑

j=1

jrj ,

and so the number dn−1 is negative. Therefore the equalities (6.5), (6.8) and (6.9)
imply that the coefficient c vanishes. Next, we suppose that condition (iii) holds.
We may write

u1 =
n−1∑

j=1

ajωj + u′,

where aj ∈ C and u′ is an element ofAC satisfying u′(Cj) = 0, for all 1 ≤ j ≤ n−1.
Then by (6.3), for all 1 ≤ j, k ≤ n− 1 and 2 ≤ s ≤ q, the equalities

(df1 · u1)(Cj , Ck) = −i(ajrk + akrj)f, (dfs · us)(Cj , Ck) = 0

hold at the point e0 ∈ G. By (2.3)–(2.5) and (6.3), we see that

σ̃′3(df)(Cj , Ck)(e0) = 0,

for all 1 ≤ j, k ≤ n− 1, whenever k ≥ j + 2, and that the equalities

σ̃′3(df)(Cj , Cj) = −i(dj + dj+1)f, σ̃′3(df)(Ck, Ck+1) = idk+1f

hold at e0, for all 1 ≤ j ≤ n − 1 and 1 ≤ k ≤ n − 2. Since f(e0) 6= 0, the
integers r1, . . . , rn−1 and the complex numbers a1, . . . , an−1 satisfy the hypotheses
of Proposition 8.1 of [5]. Now Proposition 8.1,(i) of [5] gives us the vanishing of
the constant c. Finally, we suppose that condition (iv) holds. We may write

u1 =
p−1∑

k=0

ak

k! (p− k − 1)!
ωk

1 · ωp−k−1
2 + u′,

where a0, . . . , ap−1 ∈ C and u′ is an element of Sp−1AC satisfying

u′(C1, . . . , C1, C2, . . . , C2) = 0,

if the vector field C1 appears k times in the left-hand side of the last equation,
with 0 ≤ k ≤ p− 1. If ϕ is an element of T ∗e0

, we easily verify that

(ϕ · u1)(C1, . . . , C1) = pap−1 ϕ(C1), (ϕ · u1)(C2, . . . , C2) = pa0 ϕ(C2),

(ϕ · u1)(C1, . . . , C1, C2, . . . , C2) = kak−1 ϕ(C1) + (p− k)ak ϕ(C2),
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if the vector field C1 appears k times in the left-hand side of the last equation,
with 1 ≤ k ≤ p− 1. Also according to (2.4) and (2.5), for j = 1, 2, the equalities

σ̃′p+1(ϕ)(Cj , . . . , Cj) = ϕ(Cj),

σ̃′p+1(ϕ)(C1, . . . , C1, C2, . . . , C2) =
(−1)k

3
ϕ(C2 − C1)

hold at e0, if the vector field C1 appears k times in the left-hand side of the last
equation, with 1 ≤ k ≤ p− 1. For 2 ≤ s ≤ q, by (6.3) the equality

(dfs · us)(C1, . . . , C1, C2, . . . , C2) = 0

holds at the point e0, if the vector field C1 appears k times in the left-hand side
of this equation, with 0 ≤ k ≤ p. Since f(e0) is non-zero, from the relations (6.3)
and (6.5) and the preceding equalities we obtain

pap−1r1 = cr1, pa0r2 = cr2,

(p− k)r1ap−k−1 + kr2ap−k = (−1)k+1 c′(r2 − r1),

for 1 ≤ k ≤ p − 1, where c′ = c/3. If {ξ1, . . . , ξp+1} are the vectors of Rp+1

associated in Lemma 6.4 with the integer p and the positive real numbers a = r1

and b = r2, the previous equalities say that the vector v = (ap−1, . . . , a1, a0, c
′)

of Rp+1 is orthogonal to ξk (with respect to the standard Euclidean scalar product
on Rp+1), for all 1 ≤ k ≤ p + 1. Since the integers r1 and r2 are distinct positive
integers, by Lemma 6.4 the vector v vanishes and hence so does c. ¤

Let p ≥ 2 be a given integer. We remind the reader that the weight space
C(γ,γ̄)(Sp−1T ∗C) is a subspace of Cγ · Sp−1AC. We now begin our proof of Propo-
sition 6.1. Let r1, . . . , rn−1 ≥ 0 be given integers, which are not all zero, and γ

be the element γr1,...,rn−1 of Γ′. If condition (i), (ii) or (iv) of Lemma 6.5 holds,
the equality (5.1) for γ is a consequence of Proposition 5.1 and Lemma 6.5; by
means of the relation (4.6), we see that the equality (5.1) also holds for γ̄. Thus
by (4.3), we know that (5.1) is true when p is even and r1 = 0, or when n ≥ 4
and r1 = r2 = 0. This completes the proof of Proposition 6.1.

We now turn to the proof of Proposition 6.2. By formula (1.2), to prove this
proposition it suffices to show that

D1C∞(T ∗C) ∩ σ̃′dC∞(X) = σ̃′dB′.
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Since the differential operators D1 and σ̃′d are homogeneous, according to Propo-
sition 2.1 of [3] and Lemma 5.6 the preceding equality holds if and only if the
relation (5.7) holds for all γ ∈ Γ, with γ 6= γ1,0,...,0,1. If γ ∈ Γ is equal to 0, we
have dC∞

γ (X) = {0}, and so the equality (5.7) holds. Let r1, . . . , rn−1 ≥ 0 be
given integers, which are not all zero and satisfy

(r1, . . . , rn−1) 6= (1, 0, . . . , 0, 1),

and consider the element γ = γr1,...,rn−1 of Γ′. When γ 6= γr,0,...,0,r, with r ≥ 2,
the relation (5.7) is a direct consequence of Proposition 5.1, with p = 2, and
Lemma 6.5,(iii). When γ = γr,0,...,0,r, with r ≥ 2, the equality (5.7) is given by
Lemma 5.7. Therefore the equality (5.7) holds for all γ ∈ Γ, with γ 6= γ1,0,...,0,1,
and so we have completed the proof of Proposition 6.2.

When n = 3, according to Lemma 2.2, we have the inclusion

(6.10) σ̃′4dC∞
R (X) ⊂ D2C∞(T ∗).

Therefore when n = p = 3, if γ is an arbitrary element of Γ′, the relation (5.1)
does not hold, and the assertion of Lemma 6.5 is not true.

7. The reduced unitary group

The center of G = SU(n) is the cyclic subgroup S of order n equal to

{ e2ikπ/nIn | 0 ≤ k ≤ n− 1 }.

If E is a G-module, we denote by ES the G-submodule of E consisting of all
S-invariant elements of E. Let Γ̌ be the subset of Γ consisting of all elements
γr1,...,rn−1 of Γ, where r1, . . . , rn−1 are non-negative integers satisfying the relation

(7.1) r1 + 2r2 + · · ·+ (n− 1)rn−1 ≡ 0 mod n.

If γ is an element of Γ, from Lemma 5.1,(ii) of [5] we deduce that C∞
γ (G) is a

G-submodule of C∞(G)S if and only if γ belongs to Γ̌.

The group Ǧ = G/S is a symmetric space of compact type, which is the
reduced space of the symmetric space G and which we call the reduced unitary
group; it is isomorphic to the adjoint group of su(n) (see §9, Chapter VII of [8]).
In this section, we suppose that the symmetric space X is the group Ǧ.
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We consider the natural projection π : G → Ǧ. If γ is an element of Γ, we
know that the isomorphism π∗ : C∞(Ǧ) → C∞(G)S induces an isomorphism of
G-modules

π∗ : C∞
γ (Ǧ) → C∞

γ (G)S

of G-modules; according to Lemma 5.1,(ii) of [5], we know that

C∞
γ (G)S = C∞

γ (G)

if and only if γ belongs to Γ̌.

We consider the element γ = $1 + $n−1 of Γ̌. We just saw that

B′S = B′.
Therefore B̌ = C∞

γ (Ǧ) is isomorphic to B′ and invariant under conjugation; thus
B̌ is equal to the complexification of the subspace

B̌R = { f ∈ B̌ | f = f̄ }
of C∞

R (Ǧ) and the mapping π induces an isomorphism π∗ : B̌R → B′R.

For j = 1, 2, we consider the subset Γ̌j = Γj ∩ Γ̌ of Γ; let F̌j denote the
G-submodule of C∞(Ǧ) equal to the closure of the subspace

⊕
γ∈Γ̌j

C∞
γ (Ǧ)

in C∞(Ǧ). If f is an element of C∞(Ǧ), then f belongs to F̌j if and only
if π∗f ∈ Fj ; thus the G-module F̌j is equal to the complexification of the infinite-
dimensional G-submodule

F̌j,R = { f ∈ F̌j | f = f̄ }
of C∞

R (Ǧ).

For p ≥ 2, the G-invariant symmetric p-form σ′p on G induces a G-invariant
symmetric p-form σ′′p on Ǧ satisfying

π∗σ′′p = σ′p.

We endow the symmetric space X = Ǧ with the metric σ′′2 . For p ≥ 3, we
consider the monomorphism of vector bundles

σ̃′′p : T ∗ → Sp−1T ∗
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induced by the symmetric p-form σ′′p . We write σ′′ = σ′′3 and σ̃′′ = σ̃′′3 . If ϕ is a
1-form on Ǧ, we have

(7.2) π∗σ̃′′p(ϕ) = σ̃′p(π
∗ϕ).

According to Lemma 1.1 of [4] and Lemma 2.3, for all p ≥ 2, we see that a
1-form ϕ on Ǧ satisfies the Guillemin condition if and only if the symmetric
p-form σ̃′′p+1(ϕ) on Ǧ satisfies the Guillemin condition.

If p ≥ 2 is a given integer and γ is an element of Γ, we consider the relation

(7.3) Dp−1C∞
γ (Sp−1T ∗C) ∩ σ̃′′p+1dC∞

γ (X) = {0}.

By Proposition 6.1 and the relation (7.2), we obtain the following result:

Proposition 7.1. Let X be the symmetric space SU(n)/S, with n ≥ 3. Let p ≥ 2
be a given integer.

(i) If p is an even integer, the relation (7.3) holds for all elements γ of Γ̌1.

(ii) If either n ≥ 4 or n = 3 and p is an odd integer ≥ 5, the relation (7.3)
holds for all elements γ of Γ̌2.

From Proposition 7.1, we deduce

Proposition 7.2. Let X be the symmetric space SU(n)/S, with n ≥ 3. Let p ≥ 2
be a given integer.

(i) If p is an even integer, we have

Dp−1C∞(Sp−1T ∗) ∩ σ̃′′p+1dF̌1,R = {0}.

(ii) If either n ≥ 4 or n = 3 and p is an odd integer ≥ 5, we have

Dp−1C∞(Sp−1T ∗) ∩ σ̃′′p+1dF̌2,R = {0}.

From Proposition 6.2 and the relation (7.2), we obtain the following result:

Proposition 7.3. Let X be the symmetric space SU(n)/S, with n ≥ 3. We have

D0C
∞(T ) ∩ σ̃′′dC∞

R (X) = σ̃′′dB̌R.

If P denotes the orthogonal projection corresponding to the decomposition
(1.5) on the space Y , according to Lemma 1.1 of [4] and Lemma 2.3 the mapping

(7.4) Pσ′′ = Pσ̃′′d : C∞
R (X) → I(X)
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is well-defined. We denote by F̌ the orthogonal complement of the finite-di-
mensional space F̌ ′ = R(Ǧ) ⊕ B̌R in C∞

R (Ǧ). From Proposition 1.2 of [4] and
Proposition 7.3, we obtain:

Theorem 7.4. The reduced unitary group X = Ǧ = SU(n)/S is not rigid in
the sense of Guillemin. If f is a non-zero element of F̌ , then the symmetric
2-form σ̃′′(df) on X satisfies the Guillemin condition and is not a Lie derivative
of the metric. Moreover, the kernel of the mapping (7.4) is the finite-dimensional
space R(X)⊕ B̌R.

According to the observations made in §1, we see that Proposition 7.2 implies
that the equality (1.6), with p ≥ 2, does not hold when n ≥ 4 or p is even. Thus
we have proved the following result:

Theorem 7.5. Let X be the symmetric space SU(n)/S, with n ≥ 3, and let p ≥ 2
be a given integer. The equality (1.6) does not hold whenever (n, p) 6= (3, 3). If
f is a non-zero real-valued function on X which belongs to F̌1,R (resp. to F̌2,R)
and p is an even integer (resp. n ≥ 4 or n = 3 and p is an odd integer ≥ 5), then
the symmetric p-form σ̃′′p+1(df) on X satisfies the Guillemin condition and does
not belong to the space Dp−1C∞(Sp−1T ∗).

CHAPTER II: The symmetric space SU(2n)/Sp(n)

8. Branching laws and the decomposition of a space of tensors

If V is a complex finite-dimensional vector space, we denote by
⊗kV , SlV

and
∧jV the k-th tensor product, the l-th symmetric product and the j-th exte-

rior product of V , respectively; we shall identify SkV ∗ and
∧kV ∗ with subspaces

of
⊗kV ∗. Let n ≥ 3 be a given integer and let U be a complex vector space

of dimension 2n endowed with a non-degenerate skew-symmetric bilinear form q.
We consider the group SL(U) consisting of all automorphisms of U whose de-
terminants are equal to 1 and its subgroup Sp(U) consisting of those elements
of SL(U) which preserve the bilinear form q.

Let B(U) be the subspace of
∧2U∗ ⊗ ∧2U∗ consisting of those elements v

of
∧2U∗ ⊗∧2U∗ which satisfy the first Bianchi identity

v(ξ1, ξ2, ξ3, ξ4) + v(ξ2, ξ3, ξ1, ξ4) + v(ξ3, ξ1, ξ2, ξ4) = 0,
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for all ξ1, ξ2, ξ3, ξ4 ∈ U ; it is well-known that B(U) is an irreducible SL(U)-
submodule of S2(

∧2U∗). The natural monomorphism
∧pU∗ → ∧2U∗ ⊗∧p−2U∗

allows us to view
∧pU∗ as an irreducible SL(U)-module of

∧2U∗ ⊗ ∧p−2U∗.
We view

∧4U∗ is an irreducible SL(U)-submodule of S2(
∧2U∗). In fact, it is

well-known that S2(
∧2U∗) admits the decomposition

(8.1) S2(
∧2U∗) = B ⊕∧4U∗.

Let 1 ≤ k ≤ n be a given integer. Let S2k be the group of permutations
of {1, 2, . . . , 2k}; we denote by sgn τ the signature of an element τ of S2k. The
element qk of

∧2kU∗, which is the k-th power of q, satisfies

(8.2) qk(ξ1, . . . , ξ2k) =
1
2k

∑

τ∈S2k

sgn τ ·
k∏

j=1

q(ξτ(2j−1), ξτ(2j)),

for all ξ1, . . . , ξ2k ∈ U .

If q[ : U → U∗ is the natural isomorphism determined by q and given by

〈η, q[(ξ)〉 = q(ξ, η),

for all ξ, η ∈ U , we define a mapping τ :
⊗2U∗ → C by

τ(q[(ξ1)⊗ q[(ξ2)) = q(ξ1, ξ2),

for all ξ1, ξ2 ∈ U . Let {v1, . . . , vn, w1, . . . , wn} be a basis of U satisfying

q(vj , vk) = q(wj , wk) = 0, q(vj , wk) = δjk,

for 1 ≤ j, k ≤ n; we easily see that

τ(β) =
n∑

j=1

(β(vj , wj)− β(wj , vj)),

for all β ∈ ⊗2U∗; it follows that τ(q) = 2n.

The restriction

τ :
∧pU∗ → ∧p−2U∗

of the morphism

(8.3) τ ⊗ id :
∧2U∗ ⊗∧p−2U∗ → ∧p−2U∗
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to
∧pU∗ is an epimorphism of Sp(U)-modules; for 1 ≤ p ≤ n, its kernel

∧p
0U∗

is an irreducible Sp(U)-module (see [2, Theorem 17.5]). The one-dimensional
subspace {q} of

∧2U∗ generated by q is a trivial Sp(U)-module and we have the
decomposition

(8.4)
∧2U∗ =

∧2
0U∗ ⊕ {q}

of
∧2U∗ into irreducible Sp(U)-modules. We also see that

∧4
0U∗ is an irreducible

Sp(U)-submodule of S2(
∧2

0U∗).

We denote by τ1 the morphism (8.3) with p = 4 and we consider the morphism

φ :
∧2U∗ → S2(

∧2U∗)

of Sp(U)-modules defined by

(φu)(ξ1, ξ2, ξ3, ξ4) = n
(
q(ξ1, ξ4)u(ξ2, ξ3)− q(ξ2, ξ4)u(ξ1, ξ3)

− q(ξ1, ξ3)u(ξ2, ξ4) + q(ξ2, ξ3)u(ξ1, ξ4)
)

+ 2
(
q(ξ1, ξ2)u(ξ3, ξ4) + q(ξ3, ξ4)u(ξ1, ξ2)

)
,

for all u ∈ ∧2U∗ and ξ1, ξ2, ξ3, ξ4 ∈ U . We easily verify that

φ(u)(vk, wk, vk, wk) = (4− 2n)q(vk, wk)u(vk, wk),(8.5)

τ1φ(u) = 2τ(u) · q,(8.6)

for all u ∈ ∧2U∗ and 1 ≤ k ≤ n. From (8.6), we deduce that

φ(
∧2

0U∗) ⊂ S2(
∧2

0U∗).

Let {α1, . . . , αn, β1, . . . , βn} be the basis of U∗ dual to the basis of U considered
above. Then for 1 ≤ k ≤ n, by (8.5) we see that φ(q) is non-zero and that

u = αk ∧ βk − (1/2n)q

is an element of
∧2

0U∗ which satisfies φ(u)(vk, wk, vk, wk) 6= 0; thus φ(
∧2

0U∗) is
an irreducible Sp(U)-submodule of S2(

∧2
0U∗).

The restriction

(8.7) τ1 : B(U) → ∧2U∗

of the morphism τ1 to B(U) is an epimorphism of Sp(U)-modules. Indeed, for
1 ≤ k ≤ n, we see that uk = (αk ∧ βk) ⊗ (αk ∧ βk) is an element of B(U)
satisfying τ1(uk) = αk ∧ βk; therefore the vector q =

∑n
j=1 αj ∧ βj and the

element αk ∧ βk − (1/2n)q of
∧2

0U∗ belong to the image of the mapping (8.7).
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From the decomposition (8.4) and the irreducibility of its summands, we deduce
that the morphism (8.7) is surjective. Thus the sequence

(8.8) 0 → S2(
∧2

0U∗) → S2(
∧2U∗) τ1−−→ ∧2U∗ → 0

is exact. We denote by τ2 and τ0 the restrictions of the morphisms

id⊗ τ :
∧2U∗ ⊗∧2U∗ → ∧2U∗, id⊗ τ ⊗ id : U∗ ⊗⊗2U∗ ⊗ U∗ → U∗ ⊗ U∗

of Sp(U)-modules to B(U), respectively; we verify that

τ1(u) = τ2(u) = −2τ0(u),

for all u ∈ B(U). It follows that the kernel B0(U) of the morphism (8.7) is an
irreducible Sp(U)-module whose dimension is equal to

dimB0(U) = dim B(U)− dim
∧2U∗ =

1
3

n(n + 1)(2n + 3)(2n− 1)

(see [2, Theorem 17.11]).

We know that
∧4

0U∗ vanishes when n = 3 and is an irreducible Sp(U)-module
when n ≥ 4. The one-dimensional subspace {φ(q)} of S2(

∧2
0U∗) generated

by φ(q) is a trivial Sp(U)-submodule. According to the decomposition (8.1)
and the exactness of the sequence (8.8), we see that the sum of the dimensions
of the Sp(U)-modules {φ(q)}, ∧2

0U∗,
∧4

0U∗ and B0(U) is equal to the dimen-
sion of S2(

∧2
0U∗). The Sp(U)-modules {φ(q)}, ∧2

0U∗, B0(U) are irreducible and
pairwise non-isomorphic; when n ≥ 4, the irreducible Sp(U)-module

∧4
0U∗ is

not isomorphic to any one of these modules. Thus we obtain the direct sum
decomposition

(8.9) S2(
∧2

0U∗) = {φ(q)} ⊕ φ(
∧2

0U∗)⊕∧4
0U∗ ⊕B0(U)

of S2(
∧2

0U∗) into Sp(n)-submodules.

In this section, we henceforth suppose that U = C2n and that q is the standard
non-degenerate skew-symmetric bilinear form defined by

q(z, w) = 〈z, z′〉 =
n∑

k=1

(zkz
′
n+k − zn+kz

′
k),

where z = (z1, . . . , z2n) and z′ = (z′1, . . . , z
′
2n) are vectors of U = C2n. We

consider the 2n× 2n matrix

Jn =

(
0 In

−In 0

)
,
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where In is the unit matrix of order n. Let G′ be the group SL(2n,C); its
subgroup K ′ = Sp(n,C), which consists of all elements of G′ preserving the
bilinear form q, is the set of fixed points of the automorphism of SL(2n,C)
sending the matrix A into Jn ·(tA)−1 ·J−1

n .

For 1 ≤ k ≤ n, the l-th exterior power
∧kC2n of C2n is an irreducible

G′-module, and we saw above that its K ′-submodule
∧k

0C2n is irreducible.

If E is an G′-module, we denote by EK′
the subspace of E consisting of all the

K ′-invariant elements of E. Then the multiplicity of an irreducible K ′-module F

in the decomposition of E viewed as an K ′-module is equal to dim HomK′(F, E).
Moreover, if F is a G′-module viewed as a K ′-module, the K ′-module F is iso-
morphic to its contragredient module and so we have the equality

(8.10) dim HomK′(F, E) = dim (E ⊗ F )K′
.

Throughout the remainder of this paper, for 1 ≤ j, k ≤ n, we shall denote
by Ejk the element (clr) of M2n determined by clr = δljδrk. We consider the Lie
algebra g = sl(2n,C) of the group G′ and its Cartan subalgebra h, which consists
of all diagonal matrices of g. As in §4, let λj be the linear form on h which sends
the diagonal matrix of h, with a1, . . . , a2n ∈ C as its diagonal entries, into aj . We
write αj = λj − λj+1, for 1 ≤ j ≤ 2n − 1, and take {α1, . . . , α2n−1} as a system
of simple roots of g. If α is the root λj − λk, with 1 ≤ j, k ≤ 2n − 1 and j 6= k,
the root space gα corresponding to α is generated by Ejk; as in §4, we also have
the decomposition (4.1) of g. The corresponding fundamental weights are

$j = λ1 + · · ·+ λj ,

with 1 ≤ j ≤ 2n− 1; we remark that $j is the highest weight of the irreducible
G′-module

∧jCn.

The highest weight of an irreducible G′-module is a linear form

(8.11) $ = a1$1 + · · ·+ an−1$n−1

on h, where a1, . . . , an−1 ≥ 0 are integers. The equivalence class of such an G′-
module is determined by this weight. We identify the dual Γ′ of G′ with the set
of all such linear forms on h.
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Consider the set Γ′0 of all elements $ of Γ′ which can be written in the form

$ =
n−1∑

j=1

cj$2j ,

where c1, . . . , cn−1 are integers. In fact, the linear form (8.11) belongs to Γ′0 if
and only if a2n−1 = 0 and a2j−1 = a2j , for 1 ≤ j ≤ n− 1.

We consider an irreducible G′-module E($) corresponding to $ ∈ Γ′. Let
N0($) be the integer which is equal to 1 if $ belongs to Γ′0 and 0 otherwise;
according to a result due to Cartan (see also [6, p. 550] and Theorem 3 of [9]),
we know that

(8.12) dim E($)K′
= N0($).

A partition π = (π1, . . . , π2n−1) is an (2n− 1)-tuple of integers satisfying

π1 ≥ π2 ≥ · · · ≥ π2n−1 ≥ 0.

We associate with an element $ of Γ′ given by (8.11) the partition

π($) = (π1, . . . , π2n−1),

where

πj = a1 + · · ·+ a2n−j ,

for 1 ≤ j ≤ n− 1; in fact, this partition uniquely determines the element $ of Γ′

and we shall write

E(π($)) = E($).

We denote by P the set of all partitions and by P0 its subset consisting of all
partitions associated with elements of Γ′0.

Let $ be an element of Γ′; Pieri’s formula (see [2, Proposition 15.25,(ii)]) tells
us that the G′-module E($)⊗∧2Cn admits a decomposition

(8.13) E($)⊗∧2Cn =
⊕

η∈Σ($)

E(η)

into irreducible G′-submodules, where Σ($) is a certain subset of P . Each factor
E(η) appears in the sum on the right-hand side of (8.13) with multiplicity 1. We
denote by N($) the cardinality of the subset Σ0($) = Σ($) ∩ P0 of Σ($).
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From the relations (8.10) and (8.12) and the decomposition (8.13), we infer
that the integer

dim HomK′(
∧2Cn, E($)) = dim (E($)⊗∧2Cn)K′

is equal to N($). Therefore the multiplicity M($) of the irreducible K ′-module∧2
0Cn in the decomposition of E($) viewed as a K ′-module is equal to

(8.14) dim HomK′(
∧2

0C
n, E($)) = N($)−N0($).

Thus we have

M($) =





N($)− 1 if $ belongs to Γ′0,

N($) otherwise.

Suppose that $ belongs to Γ′0 and that

$ = c1$2 + c2$4 + · · ·+ cn−1$2n−2,

where c1, . . . , cn−1 ≥ 0 are integers, and that

π($) = (π1, . . . , π2n−2, 0)

is the partition associated with $. For 1 ≤ j ≤ n− 1, consider the sequences

ξj = (ξj
1, . . . , ξ

j
2n−2, 0),

where ξj
2j−1 = ξj

2j = π2j +1 and ξj
2k−1 = ξj

2k = π2k, for 1 ≤ k ≤ n−1, with k 6= j;
we also consider the sequence

ξn = (π1 − 1, . . . , π2n−2 − 1, 0).

According to Pieri’s formula, we easily see that Σ0($) is precisely the set of
all partitions contained in {ξ1, . . . , ξn}. In fact, ξ1 always belongs to Σ0($);
moreover, for 2 ≤ j ≤ n−1, the sequence ξj is an element of Σ0($) if and only if
π2j−2 ≥ π2j−1 + 1 (or equivalently if cj−1 ≥ 1). On the other hand, the sequence
ξn belongs to Σ0($) if and only if π2n−2 ≥ 1 (or equivalently if cn−1 ≥ 1).

We have just proved the second assertion of the following proposition; on the
other hand, its first assertion is a direct consequence of the equalities (8.10)
and (8.12).

Proposition 8.1. Let G′ be the group SL(2n,C) and K ′ be the group Sp(n,C),
with n ≥ 3. Let $ be an element of Γ′. The multiplicity of the trivial K ′-module
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in the decomposition of the G′-module E($), viewed as a K ′-module, is equal to 1
if $ belongs to Γ′0 and to 0 otherwise. If $ is equal to

c1$2 + c2$4 + · · ·+ cn−1$2n−2,

the multiplicity M($) of the K ′-module
∧2

0Cn in the decomposition of the G′-
module E($), viewed as a K ′-module, is equal to the number of non-zero coeffi-
cients cj.

9. The symmetric space SU(2n)/Sp(n)

Let n be a given integer ≥ 3. We consider the 2n× 2n matrix

Jn =

(
0 In

−In 0

)
.

Let G be the group SU(2n) and let K be the subgroup Sp(n) of G, which is
equal to the set of fixed points of the involution s of G sending an element A ∈ G

into Jn ĀJ−1
n . Then (G,K) is a Riemannian symmetric pair. In the Cartan

decomposition

g0 = k0 ⊕ p0

of the Lie algebra g0 of G corresponding to this involution, we know that k0 is
the Lie algebra of K and that the K-submodule p0 is the space of all 2n × 2n

matrices given by

p0 =
{ (

Z1 Z2

Z̄2−Z̄1

) ∣∣∣∣ Z1 ∈ su(n), Z2 ∈ so(n,C)
}

.

We identify g0 with the tangent space of G at the identity element e0 = I2n of G

and consider the Riemannian metric g′ on G defined in §2. For 1 ≤ l ≤ 2n − 1,
the element

Cl = i(Ell − El+1,l+1)

of M2n belongs to g0. For 1 ≤ l ≤ n− 1, we verify that the element

C ′
l = Cl + Cn+l

of g0 belongs to p0; in fact, the vectors {C ′
1, . . . , C

′
n−1} form a basis for a maximal

abelian subspace a0 of p0. For 1 ≤ j ≤ n, we easily see that the element

C̃ ′
j = C̃j + C̃n+j
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of p0 is also given by

C̃ ′
j =

1
n

( n−1∑

k=j

(n− k)C ′
k −

j−1∑

k=1

kC ′
k

)
.

By (2.1), we have

(9.1) g′(C ′
j , C

′
j) = 4, g′(C ′

l , C
′
l+1) = −2, g′(C ′

k, C
′
q) = 0,

for all 1 ≤ j, k, q ≤ n− 1 and 1 ≤ l ≤ n− 2, with q ≥ k + 2.

Let p ≥ 3 be a given integer and ϕ be an element of T ∗G,e0
. According to the

relations (2.3)–(2.6), we easily see that

(9.2) σ̃′p(ϕ)(C ′
j1 , C

′
j2 , . . . , C

′
jp−1

) = 0,

for 1 ≤ j1, j2, . . . , jp−1 ≤ n− 1, with j1 > j2 + 1, and that

(9.3) σ̃′p(ϕ)(C ′
j , . . . , C

′
j) = ϕ(C̃ ′

j) + (−1)p+1ϕ(C̃ ′
j+1),

for all 1 ≤ j ≤ n− 1; moreover, for all 1 ≤ j ≤ n− 2 and 1 ≤ k ≤ p− 1, we have

(9.4) σ̃′p(ϕ)(C ′
j , . . . , C

′
j , C

′
j+1, . . . , C

′
j+1) = (−1)kϕ(C̃ ′

j+1),

if the tangent vector C ′
j appears k times in the left-hand side of this equation.

If B denotes the Killing form of the Lie algebra g0, the restriction of −B

to p0 induces a G-invariant Riemannian metric g0 on the homogeneous space
X = G/K. Endowed with this metric g0, the manifold X is an irreducible
symmetric space of type AII (see §2, Chapter X of [8]). We identify the K-module
p0 with the tangent space of X at the coset x0 of the identity element e0 = I2n

of G.

The restriction q̂p of the G-invariant polynomial Qp on g0 defined in §2 to p0

is K-invariant and therefore gives rise to a G-invariant symmetric p-form σp

on X. It is well-known that the algebra of all K-invariant polynomials on g0 is
generated by the polynomials q̂p, with 2 ≤ p ≤ n, and that these polynomials are
algebraically independent. We know that the metric g0 is equal to the symmetric
2-form 4n · σ2 and that σ3 is up to a constant the unique G-invariant symmetric
3-form on X (see [4, §2] and [6, p. 560]).

Throughout the remainder of this paper, we consider the symmetric space
X = SU(2n)/Sp(n), with n ≥ 3, endowed with the Riemannian metric g = σ2.
We consider the line bundle {g} generated by the section g of S2T ∗.
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For p ≥ 3, we consider the G-equivariant monomorphism

σ̃p : T ∗ → Sp−1T ∗

induced by the symmetric p-form σp. We shall write σ = σ3 and σ̃ = σ̃3.

We consider the vector space U = C2n endowed with the standard non-
degenerate skew-symmetric bilinear form q, the standard basis

{v1, . . . , vn, w1, . . . , wn}

of U and the objects which we associated with U and q in §8. The isomorphism
q[ : U → U∗ induces an isomorphism

q[ :
∧2U → ∧2U∗

of Sp(U)-modules. We shall denote by
∧2

0U the Sp(U)-submodule of
∧2U which

isomorphic to
∧2

0U∗ under this isomorphism. We identify the SL(U)-modules
Hom (U,U) and gl(2n,C) and we consider the monomorphism of Sp(U)-modules

λ :
∧2U → Hom(U,U)

which is the restriction of the isomorphism q[ ⊗ id :
⊗2U → Hom(U,U). Let u

be an element of
∧2U ; we may write

u =
n∑

j,k=1

(ajkvj ∧ vk + bjkwj ∧ wk + cjkvj ∧ wk),

where ajk, bjk, cjk ∈ C satisfy ajk = −akj and bjk = −bkj . We consider the n× n

matrices A = (ajk) and B = (bjk) belonging to so(n,C) and the n × n matrix
C = (cjk). Then in terms of our basis of U , the element λ(u) of Hom (U,U) is
given by the 2n× 2n matrix (

tC 2A

−2B C

)
.

We verify that the trace of λ(u) vanishes if and only if C belongs to sl(n,C); thus∧2
0U is equal to λ−1(sl(2n,C)). Let W be the maximal real subspace λ−1(su(n))

of the complex vector space
∧2

0U . We see that λ(u) belongs to su(2n) if and only
if C ∈ su(n) and B = −Ā. Thus λ induces an isomorphism

λ : W → p0
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of K-modules and the image of
∧2

0U under the monomorphism λ is equal to the
complexification p of p0. We consider the isomorphisms of K-modules

p0 → W, p → ∧2
0U

which are equal to the inverses of the isomorphisms induced by λ. The restriction
to

∧2
0U∗ of the dual of the morphism p → ∧2U is an isomorphism µ :

∧2
0U∗ → p∗

of K-modules; we then consider the isomorphism

µ′ : S2(
∧2

0U∗) → S2T ∗C,x0

of K-modules induced by µ. By means of µ′, the decomposition (8.9) give us
a decomposition of the fiber of the vector bundle S2T ∗C at x0 into irreducible
K-submodules. The fibers at x0 of the G-invariant sub-bundles {g}C and σ̃(T ∗C)
of S2T ∗C are irreducible K-submodules of S2T ∗C,x0

, which are isomorphic to C
and

∧2
0U∗, respectively; the remarks made in §8 concerning the irreducible

Sp(n)-modules appearing in the decomposition (8.9) imply that the equalities

{g}C,x0 = µ′({φ(q)}), σ̃(T ∗C)x0 = µ′(φ(
∧2

0U∗))

hold. Since a K-submodule E0 of S2T ∗C,x0
gives rise to a unique G-invariant

sub-bundle E of S2T ∗C such that Ex0 = E0, we therefore obtain the G-invariant
decomposition

(9.5) S2T ∗C = {g}C ⊕ E1 ⊕ E2 ⊕ σ̃(T ∗C)

of the bundle S2T ∗C, where E1 and E2 are the G-invariant sub-bundles of S2T ∗C
satisfying E1,x0 = µ′(

∧4
0U∗) and E2,x0 = µ′(B0(U)). When n = 3, we know

that E1 = {0}. We denote by Skp the k-th symmetric product of p; since the
K-modules p and p∗ are isomorphic, from the preceding observations and the
remarks made in §8 concerning the irreducible Sp(n)-modules appearing in the
decomposition (8.9), we obtain the following result:

Lemma 9.1. We have

dimHomK(p, S2p) = dim HomK(p, S2T ∗C,x0
) = 1.

The lattice Λ of Rn−1 generated by the basis {πe′j}1≤j≤n−1 of Rn−1 contains
the lattice Λ′ of Rn−1 defined in §2. We consider the mapping

κ′ : Rn−1 → G
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which sends θ = (θ1, . . . , θn−1) ∈ Rn−1 into the diagonal matrix

κ′(θ) = diag
(
eix1 , . . . , eixn , eix1 , . . . , eixn

)

of G, where x1, . . . , xn are given by (2.11). We recall that the image H of the
mapping ι′ : R2n−1 → G is a maximal torus of the group G; the image A of κ′

is a subgroup of H. Clearly, the Lie algebra of A is equal to a0. We denote by
ρ : G → X the natural projection. Two elements a and b of G, which belong to
the image of κ′, have the same image in X under ρ if and only if there exists an
element λ ∈ Λ such that a = bκ′(λ). Thus there is an injective mapping

κ : Rn−1/Λ → X

such that the diagram

Rn−1/Λ′ κ′−−−−→ Gy
yρ

Rn−1/Λ κ−−−−→ X

is commutative. We also denote by κ the mapping ρ ◦ κ′ : Rn−1 → X. The
subgroup A′ = A ∩K of A is equal to κ′(Λ) and the image Z of the mappings
κ is a maximal flat totally geodesic torus of X, which is equal to ρ(A) = A/A′.
Clearly we have κ(0) = ρ(e0) = x0.

We consider the standard coordinate system (θ1, . . . , θn−1) on Rn−1 and endow
this space with the Riemannian metric 2g̃, where g̃ is the metric on Rn−1 defined
in §2. For 1 ≤ j ≤ n − 1, we consider the vector field ξj = ∂/∂θj on Rn−1; the
vector field ζj on Z, which is determined by

(9.6) κ∗(ξj(θ)) = ζj(κ(θ)),

for θ ∈ Rn−1, is invariant under the action of the group A on Z. The vector
field ζ ′j + ζ ′j+n on H is tangent to A; its restriction ζ̂j to A is ρ-projectable and
we have ρ∗ζ̂j = ζj . Since {C ′

1, . . . , C
′
n−1} is a frame for the submanifold A of G,

by (9.1) and (9.6) we see that

(9.7) κ∗g = 2g̃;

hence the mapping κ : Rn−1/Λ → Z is an isometric imbedding and, if f is a
function on X, we obtain the equality

(9.8)
∫

Z
f dZ = 2(n−1)/2√n

∫ π

0
· · ·

∫ π

0
f(κ(θ)) dθ1 . . . dθn−1,
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where θ = (θ1, . . . , θn−1) ∈ Rn−1. Moreover, {ζ1, . . . , ζn−1} is a basis for the space
of parallel vector fields on Z. When we identify Tx0 with p0, by (2.12) we see
that

(9.9) ζj(x0) = C ′
j ,

and so ζ̂j(x0) is equal to the vector ζj(x0) of p0 viewed as an element of g0.

For 1 ≤ j ≤ n, by (9.9) the parallel vector field

ηj =
1
n

( n−1∑

k=j

(n− k)ζk −
j−1∑

k=1

kζk

)

on Z satisfies ηj(x0) = C̃ ′
j ; then we verify that

(9.10) ζj = ηj − ηj+1,

for 1 ≤ j ≤ n− 1, and that

(9.11)
n∑

j=1

ηj = 0.

Let ϕ be an element of T ∗x0
; then there is a unique element ζ ∈ p0 such that

ϕ = g[(ζ). Since we have g′(p0, k0) = 0, the element ρ∗ϕ of T ∗G,e0
is equal to g′[(ζ ′),

where ζ ′ is equal to the vector ζ viewed as an element of g0. If p ≥ 3 is a given
integer, we therefore have the equalities

ϕ(y1) = (ρ∗ϕ)(y′1), σ̃p(ϕ)(y1, . . . , yp−1) = σ̃′p(ρ
∗ϕ)(y′1, . . . , y

′
p−1),

for all y1, . . . , yp−1 ∈ p0, where y′j is equal to the vector yj considered as an
element of g0. Then from the equalities (9.2)–(9.4), we obtain the relation

(9.12) σ̃p(ϕ)(ζj1 , ζj2 , . . . , ζjp−1) = 0,

for 1 ≤ j1, j2, . . . , jp−1 ≤ n− 1, with j1 > j2 + 1, and the relations

(9.13) σ̃p(ϕ)(ζj , . . . , ζj) = ϕ(ηj) + (−1)p+1ϕ(ηj+1),

for all 1 ≤ j ≤ n− 1; moreover, for all 1 ≤ j ≤ n− 2 and 1 ≤ k ≤ p− 1, we have

(9.14) σ̃p(ϕ)(ζj , . . . , ζj , ζj+1, . . . , ζj+1) = (−1)kϕ(ηj+1),

if the vector field ζj appears k times in the left-hand side of this equation. Because
the vector fields ζj are invariant under the action of the group A, the relations
(9.12)–(9.14) hold for all ϕ ∈ C∞(T ∗). Since {ζ1, . . . , ζn−1} is a basis for the
space of parallel vector fields on Z, and since all maximal flat totally geodesic
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tori of X are conjugate under the action of G on X, from the relations (9.10)
and (9.12)–(9.14) we deduce the following result:

Lemma 9.2. Let n, p ≥ 3 be given integers and let X be the symmetric space
SU(2n)/Sp(n). A 1-form ϕ on X satisfies the Guillemin condition if and only if
the symmetric (p− 1)-form σ̃p(ϕ) on X satisfies the Guillemin condition.

According to (9.11), (9.13) and (9.14), we easily see that an arbitrary element
h of the sub-bundle σ̃(T ∗) of S2T ∗ satisfies the relation

(9.15)
n−1∑

j=1

h(ζj , ζj) +
n−2∑

j=1

h(ζj , ζj+1) = 0.

If ϕ is a 1-form on X, since the mapping κ is totally geodesic, by (9.6) and the
definition of the operator D1 we have the equality

(9.16) 2κ∗(D1ϕ)(ζj , ζk) = ξj ·〈ξk, κ
∗ϕ〉+ ξk ·〈ξj , κ

∗ϕ〉

of functions on Rn−1, for 1 ≤ j, k ≤ n− 1.

10. Functions on the symmetric space SU(2n)/Sp(n)

We consider the group G = SU(2n), with n ≥ 3, and its Lie algebra g0. We
also consider the Lie algebra h0 of the maximal torus H of G; the complexification
h of h0 is equal to the Cartan subalgebra of the complexification g of g0 consisting
of all diagonal matrices. We shall consider the objects associated with g in §4
or §8, namely the decomposition (4.1) of g and the fundamental weights $j ,
with 1 ≤ j ≤ 2n− 1. We identify the dual Γ of G with the set of all linear forms

γ = γr1,...,r2n−1 = r1$1 + · · ·+ r2n−1$2n−1,

where r1, . . . , r2n−1 are non-negative integers.

We consider the G-module structure on C∞(G) arising from the left action of G

on itself, the corresponding left regular representation π of G on C∞(G) and the
isotypic component C∞

γ (G) of the G-module C∞(G) corresponding to γ ∈ Γ.

As in §3, we consider the group G as a real submanifold of the complex man-
ifold M2n. We shall consider the left and right action of the group G on the
manifold M2n. The left action of G on M2n induces a morphism Φ from g to the
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Lie algebra of complex vector fields on M2n, which are tangent to the submanifold
G of M2n.

For 1 ≤ j, k ≤ 2n, we denote by zjk the function on the space of matrices M2n

which sends a matrix of M2n into its (j, k)-th entry. For 1 ≤ j ≤ 2n, we consider
the C2n-valued functions Zj on M2n which sends a matrix of M2n into its j-th row;
then we have Zj = (zj1, . . . , zj,2n). For 1 ≤ j, k ≤ 2n, the complex vector field
ξjk on M2n defined in §3 satisfies

(10.1) ξjkZl = δklZj ,

for all 1 ≤ l ≤ 2n.

We consider the group Sp(n,C) of automorphisms of C2n which preserve the
standard non-degenerate skew-symmetric bilinear form q = 〈 , 〉 on C2n. The
subgroup K = Sp(n) of G is equal to SU(2n) ∩ Sp(n,C), and it is easily seen
that the transpose of an element of K belongs to Sp(n,C); it follows that, for
1 ≤ j, k ≤ 2n, the complex-valued function 〈Zj , Zk〉 on M2n is invariant under
the right action of K on the space M2n. Let 1 ≤ k ≤ n − 1 be a given integer;
the function Ak on M2n defined by

Ak = (〈Zj , Zl〉)1≤j,l≤2k;

takes its values in the space of skew-symmetric matrices of M2k. Clearly the
complex-valued function

fk = Pfaff(Ak)

on M2n, which assigns to a point x of M2n the Pfaffian of the skew-symmetric
matrix Ak(x), is also invariant under the right action of K. According to for-
mula (8.2), the function fk is given by

(10.2) fk =
1

k! 2k

∑

τ∈S2k

sgn τ ·
k∏

j=1

〈Zτ(2j−1), Zτ(2j)〉 =
1
k!

qk(Z1, . . . , Z2k);

in particular, we have f1 = 〈Z1, Z2〉 and

f2 = 〈Z1, Z2〉〈Z3, Z4〉 − 〈Z1, Z3〉〈Z2, Z4〉+ 〈Z1, Z4〉〈Z2, Z3〉
(see [6, pp. 627–628]). We consider the element

φ =
n−1∑

j=1

(E2j−1,j + E2j,n+j) + E2n−1,n + (−1)nE2n,2n
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of SO(2n); then if B is an element of M2n whose j-th row is the vector Bj of C2n,
the k-th row B′

k of the matrix B′ = φ ·B is given by

B′
2j−1 = Bj , B′

2j = Bn+j ,

for 1 ≤ j ≤ n − 1. Hence if {ε1, . . . , ε2n} is the standard basis of C2n and
θ = (θ1, . . . , θn−1) ∈ Rn−1, we have

Z2j−1(φκ′(θ)) = eixjεj , Z2j(φκ′(θ)) = eixjεn+j ,

for 1 ≤ j ≤ n − 1, where x1, . . . , xn are given by (2.13). For 1 ≤ k ≤ n − 1, the
function f ′k = φ∗fk on M2n is also invariant under the right action of K; from
the previous relations, it follows that

(10.3) f ′k(κ
′(θ)) = e2iθk .

Lemma 10.1. For 1 ≤ k ≤ n − 1 and 1 ≤ j, l ≤ 2n be given integers. The
equalities

ξjlfk = 0

hold on M2n whenever l > 2k, and the equalities

ξjlfk = δjlfk

hold on M2n whenever 1 ≤ j, l ≤ 2k.

Proof. The first equalities are immediate. Suppose that 1 ≤ j, l ≤ 2k and let
W1, . . . , W2k be the elements of C2n defined by

Wr = δrlZj + (1− δrl)Zr,

for 1 ≤ r ≤ 2k. Since qk is an element of
∧2kU∗, according to (10.1) and (10.2)

we see that

k! ξjlfk = qk(W1, . . . , W2k) = δjl q
k(Z1, . . . , Z2k) = k! δjl fk.

¤

Let 1 ≤ k ≤ n− 1 and 1 ≤ j < l ≤ 2n be given integers; the preceding lemma
implies that the equalities

(10.4) Φ(Cl)fk = −$2k(Cl)fk, Φ(Elj)fk = −ξjlfk = 0,

hold on M2n.
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Throughout the remainder of this paper, by fk we shall always often mean the
restriction of the function fk on M2n to the submanifold G. From the relations
(10.4) and (3.3), it follows that

(10.5) π(ξ)f̄k = $2k(ξ)f̄k, π(η)f̄k = 0,

for all ξ ∈ h0 and η ∈ n+. Thus the function f̄k is a highest weight vector of
the isotypic component C∞

$2k
(G); moreover according to (4.3) and (4.6), we know

that fk is an element of C∞
$2(n−k)

(G).

Let r1, . . . , rn−1 ≥ 0 be given integers and γ be the element

γ′r1,...,rn−1
=

n−1∑

k=1

rk$2k

of Γ; we consider the complex-valued function fr1,...,rn−1 on G defined by

fr1,...,rn−1 =
n−1∏

k=1

f rk
k .

Since f̄k is a highest weight vector of the G-module C∞
$2k

(G), we know that
f̄r1,...,rn−1 is a highest weight vector of the G-module C∞

γ (G).

If γ is an element of Γ, we consider an irreducible G-module Eγ corresponding
to γ. We shall denote by Γ0 the subset of Γ consisting of all elements γ′r1,...,rn−1

of Γ, where r1, . . . , rn−1 ≥ 0 are integers. Since the group G is a real form
of the group SL(2n,C) and the subgroup K is equal to G ∩ Sp(n,C), from
Proposition 8.1 we deduce the following result:

Proposition 10.2. Let G be the group SU(2n) and K be its subgroup Sp(n),
with n ≥ 3. The multiplicity of the trivial K-module in the decomposition of the
G-module Eγ, viewed as a K-module, is equal to 1 if γ belongs to Γ0 and to 0
otherwise. If r1, . . . , rn−1 are given integers ≥ 0 and γ is the element γ′r1,...,rn−1

of Γ0, the multiplicity of the K-module p in the decomposition of the G-module Eγ,
viewed as a K-module, is equal to the number of non-zero integers rj.

We now consider the symmetric space X = G/K. For γ ∈ Γ, we recall that the
multiplicity of the G-module C∞

γ (SpT ∗C) is equal to the dimension of the weight
subspace of the G-module C∞

γ (SpT ∗C) corresponding to γ (see §2, Chapter II
of [3]). A linear form λ on h is a weight of the G-module C∞

γ (SpT ∗C) if and only
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if −λ is a weight of the complex conjugate C∞
γ (SpT ∗C) of the space C∞

γ (SpT ∗C);
therefore we have the equality

(10.6) C∞
γ̄ (SpT ∗C) = C∞

γ (SpT ∗C)

of G-modules.

If E is a G-submodule of C∞(G), we denote by EK the G-submodule of E

consisting of all functions of E which are invariant under the right action of K

on G. The natural projection ρ : G → X induces an isomorphism

ρ∗ : C∞(X) → C∞(G)K

of G-modules, which sends a function f ∈ C∞(X) into the function ρ∗f on G.
If γ is an element of Γ, this mapping ρ∗ induces a monomorphism

ρ∗ : C∞
γ (X) → C∞

γ (G)K .

A function f on G which is invariant under the right action of K on G determines
a function f̃ on X satisfying ρ∗f̃ = f .

For 1 ≤ k ≤ n − 1, since the function fk on Mn is invariant under the right
action of K on Mn, its restriction to G induces by passage to the quotient a
function f̃k on X. The complex conjugate f̂k of the function f̃k is equal to the
function on X induced by the function f̄k on G. The restriction of the function
f ′k to G induces a function f̃ ′k on X which is equal to φ∗f̃k. If r1, . . . , rn−1 ≥ 0
are integers, the function

f̃r1,...,rn−1 =
n−1∏

k=1

f̃ rk
k

is equal to the function on X induced by the function fr1,...,rn−1 on G; its com-
plex conjugate f̂r1,...,rn−1 is equal to the function on X induced by the function
f̄r1,...,rn−1 on G. If r1, . . . , rn−1 ∈ Z, when at least one of the integers is < 0, we
set

f̃r1,...,rn−1 = 0.

For r1, . . . , rn−1 ∈ Z, we consider the function f̃ ′r1,...,rn−1
= φ∗f̃r1,...,rn−1 .

If γ is an element of Γ, by the Frobenius reciprocity theorem the first asser-
tion of Proposition 10.2 tells us that the isotypic component C∞

γ (X) of C∞(X)
corresponding to γ is irreducible if γ belongs to Γ0 and vanishes whenever γ does
not belong to Γ0.
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If r1, . . . , rn−1 ≥ 0 are given integers and γ is the element γ′r1,...,rn−1
of Γ0,

since f̄r1,...,rn−1 is a highest weight vector of the G-module C∞
γ (G), the function

f̂r1,...,rn−1 is a highest weight vector of the irreducible G-module C∞
γ (X). In

particular, for 1 ≤ k ≤ n − 1, we know that f̂k is a highest weight vector of the
irreducible G-module C∞

$2k
(X).

If γ ∈ Γ0, according to (4.6) or (10.6) we have the equality

(10.7) C∞
γ̄ (X) = C∞

γ (X)

of G-modules. Hence by (4.3), we see that f̃k is an element of C∞
$2(n−k)

(X),
for 1 ≤ k ≤ n− 1. The element γ = γ′1,0,...,0,1 = $2 + $2n−2 of Γ0 satisfies γ̄ = γ;
thus according to (10.7), the G-module B = C∞

γ (X) is invariant under complex
conjugation, and hence is equal to the complexification of the G-submodule

BR = { f ∈ B | f = f̄ }
of C∞

R (X). Since the function f̂1·f̂n−1 is a highest weight vector of B, its complex
conjugate f̃1 ·f̃n−1 is also an element of B.

Let r1, . . . , rn−1 ≥ 0 be given integers and γ be the element γ′r1,...,rn−1
of Γ0; by

the Frobenius reciprocity theorem and the second assertion of Proposition 10.2,
we see that the multiplicity of the isotypic component C∞

γ (T ∗C) of C∞(T ∗C) is
equal to the number of non-zero integers r1, . . . , rn−1. Since f̂k is not a con-
stant function, we know that df̂k is a highest weight vector of the G-module
C∞

$2k
(T ∗C). Therefore the section f̂r1,...,rn−1df̂k is a highest weight vector of the

G-module C∞
γ′ (T

∗
C), where

γ′ = γ′r1,...,rk−1,rk+1,rk+1,...,rn−1
= $2k + γ′r1,...,rn−1

.

We consider the sections ϕ1, . . . , ϕn−1 of T ∗C defined by

ϕk = f̃r1,...,rk−1,rk−1,rk+1,...,rn−1df̃k,

for 1 ≤ k ≤ n − 1. Note that ϕk is non-zero if and only if the integer rk is
non-zero. If ϕk is non-zero, we have just seen that the complex conjugate ϕ̄k

of ϕk is a highest weight vector of the G-module C∞
γ (T ∗C). In the next section, we

shall verify that the non-zero elements of the family {ϕ1, . . . , ϕn−1} are linearly
independent. We know that the number of such elements of this family is equal
to the number of non-zero integers rk. On the other hand, we remarked above
that the latter number is equal to the multiplicity of the isotypic component
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C∞
γ (T ∗C) and hence also to the dimension of the weight subspace Wγ of C∞

γ (T ∗C)
corresponding to its highest weight γ. Therefore we have the following result:

Lemma 10.3. Let r1, . . . , rn−1 ≥ 0 be given integers and let γ be the element
γ′r1,...,rn−1

of Γ. Then the non-zero members of the family {ϕ̄1, . . . , ϕ̄n−1} associ-
ated with the integers r1, . . . , rn−1 form a basis for the space Wγ.

By Lemma 10.3, we know that the G-module C∞
$2

(T ∗C) is irreducible and we
have the equality

(10.8) C∞
$2

(T ∗C) = dC∞
$2

(X).

The space U = C2n is a G-module, and so the k-th exterior products
∧2U

and
∧2U∗ inherit structures of G-modules. In fact, the highest weight of the

irreducible G-module
∧2U is $2 and this G-module viewed as a K-module is

isomorphic to
∧2U∗. If q is the standard non-degenerate skew-symmetric bilinear

form on U , we know that (8.4) is the decomposition of the G-module
∧2U∗ into

irreducible K-modules; according to remarks made in §§8 and 9, we then see that

HomK(E1,x0,C,
∧2U) = HomK(E2,x0,C,

∧2U) = {0}.
Therefore from the Frobenius reciprocity theorem, we obtain the following result:

Lemma 10.4. We have

C∞
$2

(E1,C) = C∞
$2

(E2,C) = {0}.

From Lemma 10.4, the equality (10.8) and the decomposition (9.5), we obtain
the decomposition

(10.9) C∞
$2

(S2T ∗C) = C∞
$2

(X) ·g ⊕ σ̃dC∞
$2

(X).

Thus the multiplicity of the isotypic component C∞
$2

(S2T ∗C) is equal to 2 and
the weight subspace of this G-module corresponding to its highest weight $2 is
generated by the sections f̂1g and σ̃(df̂1).

11. Isospectral deformations of SU(2n)/Sp(n)

We pursue our study of the symmetric space X = SU(2n)/Sp(n), with n ≥ 3.
This section is devoted to the proof of the following proposition:
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Proposition 11.1. We have

D0C
∞(T ) ∩ σ̃dC∞

R (X) = σ̃dBR, D0C
∞(TC) ∩ σ̃dC∞(X) = σ̃dB.

We consider the orthogonal complement F of the finite-dimensional subspace
F ′ = R(X)⊕BR of C∞

R (X). According to Lemma 9.2, we know that the mapping

Pσ = P σ̃d : C∞
R (X) → I(X)

is well-defined. Proposition 11.1 tells us that the kernel of Pσ is the finite-
dimensional space F ′ and that the mapping Pσ : F → I(X) is injective.

Let r1, . . . , rn−1 ≥ 0 be given integers which are not all zero. We consider the
element γ = γ′r1,...,rn−1

of Γ0 and the subspace Vγ of C∞(T ∗C) generated by the
1-forms {ϕ1, . . . , ϕn−1}, which we associated in §10 with the integers r1, . . . , rn−1.
According to Lemma 10.3, the complex conjugate of the space Vγ is equal to the
highest weight subspace Wγ of C∞

γ (T ∗C). We consider the section

ϕ =
n−1∑

k=1

akϕk

of T ∗C, where a1, . . . , an−1 are given complex numbers, and the 1-form

ϑ = df̃r1,...,rn−1 =
n−1∑

k=1

rkϕk

on X, which is also an element of Vγ . We also consider the 1-forms ϕ′ = φ∗ϕ and
ϑ′ = φ∗ϑ on X. For our proof of Proposition 11.1, we shall require the following
result:

Lemma 11.2. Let r1, . . . , rn−1 ≥ 0 be given integers which are not all zero, and
let a1, . . . , an−1 be given complex numbers. Suppose that there is an element c ∈ C
such that the 1-form

ϕ =
n−1∑

k=1

akϕk

satisfies the relation

(11.1) D1ϕ = c σ̃(df̃r1,...,rn−1).

Then either the coefficient c vanishes or we have

rk = 0, r1 = rn−2 = 1, ϕ = a(f̃n−1 df̃1 − f̃1 df̃n−1), c = −2ia,

for 2 ≤ k ≤ n− 2, where a = a1 = −an−1.
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We assume, without any loss of generality, that ak = 0 whenever rk = 0,
for 1 ≤ k ≤ n− 1. We consider the function ψ on Rn−1 defined by

ψ(θ) = 2ie2i(r1θ1+···+rn−1θn−1),

for θ = (θ1, . . . , θn−1) ∈ Rn−1; then we have

(11.2) ξk ·ψ = 2irkψ,

for 1 ≤ k ≤ n− 1. By (10.3), we see that

κ∗f̃ ′r1,...,rn−1
=

1
2i

ψ, 〈ξj , κ
∗df̃ ′k〉 = 2iδjkκ

∗f̃ ′k,

for 1 ≤ j, k ≤ n− 1. Thus we have

(11.3) 〈ξk, κ
∗ϕ′〉 = akψ,

for 1 ≤ k ≤ n− 1. By formulas (9.16), (11.2) and (11.3), we obtain

(11.4) κ∗(D1ϕ′)(ζk, ζl) = i(akrl + alrk)ψ,

for 1 ≤ k, l ≤ n− 1.

If the 1-form ϕ vanishes, then according to formula (11.4), with k = l, we see
that akrk = 0, for all 1 ≤ k ≤ n − 1; hence in this case all the coefficients ak

vanish. In other words, the non-zero members of the family {ϕ1, . . . , ϕn−1} are
linearly independent. This fact entered into the proof of Lemma 10.3.

According to (9.6) and (11.3), we have

(11.5) κ∗ϑ′(ζk) = 〈ξk, κ
∗ϑ′〉 = rkψ,

for 1 ≤ k ≤ n− 1; thus we obtain

(11.6) κ∗ϑ′(ηj) = djψ,

for 1 ≤ j ≤ n, where the number dj is given by formula (8.1) of [5]. We also
consider the symmetric 2-form h = σ̃(ϑ′). By (9.12), we have

(11.7) h(ζj , ζk) = 0,

for 1 ≤ j, k ≤ n− 1, whenever k ≥ j + 2. Also by (9.13) and (9.14), we see that

(11.8) h(ζj , ζj) = ϑ′(ηj + ηj+1), h(ζk, ζk+1) = −ϑ′(ηk+1),

for all 1 ≤ j ≤ n− 1 and 1 ≤ k ≤ n− 2.
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We now begin the proof of Lemma 11.2. Let us suppose that there exists an
element c ∈ C such that the equality (11.1) holds; this implies that

D1ϕ′ = c σ̃(df̃ ′r1,...,rn−1
).

Since the function ψ is everywhere non-vanishing, from the equalities (11.4)
and (11.6)–(11.8), we infer that the coefficients c and a1, . . . , an−1 satisfy the
relations (8.3)–(8.5) of [5]. Hence by Proposition 8.1 of [5], we infer that the
coefficient c vanishes unless the integers rj and the coefficients aj vanish, for
all 2 ≤ j ≤ n− 2, and the relations

r1 = rn−1 ≥ 1, a1 = −an−1, c = 2ia1

hold. Thus if we consider the element

β = f̃n−1 df̃1 − f̃1 df̃n−1

of C∞(T ∗C), we know that the coefficient c vanishes unless ϕ is a multiple of the
1-form (f̃1 ·f̃n−1)rβ and ϑ = d(f̃1 ·f̃n−1)r+1, where r = r1 − 1 ≥ 0.

By (11.4), (11.6) and (11.8), we see that the relations

κ∗(Hess f̃ ′1)(ζ1, ζ1) = −4, κ∗(Hess f̃ ′1)(ζ1, ζ2) = 0,

κ∗σ̃(df̃ ′1)(ζ1, ζ1) = κ∗〈η1 + η2, df̃ ′1〉 =
2i(n− 2)

n
,

κ∗σ̃(df̃ ′1)(ζ1, ζ2) = −κ∗〈η2, df̃ ′1〉 =
2i

n

(11.9)

hold at the point 0 of Rn−1.

Lemma 11.3. (i) We have the relations

Hess f̃1 = − 2
n

f̃1g + 2iσ̃(df̃1),(11.10)

Hess f̃n−1 = − 2
n

f̃n−1g − 2iσ̃(df̃n−1),(11.11)

D1β = 2iσ̃(d(f̃1 ·f̃n−1)).(11.12)

(ii) For γ = γ′1,0,...,0,1, we have the inclusion

(11.13) σ̃dC∞
γ (X) ⊂ D1C∞(T ∗C).
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Proof. Since the differential operator Hess is homogeneous and the G-module
C∞

$2
(X) is irreducible, from the decomposition (10.9) we obtain the existence of

constants a, b ∈ C such that

Hess f = afg + bσ̃(df),

for all f ∈ C∞
$2

(X). Since the complex conjugate f̂1 of f̃1 is an element of C∞
$2

(X),
from the relations (9.1), (9.9) and (11.9) we deduce that a = −2/n and b = −2i,
and so we obtain formula (11.10). As f̃n−1 is an element of C∞

$2
(X), we have also

verified the identity (11.11). By (1.3), we have

D1β = f̃n−1 Hess f̃1 − f̃1 Hess f̃n−1;

the relation (11.12) is now a direct consequence of (11.10) and (11.11). Next
the equality (11.12) implies that the symmetric 2-form σ̃(d(f̂1 · f̂n−1)) belongs
to D1C∞(T ∗C). We know that the function f̂1 ·f̂n−1 is a highest weight vector of
the irreducible G-module C∞

γ (X), where γ = $2 + $2n−2, and so we obtain the
inclusion (11.13). ¤

We denote by In−2 the identity matrix of order n− 2. For α ∈ R, we consider
the element

Rα =

(
cos α− sinα

sinα cos α

)

of SO(2) and the element R′
α = (Rα, In−2) of the subgroup SO(2)× SO(n− 2)

of SO(n). We know that the element φα = (R′
α, R′

α) of SO(n) × SO(n) be-
longs to K = Sp(n); thus we have φα(x0) = x0. We consider the functions
{fjk,α}1≤j,k≤2n−2 on Rn−1 determined by

f12,α = cos2 α · e2ix1 + sin2 α · e2ix2 , f34,α = sin2 α · e2ix1 + cos2 α · e2ix2 ,

f14,α = f32,α = cos α · sinα · (e2ix1 − e2ix2),

fjk,α = −fkj,α, f2l−1,2l,α = e2ixl ,

for 1 ≤ j, k ≤ 2n − 2 and 3 ≤ l ≤ n − 1, where θ = (θ1, . . . , θn−1) ∈ Rn−1 and
x1, . . . , xn are given by (2.13), and frs,α = 0, for 1 ≤ r < s ≤ 2n − 2, whenever
(r, s) is not equal to one of the pairs

(1, 2), (2, 3), (1, 4), (3, 4), (2l − 1, 2l),

with 3 ≤ l ≤ n− 1. We also consider the function f̌α on Rn−1 defined by

f̌α(θ) = (f12,αf34,α − f2
14,α)(θ) · e2i(θn−1−θ2),
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for θ = (θ1, . . . , θn−1). Clearly the equalities

(11.14) df12,α = 2i(cos2 α ·dθ1 + sin2 α ·(dθ2 − dθ1)), df̌α = 2idθn−1

hold at the point 0 ∈ Rn−1. We easily verify that

κ∗φ∗αφ∗〈Zj , Zk〉 = fjk,α,

for all 1 ≤ j, k ≤ n− 1; it follows that

(11.15) κ∗φ∗αf̃ ′1 = f12,α, κ∗φ∗αf̃ ′n−1 = f̌α,

and hence that

(11.16) (φ∗αf̃ ′1)(x0) = (φ∗αf̃ ′n−1)(x0) = 1.

Thus according to (9.6), (11.14) and (11.15), the symmetric 2-form

hα = φ∗α(df̃ ′1 · df̃ ′1 − df̃ ′n−1 · df̃ ′n−1)

on X satisfies

(11.17)
( n−1∑

j=1

hα(ζj , ζj) +
n−2∑

j=1

hα(ζj , ζj+1)
)

(x0) = 24 cos2 α · sin2 α.

Clearly the function of α appearing on right-hand side of equation (11.17) is
non-zero.

Let r ≥ 1 be a given integer. We consider the function f = f̃ ′1·f̃ ′n−1, the 1-form
β′ = φ∗β and the symmetric 2-form

(11.18) h′α = φ∗α(f r−1 df · β′)

on X, with α ∈ R. Since we have

df · β′ = f̃ ′2n−1 df̃ ′1 · df̃ ′1 − f̃ ′21 df̃ ′n−1 · df̃ ′n−1,

by (11.16) we see that the equality

(11.19) h′α = hα

holds at x0.

Lemma 11.4. If r ≥ 1 is a given integer, the symmetric 2-form D1((f̃1·f̃n−1)rβ)
is not a section of σ̃(T ∗C).
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Proof. Suppose that the assertion of the lemma is not true for an integer r ≥ 1;
then D1(f rβ′) is a section of σ̃(T ∗C). According to formulas (11.12) and (1.3), we
see that f r−1df · β′ is also a section of σ̃(T ∗C). Thus for all α ∈ R, the symmetric
2-form h′α defined by (11.18) satisfies the relation (9.15). The equalities (11.17)
and (11.19) now lead us to a contradiction. ¤

Finally, in order to finish the proof of Lemma 11.2, we suppose that ϕ is a mul-
tiple of the 1-form (f̃1·f̃n−1)rβ and that ϑ = d(f̃1·f̃n−1)r+1, where r = r1 − 1 ≥ 0.
When r ≥ 1, Lemma 11.4 tells us that ϕ = 0; because the form σ̃(ϑ) is non-zero,
the coefficient c must also vanish in this case, and so we have completed the proof
of Lemma 11.2.

In order to prove Proposition 11.1, by formula (1.1) it suffices to show that

D1C∞(T ∗C) ∩ σ̃dC∞(X) = σ̃dB.

Since the differential operators D1 and σ̃d are homogeneous, according to Propo-
sition 2.1 of [3] and Lemma 11.3,(ii) the preceding equality holds if and only
if

(11.20) D1C∞
γ (T ∗C) ∩ σ̃dC∞

γ (X) = {0},

for all γ ∈ Γ, with γ 6= γ′1,0,...,0,1. We now proceed to verify that (11.20) holds
and, in the process, complete the proof of Proposition 11.1.

If γ ∈ Γ is equal to 0 or does not belong to Γ0, we know that

dC∞
γ (X) = {0},

and so the equality (11.20) holds. Now let r1, . . . , rn−1 ≥ 0 be given integers,
which are not all zero and satisfy (r1, . . . , rn−1) 6= (1, 0, . . . , 0, 1), and consider
the element γ = γ′r1,...,rn−1

of Γ0. Suppose that the equality (11.20) does not hold
for this element γ. Since the function f = f̂r1,...,rn−1 is a highest weight vector of
the irreducible G-module C∞

γ (X), the inclusion

σ̃dC∞
γ (X) ⊂ D1C∞

γ (T ∗C)

holds, and so there exists an element ψ of Wγ such that

D1ψ = σ̃(df).
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Then the element ϕ = ψ̄ of Vγ satisfies the relation (11.1), with c = 1. Lemma 11.2
now leads us to a contradiction. Therefore the equality (11.20) holds for all γ ∈ Γ,
and so we have proved Proposition 11.1.

12. The reduced space of SU(2n)/Sp(n)

Let n ≥ 3 be a given integer. The center of G = SU(2n) is the cyclic subgroup
S of order 2n given by

S = { eikπ/nI2n | 0 ≤ k ≤ 2n− 1 }.

If s is the involution of G considered in §8 sending an element A ∈ G into JnĀJ−1
n ,

the subgroup

KS = {A ∈ G | A−1s(A) ∈ S }
of G contains the subgroup K = Sp(n) and we easily verify that

KS = {A ∈ G | A = eikπ/nB, with B ∈ Sp(n) and k ∈ Z }.

According to Corollary 9.3, Chapter VII of [8] (see also [5, §1]), we know that
Y = G/KS is a symmetric space of compact type, which is the reduced space
of X = G/K.

We consider the generator A0 = eiπ/nI2n of the center S; we easily see that Ak
0

belongs to K if and only if k ≡ 0 mod n. Thus we have

KS = K · S =
⋃

0≤k≤n−1

K ·Ak
0

and the isometry τ of X induced by the action of the element A0 of G on X

generates a cyclic group Σ of isometries of X of order n. Clearly the group Σ acts
on freely on X and its action commutes with the action of G. The quotient of X

by Σ is the symmetric space Y = G/KS and the natural projection $ : X → Y

is a n-fold covering; moreover, the action of the group G on X passes to the
quotient Y .

We consider the G-submodule C∞(X)Σ of C∞(X) consisting of all Σ-invariant
(or equivalently τ -invariant) functions on X. The action of G on Y induces
a G-module structure on the space C∞(Y ), and the projection $ induces an
isomorphism

$∗ : C∞(Y ) → C∞(X)Σ
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of G-modules. If γ is an element of Γ, we denote by C∞
γ (Y ) the isotypic compo-

nent of the G-module C∞(Y ) corresponding to γ and we write

C∞
γ (X)Σ = C∞(X)Σ ∩ C∞

γ (X).

Then the isomorphism $ induces an isomorphism of G-modules

$∗ : C∞
γ (Y ) → C∞

γ (X)Σ.

For p ≥ 2, we know that

(12.1) τ∗σp = σp.

Thus the symmetric p-form σp induces an G-invariant symmetric p-form σY,p

on Y such that

σp = $∗σY,p.

We shall always consider the symmetric space Y = G/KS endowed with the
G-invariant Riemannian metric gY = σY,2. For p ≥ 3, we consider the monomor-
phism of vector bundles

σ̃Y,p : T ∗Y → Sp−1T ∗Y
induced by the symmetric p-form σY,p. We write σY = σY,3 and σ̃Y = σ̃Y,3. If ϕ

is a 1-form on Y , we have

(12.2) $∗σ̃Y,p(ϕ) = σ̃p($∗ϕ).

According to Lemma 2.1 of [4] and Lemma 9.2, we see that a 1-form ϕ on Y

satisfies the Guillemin condition if and only if the symmetric (p− 1)-form σ̃Y,p(ϕ)
on Y satisfies the Guillemin condition.

From the definition of fk, we directly see that

(12.3) τ∗f̃k = e2ikπ/nf̃k,

for all 1 ≤ k ≤ n − 1. Let r1, . . . , rn−1 ≥ 0 be given integers and consider the
element γ = γ′r1,...,rn−1

of Γ0. According to (12.3), the function f̃r1,...,rn−1 on X is
invariant under the isometry τ if and only if the relation (7.1) holds. Since the
complex conjugate f̂r1,...,rn−1 of the function f̃r1,...,rn−1 belongs to the irreducible
G-module C∞

γ (X), we infer that C∞
γ (X) is a G-submodule of C∞(X)Σ if and

only if the relation (7.1) holds. For 1 ≤ j ≤ n− 1, a section ϕj of T ∗C associated
with the integers r1, . . . , rn−1 is Σ-invariant if and only if the integers r1, . . . , rn−1

satisfy the relation (7.1).
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We denote by Γ1 the subset of Γ0 consisting of all elements γ′r1,...,rn−1
of Γ0,

where r1, . . . , rn−1 ≥ 0 are integers satisfying the relation (7.1). Then by Propo-
sition 2.1 of [3], we have the following result:

Lemma 12.1. (i) Let r1, . . . , rn−1 ≥ 0 be given integers. The function f̃r1,...,rn−1

on the symmetric space X = G/K is induced by a function on the reduced space
Y = G/KS of X if and only if the relation (7.1) holds.

(ii) The G-module
⊕

γ∈Γ1
C∞

γ (X) is a dense submodule of C∞(X)Σ and the

G-module
⊕

γ∈Γ1
C∞

γ (Y ) is a dense submodule of C∞(Y ).

We consider the element γ = γ′1,0,...,0,1 of Γ1; we know that

C∞
γ (X)Σ = B.

Therefore BY = C∞
γ (Y ) is an irreducible G-module isomorphic to B and is invari-

ant under conjugation; thus BY is equal to the complexification of the subspace

BY,R = { f ∈ BY | f = f̄ }

of C∞
R (Y ) and the mapping $ induces an isomorphism $∗ : BY,R → BR.

If P denotes the orthogonal projection corresponding to the decomposition
(1.5) on the space Y , according to Lemma 1.1 of [4] and Lemma 9.2 the mapping

(12.4) PσY = Pσ̃Y d : C∞
R (Y ) → I(Y )

is well-defined. We denote by FY the orthogonal complement of the finite-
dimensional space F ′Y = R(Y ) ⊕ BY in C∞

R (Y ). From Proposition 1.2 of [4]
and Proposition 11.1, we obtain:

Theorem 12.2. The reduced symmetric space Y = G/KS is not rigid in the
sense of Guillemin. If f is a non-zero element of FY , then the symmetric 2-form
σ̃Y (df) on Y satisfies the Guillemin condition and is not a Lie derivative of
the metric. Moreover, the relation

D0C
∞(TY ) ∩ σ̃Y dC∞

R (Y ) = σ̃Y dBY

holds and the kernel of the mapping (12.4) is the finite-dimensional space

F ′Y = R(Y )⊕ BY,R.
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