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Abstract: Let Y be a complex manifold with the property that every holo-

morphic map from a neighborhood of a compact convex set K in a complex

Euclidean space C
n to Y can be approximated, uniformly on K, by entire

maps C
n → Y . If X is a reduced Stein space and π : Z → X is a holomor-

phic fiber bundle with fiber Y then we show that sections X → Z satisfy the

Oka principle with approximation and interpolation. The analogous result

is proved for sections of stratified fiber bundles, and of submersions with

stratified sprays over Stein spaces.
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1. Introduction

In this paper we establish the Oka principle for sections of stratified holomor-

phic fiber bundles over Stein spaces under the condition that all fibers satisfy a

Runge type approximation property (the convex approximation property, CAP)

introduced in [14, 15], and also for sections of submersions with stratified sprays

in the sense of Gromov. Our main results are Theorems 1.4, 6.5 and 8.3.

All complex spaces in this paper are assumed to be reduced and paracompact.

For the general theory of Stein spaces we refer to [30].
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We recall from [14] the definition of the Convex Approximation Property of

a complex manifold. Let z = (z1, . . . , zn) be complex coordinates on C
n, with

zj = xj + iyj. Set

(1.1) Q = {(z1, . . . , zn) ∈ C
n : |xj | ≤ 1, |yj | ≤ 1, j = 1, . . . , n}.

A special convex set in C
n is a compact convex set K of the form

(1.2) K = {z ∈ Q : yn ≤ h(z1, . . . , zn−1, xn)},

where Q is the cube (1.1) and h is a continuous concave function with values in

(−1, 1). Such (K,Q) will be called a special convex pair in C
n.

Given a closed set K in a complex space X, a map f : K → Z to a complex

space Z is said to be holomorphic if f is the restriction to K of a holomorphic

map U → Z from an open neighborhood U of K in X. For a homotopy of maps

the neighborhood U will not depend on the parameter.

Definition 1.1. A complex manifold Y satisfies the Convex Approximation Prop-

erty (CAP) if for every special convex pair (K,Q) in C
n (n ∈ N) and for every

holomorphic map f : K → Y there is a sequence of holomorphic maps fk : Q→ Y

(k = 1, 2, . . .) converging to f uniformly on K.

By Theorem 1.4 below, CAP is equivalent to the condition that every holo-

morphic map K → Y from a compact convex set K ⊂ C
n (n ∈ N) can be

approximated, uniformly on K, by entire maps C
n → Y .

Next we recall the notions of a holomorphic submersion and of a stratified

holomorphic fiber bundle over a complex space.

Definition 1.2. Let X and Z be reduced complex spaces. A holomorphic map

π : Z → X is a holomorphic submersion if for every point z0 ∈ Z there exist an

open neighborhood V ⊂ Z of z0, an open neighborhood U ⊂ X of x0 = π(z0) ∈

X, an open set W in C
p, and a biholomorphic map φ : V → U ×W such that

pr1 ◦ φ = π, where pr1 : U ×W → U is the projection.

A stratification of a finite dimensional complex space X is a finite descending

chain of closed complex subvarieties of X,

(1.3) X = X0 ⊃ X1 ⊃ · · · ⊃ Xm = ∅,

such that each connected component S (stratum) of any difference Xk\Xk+1 is a

complex manifold satisfying S\S ⊂ Xk+1 whose dimension dimS only depends

on k.
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Definition 1.3. A holomorphic submersion π : Z → X (Def. 1.2) is a stratified

holomorphic fiber bundle ifX admits a stratification (1.3) such that the restriction

Z|S → S to every stratum S ⊂ Xk\Xk+1 is a holomorphic fiber bundle over S.

Given a complex space (X,OX ), we denote by O(X) the algebra of all holo-

morphic functions on X. Recall that a compact set K in X is O(X)-convex if for

every point p ∈ X\K there exists an f ∈ O(X) such that |f(p)| > supx∈K |f(x)|.

We are now ready to state our first main result which will also serve as the

definition of various Oka-type properties; for the proof see §5.

Theorem 1.4. Assume that X is a Stein space, that π : Z → X is a holomorphic

submersion, and that X is exhausted by a sequence of open relatively compact

subsets U1 ⊂ U2 ⊂ · · · ⊂
⋃

∞

j=1 Uj = X such that each restriction Z|Uj
→ Uj

is a stratified holomorphic fiber bundle all of whose fibers enjoy CAP(Def. 1.1).

Choose a distance function d on Z. Then the following hold:

(A) The basic Oka principle: Every continuous section f : X → Z of π : Z → X

is homotopic to a holomorphic section.

(B) The basic Oka principle with interpolation and approximation: Given a

continuous section f : X → Z that is holomorphic in a neighborhood of a compact

O(X)-convex subset K in X and whose restriction f |X′ : X ′ → Z to a closed

complex subvariety X ′ of X is holomorphic on X ′, there exists for every ǫ > 0 a

homotopy of continuous sections ft : X → Z (t ∈ [0, 1]), with f0 = f , satisfying

the following properties:

(i) f1 is holomorphic on X,

(ii) ft|X′ = f0|X′ for each t ∈ [0, 1], and

(iii) ft is holomorphic on K and supx∈K d
(
ft(x), f0(x)

)
< ǫ for each t ∈ [0, 1].

(C) The basic Oka principle with approximation and jet interpolation: Given

K and X ′ as in (B) and a continuous section f : X → Z that is holomorphic in

an open set V ⊃ K ∪ X ′, there exists for every ℓ ∈ N and ǫ > 0 a homotopy

{ft}t∈[0,1] satisfying (B) such that ft is holomorphic near X ′ and it agrees with

f = f0 to order ℓ along X ′ for every t ∈ [0, 1].

(D) The one-parametric Oka principle: Every homotopy ft : X → Z (t ∈ [0, 1])

of sections between a pair of holomorphic sections f0, f1 can be deformed, with

fixed ends at t = 0, 1, to a homotopy consisting of holomorphic sections. If the

homotopy ft is fixed on a closed complex subvariety X ′ of X then the deformation

can be chosen fixed on X ′.
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Combining parts (A) and (D) in the conclusion of Theorem 1.4 we obtain the

following corollary. (See also Corollary 6.8 below.)

Corollary 1.5. If Z → X is a stratified holomorphic fiber bundle over a Stein

space X such that all its fibers enjoy CAP, then the inclusion

ι : ΓO(X,Z) →֒ Γ(X,Z)

of the space of holomorphic sections into the space of continuous sections induces

a bijection of the path connected components of the two spaces (endowed with the

compact-open topology).

Many examples and sufficient conditions for the validity of CAP can be found

in the papers [14, 15, 16]. In particular, if Y admits a dominating holomorphic

spray in the sense of Gromov [31] (such Y is said to be elliptic), or, more generally,

if it admits a finite dominating collection of holomorphic sprays (see [10]; such

Y is said to be subelliptic), then Y satisfies CAP, and also its fully parametric

version, PCAP (see Def. 6.4 below). The proof of this result is essentially a

reduction to the Oka-Weil approximation theorem; see Theorem 4.1 in [21, p.

135] and Theorem 3.1 in [10, p. 534]. Hence Theorem 1.4 immediatelly implies

the following corollary.

Corollary 1.6. If π : Z → X is a stratified holomorphic fiber bundle over a

Stein space X such that all its fibers are elliptic in the sense of Gromov [31], or

subelliptic in the sense of [10], then sections X → Z satisfy the conclusions of

Theorem 1.4.

We conclude this introduction by a brief survey of the known results on the

Oka principle for section of holomorphic submersions.

The classical Oka-Grauert principle is essentially Theorem 1.4 in the special

case when π : Z → X is a holomorphic principle bundle with a Lie group fiber, or

an associated holomorphic fiber bundle with a complex homogeneous fiber. This

was proved by Oka [42] for the Lie group C
∗ and by Grauert in general [28]. For

expositions and extensions see Cartan [2], Grauert and Kerner [29], Forster and

Ramspott [8, 9], Henkin and Leiterer [35], and Heinzner and Kutzschebauch [33].

Every complex homogeneous manifold satisfies CAP (see Grauert [26, 27]). Even

for bundles with homogeneous fibers, Theorem 1.4 is stronger than Grauert’s

theorem since no conditions are imposed on the transition maps.
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The case of Theorem 1.4 when X is a Stein manifold (without singularities)

and π : Z → X is a holomorphic fiber bundle whose fiber Y admits a dominating

holomorphic spray is due to Gromov [31]. For exposition and extensions of Gro-

mov’s work see the papers [10, 11, 21, 22, 23, 45]; for a homotopy theoretic point

of view see Lárusson [38, 39, 40].

The CAP property was first introduced in [14] where Theorem 1.4 was proved

in the case when X is a Stein manifold and X ′ = ∅, i.e., without the interpolation

conditions (B-ii) and (C). Interpolation was added in [15, Theorem 1.1] (see also

[40]). By [15, Corollary 1.3] (see also Lárusson [40]) the CAP property of a

complex manifold Y is equivalent to several ostensibly different Oka properties

for maps of Stein manifolds to Y , expressed by the conditions (B-ii), (B-iii) and

(C) in Theorem 1.4. The one-parametric Oka principle (part (D) in Theorem

1.4) is a simple consequence of the Oka principle with interpolation, (B-ii). (See

the proof of Theorem 1.4 in §5.)

Although it was remarked in [14, 15] that Theorem 1.4 also holds when X is a

Stein space with singularities, a complete proof has not been available up to now.

The outline proposed in [14, Remark 6.6, p. 705] requires certain not entirely

obvious technical improvements in order to obtain the approximation statement.

Here we give a complete proof, thereby dispelling any false impression that this

is only a theory for manifolds.

We mention that the Oka principle furnished by Theorem 1.4 and Corollary

1.6 was used in the proof of embedding theorems for Stein spaces into Euclidean

spaces of minimal dimension (see [7, 46, 44]). For embeddings with interpolation

on discrete sequences see also [20, 43].

In §6 we consider the parametric Oka principle; in this connection see also the

remark at the very end of the paper.

In §7 we obtain existence results for holomorphic sections under suitable con-

nectivity assumptions on the fibers.

Combining the induction scheme in this paper with the methods from [22, 23]

we also obtain the Oka principle for sections of submersions with stratified sprays

over Stein spaces (see Theorem 8.3 below). This result, which generalizes the

work of Forster and Ramspott [9], was first stated by Gromov [31]. Complete

details in the nonstratified case (i.e., for submersions with fiber dominating sprays

over Stein manifolds) were given in [22]. A sketch of proof for the stratified case is

found in [23, §7], but without the approximation condition (only interpolation).
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The details in §2–§5 of this paper enable us to complete the proof of the full Oka

principle as indicated in [23].

This general version of the Oka principle has recently been used by Ivarsson

and Kutzschebauch [37] in a solution of the holomorphic Vaserstein problem posed

by Gromov in [31].

Some recent extensions of the Oka principle should be mentioned: For sections

of subelliptic holomorphic submersions over 1-convex manifolds (see Prezelj [45]);

for sections of holomorphic Banach bundles over 1-convex manifolds (Leiterer

and Vâjâitu [41]); and the soft Oka principle to the effect that the Oka principle

holds universally if one allows homotopic deformations of the Stein structure on

the source manifold (see [24, 25]).

In the course of proving Theorem 1.4 (see §5) we obtain some results of inde-

pendent interest. In §2 we improve [15, Theorem 2.1] concerning the existence

of open Stein neighborhoods of the set K ∪X ′ in Theorem 1.4. In §3 we obtain

a parametric version of a theorem of Docquier and Grauert [6] on the existence

of holomorphic retractions onto Stein submanifolds. In §4 we prove a semiglobal

approximation/extension theorem that allows passage from a stratum to the next

higher one.

2. Open Stein neighborhoods

The following result extends Theorem 2.1 from [15].

Theorem 2.1. Let (X,OX ) be a paracompact complex space, possibly nonreduced,

and let X ′ be a closed Stein subvariety of X. Assume that K is a compact set

in X that is O(Ω)-convex in an open Stein domain Ω ⊂ X containing K and

such that K ∩X ′ is O(X ′)-convex. For every open set U in X containing K ∪X ′

there exists an open Stein domain V , with K ∪ X ′ ⊂ V ⊂ U , such that K is

O(V )-convex.

The special case of Theorem 2.1 with K = ∅ is due to Siu [47] (see also Colţoiu

[3] and Demailly [5]). The small improvement over [15, Theorem 2.1] is that Stein

neighborhoods V of K ∪ X ′ can be chosen such that K is O(V )-convex. This

property plays a key role in holomorphic approximations theorems, and hence it

makes the result much more useful. Theorem 2.1 is used in §4 below to obtain

a semiglobal approximation-interpolation result, Proposition 4.1, for sections of

holomorphic submersions.
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As shown in [15], the necessity of O(X ′)-convexity of K ∩X ′ in Theorem 2.1

is seen by taking

X = C
2, X ′ = C × {0}, K = {(z,w) ∈ C

2 : 1 ≤ |z| ≤ 2, |w| ≤ 1}.

In this example, every Stein neighborhood of K ∪ X ′ also contains the bidisc

{(z,w) : |z| ≤ 2, |w| ≤ 1}.

Proof of Theorem 2.1. A compact set K that is O(Ω)-convex in an open Stein

domain Ω ⊃ K in X will be called holomorphically convex. By the classical theory

this is equivalent to the existence of a plurisubharmonic function ρ0 : Ω → R+

such that ρ−1
0 (0) = K; we can choose ρ0 to be smooth and strongly plurisub-

harmonic on Ω\K. (See [36, Theorem 5.1.5].) Fix a function ρ0 with these

properties.

Choose an open set U ⊂ X containing K∪X ′. As X ′ is Stein, the construction

in [15, p. 737] gives an open set W in X such that K ∪X ′ ⊂ W ⊂ U , a number

c > 0, and a smooth plurisubharmonic function ρ : W → R+ that agrees with ρ0

in Uc = {x ∈ Ω: ρ0(x) < c} ⊃ K and that satisfies ρ > c on W\U c. (See (i) and

(ii) at the bottom of page 737 in [15].)

By [15, Theorem 2.1] there exists an open Stein domain V in X satisfying

K ∪ X ′ ⊂ V ⊂ W . (In [15], the subvariety X ′ was denoted X0. The ambient

complex space X was assumed to be reduced, but the latter property was never

used in the proof. Compare with [5].) The restriction ρ|V is a nonnegative

plurisubharmonic function that vanishes precisely on K. Since V is Stein, it

follows that K is O(V )-convex. �

3. Holomorphic retractions

The following well known result is obtained by combining a theorem of Doc-

quier and Grauert ([6, Satz 3], [32, p. 257, Theorem 8]) with Siu’s theorem on

the existence of open Stein neighborhoods of Stein subvarieties [47, Corollary 1].

Theorem 3.1. Let S be a Stein manifold, embedded as a locally closed complex

submanifold in a complex manifold M . There exist an open Stein neighborhood Ω

of S in M and a homotopy of holomorphic maps ιt : Ω → Ω (t ∈ [0, 1]) satisfying

(a) ι0 is the identity map on Ω,

(b) ιt|S is the identity map on S for all t ∈ [0, 1], and

(c) ι1(Ω) = S.
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The family {ιt}t∈[0,1] is a strong deformation retraction of Ω onto S consisting

of holomorphic mappings. There is no immediate analogue of Theorem 3.1 when

S is a Stein space with singularities.

We shall need the following parametric version of Theorem 3.1.

Proposition 3.2. Assume that M and B are finite dimensional complex spaces,

π : M → B is a holomorphic submersion (Def. 1.2), and S is a locally closed

Stein subvariety of M whose fiber Sb = S∩Mb (b ∈ B) is a locally closed complex

submanifold of Mb with dimension independent of b ∈ B. Then there exist an

open Stein neighborhood Ω of S in M and a homotopy of holomorphic maps

ιt : Ω → Ω (t ∈ [0, 1]) satisfying properties (a)–(c) in Theorem 3.1 and such that

π ◦ ιt = π for each t ∈ [0, 1].

Proof. We begin by recalling the proof in the classical case when B is a sin-

gleton. Now S is a locally closed Stein submanifold of a complex manifold M .

By Theorem 2.1 we can replace M by an open Stein neighborhood of S that

contains S as a closed submanifold. We consider the holomorphic tangent bun-

dle TS as a subbundle of TM |S , making the usual identification of TM with

T (1,0)M . By Cartan’s Theorem A there exist finitely many holomorphic vector

fields V1, · · · , VN on M such that the vectors V1(x), . . . , VN (x) span TxM over

C at every point x ∈ M . Let φj
t denote the flow of Vj , i.e., the solution of the

ordinary differential equation

φ̇
j
t (x) = Vj(φ

j
t (x)), φ

j
0(x) = x.

For each point x ∈ M there is a number T = T (x) > 0 such that φj
t(x) exists

for all t ∈ C in the disc |t| < T , and T can be chosen independent of the point x

belonging to a compact subset of M . The map

(3.1) F (x, t1, . . . , tN ) = φ1
t1
◦ · · · ◦ φN

tN
(x), x ∈ S, t1, . . . , tN ∈ C

is defined and holomorphic in an open neighborhood of S ×{0}N in S ×C
N . We

have F (x, 0) = x and ∂
∂tj
F (x, t)|t=0 = Vj(x) for every x ∈ S. As the Vj’s span

TM at every point, F is a submersion along S × {0}N . Let

Θx = ∂t|t=0F (x, t) : C
N → TxM, x ∈ S.

The subset E ⊂ S × C
N with the fibers

Ex = {v ∈ C
N : Θx(v) ∈ TxS}, x ∈ S
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is then a holomorphic vector subbundle of the trivial bundle S × C
N . Since

S is Stein, there is a holomorphic vector subbundle ν ⊂ S × C
N such that

S × C
N = E ⊕ ν [32, Theorem 7, p. 256]. By the construction, Θ: ν → TM |S

is an injective holomorphic vector bundle map and TM |S = TS ⊕ Θ(ν); thus

ν ∼= Θ(ν) is the normal bundle of S in M .

Consider the restriction of F to ν. By the inverse function theorem F maps

an open neighborhood Ω′ of the zero section in ν biholomorphically onto an open

neighborhood Ω = F (Ω′) of S in M . Further, choosing Ω′ to have convex fibers,

F conjugates the family of radial dilations ι′t(v) = (1 − t)v (v ∈ Ω′, t ∈ [0, 1]) to

a family of holomorphic maps ιt : Ω → Ω satisfying the stated properties. (It is

possible to choose Ω′ Stein and with convex fibers: take Ω′
x = {v ∈ νx : eφ(x)|v|2 <

1} where φ : S → R+ is a sufficiently fast growing strongly plurisubharmonic

function and |v| is the Euclidean norm of the vector v ∈ νx ⊂ C
N .)

The above proof extends to the general case: Let V T (M) → M denote the

vertical tangent bundle of M , consisting of all tangent vector to the (regular) fibers

Mb = π−1(b), b ∈ B. As before we replace M by an open Stein domain containing

S as a closed Stein subspace. Then Sb = S ∩Mb is a closed Stein submanifold of

Mb for every b ∈ B, and V T (S) is a holomorphic vector subbundle of V T (M)|S .

Select finitely many holomorphic sections V1, . . . , VN of V T (M) that generate the

latter bundle at each point of M . (This is possible by a generalization of Cartan’

Theorem A, using an induction on the dimension of the exceptional set where

the sections fail to generate.) The flow φ
j
t of Vj is well defined and holomorphic

in a neighborhood of M × {0} in M × C, and it remains in the fibers of π. We

can now complete the proof exactly as before by splitting S × C
N = E ⊕ ν and

restricting the map F (3.1) to a suitable Stein neighborhood of the zero section

in ν. �

4. A holomorphic approximation-interpolation theorem

In this section we prove the following result which will enable us to pass from

one stratum to the next one in the proof of Theorem 1.4.

Proposition 4.1. Assume that X ′ is a closed Stein subvariety of a complex space

X and that K is a compact holomorphically convex set in X (as in Theorem 2.1)

such that K ∩X ′ is O(X ′)-convex. Let π : Z → X be a holomorphic submersion

of a complex space Z onto X (Def. 1.2). Assume that U ⊂ X is an open set
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containing K and f : U ∪X ′ → Z|U∪X′ is a section whose restrictions to U and

to X ′ are holomorphic. Then there exist open Stein neighborhoods Vj of K∪X ′ in

X and holomorphic sections fj : Vj → Z|Vj
(j = 1, 2, . . .) such that fj|X′ = f |X′

for all j ∈ N and limj→∞ fj|K = f |K (the convergence is uniform on K).

When X is a Stein manifold, K is O(X)-convex, and f : U ∪ X ′ → Z is a

holomorphic map to a complex manifold Z, this is [15, Theorem 3.1].

Proof. It suffices to show that for every compact O(X)-convex set L ⊂ X there

is a sequence of sections fj in open neighborhoods Vj of K ∪ (L ∩X ′) satisfying

the conclusion of Proposition 4.1; the result then follows by an induction over a

normal exhaustion of X. Hence we may assume that X is finite dimensional.

Further, by Theorem 2.1 we can replace X by an open Stein neighborhood of

K ∪X ′ such that K is O(X)-convex, and we can choose the neighborhood U of

K to be Stein and relatively compact in X. Since K is O(X)-convex, it is also

O(U)-convex.

We begin by considering the case when Z = X × C
p and π : Z → X is the

projection π(x, ζ) = x. We identify sections X → Z with maps f : X → C
p to

the fiber. By Cartan’s extension theorem there is a holomorphic map φ : X → C
p

such that φ|X′ = f |X′ . There exist finitely many functions h1, . . . , hm ∈ O(X)

that vanish on the subvariety X ′ and that generate the ideal sheaf of X ′ at every

point of U ⋐ X. Since U is Stein, Cartan’s Theorem B furnishes holomorphic

maps gk : U → C
p (k = 1, . . . ,m) such that f = φ +

∑m
k=1 gkhk on U . By the

Oka-Weil theorem gk is a uniform limit on K of a sequence of holomorphic maps

gk,j : X → C
p (j = 1, 2, . . .). The sequence of holomorphic maps

(4.1) fj = φ+
m∑

k=1

gk,j hk : X → C
p

then satisfies Proposition 4.1 in this special case.

We now turn to the general case. Consider the following subsets of Z:

K̃ = f(K), X̃ ′ = f(X ′), Ũ = f(U).

Since f : U → Ũ is biholomorphic, Ũ is Stein. Theorem 2.1 furnishes an open

Stein set Ω̃ in Z containing Ũ as a closed subvariety. As K is O(U)-convex,

we infer that K̃ is O(Ũ )-convex, and hence O(Ω̃)-convex. Since X ′ is Stein and

K ∩X ′ is O(X ′)-convex, X̃ ′ is a Stein subvariety of Z and K̃ ∩ X̃ ′ = f(K ∩X ′)

is O(X̃ ′)-convex. Theorem 2.1 now shows that
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(*) K̃ ∪ X̃ ′ admits a basis of Stein neighborhoods in Z.

We shall need the following Lemma.

Lemma 4.2. There exist an open Stein neighborhood W of K̃ ∪ X̃ ′ in Z and

a holomorphic embedding G : W →֒ X × C
N for some N ∈ N such that for

every x ∈ X, G embeds the fiber Wx = W ∩ π−1(x) onto a locally closed Stein

submanifold G(Wx) of {x} × C
N . (Wx may be empty for some x ∈ X.)

Proof. Since the fibers Zx are smooth and of constant dimension p, the vertical

tangent bundle V T (Z), consisting of all tangent vectors to the fibers Zx, is a

holomorphic vector bundle of rank p over Z. For each holomorphic function g

on an open subset of Z we denote by V d(g) the differential of g in the vertical

directions V T (Z); hence V d(g) is a holomorphic section of the vertical cotangent

bundle V T ∗(Z).

Let W0 ⋐ Z be a Stein open neighborhood of K̃ ∪ X̃ ′ furnished by (*). By

Cartan’s Theorem A there exist finitely many functions g1, . . . , gN ∈ O(W0)

whose vertical differentials V d(gj) span the vertical cotangent space V T ∗
z (Z) at

each point z ∈W0. Consider the holomorphic map

G : W0 → X × C
N , G(z) =

(
π(z), g1(z), . . . , gN (z)

)
.

Our choice of the gj ’s implies that G embeds an open neighborhood W ⊂ W0

of K̃ ∪ X̃ ′ biholomorphically onto a locally closed complex subvariety G(W )

of X × C
N . Clearly we have pr1 ◦ G = π, where pr1 : X × C

N → X is the

projection pr1(x, ζ) = x, and G(Wx) is a locally closed complex submanifold

(without singularities) of {x} × C
N for every x. By (*) we may choose W Stein,

and then each fiber Wx is also Stein. �

We now complete the proof of Proposition 4.1. Let G : W →֒ X × C
N be a

holomorphic embedding furnished by Lemma 4.2. Proposition 3.2, applied to the

Stein subvariety S = G(W ) in X × C
N with regular fibers Sx = G(Wx) ⊂ {x} ×

C
N , gives an open Stein neighborhood Ω ⊂ X × C

N of S and a fiber preserving

holomorphic retraction ι : Ω → S which retracts each fiber Ωx = Ω ∩ ({x} × C
N )

onto the fiber Sx. After shrinking U around K we may assume that f(U) ⊂W .

Consider the composed section

G ◦ f : U ∪X ′ → (U ∪X ′) × C
N ⊂ X × C

N .
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By the special case proved above there is a sequence of holomorphic sections

Fj : Vj → Vj × C
N (j = 1, 2, . . .) in open sets Vj ⊃ K ∪ X ′ such that Fj |X′ =

G ◦ f |X′ for each j, and limj→∞Fj |K = G ◦ f |K uniformly on K. For sufficiently

large j, and for Vj ⊃ K ∪X ′ chosen small enough, we have that Fj(Vj) ⊂ Ω (the

domain of the retraction ι). The sequence of holomorphic sections

fj = G−1 ◦ ι ◦ Fj : Vj → Z|Vj
, j = 1, 2, . . .

then fulfills Proposition 4.1. �

Remark 4.3. Our proof gives the following addition to Proposition 4.1. Assume

that f satisfies the hypotheses of the proposition and that φ : W → Z|W is a

holomorphic section in an open neighborhood W of X ′ such that f = φ on X ′,

and such that f and φ are tangent to order ℓ ∈ N along K ∩ X ′. Then the

sequence {fj} in Proposition 4.1 can be chosen such that, in addition to the

stated properties, fj is tangent to φ to order ℓ along X ′ for each j = 1, 2, . . ..

This follows from the setup (4.1) by choosing h1, . . . , hm ∈ O(X) that vanish

to order ℓ on the subvariety X ′ and that generate the ℓ-th power of the ideal

sheaf of X ′ ⊂ X at every point of the compact set K. �

Remark 4.4. Proposition 4.1 extends to continuous families of sections with a

parameter in a compact Hausdorff space.

As a simple case, let us consider a homotopy of sections ft : U ∪X ′ → Z for

t ∈ [0, 1] such that each ft satisfies the conditions in the proposition and the

homotopy is fixed on X ′. (Here U is an open set in X containing a compact

O(X)-convex set K.) It is then possible to find another homotopy gt : V → Z

(t ∈ [0, 1]), consisting of sections that are holomorphic in a neighborhood V of

K ∪ X ′, such that gt = ft = f0 on X ′ and gt approximates ft uniformly on K

as close as desired for every t ∈ [0, 1]. In addition, we can choose gt tangent to

order ℓ ∈ N along X ′ to a chosen holomorphic extension φ of f0|X′ .

This extension is easy to prove for the trivial fibration Z = X × C
p → X.

In the general case, a Stein neighborhood of ft(K ∪ X ′) in Z is used to get a

corresponding approximating section gt for a fixed t ∈ [0, 1], and hence a patching

problem appears when trying to find a family gt depending continuously on t ∈

[0, 1]. This problem is solved by the method of successive patching explained in

[21, p. 139]. �
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5. Proof of Theorem 1.4

The proof of Theorem 1.4 proceeds by a double induction: The outer one over

an exhaustion of X by compact holomorphically convex sets, and the inner one

over the strata in a suitable stratification. The main step for the latter induction

is given by the following proposition.

Proposition 5.1. Assume that X is a Stein space, M1 ⊂M0 are closed complex

subvarieties of X such that S = M0\M1 is a complex manifold, and π : Z → X is

a holomorphic submersion such that Z|S → S is a holomorphic fiber bundle whose

fiber enjoys CAP. Let d be a complete distance function on Z. Given a pair of

compact O(X)-convex subsets K ⊂ L of X and a continuous section f : X → Z

that is holomorphic in an open neighborhood of K1 = K ∪ (L ∩M1), there exists

for every ǫ > 0 and ℓ ∈ N a homotopy of continuous sections ft : X → Z (t ∈

[0, 1]) that are holomorphic in a neighborhood of K1, with f0 = f , satisfying the

following:

(i) ft agrees with f0 to order ℓ along M1 ∩ L for each t ∈ [0, 1],

(ii) supx∈K, t∈[0,1] d
(
ft(x), f0(x)

)
< ǫ, and

(iii) f1 is holomorphic in a neighborhood of K0 = K ∪ (L ∩M0) in X.

Proof of Theorem 1.4. Assume Proposition 5.1 for the moment. Choose a se-

quence of compact O(X)-convex sets

K = K0 ⊂ K1 ⊂ K2 ⊂ · · · ⊂
∞⋃

k=0

Kk = X.

Set tk = 1 − 2−k and Ik = [tk, tk+1] for k = 0, 1, . . .; hence ∪∞
k=0Ik = [0, 1).

Let f = f0 : X → Z be a continuous section that is holomorphic on a complex

subvariety X ′ of X and in an open neighborhood of K = K0 in X. Given

ǫ > 0, we need to find a homotopy of sections ft : X → Z (t ∈ [0, 1]) satisfying

the conclusion (B) in Theorem 1.4. Essentially the same proof will give the

conclusion (C) if f0 is holomorphic in a neighborhood of K ∪X ′.

By induction on k ∈ Z+ we shall find a sequence of homotopies of sections

ft : X → Z (t ∈ Ik) that agree at the common endpoint tk+1 of the adjacent

intervals Ik, Ik+1 and such that the following hold:
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(i) for every k = 0, 1, . . . and t ∈ Ik the section ft is holomorphic in an open

neighborhood of Kk and satisfies

sup
x∈Kk

d
(
ft(x), ftk (x)

)
< 2−k−1ǫ,

(ii) the homotopy {ft : t ∈ [0, 1)} is fixed on the subvariety X ′.

These properties clearly imply that the limit section

f1 = lim
t→1

ft : X → Z

exists and is holomorphic on X, supx∈K0
d
(
f1(x), f0(x)

)
< ǫ, and f1|X′ = f0|X′ .

Thus the homotopy {ft}t∈[0,1] satisfies the required properties.

Since all steps in the induction are of the same kind, we explain how to get

the first homotopy for t ∈ I0 = [0, 1
2 ].

Set K = K0, L = K1. By the assumption there exists an open set U ⋐ X

containing L such that Z|U is a stratified holomorphic fiber bundle whose strata

satisfy CAP. Since L is O(X)-convex, there is a Stein domain Ω in X with

L ⊂ Ω ⋐ U . Then Ω is a finite dimensional Stein space and the restriction

Z|Ω → Ω is also a stratified fiber bundle all of whose fibers enjoy CAP. Choose a

stratification

Ω = X0 ⊃ X1 ⊃ · · · ⊃ Xm = ∅

such that the restriction of π : Z → X to each stratum S ⊂ Xk\Xk+1 is a

fiber bundle whose fiber enjoys CAP. Taking X ′
k = Xk ∪ (X ′ ∩ Ω) gives another

stratification

Ω = X ′
0 ⊃ X ′

1 ⊃ · · · ⊃ X ′
m = Ω ∩X ′,

with regular strata X ′
k\X

′
k+1 = Xk\(Xk+1 ∪X

′) ⊂ Xk\Xk+1, ending with X ′
m =

Ω ∩X ′.

By Proposition 4.1 we can replace f0 by a section that is holomorphic in an

open neighborhood of K ∪ (L∩X ′). When proving (C), f0 is already assumed to

be holomorphic near X ′.

Let {ft}t∈[0, 1

2m
] be a homotopy furnished by Proposition 5.1 for the pair of

subvarieties M1 = X ′
m = Ω ∩X ′ and M0 = X ′

m−1 of Ω, with ǫ replaced by ǫ
2m

.

Then f 1

2m
is holomorphic in a neighborhood of K ∪ (L ∩ X ′

m−1), the homotopy

is fixed on X ′, and it satisfies

sup
x∈K0

d
(
ft(x), f0(x)

)
<

ǫ

2m
, t ∈ [0,

1

2m
].
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Next we apply Proposition 5.1 with the initial section f = f 1

2m
and the pair

of subvarieties M1 = X ′
m−1, M0 = X ′

m−2 to get a homotopy {ft}t∈[ 1

2m
, 2

2m
] that is

fixed on X ′ such that the section f 2

2m
= f 1

m
is holomorphic in a neighborhood of

K ∪ (L ∩X ′
m−2), and such that

sup
x∈K0

d
(
ft(x), f 1

2m
(x)

)
<

ǫ

2m
, t ∈ [

1

2m
,

2

2m
].

Continuing in this way we obtain after m steps a homotopy {ft}t∈[0, 1
2
] with the

required properties. In particular, the section f 1

2

is holomorphic in a neighbor-

hood of the set L = K1, and its restriction to the subvariety X ′ agrees with f0|X′ .

We can extend this homotopy to all of X (without changing it near L = K1) by

using a cut-off function in the parameter.

In the same way we construct homotopies {ft}t∈Ik
for all k = 1, 2, . . ., thereby

proving part (B).

When the initial section f = f0 is holomorphic in a neighborhood of K ∪X ′,

we can use the improvements of Proposition 4.1 in Remarks 4.3 and 4.4 to keep

the sections ft in our homotopy holomorphic in a neighborhood of K ∪ X ′ and

tangent to f0 to order ℓ along X ′. This gives the conclusion (C).

Finally we show that Theorem 1.4 (D) is a consequence of the interpolation

statement (B-ii). Suppose that f0, f1 ∈ ΓO(X,Z) are connected by a homotopy

{ft}t∈[0,1] ⊂ Γ(X,Z) that is fixed on a closed complex subvariety X ′ of X (pos-

sibly empty). Choose a retraction θ of C onto the segment [0, 1] ⊂ C and define

F : X̃ = X × C → Z̃ = Z × C by

F (x, t) =
(
fθ(t)(x), t

)
, x ∈ X, t ∈ C.

Then F is a section of the fiber bundle π̃ : Z̃ → X̃ with the fiber Y and the

projection map π̃(z, t) =
(
π(z), t

)
. Since F is holomorphic on the subvariety

X̃ ′ = (X × {0, 1}) ∪ (X ′ × C) ⊂ X̃,

part (B) of Theorem 1.4 furnishes a homotopy that is fixed on X̃ ′ from F to a

holomorphic section F̃ : X̃ → Z̃. The family f̃t : X → Z, defined by

F̃ (x, t) =
(
f̃t(x), t

)
, x ∈ X, t ∈ [0, 1],

is then a homotopy of holomorphic sections of π : Z → X such that f̃0 = f0,

f̃1 = f1, and f̃t|X′ = ft|X′ for all t ∈ [0, 1].

This proves Theorem 1.4 provided that Proposition 5.1 holds. �
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Proof of Proposition 5.1. When X is smooth (without singularities) and M0 =

X, this is [15, Proposition 4.1]. We first recall the proof of this special case since

the general case will be obtained by a modification explained below.

We may assume that L = {x ∈ X : ρ(x) ≤ 0}, where ρ : X → R is a strongly

plurisubharmonic exhaustion function such that ρ|K < 0 and dρ 6= 0 on bL =

{ρ = 0}.

We recall the geometric setup from [12, §6.5] that was also used in [15, §4].

By the assumption, f is holomorphic in an open set U ⊃ K ∪M1. Since the

compact set K1 = K ∪ (M1 ∩ L) ⊂ U is O(X)-convex, there exists a smooth

strongly plurisubharmonic exhaustion function τ : X → R such that τ < 0 on

K1 and τ > 0 on X\U . By general position we may assume that 0 is a regular

value of τ and the hypersurfaces {ρ = 0} = bL and {τ = 0} intersect transversely

along the real codimension two submanifold Σ = {ρ = 0} ∩ {τ = 0}. Hence

D0 := {τ ≤ 0} ⊂ U is a strongly pseudoconvex domain with smooth boundary.

For each s ∈ [0, 1] let

(5.1) ρs = τ + s(ρ− τ) = (1 − s)τ + sρ, Ds = {ρs ≤ 0} = {τ ≤ s(τ − ρ)}.

We have D0 = {τ ≤ 0} and D1 = {ρ ≤ 0} = L.

Let Ω = {ρ < 0, τ > 0} ⊂ D1\D0 and Ω′ = {ρ > 0, τ < 0} ⊂ D0\D1

(see Figure 1). As s increases from 0 to 1, Ds ∩ L increases to D1 = L while

Ds\L ⊂ D0 decreases to ∅. All hypersurfaces bDs = {ρs = 0} intersect along Σ.

Since dρs = (1− s)dτ + sdρ and the differentials dτ , dρ are linearly independent

along Σ, bDs is smooth near Σ. Finally, bDs is strongly pseudoconvex at every

smooth point, in particular at every point where dρs 6= 0.

We investigate the singular points of bDs = {ρs = 0} inside Ω. (The remaining

singular points will be irrelevant.) The defining equation of Ds∩Ω can be written

as τ ≤ s(τ − ρ) and, after dividing by τ − ρ > 0, as

Ds ∩ Ω = {x ∈ Ω: h(x) =
τ(x)

τ(x) − ρ(x)
≤ s}.

The critical point equation dh = 0 is equivalent to

(τ − ρ)dτ − τ(dτ − dρ) = τdρ− ρdτ = 0.

A generic choice of ρ and τ insures that there are at most finitely many solutions

p1, . . . , pm ∈ Ω and no solution on bΩ. A calculation shows that at each critical

point the complex Hessians satisfy (τ − ρ)2Hh = τHρ − ρHτ . Since τ > 0 and
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M1 M1

bDs = {ρs = 0}

K
Σ

{ρ = 1}

bD0 = {τ = 0}

bL = {ρ = 0}

Figure 1. The sets Ds.

−ρ > 0 on Ω, we conclude that Hh > 0 at such points. We may assume that

distinct critical points of h belong to different level sets.

We are now ready to prove Proposition 5.1 in the special case. Let s0 and s1

be two regular values of h on Ω such that 0 ≤ s0 < s1 ≤ 1 and h has at most one

critical point in Ωs0,s1
= {x ∈ Ω: s0 < h(x) < s1}. Suppose inductively that we

have already found a homotopy ft : X → Z, t ∈ [0, s0], satisfying the conditions

in the proposition and such that fs0
is holomorphic in a neighborhood of Ds0

.

We wish to deform fs0
to a section fs1

that is holomorphic in a neighborhood of

Ds1
by a homotopy consisting of sections that are holomorphic near Ds0

∩Ds1

and such that the homotopy is fixed on M1. We consider two cases.

The noncritical case: h has no critical values in Ωs0,s1
.

Recall that a pair (A,B) of compact sets in a complex space X is said to be a

Cartan pair if the following hold (see [14, p. 695]):

(i) A ∪B and A ∩B admit a basis of Stein neighborhoods in X, and

(ii) A\B ∩B\A = ∅ (the separation property).
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The main step is to extend a holomorphic section (by appproximation) to a

special convex bump that we now introduce (see Fig. 2). The CAP property of

the fiber will be used only at this point of the proof.

C = A ∩B

bA

B\A
W X

A\B

bA

Figure 2. A special convex bump B in a window W

Definition 5.2. Let X be a complex space. A pair of compact sets (A,B) in X

is a special Cartan pair, and B is a special convex bump on A, if

(i) (A,B) is a Cartan pair in X, and

(ii) there are a compact set W ⊂ Xreg (a window for B), containing B in its

interior, and a holomorphic coordinate map φ from an open neighborhood

of W to C
n such that Q = φ(W ) is a cube (1.1), and such that the sets

K = φ(A ∩W ), K ′ = φ((A ∪B) ∩W )

are special convex sets in Q of the form (1.2).

By subdividing [s0, s1] into finitely many subintervals and replacing [s0, s1] by

one such subinterval we can assume that Ds1
is obtained by attaching toDs0

∩Ds1

finitely many special convex bumps contained in X\M1 (see Fig. 3). The proof is

completely elementary (see e.g. [34, Lemma 12.3]).

On each bump we apply [14, Proposition 3.1] to extend the holomorphic homo-

topy (by approximation) across the attached bump, without changing its values

on the subvariety M1. In finitely many steps we accomplish our task.

The critical case: h has a unique critical point p ∈ Ωs0,s1
. We can extend

the holomorphic homotopy across the critical level {h = h(p)} by a reduction to
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Ds0
∩Ds1

Ds0

Ds1

B

M1

Figure 3. A special bump B on Ds0
∩Ds1

.

the noncritical case as in [14, p. 697]. This reduction was developed in [12, §7.4]

where the reader can find complete details.

Proposition 5.1 is obtained in finitely many steps of the above two types.

The general case: Now X is a Stein space and M1 ⊂ M0 are closed complex

(hence Stein) subvarieties of X such that S = M0\M1 is a complex manifold,

possibly disconnected. By the assumption we have a section f : X → Z which is

holomorphic in an open set U ⊂ X containing K1 = K ∪ (M1 ∩L). As before, we

may assume that L = {x ∈ X : ρ(x) ≤ 0}, where ρ : X → R is a smooth strongly

plurisubharmonic exhaustion function whose restriction to S = M0\M1 has no

critical points on bL ∩ S = {ρ = 0} ∩ S. Note that L intersects at most finitely

many connected components of S, and hence we can embed a relatively compact

neighborhood of L in X holomorphically into C
N (see [1]).

SinceK1 is O(X)-convex, there is a smooth strongly plurisubharmonic function

τ : X → R such that τ < 0 on K1 and τ > 0 on X\U . Set

D0 = {x ∈M0 : τ(x) ≤ 0} ⊂ U.

By general position we may assume that 0 is a regular value of τ |S and the real

hypersurfaces {ρ = 0} ∩ S = bL ∩ S and {τ = 0} ∩ S in S intersect transversely

along the submanifold Σ = {ρ = 0} ∩ {τ = 0} ∩ S of S.

We define ρs as in (5.1) and set

Ds = {x ∈M0 : ρs(x) ≤ 0} = {x ∈M0 : τ(x) ≤ s
(
τ(x) − ρ(x)

)
}.

As s increases from 0 to 1, Ds ∩L increases from D0 ∩ L ⊂M0 to D1 = L∩M0.

Like in the special case considered above we successively attach to the set A0 =

K ∪ (D0 ∩ L) special convex bumps and handles, contained in the submanifold

S ∩ L, thereby reaching the set K0 = K ∪ (L ∩ M0) in finitely many steps.
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Note that the set A0 is O(X)-convex, and it contains a collar around the set

K1 = K ∪ (L ∩M1) in L ∩M0.

We consider a typical step in the noncritical case. Assume that (A,B) is a

Cartan pair in X such that A has been obtained by attaching to A0 finitely many

special convex bumps and handles contained in S ∩ L, and that B ⊂ S ∩ L is a

special convex bump on A ∩ S (Def. 5.2). Note that (A,B) is also a Cartan pair

in the ambient space C
N .

Assume inductively that we have a section f : X → Z that is holomorphic

in a neighborhood of K1 = K ∪ (L ∩M1) in X, and that is also holomorphic

in a relative neighborhood of A ∩ S in the stratum S. By [14, Lemma 3.2] we

‘thicken’ f over its domain of holomorphicity to a family of holomorphic sections

F (x,w) of Z → X, depending holomorphically on a parameter w = (w1, . . . , wp)

in an open neighborhood O of the origin in some Euclidean space C
p, such that

f = F (· , 0), F (x,w) = f(x) for all x ∈ M1 and w ∈ O, and F is submersive in

the w-variable for all base points x in a neighborhood of A ∩B in S.

Choose open neighborhoods O3 ⋐ O2 ⋐ O1 of 0 in C
p, with O1 ⋐ O. By

invoking the CAP property of the fiber of the bundleZ|S → S we can approximate

F , uniformly over a neighborhood V ′ of A ∩ B in S and uniformly with respect

to w ∈ O1, by a family G of holomorphic sections, defined in a neighborhood of

B in S and depending holomorphically on w ∈ O1.

Assuming that G approximates F sufficiently closely, we find a neighborhood

V ⋐ V ′ of A ∩B in S and a holomorphic transition map of the form

γ(x,w) =
(
x, ψ(x,w)

)
, x ∈ V, w ∈ O2

that is close to the identity map on (A ∩B)×O2 (depending on the closeness of

G to F on V ′ ×O1) and such that

F = G ◦ γ on V ×O2.

For the details see [14, (3.2)].

We now consider a neighborhood of L in X as a complex subspace of C
N .

Choose a holomorphic retraction ι from an open neighborhood U of A∩B in C
N

onto an open neighborhood of A ∩ B in S ⊂ CN . (Such a retraction exists by

Theorem 3.1 since A∩B has a Stein neighborhood basis and S is a submanifold

of C
N .) We choose U small enough such that ι(U) ⊂ V . Let

γ̃(z,w) = γ(ι(z), w), z ∈ U, w ∈ O2.
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Choose a Cartan pair (Ã, B̃) in C
N such that A ⊂ IntÃ, B ⊂ IntB̃, and

Ã∩B̃ ⊂ U . (We may take Ã and B̃ to be smooth strongly pseudoconvex domains;

see [12, Lemma 4.3].) Assuming as we may that γ̃ is sufficiently close to the

identity map (this is insured by approximating F sufficiently well by G), Lemma

2.1 in [14] furnishes a splitting

γ̃ = β ◦ α−1,

where α and β are biholomorphic maps of the same type as γ and close to the

identity on Ã×O3, resp. on B̃ ×O3. In addition, α can be chosen to match the

identity map to a given finite order along the intersection of its domain with the

subvariety M1. (For a simple proof of this splitting lemma see [17, Lemma 3.2].)

From F = G ◦ γ = G ◦ β ◦ α−1 we infer that

F ◦ α = G ◦ β on (A ∩B) ×O3.

This gives a family of holomorphic sections F̃ of Z → X over the set A ∪ B

such that the section F̃ (· , 0) approximates f uniformly on A, it agrees with f to

order ℓ along M1, and is homotopic to f by a homotopy satisfying the required

properties. The induction may now proceed.

We deal with the critical points of the function h = τ
τ−ρ

in S ∩ L exactly as

before by reducing to the noncritical case (see the critical case above).

In finitely many such steps we obtain a homotopy {ft}t∈[0,1] with the required

properties such that f1 is holomorphic in a neighborhood of K1 in X, and also

in a relative neighborhood of L ∩M0 in the subvariety M0.

By Proposition 4.1 there is a holomorphic section f̃1 in a neighborhood of

K0 = K ∪ (L ∩M0) in X such that f̃1 is as close as desired to f1 on K, f̃1 = f1

on L ∩M0, and f̃1 agrees with f1 to order ℓ along L ∩M1. Replace f1 by f̃1

and adjust the homotopy {ft} accordingly. By using a cut-off function in the

parameter of the homotopy we can extend {ft} continuously to all of X without

changing it near K0 and on M1. This completes the proof. �

6. The parametric Oka principle

We have already seen in the proof of Theorem 1.4 that the basic Oka principle

with interpolation also implies the 1-parametric Oka principle, the latter meaning

that the inclusion

(6.1) ι : ΓO(X,Z) →֒ Γ(X,Z)
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of the space of holomorphic sections into the space of continuous sections induces

a bijection of the path connected components of the two spaces (Corollary 1.5).

A stronger form of the Oka principle is to demand that the inclusion (6.1) is a

weak homotopy equivalence, i.e., it induces isomorphisms of all homotopy groups

(6.2) πk(ι) : πk(ΓO(X,Z))
≈

−→ πk(Γ(X,Z)), k = 0, 1, 2, . . .

To formulate the general parametric Oka principle we recall the following no-

tions from [23, Definition 3].

Definition 6.1. Let h : Z → X be a holomorphic map of complex spaces, and

let P0 ⊂ P be topological spaces.

(a) A P -section of π : Z → X is a continuous map f : X × P → Z such that

fp = f(· , p) : X → Z is a section of π for each fixed p ∈ P . A P -section

f is holomorphic on X (resp. on a subset U ⊂ X) if fp is holomorphic on

X (resp. on U) for each fixed p ∈ P .

(b) A homotopy of P -sections is a P × [0, 1]-section, i.e., a continuous map

H : X × P × [0, 1] → Z such that Ht = H(· , · , t) : X × P → Z is a P -

section for each t ∈ [0, 1]. Such homotopy H is holomorphic if Hp,t =

H(· , p, t) : X → Z is holomorphic for each fixed (p, t) ∈ P × [0, 1].

(c) A (P,P0)-section of π : Z → X is a P -section f : X × P → Z such that

fp : X → Z is holomorphic on X for each p ∈ P0. A (P,P0)-section is

holomorphic on U ⊂ X if fp|U is holomorphic for every p ∈ P .

A P -map X → Y to a complex space Y is a map X ×P → Y (which is the same

thing as a P -section of the product fibration Z = X × Y → X). Similarly one

defines (P,P0)-maps and their homotopies.

Given a compact subset K in a complex space X and a closed complex subva-

riety X ′ of X, we say that a P -section f : X×P → Z is holomorphic on K∪X ′ if

there is an open neighborhood U ⊂ X of K such that for every p ∈ P , fp = f(· , p)

is holomorphic in U and fp|X′ is holomorphic on X ′. Similar terminology applies

to (P,P0)-sections and their homotopies.

Definition 6.2. Let π : Z → X be a holomorphic map onto a complex space

X, and let d be a distance function on Z. We say that sections of π satisfy

the parametric Oka principle with approximation and interpolation (POPAI) for

a given pair of topological spaces P0 ⊂ P if the following holds. Given a com-

pact O(X)-convex set K in X, a closed complex subvariety X ′ of X, and a
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P -section f : X × P → Z that is holomorphic on K ∩ X ′, there exists for ev-

ery ǫ > 0 a homotopy of P -sections F : X × P × [0, 1] → Z such that, setting

f t = F (· , · , t) : X × P → Z (t ∈ [0, 1]), we have

(i) f0 = f is the initial P -section,

(ii) the P -section f1 is holomorphic on X,

(iii) for each t ∈ [0, 1] the P -section f t is holomorphic on K∪X ′, f t
p|X′ = f0

p |X′

for each p ∈ P , supx∈K,p∈P d
(
F (x, p, t), f(x, p)

)
< ǫ, and

(iv) if f is a (P,P0)-section then F can be chosen fixed on P0 (i.e., such that

f t
p is independent of t ∈ [0, 1] for each fixed p ∈ P0).

By deleting the approximation and/or the interpolation condition in POPAI

we get POP (the parametric Oka principle), POPA (the parametric Oka principle

with approximation), or POPI (the parametric Oka principle with interpolation).

We also define the parametric Oka principle with approximation and jet inter-

polation (POPAJI) by asking that for every P -section f which is holomorphic in

an open set U ⊃ K∪X ′ there exist holomorphic P -sections f̃ that approximate f

uniformly on K, and that agree with f to a given finite order along the subvariety

X ′. (The above terminology was introduced by Lárusson [40].)

Note that the validity of POPAJI for all finite polyhedral pairs P0 ⊂ P is

equivalent to Gromov’s Ell∞ property [31, §3.1].

The following observation is due to Gromov [31].

Proposition 6.3. If sections of a holomorphic map π : Z → X satisfy the para-

metric Oka principle (POP) for all pairs P0 ⊂ P consisting of a finite polyhedron

P and a subpolyhedron P0, then the inclusion ι : ΓO(X,Z) →֒ Γ(X,Z) is a weak

homotopy equivalence.

Proof. Taking P = Sk (the k-sphere) and P0 = ∅, POP implies that each continu-

ous map Sk → Γ(X,Z) can be homotopically deformed to a map Sk → ΓO(X,Z).

Hence (6.2) is surjective.

Similarly, taking P to be the closed real (k+1)-ball Bk+1 and P0 = bBk+1 = Sk,

we conclude that each map Sk → ΓO(X,Z) that extends to a map Bk+1 →

Γ(X,Z) also extends to a map Bk+1 → ΓO(X,Z). Hence (6.2) is injective. �

We now introduce a parametric version of CAP.
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Definition 6.4. A complex manifold Y enjoys the Parametric Convex Approxi-

mation Property (PCAP) for a certain pair of topological spaces P0 ⊂ P if for ev-

ery special convex pair (K,Q), a map f : Q×P → Y such that fp = f(· , p) : Q→

Y is holomorphic for every p ∈ P0, and is holomorphic on K for every p ∈ P , can

be approximated uniformly on K × P by maps f̃ : Q × P → Y such that f̃p is

holomorphic on Q for all p ∈ P , and f̃p = fp for all p ∈ P0.

The following is a parametric version of Theorem 1.4.

Theorem 6.5. If π : Z → X is a stratified holomorphic fiber bundle over a Stein

space X all of whose fibers satisfy PCAP for a certain pair of compact Hausdorff

spaces P0 ⊂ P , then sections X → Z satisfy the parametric Oka principle with

approximation and (jet) interpolation for the same pair (P,P0):

PCAP =⇒ POPAI, PCAP =⇒ POPAJI.

Remark 6.6. In previous papers [21, 22, 23, 10, 14, 15], POP was only considered

for pairs of parameter spaces P0 ⊂ P such that

(*) P is a nonempty compact Hausdorff space, and P0 is a closed subset of P

that is a strong deformation neighborhood retract (SDNR) in P .

One can dispense with the SDNR condition by using a generalized Tietze

extension theorem for maps into Hilbert spaces [19, Proposition 4.1] �

Remark 6.7. For all compact parameter spaces P0 ⊂ P contained in a Euclidean

space R
m we also have the implication

CAP =⇒ PCAP

(see the note at the end of the paper). �

Among the conditions implying PCAP for all pairs of compact Hausdorff spaces

P0 ⊂ P we mention Gromov’s ellipticity (the existence of a dominating holomor-

phic spray on Y , see [31]), and subellipticity (the existence of a finite dominating

family of holomorphic sprays on Y , see [10]). Each of these conditions actually

implies the parametric Oka principle for sections of any holomorphic fiber bundle

Z → X with fiber Y over a Stein manifold X (see [10, 21, 22, 23, 31]). Like in

the basis case considered above, the proof splits in two parts:

• subellipticity =⇒ PCAP, and

• PCAP =⇒ POPAI.
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The first of these implications generalizes the Oka-Weil approximation theorem

(see Theorem 4.1 in [21, p. 135] and Theorem 3.1 in [10, p. 534]). The main

part of the proof is the second implication which is indeed an equivalence (for

the converse implication POPAI ⇒ PCAP it suffices to apply POPAI with K a

compact convex set in X = C
n and X ′ = ∅).

Sketch of proof of Theorem 6.5. We follow the proof of Theorem 1.4, using the

parametric versions of the technical ingredients at every step. There are two

types of basic steps (see the proof of Proposition 5.1):

(1) extension to a special convex bump (the noncritical case);

(2) extension to a handle with a totally real core (the critical case).

Step (1) consists of three substeps:

(i) holomorphic approximation on a special convex pair,

(ii) finding a holomorphic transition map between the old and the new section,

(iii) splitting the transition map and gluing the pair of sections.

Each point p0 ∈ P has an open neighborhood Up0
⊂ P such that these steps can

be performed simultaneously for all sections {fp : p ∈ Up0
}, with a continuous

dependence on the parameter. Indeed, for (i) we use the hypothesis PCAP, (ii)

follows from the implicit function theorem, and (iii) follows from [17, Lemma 3.2]

that allows continuous dependence on parameters.

Step (2) also involves three substeps:

(a) extending the section across the core of the handle,

(b) approximation by a section that is holomorphic on a handlebody,

(c) passing the critical level by the noncritical procedure, applied with a

different strongly plurisubharmonic function.

Substep (a) is automatically fulfilled since we have a global P -section X×P →

Z at each step.

For Substep (b) we apply the parametric version of [13, Theorem 3.2] (see also

[24, Theorem 4.1]).

For Substep (c) we apply Step (1) finitely many times.

We conclude the proof (globalization with respect to the parameter p ∈ P )

by following the stepwise extension method as in the Conclusion of the proof of

Theorem 4.2 in [19]. �
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Corollary 6.8. If Z → X is a stratified holomorphic fiber bundle over a Stein

space X all of whose fibers enjoy PCAP, then the inclusion

ι : ΓO(X,Z) →֒ Γ(X,Z)

is a weak homotopy equivalence. This holds in particular if all fibers are elliptic

in the sense of Gromov [31], or subelliptic in the sense of [10].

7. Existence of global holomorphic sections

We now add a connectivity hypothesis on fibers in a stratified fiber bundle to

obtain existence theorems for holomorphic sections.

Theorem 7.1. Assume that X is a finite dimensional Stein space, π : Z → X is a

holomorphic submersion, and X = X0 ⊃ X1 ⊃ · · · ⊃ Xm = ∅ is a stratification of

X such that for each connected component S of Xk\Xk+1 the restriction Z|S → S

is a holomorphic fiber bundle whose fiber YS enjoys CAP and πq(YS) = 0 for

q ∈ {1, 2, . . . ,dimS − 1}. Then there exists a holomorphic section X → Z.

Furthermore, given a closed complex subvariety X ′ ⊂ X, a compact O(X)-

convex subsetK ⊂ X, an open set U ⊃ K, and a holomorphic section f : U∪X ′ →

Z, there exists a holomorphic section f̃ : X → Z with f̃ |X′ = f |X′ such that f̃

approximates f as close as desired uniformly on K.

Proof. The only place in the proof of Theorem 1.4 that requires a topological

condition on the fiber is when crossing a critical point p of index k ≥ 1 of a

strongly plurisubharmonic Morse function ρ on a stratum S (see the critical case

in the proof of Proposition 5.1).

To cross the critical level of ρ at p we must be able to extend a given section,

defined on a sublevel set {ρ ≤ c} for some c < ρ(p) close to the critical level ρ(p),

to a continuous section over a k-dimensional totally real disc E in S, attached

with its boundary sphere bE ≈ Sk−1 to the hypersurface {ρ = c}, such that

{ρ ≤ c} ∪ E is a strong deformation retraction of a sublevel set {ρ ≤ c′} for

some c′ > ρ(p). Such an extension exists if and only if the map f : bE → Y is

null-homotopic in Y , and this is certainly the case if the group πk−1(Y ) vanishes.

Since ρ|S is strongly plurisubharmonic, we have k ≤ dimS. Our topological

assumption on the fibers of Z → X therefore insures the existence of a continuous

extension of a section at each critical point on every stratum, and hence the proof

of Theorem 1.4 applies. �
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Corollary 7.2. Assume that X is a Stein manifold of dimension n, K is a com-

pact O(X)-convex subset of X, X ′ is a closed complex subvariety of X, U is an

open set in X containing K, and f : U ∪ X ′ → Y is a holomorphic map. If Y

enjoys CAP and if πq(Y ) = 0 for q = 0, 1, . . . , n− 1, then there exists a holomor-

phic map f̃ : X → Y such that f̃ |X′ = f |X′ and f̃ approximates f uniformly on

K as close as desired. The conclusion holds if Y = C
N\A, where A is a closed

algebraic subvariety of C
N of codimension q = N − dimA ≥ max{2, n+1

2 }.

Proof. The first conclusion is a special case of Theorem 7.1. For the second part,

recall that C
N\A enjoys CAP if q ≥ 2 (see [14, Corollary 1.3]), and πk(C

N\A) = 0

when 0 ≤ k ≤ 2q − 2 (this follows from a general position argument). �

8. Submersions with stratified sprays

Assume that π : Z → X is a holomorphic submersion of finite dimensional

complex spaces (Def. 1.2). For any point x ∈ X we set Zx = π−1(x). For z ∈ Zx

we denote by V TzZ = TzZx the tangent space to the fiber Zx, also called the

vertical tangent space of Z at z (with respect to π).

Definition 8.1. (Gromov [31]) Assume that π : Z → X is a holomorphic submer-

sion of complex spaces. A fiber dominating spray associated to this submersion

is a triple (E, p, s), where p : E → Z is a holomorphic fiber bundle and s : E → Z

is a holomorphic map satisfying the following properties for every z ∈ Z:

(i) s(0z) = z (here 0z ∈ Ez is the zero element of the fiber of E over z),

(ii) π ◦ s = π ◦ p (i.e., s(Ez) ⊂ Zπ(z)), and

(iii) (ds)0z (Ez) = V TzZ.

Condition (iii), which means that the map s : Ez → Zπ(z) is a submersion at

0z ∈ Ez, is called the domination property of the spray.

Definition 8.2. A holomorphic submersion π : Z → X admits stratified sprays

(or is a stratified elliptic submersion) if there exists a stratification X = X0 ⊃

X1 ⊃ · · · ⊃ Xm = ∅ such that each point x in any stratum S ⊂ Xk\Xk+1 has

an open neighborhood U in S such that the restricted submersion π : Z|U → U

admits a fiber dominating spray (Def. 8.1).

A special case of the following result was given in [23, p. 66].
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Theorem 8.3. Let π : Z → X be a holomorphic submersion of finite dimensional

complex spaces. If X is Stein and if the submersion admits stratified sprays (Def.

8.2), then sections X → Z satisfy the parametric Oka principle with approxima-

tion and (jet) interpolation for any pair of compact Hausdorff spaces P0 ⊂ P (see

Def. 6.2). The conclusion of Corollary 6.8 holds as well.

The validity of Theorem 8.3 was indicated by Gromov [31]. In [22, 23] a proof

was given for the case when the base X is a Stein manifold and there is only one

stratum. The methods of this paper allow us to complete the proof also for Stein

spaces with singularities, and for submersions with stratified sprays, along the

lines indicated in [23, §7].

Proof. We follow the proof of Theorem 1.4 (see §5 above). Lets us consider the

basic case without parameteres. At a typical step of the induction we have a

section f : X → Z that is holomorphic on a neighborhood of a compact O(X)-

convex subset K of X, and whose restriction to a closed complex subvariety

X ′ of X is holomorphic on X ′. Given a larger compact O(X)-convex subset L

in X containing K, our task is to homotopically deform f to a section that is

holomorphic in a neighborhood of L such that the homotopy is fixed on X ′ and

such that all sections in the homotopy are holomorphic near K and are uniformly

close to f on K. The proof is then completed by induction over a sequence of

compacta exhausting X.

Applying Proposition 4.1 we first modify f to make it holomorphic in an open

neighborhood of K ∪X ′. Let X = X0 ⊃ X1 ⊃ · · · ⊃ Xm = ∅ be a stratification

satisfying the hypotheses of the theorem. Replacing Xk by X ′
k = Xk ∪ X ′ we

obtain another stratification

X = X ′
0 ⊃ X ′

1 ⊃ · · · ⊃ X ′
m = X ′

with regular strata X ′
k\X

′
k+1 = Xk\(Xk+1 ∪X

′) ⊂ Xk\Xk+1 such that the dom-

inating spray condition still holds over the strata.

Assume inductively that f is already holomorphic in a neighborhood of K ∪

(X ′
k+1∩L) (this holds when k+1 = m). The goal is to modify f to a section that

is holomorphic in a neighborhood of K ∪ (X ′
k ∩ L) such that the deformation is

fixed on X ′
k+1 and is small on K; the proof is then completed by a finite downward

induction on k. This is accomplished by Proposition 6.1 in [23] as follows.
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We choose a Cartan string (A0, A1, . . . , An) in the subvariety X ′
k such that A0

is a (small) neighborhood of K∪ (X ′
k+1∩L) on which f is holomorphic, while the

remaining sets A1, . . . , An are contained in the strata S = X ′
k\X

′
k+1 (hence in the

regular locus ofX ′
k), and they are chosen sufficiently small such that the restricted

submersion Z|S → S admits a fiber dominating spray on a neighborhood of each

of them. In addition, we require that
⋃n

j=0Aj = L∩X ′
k. (For the definition and

the construction of such Cartan strings see Gromov [31, 4.2.D’] and [22], Def.

4.1 and Theorem 4.6.) Now we obtain a desired modification of f by applying

Proposition 5.1 in [22] with the given Cartan string.

The proof in the parametric case follows the same lines (see §6 above and

[22, 23]). �

Remark 8.4. Two further improvements of Theorem 8.3 are possible.

As in Theorem 1.4, it suffices that the assumptions of Theorem 8.3 hold over

an exhausting sequence of open relatively compact subsets of X. This allows X

to be infinite dimensional.

Secondly, the fiber domination condition can be weakened by asking that each

point x in a stratum S (in a given stratification) has an open neighborhood

U ⊂ S such that the restricted submersion Z|U → U admits a finite collection of

holomorphic sprays (Ej , pj , sj), j = 1, . . . , k, satifying the following domination

condition at every point z ∈ Z|U = π−1(U):

(ds1)0z(E1,z) + (ds2)0z(E2,z) + . . .+ (dsk)0z(Ek,z) = V TzZ.

A submersion Z → X satisfying this property is called a stratified subelliptic

submersion. We refer to [10] for further details.
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Added to the page proofs. Recently I showed in [18] that the convex approxima-

tion property CAP (see Def. 1.1) implies the parametric convex approximation

property PCAP (see Def. 6.4) for all pairs of compact parameter sets P0 ⊂ P

contained in some Euclidean space R
m. Such pairs suffice for all known applica-

tions. By abstract homotopy theory (see [39]) one also gets from this PCAP for
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all pairs (P,P0) consisting of a finite CW-complex P and a subcomplex P0. For

such pairs P0 ⊂ P , Theorem 6.5 holds under the assumption that all its fibers

satisfy CAP.
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14. F. FORSTNERIČ, Runge approximation on convex sets implies Oka’s property. Ann. Math.,

(2) 163 (2006), 689–707.
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20. F. FORSTNERIČ, B. IVARSSON, F. KUTZSCHEBAUCH, J. PREZELJ, An interpolation

theorem for proper holomorphic embeddings. Math. Ann., 338 (2007), 545–554.
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