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Abstract: We study the spectrum of relatively compact, non-self adjoint
perturbations of self adjoint operators, with the formal properties of pseudo-
differential operators. When the self adjoint operator is elliptic, we obtain an
estimate for the location of the spectrum in complex plane, which provides a
quantitative improvement of classical results of Keldys, Gohberg and Krein.
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INTRODUCTION

If A: X — Y is a closed operator from a dense domain D(A) C X, to another
Banach space Y, then the resolvent set, the complement of the spectrum, is the
set of points A € C, such that A — X has a bounded inverse, Rs(\) = (A — \)~L.
The operator R4(\) is called the resolvent of A. We denote the resolvent set by
p(A) and its complement, the spectrum of A, by A(A). If X =Y is a Hilbert
space, with inner product (-, -), then we say that A is self adjoint if

(1) (Az,y) = (z, Ay) for all z,y € D(A),

and the linear functional ¢(x) = (Az,y) is bounded only if y € D(A). In this case
it is easy to see that the spectrum lies in R. The norm of the resolvent operator
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of a self adjoint operator satisfies a precise bound:

1

(2) [Ra(N)[| = distOn, A(A))”

If the operator is not self adjoint, then no such estimate holds.

In recent years there has been a resurgence of interest in the spectral theory
of non-self adjoint operators. Much of this interest stems from the desire to
numerically compute the spectra of such operators, or their finite dimensional
approximations. In a finite dimensional context, doing a computation with a

relative machine accuracy of €, one cannot distinguish the spectrum of A :
(3) {A € C: there exists v # 0 such that (A — \)v =0}

from the set

(4) {A € C: there exists v # 0 such that ||(4 — \)v|| < €]|lv]|}

This explains, in part, why the spectrum itself may not be as useful a concept
as the pseudospectrum, which we now define: For an € > 0 we define the e-
pseudospectrum of A to be

(5) Ac(A)={Ne€C: thereisav #0 € D(A) such that [|[(A— Nv|| < €|v]|},
or, equivalently
(6) A€ A(A)if A€ A(A) or [Ra(N)| > e L.

Clearly, for every € > 0, A(A) C Ac(A). If A is self adjoint, then Ac(A) is just the
e-neighborhood of A(A). From many examples, it is now well understood that, if
A is not self adjoint, then A (A) can be much larger than A. An example in [7],
shows that A (A) could be the convex set, x > y?, whereas A(A) is a discrete
subset of [0, c0).

Inspired by the work of Davies, Dencker, Sjostrand, and Zworksi have given
a very precise characterization, in the context of semi-classical pseudodifferential
operators, of the semi-classical pseudospectrum in terms of the semi-classical
principal symbol, see [1, 6, 2]. The monograph of Gohberg and Krein, [3] is the
definitive classical text on non-self adjoint operators. Trefethen and Embree’s
text, [5], provides a more modern and comprehensive treatment, from an applied

perspective.
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In this note we prove a result, describing the location of the spectrum and
pseudospectrum for operators modeled on perturbations of elliptic, self adjoint
pseudodifferential operators. Our main result is a refinement of classical results
of Keldys, with extensions due to Gohberg and Krein. In modern language, their

result is:

Theorem 1 (Keldys, Gohberg and Krein). Let A = L + T, where L is an un-
bounded self-adjoint operator, with dense domain D(L) C H. We suppose that L
is invertible, has purely discrete spectrum, and that TL™' is compact. Moreover,
L7=YTL~1 belongs to the p-Schatten class for some p. In this case, the resolvent
set of A is non-empty, and the entire spectrum of A consists of generalized eigen-
values of finite multiplicity. For any € > 0, all but finitely many points of this
spectrum lies in the sectors

(7) F.={o+ir: |r| <€lo|}

The span of the generalized eigenvectors is a dense subspace of H. If L is a non-
negative, then all, but finitely many, eigenvalues of A lie in Re A > 0.

See [3][Theorem V.10.1]. In our analysis we make a slightly stronger hypothesis
on the operator L, namely that it is, in some sense, an “elliptic” operator.

For example our result applies to an operator of the form A = L + T, where
Le V' (X;E),and T € UV5(X;FE), 0 < s < r, here X is a compact manifold,
FE — X a vector bundle. The operator L is assumed to be elliptic and self adjoint.

In this case we show that, there are constants C,Cs so that:
(8) AA) € {(o +i1) 2 |7] < (C1+ Cala])}.

If L is positive, then we show that the spectrum lies in a right half plane and
satisfies this sort of estimate.

We also show that the norm of the resolvent decays in proportion to the dis-
tance from a set of the type described in (8), thus, for any positive ¢, the e-
pseudospectrum lies in a similar set. It should be noted that the order of magni-
tude of the growth of Im A as a function Re A in (8) is sharp.

Example 1. If P, = i0,+7a on the domain H'(S1) C L?(S1), and Qs = fs(Pa),
where fs(x) = i|z|*, then P, + Qs satisfies the hypotheses of our theorem and

(9) APy + Qs) = {(2k + o) + | (2k + a)m|* : k € Z}.
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As « varies in (0,2), the spectra of A(P, + ()s) trace the boundary of the set
|7| = |o|®. As P, + Qs are normal operators, their resolvents also satisfy (2).
inBx

Replacing f, with fs 3 = €"™*|z|®, any point within the set |7| < |o|® appears,

for some «, § € (0,2), in the spectrum of P, + fs 3(Pa).

The main technical tool we use is an interpolation inequality, and so we state
our results in a fairly general, functional analytic setting. In the next section we
cover the functional analytic preliminaries; in the last section we state and prove

our main theorems, and give several examples.

Remark 1. In what follows we use C' to denote a variety of positive constants,
which do not depend on the point of evaluation, i.e. x.

1. FUNCTIONAL ANALYTIC PRELIMINARIES

We let (Ho,| - |lo) denote a separable Hilbert space, and M a positive, un-
bounded, self adjoint operator with domain D(M) C Hy. Suppose that

(1) M is invertible, hence there is a constant C so that [|[Mz||o > C||x|o, for
all z € D(M),

(2) M has a compact resolvent,

(3) Some power of M ! is a trace class operator.

We then call M an admissible operator. Let Hy = D(M) with the norm defined
by ||z]1 = ||Mz||o. We define the Hilbert spaces {Hy D Hs D Hy: s € (0,1)},
by complex interpolation. From the definition of the norm, it follows easily that
Hy; = D(M?), and we have the estimate

(10) []ls < [[M>z]lo.

Indeed, by the closed graph theorem, the norm on Hj is equivalent to ||M®x||o.
We call the Hilbert spaces {H; : s € [0, 1]}, with norm given by || M?*z||o, the scale
of spaces defined by the (admissible) operator M. As M is self adjoint and M !

s

is compact, it is clear that, for 0 < s < 1, the operators M —* are also compact.

This shows that the unit ball in Hg, s > 0, is a compact subset of Hy.

A standard application of the Phragmen-Lindel6f Theorem proves the following
interpolation estimate
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Proposition 1. Let 0 < s <t <1 and suppose that x € Hy, then

1-8 s
(11) llls < llllg *llll; -

We apply the generalized Peter-Paul inequality to conclude

Corollary 1. If 0 < s <t <1, then there is a constant Cs;, such that, for any
€ >0, xr € Hy, we have

(12) [zlls < Csyt [GEH%IIO + ellle| -

Definition 1. A closed operator B with domain D(B) C Hy, is of order (at
most) s < 1if D(B) D Hg, and, for u € [s, 1] there are constants C, so that

(13) |1Bxlus < C|lly for all = € H,.

Definition 2. A closed operator B is elliptic of order s < 1, if D(B) C Hs, and
there is a constant C' so that

(14) |lz||s < C[||Bx|lo + ||x]|o] for all z € D(B).

Remark 2. The norm || - ||s is defined by the operator M;, so our definition of
the order of an elliptic operator only agrees with the usual definition when B is
a classical elliptic pseudodifferential operator, and M is itself a classical elliptic
pseudodifferential operator of order 1. It might be more in keeping with standard
practice to call these operators “sub-elliptic” of order s. For economy of exposition

we use the simpler terminology.

Proposition 2. If B is an elliptic operator of order 0 < s < 1, then the unit
ball, in the graph of B, with respect to the graph norm, is compact in Hy. If the
resolvent set of B is non-empty, then the resolvent of B is a compact operator,
and there is a p > 0 such that for A € p(B), the operator (B — )P is trace class.

Proof. The facts that the unit ball in H is compact in Hy, D(B) C Hg, and the
estimate (14) show that the unit ball in D(B), with respect to the graph norm,
is compact in Hy. If the resolvent set of B is non-empty, then B has a compact

resolvent.

If p(B) # 0, then choose A € p(B) NR, and let {b?} denote the eigenvalues of
the non-negative, self adjoint operator (B* —\)(B —\), and {m;} the eigenvalues
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of M, both in increasing order. The triangle inequality implies that

(B =Nz, (B = Nax) > ||Bz|[§ — X*||z[3
(15) 1 512 2 —2 2
> oIl — 2 + Ol
The second line follows from the ellipticity assumption, the definition of || - ||s,

and the arithmetic-geometric mean inequality. As D(B) C Hg, the min-max
characterization of eigenvalues shows that

2s

2 m 2 2
(16) ijmaX{zch—()\ +C ),0}.

For some p > 1 the sum

(17) >,

Jj=1

converges. This fact and (16) imply that
(e.)

5 0
j=1

Hence, (B — \) belongs to a g-Schatten class, for sufficiently large g.

o I3

< oQ.

O

In the sequel we study operators of the form A = L + T. Here L is a self
adjoint, elliptic operator of order ¢ and 7' is a closed operator of order s < t. The
definitions of order and ellipticity imply that

D(B) D Hs D Hy D D(L).

We do not assume that L is non-negative. Indeed, L given by a classically elliptic,
or sub-elliptic first order system is a important example of the sort of operator we
are considering. The operator T'(L—4)~! is compact and therefore (L—i)~ T (L—
i)~! belongs to the same p-Schatten class as (L —4)~!. It follows from classical
results that A, with D(A) = D(L), is a closed operator. Theorem 1 shows that
A has a compact resolvent, such that for any € > 0, there is an r. > 0 such that
the spectrum of A lies in F, U B, (0).
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2. ESTIMATES ON THE SPECTRUM AND RESOLVENT KERNEL

With the preliminaries above we state and prove our main results. Let (M, D(M)),

with D(M) C Hy, be an admissible operator, and { Hs} the scale of Hilbert spaces
defined by M. In the sequel the notation ||z|| is used for ||z||o.

Theorem 2. Let (L, D(L)), be a self adjoint elliptic operator of order 0 < t <
1 and (T,D(T)) a closed operator of order s < t. The operator A = L + T,
with D(A) = D(L) is a closed operator with a compact resolvent. The spectrum
of A consists of generalized eigenvalues with finite multiplicity, the span of the
generalized eigenspaces is dense in Hy. There are constants C1,Co so that

(19) AA) c {o+ir: 7] < Ci(lo] +C2)}

If L is non-negative, then all but finitely many eigenvalues lies in Re A > 0, and
we can replace |o|, with o on the right hand side of (19).

Using a similar argument, we can also estimate Ra(\) = (A — \)~!. This
theorem shows that the pseudospectra of A lie in the some sort of sets.

Theorem 3. Under the hypotheses of Theorem 2, there are constants C1,Csy so
that for o + it € p(A),
Co

(20) [Ra(o +i7)|| < —.
\/7'2 —C1(1+|o]7)

We now give the proofs of these results

Proof of Theorem 2. As T is of order s < t, we apply Corollary 1 to conclude
that for any € > 0 there is a C¢ such that, for any € D(L) C H;, we have the

estimate
[Tzllo < [lls
(21) < ellzlle + Cellzllo
< Cel|Lz]lo + Ccl|z[lo-
In the last line we use the ellipticity of L. This shows that T is L-bounded, with

relative bound e, for any e > 0. Applying Theorem IV.1.1 from [4] we conclude
that (A, D(L)) is a closed operator.
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Replacing L by L — «, for a real number «, we can assume that L is invertible.
For L invertible, the ellipticity easily implies that there is a constant C so that

(22) lz|l: < C||Lz|| for x € D(L),
which is equivalent to
(23) 1L~ ylle < Clly|| for y € Ho.

To see that the operator TL~! is compact, we observe that, as T is order s, and
D(L) C Hy, we can apply (12) and (23) to conclude that, for some constant C,

ITL™ ylle—s < CIL™y]le

24 < Clyl.

Hence TL~! : Hy — H;_, boundedly. As the inclusion H;_s — Hj is compact,
TL™': Hy — Hy is as well. Finally, as L' belongs to the p-Schatten class we
conclude that LT L~" does as well. Hence we can apply Theorem 1 to obtain
all the stated results but the estimate for the location of the spectrum.

As the spectrum of A consists of generalized eigenvalues of finite multiplicity,
if \ =0+ i1t € A(A), then there exists a unit vector x € D(L) C H; such that
(A—X)z = 0. Because L is self adjoint, (x, Lx) is real; this implies two identities:

(25) (Lz, Lx) + Re(Tx, Lz) = o(x, Lx),
and
(26) Im(Tz,z) = 7(x, ).

Equation (25) and the fact that ||z|| = 1 imply that
(27) ol La|| = || Lal|* — | T2|l|| Lz].

Assuming that Lz # 0, we see that this estimate and the fact that T is an
operator of order s imply that

(28) o] = [[Lz]| = Clls.

Using Corollary 1, and the ellipticity of L it follows from (28) that for any € > 0,
there is a constant C, so that

(29) o] = (1 = )| La]| = Ccll]].
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Finally, as L is elliptic of order ¢ this implies that there are constants C7,Cy so
that

(30) zll: < Chlo| + Callz]].

As Lz = 0 can only be true for x belonging to a finite dimensional subspace, (30)
holds in this case as well.

To complete the proof, we observe that (26), the Cauchy-Schwarz inequality
and the fact that T is of order s imply that
(31) 7] < Cllls.
The interpolation inequality, (11), (30), and the fact that = € H; imply that
7| < C|lz :
) HECEI
< C[Cl|0'| 'f‘CQ]?.

This completes the proof, but for the remarks about the case L > 0. If L is
non-negative, then Theorem 1 shows that only finitely many points in A(A) can
lie in Re A < 0, so this case follows as well. Il

Now we turn to the proof of Theorem 3.
Proof of Theorem 3. The assumption L is elliptic of order ¢t > s implies that there
is a constant, C, so that, for z € D(L) we have the estimate
(33) ]l < Cll[ Lzl + [|=[].

As L is self adjoint with compact resolvent, replacing L by L — \g, where A\g €
R N A(L)¢ we obtain the estimate in (33) without ||z|| on the right hand side:

(34) [ ]ls < Cl| L]

Shifting L in this manner does not affect the conclusion of the theorem, so we
assume that the stronger inequality, (34) holds.

We need a lower bound on |[(A — (o + i7))x||. The Cauchy-Schwarz inequality
and the Peter-Paul inequality imply that, for any € > 0, and x € D(A) = D(L)

1
35) L +T=(o+ir)z|* > (1= ll(L = (o +im)al* + (1= )| T
As L is self adjoint we have the identity
(36) I(L = (o +im))z||* = (L = o)a|® + 72|l|*.
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That fact that T is of order s, the ellipticity of L, and the interpolation in-
equality imply that

_s 2s
(37) ITz|* < Cll|**= 0| La| 7.

Writing Lz = (L — o)z + oz we can apply the triangle inequality to conclude
that

2s
t

(38) |T2| < Cllz P DL - o)z F + (o|llzll) 7).

Employing the generalized Peter-Paul inequality, this estimate implies that there
is a constant C, so that

(39) (% — |72l < (1 = (L = o)zl + Cc(1 + |o| ) ][>

Combining this estimate with (35) and (36) we see that
(40)  NEZAHT = (o +im)zl? = [(1 = Olrl = Cl1 + o] )| 1]

This estimate shows that there are constants Ci, Cs so that, for (o +i7) € p(A),
we have the bound

(41) 1A= (o +ir) Y] < G

VIrl2 = Ca(1 + |0 %)

which completes the proof of the theorem. O

From the definition of pseudospectrum, the following corollary is an immediate
consequence of Theorem 3:

Corollary 2. Under the hypotheses of Theorem 3, if € > 0, and (o +i1) € A(A),
then

(42) < C’2|a|275 + 2C% 4 Cy.
Remark 3. The estimate on the pseudospectrum is of course not very sharp, given

that the spectrum is a discrete set, but is meant to illustrate that spectrum and

pseudospectrum are subject to the same constraints.

Remark 4. There is a standard estimate showing that the resolvent is bounded
by the reciprocal of the distance to the numerical range
(43) ©4 ={(Az,x) : z € D(A) with ||z| = 1}.

It is a classical result of Hausdorff that © 4 is a convex subset of C. If L is non-
negative, then the numerical range of A is often a proper convex cone. The
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estimate in (41) is then a refinement of the classical result. However if L is
indefinite, with spectrum tending to +oo, then it is often the case that © 4 = C,
and the classical result offers no estimate on the norm of the resolvent. In this

case, Theorem 3 is more than a small improvement on a classical result.

We close with a few concrete examples.

Example 2. If T is an operator of order 0, that is a bounded operator, then we
see that the spectrum of L + T lies in a bounded neighborhood of the real axis.
This follows easily from the estimate (31).

Example 3. Let Hy = L*(R) and L = —92 + 22, H; = D(L) (the maximal
domain of L). If we let

(44) T =a(z)(0y — ) + b(x) (0 + ),

where a,b are bounded smooth functions on R, then clearly T' is an operator of
order % As L is a positive operator, it follows from Theorem 2 that, for some
constants Cy, Cs, the spectrum of A = L + T lies in a set of the form:

(45) 7] < C1(Co + O')% where o > —Cj.

More generally, if L is itself an admissible operator, then we can take M = L.
The theorem applies to any closed operator 7', such that D(L) C D(T), and for
some s < 1,0 <a<1-—s, there are constants k, so that

(46) | LTz || < kol L¥T%z| for all € D(L).
Theorem 2 then shows that, for constants C', Cy, we have:
(47) AL+T)C{o+ir: 1| <Ci(Ca+0)’}Nn{o+iTt: 0> —Cs}.

In this case the coefficient C'; can be taken as close as we like to the constant kg,
appearing in (46).

Example 4. Let X be a compact manifold, ¥ — X a vector bundle. We let
H?*(X; E) denote the classical L?-Sobolev spaces on sections of E. These spaces
are well known to be complex interpolation spaces. Suppose that L € U*(X; E)
is a self adjoint, Kohn-Nirenberg pseudodifferential operator with domain D(L).
We take H; = H*(X;E). It suffices for L to be sub-elliptic, that is, for some
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r < k, we have D(L) C H"(X;E), and there is a constant C so that for every
f € D(L) we have the estimate

(48) [fllr < CUILSlo + [ f]lo]-

If T € ¥¥(X; E) with s < r, then we can apply the results above to conclude that
A = L+T with domain D(L) is a closed operator with a compact resolvent. The

spectrum and e-pseudospectra of A lie in sets of the form
(49) {o+ir: |7] < (C1 4 Colo])7}.

Example 5. Let Y be a compact Riemannian manifold and X C Y a bounded
domain with a smooth boundary. Let L’ be an formally elliptic, non-negative,
self adjoint second order operator defined on C*(Y"). For L we take a self adjoint
extension of L' [cee(x), defined by an elliptic boundary condition. The domain
of L is contained in H?(X), and therefore L has a compact resolvent. We let
Hy = L?(X) and Hy = H?(X). The spaces H, = H?*(X),a € [0,1] are the
interpolation spaces for this pair. This does not quite fit the model described
above: the necessity for boundary conditions prevents the norms on the Sobolev
spaces H?*(X) from being defined by the powers of fixed operator. Nonetheless
we can use the argument above to study the spectrum of lower order perturbations

of L.

The spectrum of L satisfies Weyl asymptotics, and therefore (L +1)7? is trace
class, for large enough p. For T" we take a polyhomogeneous, pseudodifferential
operator, satisfying the transmission condition with respect to X, of order s < 2.
For a > 0, such an operator satisfies estimates of the form:

(50) 1T fll fra(xy < Csl| fll fsta(x) for f € CP(X).

The domain of the maximal operator defined by T is therefore contained in
H?*(X), which contains the domain of L. As the operator T(L+1)~! is a bounded
map from L?(X) to H?>~%(X), it is compact from L? to L?. As (L +1)~! belongs
to a p-Schatten class, some power of (L + 1)7'T(L + 1)7! is also trace class;
Theorem 1 applies to show that A = L + T is a closed operator with a compact
resolvent. As L is non-negative, all but finitely many eigenvalues lie in the right
half plane. The argument used to prove (19) applies, mutatis mutandis, to show
that there are constants C7, Cs such that

(51) AA) C{o+ir: 7| <CL(Ca+0)2).
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In this example, the domains of A and L are the same. It would be interesting
to estimate the location of the spectrum for a boundary value problem, which is a
“perturbation,” in some sense, of a self adjoint, elliptic, or sub-elliptic, boundary
value problem. As the operation of restriction to the boundary of X is unbounded
with respect to L2, the problem of defining “small” perturbations of the boundary
conditions is a rather subtle question, to which we will return in a subsequent
publication.

Acknowledgment

I would like to thank the referee for his careful reading of, and useful remarks on my

paper.

REFERENCES

[1] E. B. DaviEs, Non-self adjoint differential operators, Bull. London Math. Soc., 34 (2002),
pp. 513-532.

[2] N. DENCKER, J. SJOSTRAND, AND M. ZWORSKI, Pseudospectra of semi-classical
(pseudo)differential operators, Comm. Pure Appl. Math., 57 (2004), pp. 384-415.

[3] I. GOHBERG AND M. KREIN, Introduction to the Theory of Linear Nonselfadjoint Operators,
vol. 18 of Translations of Mathematical Monographs, A.M.S., Providence, 1969.

[4] T. KaTO, Perturbation Theory for Linear Operators, corrected 2nd printing, vol. 132 of
Grundlehren der mathematischen Wissenschaften, Springer Verlag, Berlin Heidelberg New
York, 1980.

[5] L. N. TREFETHEN AND M. EMBREE, Spectra and Pseudospectra: The Behavior of Nonnormal
Matrices and Operators, Princeton University Press, Princeton, NJ, 2005.

[6] M. ZWORSKI, A remark on a paper of E.B. Davies, Proc. of A.M.S., 129 (2001), pp. 2955—
2957.

[7] ———, Numerical linear algebra and solvability of partial differential equations, Comm. Math.
Phys., 229 (2002), pp. 293-307.

Charles L. Epstein

Department of Mathematics, University of Pennsylvania,
209 S. 33rd Street, Philadelphia, PA 19104.

E-mail: cle@math.upenn.edu



